人教初中数学九上 25.1 随机事件与概率教案

合集下载

秋九年级数学上册 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学

秋九年级数学上册 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学

25.1 随机事件与概率随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点.了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同.重点随机事件的特点.难点判断现实生活中哪些事件是随机事件.一、情境引入分析说明下列事件能否一定发生:①今天不上课;②煮熟的鸭子飞了;③明天地球还在转动;④木材燃烧会放出热量;⑤掷一枚硬币,出现正面朝上.二、自主探究1.提出问题教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球,分组讨论从这三个袋子里摸出黄色乒乓球的情况.学生积极参加,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.2.概念得出从上面的事件可看出,对于任何事件发生的可能性有三种情况:(1)必然事件:在一定条件下必然要发生的事件;(2)不可能事件:在一定条件下不可能发生的事件;(3)随机事件:在一定条件下可能发生也可能不发生的事件.3.随机事件发生的可能性有大小袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的情况下,随机地从袋子中摸出一个球.(1)是白球还是黑球?(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?结论:一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.三、巩固练习教材第128页练习四、课堂小结(学生归纳,老师点评)本节课应掌握:(1)必然事件,不可能事件,随机事件的概念.(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.五、作业布置教材第129页练习1,2.25. 概 率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系.2.理解概率的定义及计算公式P(A)=m n,明确概率的取值X 围,能求简单的等可能性事件的概率.重点在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=m n.难点了解概率的定义,理解概率计算的两个前提条件.活动1 创设情境(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题.活动2 试验活动试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?活动3 引出概率1.从数量上刻画一个随机事件A 发生的可能性的大小,我们把它叫做这个随机事件A 的概率,记为P(A).2.概率计算必须满足的两个前提条件:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.3.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=________.4.随机事件A 发生的概率的取值X 围是________,如果A 是必然发生的事件,那么P(A)=________,如果A 是不可能发生的事件,那么P(A)=________.活动4 精讲例题例1 下列事件中哪些是等可能性事件,哪些不是?(1)运动员射击一次中靶心与不中靶心;(2)随意抛掷一枚硬币反面向上与正面向上;(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;(4)分别从写有1,3,5,7,9中一个数的五X 卡片中任抽1X 结果是1,或3,或5,或7,或9.答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件. 例2 学生自己阅读教材第131页~132页例1及解答过程.例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?例4 教师引导学生分析讲解教材第133页例3.活动5 过关练习教材第133页 练习第1~3题.,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.(1)出现数字1的概率是多少?(2)出现的数字是偶数的概率是多少?(3)哪两个数字出现的概率相等?分别是多少?答案:,P(摸到红球)=58,P(摸到绿球)=38;2.(1)16;(2)23;(3)数字1和3出现的概率相同,都是16,数字2和4出现的概率相同,都是13. 活动6 课堂小结与作业布置课堂小结1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=m n. 2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同.作业布置教材第134页~135页 习题第3~6题.。

人教版九年级上册数学教案 25.1 随机事件与概率

人教版九年级上册数学教案 25.1 随机事件与概率
问题2中(4)的结果与问题3中(4)的结果有什么共同特点?
如果学生感到困难,教师可再举几个随机事件的经典例子,如,任意抛掷一枚硬币,正面朝上.以引导学生独立地总结,归纳出随机事件的共同特点:在一定条件下,这些事件可能发生,也可能不发生.
教师应允许学生充分发表意见,学生相互合作,相互交流,尝试着给出随机事件的定义.
3.达标练习阶段
指出下列事件中,哪些是必然事件,哪些是不可能事件?
(1)通常加热到 C时,水沸腾;
(2)任意点击数字按钮,栏框中的数字是偶数.
(3)汽车经过城市中某一有交通信号灯的路口,遇到红灯.
(4)度量三角形的内角和,结果是
(5)篮球运动员在罚球线上投篮一次,未命中;
(6)掷一次骰子,向上的一面是6点;
这些现象的结果是确定的吗?进而教师提出问题。
对于其中一些问题,教师(或学生)进行实物演示。学生需阅读、观察、思考、回答问题。
本次活动中,教师应重点关注学生的表情变化,学生的参与程度,学生是否细心观察、认真阅读,勤于思考。
首先通过几个实际生活中的几个生动、鲜活的实例,自然而然地引出必然事件和不可能事件。
教师引导学生建构,总结出随机事件的定义.
我们以往研究的各种量,起码其结果都是确定的,而随机事件不同,因此,这里应留出一些时间,让同学们充分思考讨论.
问题3袋子中装有4个黑球2个白球,这些球形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
⑴摸出的这个球是白球还是黑球?
⑵如果两种球都有可能被摸出,那么“摸出黑球”和“摸出白球”的可能性一样大吗?
课题:25.1.1随机事件
教学任务分析




