随机事件与概率教案1(九年级数学)

合集下载

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。

学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。

教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。

但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。

因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。

三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。

2.掌握概率的基本计算方法,能够计算简单事件的概率。

3.能够运用概率的知识解决实际问题。

四. 教学重难点1.随机事件的定义和分类。

2.概率的计算方法。

3.概率在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。

2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。

3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.教学课件和教学素材。

3.分组讨论的准备。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。

2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。

3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。

4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。

5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。

人教版九年级数学教案:25.1.1随机事件

人教版九年级数学教案:25.1.1随机事件
教师点评并总结:“很好,你们已经能够用正确的方式描述这些随机事件了。接下来,我们来看一下如何进行随机事件的运算。”
-计算抛硬币的概率,即正面和反面出现的概率都是1/2;
-计算抽奖的概率,即中奖和未中奖的概率,假设是1/0和9/10;
-计算摇骰子的概率,即每个点数出现的概率是1/6。
最后,教师可以布置一些练习题,让学生课后巩固所学内容。
此外,课堂总结时,我发现学生们对今天学习的知识点掌握得还算牢固,但在提问环节,他们对一些细节问题的理解还不是很清晰。这说明我在讲解重点和难点时,可能还需要更加细致和具体,以便让学生们更好地理解。
5.课后作业:布置与课程内容相关的练习题,帮助学生巩固知识。
五、教学反思
今天我们在课堂上探讨了随机事件的概念和运算,通过实际案例的分析,我希望学生们能够对随机事件有一个更加直观和深入的理解。在教学过程中,我发现了一些值得注意的地方。
首先,学生对随机事件的定义和分类掌握得还算不错,但是在具体的案例分析时,有些同学对事件之间的互斥性和对立性理解不够透彻。我通过掷硬币和摇骰子的例子,强调了互斥事件和对立事件之间的区别,希望他们在课后能够进一步消化和理解。
课程结束。
完整的课程设计如下:
1.教学内容:本节课主要学习随机事件的定义、描述和运算。
2.核心素养目标:培养学生数据分析、数学建模和解决问题的能力。
3.教学步骤:
a.引导学生回顾随机事件的定义和分类;
b.教授随机事件的描述和表示方法;
c.指导学生进行随机事件的运算;
d.布置练习题,巩固所学内容。
4.教学方法:通过提问、案例分析、实际操作等方式,激发学生的思考和实践能力。
-举例:解释为什么互斥事件不能同时发生,而对立事件则必有一个发生。