知识技能
了解必然事件、不可历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。

人教版九年级数学上册《25.1随机事件与概率——25.1.1随机事件》 教 案

人教版九年级数学上册《25.1随机事件与概率——25.1.1随机事件》 教 案

第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件一、教学目标1.了解必然事件、不可能事件、随机事件的特点.2.了解影响随机事件发生的可能性大小的因素.二、教学重点及难点重点:1.理解必然事件、不可能事件、随机事件的概念.2.对随机事件发生的可能性大小作定性分析.难点:1.辨别某个事件是否是随机事件.2.理解大量重复试验的必要性.三、教学用具多媒体课件.四、相关资源《箱子中装10个白球》、《箱子中5白球5红球》、《箱子中10红球》图片五、教学过程【创设情境,引入新课】下列现象哪些是必然发生的,哪些是不可能发生的?(1)将白糖放入一杯温水中,并搅拌,白糖溶解;(2)测量某天气温,结果为-150℃;(3)物体在重力作用下自由下落;(4)两个正数相加,结果是负数.师生活动:教师进行课件演示,并提出问题.学生阅读、观察、思考,回答问题.教师应关注:学生的表情变化,学生的参与程度,学生是否细心观察,认真阅读,勤于思考.设计意图:首先通过实际生活中几个生动,鲜活的实例,自然而然地引出必然事件和不可能事件.必然事件和不可能事件,相对于随机事件而言,学生更容易接受和理解.【合作探究,形成新知】1.摸球游戏三个不透明的箱子里均装有10个乒乓球,挑选多名同学来参加游戏.游戏规则:每人每次从自己选择的箱子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出红色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.师生行为:教师事先准备三个箱子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个红色的乒乓球;10个红色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第一个箱子中摸出红色球是不可能的;在第二个箱子中能否摸出红色球是不确定的;在第三个箱子中摸出红色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.归纳总结:必然事件:在一定条件下,重复进行试验时,有的事件在每次试验中必然会发生,这种事件称为必然事件.不可能事件:在一定条件下,重复进行试验时,有的事件在每次试验中都不会发生,这种事件称为不可能事件.随机事件:在一定条件下,有些事件有可能会发生,也有可能不会发生,事先无法确定,这种事件称为随机事件.设计意图:做游戏是学习数学的最好方法之一,在这个环节上,设计三次摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,同时也活跃了课堂气氛,培养了学生的合作能力,在轻松快乐的氛围中,领悟了数学的道理,突出了本节课的重点.2.解决问题问题1五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签.请考虑以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的序号小于6吗?这是什么事件?(3)抽到的序号会是吗?这是什么事件?(4)抽到的序号会是1吗?这是什么事件?师生活动:根据学生回答的具体情况,教师适当地加以点拔和引导.问题2小伟掷一个质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,观察骰子向上的一面,请考虑以下问题:(1)可能出现哪些点数?(2)出现的点数大于0吗?这是什么事件?(3)出现的点数是7吗?这是什么事件?(4)出现的点数是4吗?这是什么事件?师生活动:学生先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件.设计意图:通过抽签和掷骰子两个问题,引导学生进入生活中的数学,为学生提供一个开放的空间,放手让学生去探索和发现,再通过小组的合作交流,展示成果,更进一步的加深了对三种事件的理解,化解难点,贯彻课改中的数学来源于生活同时又指导生活的理念.问题3袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?师生活动:教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.3.实验论证(1)袋子中装有4个黄球、2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出一个球是白球.(2)袋子中装有4个黄球、2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出一个球是黄球.师生活动:教师让一部分学生动手操作并把摸出的白、黄球分成两类.让学生通过它们的数量差异归纳结论:摸到白球的可能性小.归纳总结:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.设计意图:让学生自己概括出所感知的知识,有利于学生在实践中感悟知识的生成过程,并能培养学生的语言表达能力.得出结论:随机事件的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.4.思考能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?师生活动:小组讨论、交流,小组代表汇报讨论结果,教师给予表扬.归纳总结:可以增加2个白球或减少2个黑球,使“摸出黑球”和“摸出白球”的可能性大小相同.设计意图:把问题留给学生,也是体现了以学生为主体,让学生自主探索、自主学习的理念.【例题分析,深化提升】例指出下列事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.1.通常加热到100℃时,水沸腾;2.篮球队员在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是180°;5.经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天.师生活动:学生先思考,回答问题.教师引导学生从必然事件、不可能事件和随机事件的定义来判断各事件.解:1.通常加热到100℃时,水沸腾,是必然事件.2.篮球队员在罚球线上投篮一次,命中,是随机事件.3.掷一次骰子,向上的一面是6点,是随机事件.4.度量三角形的内角和,结果是180°,是必然事件.5.经过城市中某一有交通信号灯的路口,遇到红灯,是随机事件.6.某射击运动员射击一次,命中靶心,是随机事件.7.太阳东升西落,是必然事件.8.人离开水可以正常生活100天,是不可能事件.设计意图:通过大量丰富多彩的实例,激发学生的学习热情,调动学生的学习兴趣,使学生对随机现象有比较充分的感知,从不同的侧面,不同的视角进一步深化对随机事件的理解和认识.【练习巩固,综合应用】1.下列事件中,是必然事件的为( ).A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是-2℃C.通常加热到100℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》2.下列说法正确的是( ).A.如果一件事情发生的机会只有十万分之一,那么它就不可能发生B.如果一件事情发生的可能性是100%,那么它就一定会发生C.彩票的中奖率是1%,那么买100张彩票,就有一张中奖D.一个口袋中装有10个质地均匀的小球,其中9个白球,只有一个红球,那么从中任取一个球,一定是白球3.为了了解参加某运动会的2 000名运动员的年龄情况,从中抽查了100名运动员的年龄,“某运动员被抽到”这一事件是事件,抽到的可能性为.4.小明和小华在做抛掷骰子游戏,规则是这样的:抛掷出去的骰子落地后,朝上的点数是偶数,则小明获胜,否则小华获胜,那么这个游戏是(填“公平”或“不公平”)的.5.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的可能性为P(偶数),指针指向标有奇数所在区域的可能性为P(奇数),则P(偶数) P(奇数)(填“>”“<”或“=”).6.指出下列事件中,哪些是不可能事件,哪些是必然事件,哪些是随机事件.(1)地球不停地转动;(2)木柴燃烧,产生能量;(3)一天中在常温下,石头被风化;(4)某人射击一次,击中十环;(5)掷一枚硬币,出现正面;(6)在标准大气压下且温度低于0℃时,雪融化.7.已知地球表面陆地面积与海洋面积的比均为3︰7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?参考答案1.C2.B3.随机;1204.公平5.<设计意图:巩固学生对概念的理解与判断,巩固新知,同时培养学生的发散思维.6.解:(1)地球不停地运动,是必然事件.(2)木柴燃烧,产生热量,是必然事件.(3)一天中在常温下,石块被风化,是不可能事件.(4)某人射击一次,击中十环,是随机事件.(5)掷一枚硬币,出现正面,是随机事件.(6)在标准大气压下且温度低于0℃时,雪融化,是不可能事件.设计意图:考查了必然事件、不可能事件和随机事件的概念的应用.7.解:因为“落在陆地上”的可能性为310,“落在海洋里”的可能性为710,因为710>310,所以“落在海洋里”的可能性更大.设计意图:考查了对随机事件发生的可能性大小的比较.六、课堂小结1.必然事件:在一定条件下,重复进行试验时,有的事件在每次试验中必然会发生,这种事件称为必然事件.2.不可能事件:在一定条件下,重复进行试验时,有的事件在每次试验中都不会发生,这种事件称为不可能事件.3.随机事件:在一定条件下,有些事件可能会发生,也可能不会发生,事先无法确定,这种事件称为随机事件.4.一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.设计意图:通过回顾和反思,把所学内容内化成自己的思考问题的能力,让学生看到自己的进步,提高学生的学习热情.同时也是给教师一个反思提高的机会.七、板书设计25.1 随机事件与概率——25.1.1 随机事件1.必然事件2.不可能事件3.随机事件。