2024-2025学年沪科版初中数学九年级(下)教案第26章概率初步26.1随机事件

2024-2025学年沪科版初中数学九年级(下)教案第26章概率初步26.1随机事件

第26章概率初步26.1 随机事件教学反思教学目标1.在实际情景中感受必然事件、不可能事件和随机事件的意义.2.会对随机事件发生的可能性大小的定性分析.3.从大量实例中理解概率的意义,了解概率与现实生活的联系,并会用符号表示概率.教学重难点重点:识别必然事件、不可能事件、随机事件;判断事件发生可能性的大小.难点:理解概率的意义.教学过程导入新课1.三人每次都能摸到红球吗?【尝试】学生根据生活经验回答.可能发生,也可能不发生,必然不会发生,必然会发生.问题:如图,重复抛掷一枚各面上点数分别是1,2,3,4,5,6的均匀骰子,记录每次抛掷后骰子向上一面的点数,回答以下问题:(1)可能出现哪些点数?(2)出现的点数小于7吗?(3)出现的点数会是8吗?(4)抛掷一次,出现的点数会是6吗?从抛掷结果可以发现:(1)每次抛掷的结果不一定相同,可能出现的点数共有6种,分别是1,2,3,4,5,6;(2)出现的点数一定小于7;(3)出现的点数一定不是8;(4)抛掷一次,出现的点数可能是6,也可能不是6,无法预先确定.探究新知1.事件的类型可以事先知道其一定会发生的事件叫做必然事件.一定不会发生的事件叫做不可能事件.⎫⎪⎬⎪⎭必然事件确定性事件不可能事件师生活动:(小组讨论)1.将2个黑球,3个白球,4个红球放入一个不透明的袋子里,从中摸出1个球,恰好摸到的球是绿球,是 事件.2.将2个黑球,3个白球,4个红球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这个事件是 事件.答案:1.不可能 2.必然 师生活动:(小组讨论)下列事件一定能发生吗? (1)掷一枚硬币,有国徽的一面朝上. (2)买一张彩票,恰好中奖.(3)办公室老师从我们班选一个人去打水,你被选中. (4)守株待兔. 【归纳总结】(老师点评总结)无法事先确定在一次试验中会不会发生的事件叫做随机事件.确定性事件和随机事件统称为事件.事件一般用大写字母A ,B ,C ,…表示.例1 判断下列事件是必然事件、不可能事件还是随机事件: (1)乘公交车到十字路口,遇到红灯; (2)把铁块扔到水中,铁块浮起;(3)任选13个人,至少有两人的出生月份相同; (4)从上海到北京的D314次动车明天正点到达北京. 【解】(1)随机事件;(2)不可能事件;(3)必然事件;(4)随机事件. 2.随机事件发生的可能性问题:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出一个球.(1)这个球是白球还是黑球? (2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗? 【归纳总结】(老师点评总结)由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.【思考】随机事件发生的可能性的大小相同的条件在一定条件下,要使随机事件出现的可能性相同,则需要使机会均等.练一练:能否通过上题改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?可以.例如:白球个数不变,拿出2个黑球或黑球个数不变,加入2个白球. 【新知应用】例2 下列事件中,哪些事件发生的可能性是一样的?哪些不一样? (1)掷一枚均匀的骰子,出现2点朝上或6点朝上的可能性;(2)从装有4个红球,3个白球的袋中任取一球,取出红球或白球的可能性; (3)从一副扑克牌中任意取一张,取到小王或黑桃3的可能性. 【解】(1)出现2点朝上或6点朝上的可能性一样. (2)取出红球或白球的可能性不一样; 取出红球的可能性大于取出白球的可能性.教学反思(3)取到小王或黑桃3的可能性一样.问题:小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一枚骰子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?答案:6种;1 6 .【归纳总结】1.事先不能预料事件是否发生,即事件的发生具有不确定性;2.随机事件发生的可能性是有大小的.3.概率的定义一般地,表示一个随机事件A发生的可能性大小的数,叫做这个事件发生的概率,记作P(A).【归纳总结】试验有两个共同的特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.在这些试验中出现的事件为等可能事件.问题:任意取一枚均匀的硬币随机抛掷一次,观察落地时这枚硬币朝向的结果,正面向上的概率是多少?由于硬币是均匀的,出现正面向上或反面向上的可能性是完全相等的(各占一半),即等可能性,即正面或反面出现的可能性为一半.又因为正面向上的可能性是1种,正面向上的可能性占总可能性的比值为12,所以正面向上的概率为12,即P(正面)=12.【归纳总结】概率可以从数量上刻画一个随机事件发生的可能性大小;概率一般用某事件的可能性占总可能性的比值刻画.课堂练习1.下列语句描述的事件中,是随机事件的为()A.水到渠成B.只手遮天C.瓜熟蒂落D.心想事成2.如图,转动如图所示的一些可以自由转动的转盘,当转盘停止时,猜想指针落在黑色区域内的可能性大小,将转盘的序号按可能性从小到大的顺序排列为.第2题图3.下列结论:①如果一件事发生的机会只有十万分之一,那么它就不可能发生;②某公司生产的降落伞合格率达99.9%,则使用该公司的降落伞不会发生危险;③如果一件事不是必然发生的,那么它就不可能发生;④从1,2,3,4,5中任取一个数,是奇数的可能性要大于是偶数的可能性.其中,正确的结论是.(填序号)4.投掷一枚骰子,出现点数不超过4的概率约是.5.一次抽奖活动中,印发奖券10 000张,其中一等奖一名,奖金5 000元,那么第一位抽奖者,(仅买一张)中奖概率为.教学反思6.在一个不透明的口袋中装有大小、外形一模一样的5是必然事件.(1)从口袋中一次任意取出一个球,是白球;(2)从口袋中一次任取5个球,全是蓝球;(3)从口袋中一次任取5(4)从口袋中一次任意取出67.获胜;如果朝上的数字不是6,那么乙获胜.为什么?8.从6名男生和4名女生中选5名(n为正整数).(1)当n为何值时,女生中的小芳被选中是必然事件?(2)当n为何值时,女生中的小芳被选中是不可能事件?(3)当n为何值时,女生中的小芳被选中是随机事件?9.随意抛一粒豆子,恰好落在如图所示的圆内,在正方形里面的可能性大还是落在正方形外面的可能性大?参考答案1.D2.④①②③3.④4.235.1100006.解:(1)随机事件;(2)不可能事件;(3)随机事件;(4)随机事件.7.解:乙获胜的可能性大,因为骰子朝上的数字不是6可能性大.8.解:(1)当n=1时,女生中的小芳被选中是必然事件;(2)当n=5时,女生中的小芳被选中是不可能事件;(3)当n=2或3或4时,女生中的小芳被选中是随机事件.9.解:设圆的半径为1圆的面积为πr2=π,正方形的面积为22=,因为2>π-2,所以这粒豆子落在正方形里面的可能性大.课堂小结⎧⎧⎪⎪⎨⎪⎨⎩⎪⎩必然事件(一定会发生)确定性事件事件不可能事件(一定不会发生)随机事件(发生的可能性有大有小)根据随机事件发生的可能性大小,帮助我们做出合理的决策.特别注意:不可能事件是确定性事件.概率可以从数量上刻画一个随机事件发生的可能性大小;概率一般用某事件的可能性占总可能性的比值刻画.布置作业教材第93页习题26.1板书设计26.1随机事件1.⎧⎧⎪⎪⎨⎪⎨⎩⎪⎩必然事件:可以事先知道其一定会发生的事件.确定性事件事件不可能事件:在一定条件下,一定不会发生的事件.随机事件:无法事先确定在一次试验中会不会发生的事件.2.随机事件发生的可能性是有大小的.3.一般地,表示一个随机事件A发生的可能性大小的数,叫做这个随机事件发生的概率,记作P(A).教学反思。