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。

学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。

教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。

但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。

因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。

三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。

2.掌握概率的基本计算方法,能够计算简单事件的概率。

3.能够运用概率的知识解决实际问题。

四. 教学重难点1.随机事件的定义和分类。

2.概率的计算方法。

3.概率在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。

2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。

3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.教学课件和教学素材。

3.分组讨论的准备。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。

2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。

3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。

4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。

5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。

人教版数学九年级上册25.1《随机事件》教学设计

人教版数学九年级上册25.1《随机事件》教学设计

人教版数学九年级上册25.1《随机事件》教学设计一. 教材分析人教版数学九年级上册第25.1节《随机事件》是概率统计部分的内容,主要介绍了随机事件的定义及其相关概念。

本节内容是在学生已经学习了概率的基础知识之后进行讲解的,为后续更深入的概率统计学习打下基础。

教材通过具体的例子让学生理解随机事件的含义,并学会用概率来描述随机事件发生的可能性。

二. 学情分析九年级的学生已经具备了一定的数学基础,对概率的概念有一定的了解。

但是,对于随机事件的定义和判断,以及如何用概率来描述随机事件的发生可能性,可能还存在一定的困难。

因此,在教学过程中,需要通过具体的例子和实践活动,帮助学生理解和掌握相关概念。

三. 教学目标1.了解随机事件的定义及其相关概念。

2.学会用概率来描述随机事件发生的可能性。

3.能够运用所学的知识解决一些实际问题。

四. 教学重难点1.随机事件的定义及其与必然事件、不可能事件的区别。

2.如何用概率来描述随机事件发生的可能性。

五. 教学方法1.采用问题驱动的教学方法,通过具体的例子引导学生思考和探索。

2.使用信息技术辅助教学,展示相关的概率统计图表,帮助学生直观地理解概念。

3.学生进行小组讨论和实践操作,增强学生的动手能力和团队协作能力。

六. 教学准备1.准备相关的教学材料和案例,如概率统计图表、实际问题等。

2.准备教学课件,使用多媒体展示相关内容。

3.学生进行小组划分,准备实践操作的材料。

七. 教学过程1.导入(5分钟)通过展示一个抛硬币的动画,引导学生思考硬币落地正面朝上的可能性是多少。

让学生意识到随机事件的存在,并激发学生的学习兴趣。

2.呈现(10分钟)介绍随机事件的定义及其相关概念,如必然事件、不可能事件。

通过具体的例子,让学生理解随机事件的含义。

3.操练(10分钟)让学生进行小组讨论,思考并列举出一些生活中的随机事件,并尝试用概率来描述它们发生的可能性。

教师巡回指导,给予学生一定的帮助。

人教版数学九年级上册教案25.1《随机事件》

人教版数学九年级上册教案25.1《随机事件》

人教版数学九年级上册教案25.1《随机事件》一. 教材分析《随机事件》是人教版数学九年级上册第25.1节的内容,本节课主要让学生理解随机事件的定义,学会用概率来描述随机事件,并能运用概率解决一些实际问题。

本节课的内容是学生对概率学习的基础,也是后续学习更复杂概率问题的基础。

二. 学情分析学生在之前的学习中已经接触过一些概率的概念,如必然事件、不可能事件等,但对随机事件的定义和概率的描述还不够清晰。

此外,学生可能对实际问题中蕴含的随机性有一定的感性认识,但缺乏数学化的描述方法。

三. 教学目标1.理解随机事件的定义,掌握用概率来描述随机事件的方法。

2.能够运用概率解决一些实际问题。

3.培养学生的数学思维能力和解决实际问题的能力。

四. 教学重难点1.随机事件的定义。

2.概率的描述方法。

3.运用概率解决实际问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生思考和讨论,让学生主动探索和发现随机事件的规律,培养学生的数学思维能力和解决实际问题的能力。

六. 教学准备1.准备相关的教学材料和实例。

2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考和讨论事件的随机性,引发学生对随机事件的兴趣。

2.呈现(10分钟)介绍随机事件的定义,并用实际例子来说明。

让学生理解随机事件是在相同条件下可能发生也可能不发生的事件。

3.操练(10分钟)让学生进行一些练习题,如判断给定事件是随机事件、必然事件还是不可能事件,并用概率来描述。

通过练习,让学生加深对随机事件和概率的理解。

4.巩固(10分钟)让学生分组讨论,找出一些生活中的随机事件,并用概率来描述。

通过讨论和分享,巩固学生对随机事件和概率的理解。

5.拓展(10分钟)引导学生思考如何运用概率来解决实际问题,如彩票中奖概率、考试及格概率等。

让学生尝试运用概率的方法来分析和解决问题。

6.小结(5分钟)对本节课的主要内容进行总结,强调随机事件的定义和概率的描述方法。

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。

人教版数学九年级上册:25.1 随机事件与概率 教案

人教版数学九年级上册:25.1 随机事件与概率  教案

25.1 随机事件与概率25.1.1 随机事件教学目标1.理解必然事件、不可能事件和随机事件的特点,并会判断.2.了解和体会随机事件发生的可能性是有大小的.预习反馈1.在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.2.在一定条件下,可能发生也可能不发生的事件,称为随机事件.3.下列事件:①打开电视正在播放电视剧;②投掷一枚普通的骰子,掷得的点数小于9;③射击运动员射击一次,命中10环;④在一个只装有红球的袋中摸出白球.其中必然事件有②,不可能事件有④,随机事件有①③.4.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性>摸到K的可能性.(填“<”“>”或“=”)例题讲解类型1 事件的分类例1 (教材P127问题1变式)五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个大小相同的签,每个签上面分别标有表示出场顺序的数字1,2,3,4,5,在看不到数字的情况下,小军先抽,他任意(随机)从盒中抽取一个签.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字大于0吗?是什么事件?(3)抽到的数字会是6吗?是什么事件?(4)抽到的数字会是3吗?是什么事件?【解答】(1)1,2,3,4,5,共5种.(2)必然大于0;是必然事件.(3)不可能是6;是不可能事件.(4)可能是3,也可能不是3;是随机事件.思考:确定性事件和随机事件的特点各是什么呢?确定性事件:在发生之前可以预测结果.随机事件:事先不能预料事件是否发生,即事件的发生具有不确定性.【跟踪训练1】下列事件中,是必然事件的是(B)A.购买一张彩票,中奖B.通常温度降到0 ℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯【跟踪训练2】不透明的口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是(C)A.随机摸出1个球,是白球B.随机摸出2个球,都是黄球C.随机摸出1个球,是红球D.随机摸出1个球,是红球或黄球类型2 事件发生的可能性大小例2 (教材P129练习2变式)一只不透明的袋子中有2个红球,3个绿球和5个白球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.(1)会有哪些可能的结果?(2)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?(3)能否通过改变某种颜色球的数量,使“摸到红球”和“摸到白球”的可能性大小相同?【解答】 (1)从袋子中任意摸出一个球,可能是红球,也可能是绿球或白球.(2)∵白球最多,红球最少,∴摸到白球的可能性最大,摸到红球的可能性最小.(3)拿出3个白球,或放入3个红球即可.思考:我们如何比较随机事件发生的可能性大小呢?事件发生的可能性大小往往是由发生事件的条件来决定的,因此我们可以通过比较各事件发生的条件及其对事件发生的影响来比较事件发生的可能性大小.【跟踪训练3】 如图,一个任意转动的转盘被均匀分成六份,随意转动一次,停止后指针落在阴影部分的可能性比指针落在非阴影部分的可能性(A)A .大B .小C .相等D .不能确定巩固训练1.下列事件是必然事件的是(D)A .打开手机就有未接电话B .乘坐公共汽车恰好有空座C .明天会下雨D .将油滴入水中,油会浮在水面上2.下列事件中,不可能事件是(C)A .两点确定一条直线B .五边形的内角和为540°C .实数的绝对值小于0D .如果a 2=b 2,那么a =b3.下列事件中,是随机事件的为(B)A .水涨船高B .冬天下雪C .水中捞月D .冬去春来4.一个袋中装有10个红球,6个黄球,4个白球,每个球除颜色外都相同,搅匀后,任意摸出一个球,摸到红球的可能性最大.课堂小结事件⎩⎪⎨⎪⎧确定性事件⎩⎪⎨⎪⎧必然事件不可能事件随机事件 随机事件的特点:(1)事先不能预料事件是否发生,即事件的发生具有不确定性;(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小可能不同.25.1.2 概率教学目标1.理解有限等可能事件概率的意义,掌握其计算公式.2.利用概率公式求简单事件的概率.预习反馈1.一般地,对于一个随机事件A ,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A).2.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=m n. 3.当A 是必然事件时,P(A)=1;当A 是不可能事件时,P(A)=0;当A 是随机事件时,P(A)的取值范围是0<P(A)<1.4.对“某市明天下雨的概率是75%”这句话,理解正确的是(D)A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大5.在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0,1,3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为(C)A.45B.35C.25D.15例题讲解类型1 简单概率的计算例1 (教材P131例1变式)掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为1;(2)点数为偶数;(3)点数大于3且小于6.【解答】 掷一枚质地均匀的骰子时,向上一面的点数可能是1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)点数为1有1种可能,因此P(点数为1)=16. (2)点数为偶数有3种可能,即点数为2,4,6,因此P(点数为偶数)=12. (3)点数大于3且小于6有2种可能,即点数为4,5,因此P(点数大于3且小于6)=13. 思考:如何求简单随机事件的概率?(1)要清楚关注的是发生哪个或哪些结果;(2)要清楚所有等可能出现的结果;(3)上面两个结果个数之比就是关注的结果发生的概率,即P =事件发生的结果数所有等可能出现的结果数. 【跟踪训练1】 在一个不透明袋子中装有5个红球、3个绿球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,摸出红球的概率是(D)A.13B.35C.38D.58类型2 几何概率的计算例2 (教材P132例2变式)如图是一个材质均匀的转盘,转盘分成8个全等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止(若指针指向两个扇形的交线时,当作指向右边的扇形),转动一次转盘:(1)求指针指向红色扇形的概率;(2)指针指向红色扇形的概率大,还是黄色扇形概率大?为什么?【解答】 按颜色把8个扇形分别记为红1,红2,绿1,绿2,绿3,黄1,黄2,黄3,所有可能结果的总数为8,并且它们出现的可能性相等.(1)指针指向红色扇形(记为事件A)的结果有2种,即红1,红2,因此P(A)=28=14. (2)指针指向黄色扇形的概率大.理由:指针指向黄色扇形(记为事件B)的结果有3种,即黄1,黄2,黄3,因此P(B)=38. ∵14<38, ∴P(A)<P(B),即指针指向黄色扇形的概率大.归纳:几何概率的公式P(A)=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积). 【跟踪训练2】 如图,一个正六边形转盘被分成6个全等的三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是(C)A.16B.14C.13D.12巩固训练1.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、正六边形,现从中随机抽取一张,卡片上的图形是中心对称图形的概率是(C)A.14B.13C.34 D .12.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是(B)A.14B.512C.13D.123.一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是12. 课堂小结1.当A 为必然事件时,P(A)=1;当A 为不可能事件时,P(A)=0;当A 为随机事件时,0<P(A)<1.2.事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.3.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=m n,即事件A 发生的概率P(A)=事件A 发生的结果数所有可能的结果总数.。