人教版数学九年级上册《概率》教案1

人教版数学九年级上册《概率》教案1

人教版数学九年级上册《概率》教案1一. 教材分析《概率》是人教版数学九年级上册的一章内容,主要介绍了概率的基本概念、事件的相互独立性、概率的计算方法等。

本章内容是学生对概率的初步认识,为后续更深入的学习打下基础。

二. 学情分析学生在学习本章内容前,已经掌握了相关数学知识,如函数、统计等,但对概率的概念和计算方法可能较为陌生。

因此,在教学过程中,需要引导学生理解概率的概念,并通过实例让学生掌握概率的计算方法。

三. 教学目标1.了解概率的基本概念,理解事件的相互独立性。

2.学会使用概率公式计算简单事件的概率。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.概率的概念和事件的相互独立性。

2.概率公式的运用和计算。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究概率的计算方法。

2.通过实例分析,让学生理解概率的概念和事件的相互独立性。

3.运用小组讨论的方式,培养学生的团队合作能力。

六. 教学准备1.教学PPT或黑板。

2.与概率相关的实例和习题。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考概率的概念。

提问:抛硬币实验中,正面朝上的概率是多少?为什么?2.呈现(10分钟)介绍概率的基本概念,如必然事件、不可能事件、随机事件等。

通过PPT或黑板,展示概率的定义和符号表示。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,如掷骰子、抽签等,计算其概率。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)针对各组的计算结果,进行讲解和分析,巩固概率的计算方法。

提问:如何判断两个事件是否相互独立?5.拓展(10分钟)介绍事件的相互独立性,并通过实例让学生理解。

提问:如何计算两个相互独立事件同时发生的概率?6.小结(5分钟)对本节课的内容进行总结,强调概率的概念和事件的相互独立性。

7.家庭作业(5分钟)布置相关习题,让学生巩固所学知识。

8.板书(5分钟)总结本节课的主要内容和重点知识点。

华师大版-数学-九年级上册- 随机事件的概率 教案

华师大版-数学-九年级上册- 随机事件的概率 教案

随机事件的概率一、教学目标1. 理解概率的含义及概率的取值范围 2. 用实验的方法分析随机事件的概率; 3. 会用数学语言表示概率。

二、教学重点和难点教学重点:在具体情境中了解概率意义. 教学难点:对频率与概率关系的初步理解 教具准备:壹元硬币数枚、图钉数枚、多媒体课件 三.教学方法复习引入 实验、分组讨论、自主探究 四.教学过程 (一)复习引入事件⎪⎩⎪⎨⎧⎩⎨⎧不可能事件必然事件确定事件不确定事件:随机事件 (二)新课我们已经知道,抛掷一枚普通的硬币仅有两个可能的结果:“出现正面”和“出现反面”.这两个结果发生的可能性相等,所以各占50%的机会.50%这个数表示事件“出现正面”发生的可能性的大小.表示一个事件发生的可能性大小的这个数,叫做该事件的概率(probability ).例如,抛掷一枚硬币,“出现反面”的概率为21,可记为P (出现反面)=21. 再例如,投掷一枚普通的六面体骰子,“出现数字1”的概率为61,可记为P (出现数字1)=61.这两个问题比较简单,都可以经过分析得出概率,但有很多问题,人们也经常采取重复实验、观察频率值的办法,这种办法我们已经比较熟悉了.让我们一起回顾已经做过的几个实验及其结果,并完成表26.1.1.表26.1.1做过的几个实验及其实验结果我们发现,原来这几个动手实验观察到的频率值也可以开动脑筋分析出来,当然,最关键的有两点:(1) 要清楚我们关注的是发生哪个或哪些结果; (2) 要清楚所有机会均等的结果.(1)、(2)两种结果个数之比就是关注的结果发生的概率,如 P (掷得“6”)= 61,读作: 掷得“6”的概率等于61. 问题1掷得“6”的概率等于61表示什么意思? 有同学说它表示每6次就有1次掷出“6”,你同意吗?请你再做投掷骰子实验,一旦掷到“6”,就算完成了1次实验,然后数一数你投掷了几次才得到“6”的.看看能否发现什么.小明的实验结果如表26.1.2所示,在他10次实验中,有时很迟才掷得“6”,有时很早就掷得“6”,平均一下的话,平均每5.4次掷得一个“6”.你是平均几次掷得“6”的?表26.1.2平均投掷骰子几次得到1次“6”从实验结果看,原来这句话应该表示: 如果掷很多很多次的话,那么平均每6次有1次掷出“6”.思考1. 已知掷得“6”的概率等于61,那么不是“6”(也就是1~5)的概率等于多少呢?这个概率值又表示什么意思?2. 我们知道,掷得“6”的概率等于61也表示: 如果重复投掷骰子很多很多次的话,那么实验中掷得“6”的频率会逐渐稳定到61附近.这与“平均每6次有1次掷出‘6’”互相矛盾吗?练习投掷一个均匀的正八面体骰子,每个面上依次标有1、2、3、4、5、6、7和8. (1) 掷得“7”的概率等于多少?这个数表示什么意思? (2) 掷得的数不是“7”的概率等于多少?这个数表示什么意思? (3) 掷得的数小于或等于“6”的概率等于多少?这个数表示什么意思?在以前的学习中,我们主要是通过大数次的实验,用观察到的频率来估计概率的.这样做的优点是能够用很直观的方法解决许多日常生活中与随机性有关的问题,如游戏公平性问题、中奖机会问题等.它的缺点是估计值必须在实验之后才能得到,无法预测.这一节,我们主要学习在较为简单的问题情境下如何预测概率.例1 班级里有20个女同学,22个男同学,班上每个同学的名字都各自写在一张小纸条上,放入一个盒中搅匀.如果老师闭上眼睛随便从盒中取出一张纸条,那么抽到男同学名字的概率大还是抽到女同学名字的概率大?分析 全班42个学生名字被抽到的机会是均等的. 解P (抽到男同学名字)=4222=2111, P (抽到女同学名字)=4220=2110<2111,所以抽到男同学名字的概率大.思考1. 抽到男同学名字的概率是2111表示什么意思? 2. P (抽到女同学名字)+P (抽到男同学名字)=100%吗?如果改变男女生的人数,这个关系还成立吗?3. 下面两种说法你同意吗?如果不同意,想一想可以采用哪些办法来说服这些同学. (1) 有同学说: 抽到男同学名字的概率应该是21,因为“抽到男同学名字”与“抽到女同学名字”这两个结果发生的机会相同.(2) 有同学说: 虽然抽到男同学名字的概率略大,但是,只抽一张纸条的话,概率实际上还是一样大的.反思与小结通过本节课的学习,你学到了什么?体验到了什么?还有什么问题? 作业第109页、1、2、3题。