人教版九年级数学上册随机事件教案

人教版九年级数学上册随机事件教案

第二十五章概率初步25、1随机事件与概率25、1。

1 随机事件第1课时随机事件的概念堂总结反思【教学反思】①[授课流程反思]A。

创设情景□B。

探究新知□ C、课堂训练□ D、课堂总结□在探究新知的过程中,通过多种游戏,引领学生在活动中形成新认识、学习新概念、获得新知识,充分调动了学生的学习积极性,体现了学生的主体地位、②[讲授效果反思]A、重点□B。

难点□ C、易错点□ D、□E。

□教师强调:必定事件和不估计事件称为确定事件,是实现能够确定是否发生的事件、③ [师生互动反思]从课堂发言和练习来看,学生能够在快乐、轻松的学习氛围中学习,鼓舞学生的逆向思维和创新思维、④ [练习反思]好题题号检测第2、5题、错题题号反思教学过程和教师表现,进一步提升操作流程和自身素质、第二十五章概率初步25、1随机事件与概率25。

1。

1随机事件第2课时随机事件的估计性典案一教学设计课题随机事件的估计性(第2课时)授课人教学目标知识技能通过“摸球”如此一个有趣的试验,形成对随机事件发生的估计性大小作定性分析的能力,了解影响随机事件发生的估计性大小的因素;数学考虑引导学生感受随机事件的发生的估计性是有大小的,不同的随机事件发生的估计性的大小估计不同;问题解决历经“推测—动手操作-收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的估计性大小的特点以及影响随机事件发生的估计性大小的客观条件;情感态度在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯,得出随机事件发生的估计性大小的准确结论需经过大量重复的试验,让学生从中体验到科学的探究态度;教学对随机事件发生的估计性大小的定性分析;师生活动:教师提出问题,待学生回答后,教师把结果统计在表中。

活动4:对表中的数据进行分析,得出结论、提问:通过上述试验,您认为,要判断同一试验中哪个事件发生估计性的较大,必须如何做?师生活动:教师先引导学生回答,回答时教师注意纠正学生的不准确用语。

人教版数学九年级上册25.1.1《随机事件》教学设计

人教版数学九年级上册25.1.1《随机事件》教学设计

人教版数学九年级上册25.1.1《随机事件》教学设计一. 教材分析《随机事件》是人教版数学九年级上册第25章第1节的内容。

本节课主要介绍随机事件的定义及其相关概念。

通过本节课的学习,使学生了解随机事件的定义,理解必然事件、不可能事件与随机事件的关系,能正确判断事件的类型。

教材通过丰富的实例,引导学生探究、总结随机事件的定义,培养学生的抽象思维能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对事件的概念有一定的了解。

但在判断事件类型方面,部分学生可能还存在一定的困难。

因此,在教学过程中,要关注学生的个体差异,引导学生通过观察、思考、交流、总结,提高他们判断事件类型的能力。

三. 教学目标1.理解随机事件的定义,能正确判断事件的类型。

2.培养学生的观察能力、思考能力和抽象思维能力。

3.通过对实际问题的分析,提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:随机事件的定义及其相关概念。

2.难点:必然事件、不可能事件与随机事件的关系;判断事件类型。

五. 教学方法1.采用问题驱动法,引导学生通过观察、思考、交流、总结,掌握随机事件的定义。

2.运用实例分析法,使学生理解必然事件、不可能事件与随机事件的关系。

3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关教学课件和教学素材。

2.准备学生分组讨论所需材料。

3.教师熟练掌握教材内容,明确教学目标和要求。

七. 教学过程1.导入(5分钟)利用生活中的实例,如抛硬币、抽奖等,引导学生关注随机现象。

提问:这些现象有什么共同特点?学生回答后,教师总结:这些现象都是随机事件。

2.呈现(10分钟)展示教材中的实例,引导学生观察、思考,总结随机事件的定义。

提问:什么是随机事件?必然事件、不可能事件与随机事件有什么关系?学生回答后,教师总结:随机事件是在一定条件下,可能发生也可能不发生的事件。

3.操练(10分钟)分组讨论:让学生结合实例,判断所给事件类型。

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计一. 教材分析本节课为人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时,主要内容包括随机事件的定义、必然事件、不可能事件以及概率的定义。