《25.1随机事件与概率——25.1.2 概率》(第1课时)教学设计【初中数学人教版九年级上册】

《25.1随机事件与概率——25.1.2 概率》(第1课时)教学设计【初中数学人教版九年级上册】

第二十五章概率初步25.1 随机事件与概率25.1.2 概率教学设计(第1课时)一、教学目标1.了解概率的意义,渗透随机观念.2.能计算一些简单随机事件的概率.二、教学重点及难点重点:概率的意义.难点:概率的意义,判断试验条件的意识.三、教学用具多媒体课件.四、相关资源《杞人忧天》、《瓮中捉鳖》、《守株待兔》动画,《事情发生可能性与概率的关系》动画.五、教学过程【创设情境,引入新课】学习数学的人应该用数学的眼光看待周围的事物你如何用数学的眼光看待“杞人忧天”“瓮中捉鳖”“守株待兔”这几个成语呢?师生活动:教师提出问题,学生思考,归纳成语故事与数学的联系.设计意图:通过数学人用数学思想的角度,引导学生思考成语故事,让学生觉得新奇有趣,瞬间抓住学生的兴趣点引人入胜,带入数学课堂.【合作探究,形成新知】【知识点解析】概率,微课中系统介绍概率的基础知识及相应练习.问题1从分别标有1,2,3,4,5的五根签中随机地抽取一根,抽到的签号是5.这个事件是随机事件吗?抽到5个号码中任意一个号码的可能性的大小一样吗?师生活动:提问一学生回答,教师根据学生的回答情况总结这个事件是随机事件,抽到5个号码中任意一个号码的可能性的大小一样.问题2抽出的可能的结果一共有多少种?每一种占总数的几分之几?师生活动:小组讨论、交流,教师巡查,关注学生是否真正讨论,指导学困生.归纳总结:这五根签中有五种可能,即1,2,3,4,5.因为签看上去完全一样,又是随机抽取,所以每个数字被抽到的可能性大小相等.我们用15表示每一个数字被抽到的可能性大小.问题3掷一枚质地均匀的骰子,向上的一面的点数有多少种可能?分别是什么?向上的点数是1,2,3,4,5,6的可能性的大小相等吗?它们都是总数的几分之几?师生活动:一学生回答,全班订正.【数学探究】掷一枚质地均匀的骰子,随机出现点数,体现随机事件的基本属实.归纳总结:掷一枚质地均匀的骰子,向上的一面的点数有6种可能,即1,2,3,4,5,6.因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用16表示每种点数出现的可能性大小.问题4掷一枚质地均匀的骰子,向上的一面的点数有几种可能?出现向上一面的点数是1的可能性是多少?其它点数呢?师生活动:小组交流,小组代表汇报讨论结果,教师引导学生注意事件的特点.归纳总结:由于骰子形状规则、质地均匀,又是随机掷出,所以出现每种结果的可能性大小相等,都是全部可能结果总数分之一.设计意图:建构主义主张教学应从学生已有的知识体系出发,这样设计有利于引导学生顺利地进入学习情境.通过抽签的方式回答问题,让学生亲身体验,这样容易激发学生的学习兴趣.这样安排一方面复习了必然事件、随机事件和不可能事件的内容,而且还加深了对三种事件的理解;另一方面也为过渡到本节课的教学作了一个很好的铺垫.以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识设疑,从而激发学生的学习兴趣和求知欲望.通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时把学生带入下一环节.提问概率的定义是什么?问题1至问题4有什么共同特点?师生活动:小组讨论,一同学回答,不足地方其他学生补充,教师引导学生注意概率的共同特点.概率:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.表示方法:事件A的概率表示为P(A).问题1至问题4的共同特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.思考1你能类似求“点数是1”的概率的方法,由特殊上升到一般,总结出古典概型的概率的求法吗?师生活动:小组讨论、交流,教师在课件上显示古典概型的概率的求法.概率求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=mn.思考2你知道m与n之间的大小关系吗?师生活动:师生共同总结m与n的大小关系.归纳总结:在P(A)=mn中,由m和n的含义,可知0≤m≤n,进而有0≤mn≤1.∴0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.易知:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.设计意图:通过对具体事件的特征的分析,使学生了解在现实生活中有些事件具备了两个基本特征,我们一般可称为“有限等可能型事件”,而这种随机事件的概率称为“古典概型”.思考1和思考2设置的目的在于帮助学生认识、理解概率的概念,以及分析概率是表示一个随机事件发生的可能性大小的一个比值,概率是一个常数,是一个客观值,结合数轴表示随机事件的概率意义,并形象的体会随着概率的改变,随机事件发生的可能性大小的变化.使数值更形象具体化,更利于理解和记忆.【例题分析,深化提升】例掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.师生活动:一学生上黑板板演,全班订正,教师补充.解:掷一枚质地均匀的骰子时,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)点数为2有1种可能,因此P(点数为2)=16.(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=36=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=36=12.设计意图:数学教学论指出数学概念要明确其内涵和外延(条件、结论、应用范围等),通过对概率的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点,使学生初步会求随机事件发生的概率,从而解决实际问题,培养学生的应用意识.【练习巩固,综合应用】1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为().A.15B.25C.35D.452.风华中学七(2)班的“精英小组”有男生4人,女生3人,若选出一人担任组长,组长是男生的概率为.3.开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为( ).A.13B.23C.49D.594.从-1、0、13、π3中随机抽取一数,抽到无理数的概率是.5.掷一个质地均匀的正方体骰子,观察向上一面的点数.(1)求掷得点数为2或4或6的概率;(2)小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数为2的概率.参考答案1.C2.473.D4.255.解:掷一个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种,这些点数出现的可能性相等.(1)掷得点数为2或4或6(记为事件A)有3种结果,因此P(A)=36=12;(2)小明前五次都没掷得点数2,可他第六次掷得点数仍然可能为1,2,3,4,5,6,共6种.他第六次掷得点数为2(记为事件B)有1种结果,因此P(B)=16.设计意图:巩固学生对概率定义的理解和认识,及对概率的计算公式的简单运用技能,以达到及时学习、及时应用,让学生从中找到成功的感觉,从而提高学生学习数学的兴趣.六、课堂小结1.概率的定义:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.表示方法:事件A的概率表示为P(A).2.概率的求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=mn.其中0≤P(A)≤1,当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.设计意图:归纳总结不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段.为充分发挥学生的主体地位,让学生畅谈本节课的收获,加强学习反思,帮助学生养成系统整理知识的习惯.七、板书设计25.1 随机事件与概率——25.1.2 概率(1)1.概率的定义2.概率的求法。

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.2 概 率教案

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.2 概  率教案

25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大小. 抽取的可能性大小相等,所以我们可以用15出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().mp A=n事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=16;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=13.出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)= 23.巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.;(1)指向红色有3种等可能的结果,P(指向红色)=37(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=5;7(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.解:A区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是38;3B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P(中奖号码数字相同)=110.7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。

人教版九年级数学上册《随机事件与概率(第1课时)》示范教学设计

人教版九年级数学上册《随机事件与概率(第1课时)》示范教学设计

随机事件与概率(第1课时)教学目标1.掌握必然事件、不可能事件、随机事件的概念.2.掌握判断事件类型的方法与依据.3.知道事件发生的可能性是有大小的.教学重点掌握判断事件类型的方法与依据.教学难点掌握必然事件、不可能事件、随机事件的概念.教学准备不透明的袋子、4个黑球、2个白球.教学过程新课导入同学们都听说过“天有不测风云”这句话吧!它的原意是指刮风、下雨、阴天、晴天这些天气状况,人们事先很难准确预料.后来泛指世界上很多事情具有偶然性,人们无法事先预料这些事情是否会发生.在现实世界中,我们经常会遇到无法预料事情发生结果的情况.例如,虽然天气预报说明天有雨,但是我们无法确定明天是否一定会下雨.今天蓝天白云明天风雨交加该事情的发生给我们不确定的印象.下面我们再来看三个问题.新知探究一、探究学习【问题1】五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?【师生活动】小组交流并派代表汇报交流结果.【答案】(1)数字1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定.【问题2】小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,在骰子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?【师生活动】学生独立思考,然后回答问题.【答案】(1)从1到6的每一个点数都有可能出现,所有可能的点数共有6种,但是事先无法预料掷一次骰子会出现哪一种结果;(2)出现的点数肯定大于0;(3)出现的点数绝对不会是7;(4)出现的点数可能是4,也可能不是4,事先无法确定.【追问】试着归纳出这些事件的特点.【新知】在一定条件下,有些事件必然会发生.例如,问题1中“抽到的数字小于6”,问题2中“出现的点数大于0”,这样的事件称为必然事件.相反地,有些事件必然不会发生.例如,问题1中“抽到的数字是0”,问题2中“出现的点数是7”,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.在一定条件下,有些事件有可能发生,也有可能不发生,事先无法确定.例如,问题1中“抽到的数字是1”,问题2中“出现的点数是4”,这两个事件是否发生事先不能确定.在一定条件下,可能发生也可能不发生的事件,称为随机事件.【设计意图】通过问题1与问题2,引出不可能事件、随机事件、必然事件的概念.【师生活动】观察下面的动图,巩固对不可能事件、随机事件、必然事件概念的理解.【设计意图】通过动图,生动地展现了不可能事件、随机事件、必然事件的概念.【问题3】袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?【师生活动】师生共同完成下面的任务:每名同学随机从袋子中摸出1个球,记下球的颜色,然后把球重新放回袋子并摇匀.汇总全班同学摸球的结果并把结果填在下表中.【答案】(1)在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事件.一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先不能确定哪个事件发生.(2)在上面的摸球活动中,由于两种球的数量不等,所以“摸出黑球”与“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性.【新知】一般地,随机事件发生的可能性是有大小的.【设计意图】通过问题3,归纳得出随机事件发生的可能性是有大小的.【思考】能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?【答案】可以增加2个白球,也可以减少2个黑球,只要使袋子中两种颜色的球的个数相同即可.【设计意图】比较这两种方法,容易发现某种颜色的球被摸到的可能性的大小与其相对多少有关,而与其绝对多少无关,这为下节课用个数比值而不是绝对个数刻画可能性的大小进行了铺垫.二、典例精讲【例1】指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件.(1)掷一枚硬币,正面朝上;(2)买一张彩票,中奖;(3)掷一次骰子,向上一面的点数小于7;(4)任意买一张电影票,座位号是双号;(5)向空中抛一枚硬币,硬币不掉落在地面上.【师生活动】学生独立完成,然后全班交流.【答案】(1)随机事件(2)随机事件(3)必然事件(4)随机事件(5)不可能事件【归纳】判断事件类型的方法与依据判断方法:判断事件类型,先要判断该事件的发生是不是确定的.若是确定的,则再判断其是必然发生的,还是必然不会发生的;若是不确定的,则该事件是随机事件.判断依据:客观事实,生产、生活中的常识经验,大自然的客观规律及自己的学习经验等.【设计意图】通过例1,让学生掌握判断事件类型的方法与依据.【例2】投掷一枚质地均匀的骰子,有下列事件:①掷得的点数是6;②掷得的点数是奇数;③掷得的点数不大于4;④掷得的点数不小于2.这些事件发生的可能性由大到小排列为____________.【师生活动】学生独立思考,然后回答问题.【答案】④③②①【解析】根据题意可得,投掷一枚质地均匀的骰子,共有6种情况.①“掷得的点数是6”包含1种情况;②“掷得的点数是奇数”包含3种情况;③“掷得的点数不大于4”包含4种情况;④“掷得的点数不小于2”包含5种情况,故这些事件发生的可能性由大到小的顺序,即每个事件包含情况的数目由多到少排列为④③②①.【归纳】比较随机事件发生的可能性的大小的方法比较随机事件发生的可能性的大小时,可在条件相同和总数一定的情况下,通过可能出现的结果数进行比较,结果数越多,这个事件发生的可能性越大.【设计意图】通过例2,让学生掌握比较随机事件发生的可能性的大小的方法.课堂小结板书设计一、必然事件与不可能事件二、随机事件课后任务完成教材第128页练习题,第129页练习第1~3题.。