本节课的内容是学生对概率知识的一次初步认识,为后续学习更高级的概率知识打下基础。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于事件的分类和概率的概念有一定的理解。

但同时,学生对于概率这一概念的理解还需要通过具体的例子来进行引导。

三. 教学目标1.了解随机事件的定义、必然事件、不可能事件。

2.理解概率的定义,并能运用概率知识解决简单问题。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.重点:随机事件的定义、必然事件、不可能事件,概率的定义。

2.难点:概率的计算和应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过具体的例子引导学生理解概率的概念,培养学生的动手操作能力和团队协作能力。

六. 教学准备1.教学PPT。

2.教学案例和问题。

3.小组合作学习的任务单。

七. 教学过程1.导入(5分钟)通过一个简单的抛硬币实验,引导学生思考:抛硬币时,正面朝上和反面朝上的可能性是否相等?从而引出随机事件的定义。

2.呈现(15分钟)呈现必然事件、不可能事件的例子,让学生通过观察和分析,理解必然事件和不可能事件的含义。

3.操练(10分钟)让学生通过PPT上的练习题,巩固对随机事件、必然事件、不可能事件的理解。

4.巩固(10分钟)学生分小组,根据任务单,探讨并计算一些简单的概率问题,如抛硬币、掷骰子等。

教师巡回指导,帮助学生解决遇到的问题。

5.拓展(10分钟)让学生思考并讨论:如何计算一个事件的概率?引导学生理解概率的计算方法。

6.小结(5分钟)教师引导学生总结本节课所学的知识,让学生明确随机事件、必然事件、不可能事件的定义,以及概率的计算方法。

九年级数学上册 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教

九年级数学上册 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教

第一课时随机事件的概率一、教学目标:1、知识与技能:(1)通过实例了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.2、过程与方法:(1)发现法教学,通过在抛硬币试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”、“掷骰子”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:概率的概念的理解,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。

例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。

请观看下面事件,它们发生的情况如何?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;a ”;(4)“若a为实数,则0(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5X标签中任取一X,得到4号签”;(8)“某机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.根据引例导出概念:2、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;请同学们根据概念判断引列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件.组织学生利用带来的硬币做试验导入频数与频率的概念:活动:1:全班每人各取一枚硬币,做10次掷硬币的试验,每人记录下试验的结果,填入下表中:思考:与其它同学的试验结果比较,你的结果和他们一致吗?为什么会出现这样的情况?2:每组把本组同学的试验结果统计一下,填入下表中思考:与其它小组的试验结果比较,各组结果一致吗?为什么会出现这样的情况?3:请一位同学把本班同学的试验结果统计一下,填入下表中:4:请把全班每个同学的试验中正面朝上的次数收集起来,并用条形图表示 5:请同学们找出掷硬币时“正面朝上”这个事件发生的规律性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机事件教学时间课题随机事件课型新授课教学目标知识和能力通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。

过程和方法历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。

情感态度价值观体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。

教学重点随机事件的特点教学难点对生活中的随机事件作出准确判断教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、创设情境,引入课题1.问题情境下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。

2.引发思考我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?二、引导两个活动,自主探索新知活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。

签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。

小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。

请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性。

概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。

(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?根据学生回答的具体情况,教师适当地加点拔和引导。

活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。

请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?提出问题,探索概念(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?三、应用练习,巩固新知练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。

(1)两直线平行,内错角相等;(2)刘翔再次打破110米栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球(8)物体在重力的作用下自由下落。

(9)抛掷一千枚硬币,全部正面朝上。

四、小结这节课学了哪些知识?“抽签”这个活动是学生容易理解或亲身经历过的,操作简单省时,又具有很好的经济性,最主要的是活动中含有丰富的随机事件,事件(3)就是一个典型的事件,它的提出,让学生产生新的认知冲突,从而引发探究欲望随机事件对学生来说是陌生的,它不同于其他数学概念,因此要理解随机事件的含义,由学生来描述随机事件的概念,进行活动2很有必要,便于学生透过随机事件的表象,概括出随机事件的本质特性,从而自主描述随机事件这一概念教师让学生充分发表意见,相互补充,相互交流,然后引导学生建构随机事件的定义,充分发挥学生的主观能动性。