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。

人教版数学九年级上册25.1.1随机事件(第一课时)教学设计

人教版数学九年级上册25.1.1随机事件(第一课时)教学设计
3.概率的计算:讲解概率的基本性质,如概率的取值范围、互斥事件的概率等。通过实例,引导学生学会计算简单随机事件的概率。
(三)学生小组讨论
1.教师提出讨论主题:“如何用树状图、列表等方法表示随机事件?计算随机事件的概率有哪些方法?”
2.学生分组讨论,互相交流想法,共同解决问题。
3.各小组汇报讨论成果,教师点评,总结优点和不足,引导学生进一步思考。
四、教学内容与过程
(一)导入新课
1.教师通过展示生活中的一些随机事件现象,如抛硬币、骰子游戏、抽签等,引发学生的思考,让学生认识到随机事件无处不在。
2.提问:“大家觉得这些事件有什么特点?它们与我们之前学过的确定事件有什么区别?”引导学生回顾确定事件的定义,为新课的学习做好铺垫。
3.揭示本节课的学习目标,即理解随机事件的定义,掌握随机事件的表示方法,学会计算简单随机事件的概率。
三、教学重难点和教学设想
(一)教学重难点
1.理解随机事件的定义,区分随机事件与确定事件。
2.学会使用树状图、列表等方法表示随机事件,并能熟练运用。
3.掌握概率的基本性质,能够计算简单随机事件的概率。
4.能够将随机事件与实际生活相结合,解决实际问题。
(二)教学设想
1.创设情境,激发兴趣
-利用生活实例引入随机事件,如彩票抽奖、天气预报等,让学生感受到随机事件在生活中的普遍性,激发学习兴趣。
1.让学生阅读教材,理解随机事件的含义,总结随机事件与确定事件的区别。
2.引导学生思考如何表示随机事件,并尝试用树状图、列表等方法表示。
三、合作探究
1.分组讨论,让学生互相交流表示随机事件的方法,总结各种方法的优缺点。
2.合作解决实际问题,如抛两枚硬币,求出现两个正面的概率。