作业设计必做教科书P131:1 选做教学反思教学时间课题25.1.1 随机事件(第二课时)课型新授课教学 目 标知 识 和能 力 通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。

过 程 和方 法 历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。

情 感 态 度 价值观在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;得出随机事件发生的可能性大小的准确结论。

需经过大量重复的试验,让学生从中体验到科学的探究态度。

教学重点 对随机事件发生的可能性大小的定性分析 教学难点 理解大量重复试验的必要性 教学准备教师多媒体课件学生“五个一”课 堂 教 学 程 序 设 计设计意图一、创设情境,引入课题1、摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。

2、提出问题:我们把“摸到白球”记为事件A ,把“摸到黑球”记为事件B ,提问: (1)事件A 和事件B 是随机事件吗? (2)哪个事件发生的可能性大?二、分组试验、收集数据,验证结果1、把学生分成2人一组,其中一人把球搅均匀,另一人摸球并把结果记录在表1中。

事件A 发生的次数 事件B 发生的次数 结果(指哪个事件发生的次数多) 10次摸球 20次摸球2、小组汇报试验结果,教师统计结果填于表2。

得到结果1的组数 得到结果2的组数10次摸球 20次摸球 注:结果1指事件A 发生的次数多,结果2指事件B 发生的次数多。

3、提出问题(1)“10次摸球”的试验中,事件A 发生的可能性大的有几组?“20次摸球”的试验中呢?(2)你认为哪种试验更能获得较正确结论呢?(3)为了能够更大可能地获得正确结论,我们应该怎样做?“摸球”试验操作方便、简单且可重复,又为学生所熟知,学生做起来感觉亲切,有趣,并且容易依据生活经验猜到正确结论,这样易于激发学生的学习热情。

设计“10次摸球”和“20次摸球”,意在引起结果的变化。

对“10次摸球”4、进行大量重复试验,验证猜测的正确性。

教师请同学们进行400次重复的“摸球”试验,教师提问:如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?待学生回答后,教师把结果统计在表中。

事件A发生的次数事件B发生的次数400次摸球5、对表中的数据进行分析,得出结论。

提问:通过上述试验,你认为,要判断同一试验中哪个事件发生可能性的较大,必须怎么做?先让学生回答,回答时教师注意纠正学生的不准确的用语,最后由教师总结:要判断随机事件发生的可能性大小,必须经过大量重复试验。

6、对试验结果作定性分析。

在经过大量重复摸球以后,我们可以确定,事件A发生的可能性大于事件B发生的可能性,请同学们分析一下其原因是什么?三、练习反馈1、一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,3个黑球,其它都是黄球,从中任摸一个,摸中哪种球的可能性最大?2、一个人随意翻书三次,三次都翻到了偶数页,我们能否说翻到偶数页的可能性就大?3、袋子里装有红、白两种颜色的小球,质地、大小、形状一样,小明从中随机摸出一个球,然后放回,如果小明5次摸到红球,能否断定袋子里红球的数量比白球多?怎样做才能判断哪种颜色的球数量较多?4、已知地球表面陆地面积与海洋面积的比均为3:7。

如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?四、小结得到正确结论的组数和“20次摸球”得到的正确结论的组数进行比较,使学生明白,增加摸球次数更宜于接近正确结论,本小节也可以让学生再进行“40次摸球”试验。

让学生养成动脑筋,想办法的学习习惯,明白小组合作的优势。

本小节是教学难点,这个结论由学生得出,体现了自主学习的理念,有利于学生思维的发展。

这是本节课的主要内容之一,是本节课的出发点,也是本节课的归宿,把这个问题留给学生,也是体现了以学生为主体,让学生自主探索、自主学习的理念。

作业设计必做教科书P132:2 选做教学反思概率教学时间课题概率课型新授课教学目标知识和能力1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义过程和方法让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.情感态度价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.教学重点在具体情境中了解概率意义. 教学难点对频率与概率关系的初步理解教学准备教师壹元硬币数枚、图钉数枚、多媒体课件学生“五个一”课堂教学程序设计设计意图一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因. 在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性, 引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P 140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图. 表25-2 抛掷次数n50 100 150 200 250 300 350 400 “正面向上”的频数m “正面向上”的频率 n m想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示) 随着抛掷次数增加,“正面向上”的频率变化趋势有何规律? 在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,0.5 1 正面向上的频率 n m投掷次数n100 50 250 150 500 450 300 350 200 图25.1-1“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).表25-3通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高. 学生练习1.书上P131.练习.1. 巩固用频率估计概率的方法. 2.书上P131.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题. 五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义. 作业 设计 必做 完成P132 习题25. 2、3、4选做 课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.教 学 反 思。

相关文档
最新文档