人教版九年级数学上册《随机事件与概率(第3课时)》示范教学设计

人教版九年级数学上册《随机事件与概率(第3课时)》示范教学设计

随机事件与概率(第3课时)教学目标1.掌握与面积有关的概率的求法.2.体会概率在解决现实问题的过程中起到的作用.教学重点掌握与面积有关的概率的求法.教学难点体会概率在解决现实问题的过程中起到的作用.教学过程知识回顾1.一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).2.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=mn.新知探究一、探究学习【问题1】如图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.【师生活动】学生思考、回答,教师注意引导学生.【分析】问题中可能出现的结果有7种,即指针可能指向7个扇形中的任何一个.因为这7个扇形大小相同,转动的转盘又是自由停止,所以指针指向每个扇形的可能性相等.【答案】解:按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2.所有可能结果的总数为7,并且它们出现的可能性相等.(1)指针指向红色(记为事件A)的结果有3种,即红1,红2,红3,因此P(A)=37.(2)指针指向红色或黄色(记为事件B)的结果有5种,即红1,红2,红3,黄1,黄2,因此P(B)=57.(3)指针不指向红色(记为事件C)的结果有4种,即绿1,绿2,黄1,黄2,因此P(C)=47.【思考】把问题1中的(1)(3)两问及答案联系起来,你有什么发现?【答案】(1)(3)两问的答案加起来刚好等于1.“指向红色”和“不指向红色”两个事件包含了所有可能的试验结果,相互又不含有公共的试验结果,所以它们的概率和为1,这两个事件称为对立事件.【设计意图】通过问题1,让学生初步了解与几何图形有关的概率的求解方法,并引出对立事件的概念.【材料】“扫雷”游戏的目的是准确找出所有埋藏在方格内的地雷,用时越少越好.用鼠标点击(左击)方格,如果方格内没有地雷,会出现一个标号,表示与这个方格相邻的方格内,有与标号相同个数的地雷,然后根据标号判断下一步点击的区域;如果方格内有地雷,地雷就会爆炸,游戏失败.【师生活动】教师随机抽取一名学生朗读材料文字.【问题2】如图是计算机中“扫雷”游戏的画面.在一个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?【师生活动】师生共同完成此题.【分析】下一步应该怎样走取决于点击哪部分遇到地雷的概率小,只要分别计算点击两区域内的任一方格遇到地雷的概率并加以比较就可以了.【答案】解:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各埋藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是38.B区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B区域的任一方格,遇到地雷的概率是772.由于38>772,即点击A区域遇到地雷的可能性大于点击B区域遇到地雷的可能性,因而第二步应该点击B区域.【设计意图】通过引用“扫雷”游戏的问题,激发学生的学习兴趣,活跃课堂气氛.二、典例精讲【例1】小明和小华在玩一个掷飞镖游戏.如图是一个把两个同心圆平均分成8份的靶子,当飞镖掷中阴影部分时,小明胜,否则小华胜(没有掷中靶或掷到边界线时重掷).不考虑其他因素,你认为这个游戏规则对双方公平吗?说明理由.【师生活动】学生思考、回答,教师点评.【答案】解:不公平.理由如下:因为P(小明获胜)=38,P(小华获胜)=58,所以小华获胜的概率比较大,所以这个游戏规则对双方不公平.【归纳】与面积有关的概率的计算有两种类型一类是转盘问题,指针指向各个区域的概率等于该区域面积与整个转盘面积的比;另一类是投点问题,其特点是出现的情况有无限多个,每种情况都相等,求事件包含区域的面积与整个区域的面积之比.【设计意图】结合例1与问题1,归纳总结与面积有关的概率计算的两种类型.【例2】如图,△ABC是一块绿化带,将阴影部分修建为花圃.已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆.一只自由飞翔的小鸟将随机落在这块绿化带上,求小鸟落在花圃上的概率.【师生活动】学生独立思考,然后回答问题.【分析】本题是与几何图形面积有关的求概率的问题,解题的关键是分别求出阴影部分的面积和三角形的面积,利用两者的面积比求解.【答案】解:因为AB=15,AC=9,BC=12,所以AC2+BC2=AB2,所以∠ACB=90°,所以S△ABC=12AC·BC=12×9×12=54.因为△ABC的内切圆半径91215322AC BC ABr+-+-===,所以S阴影=πr2=9π,所以P(小鸟落在花圃上)9ππ546ABCSS阴影△===.【归纳】与几何图形面积有关的概率的求法对于受几何图形的面积影响(试验结果是无限多次)的随机事件,在一个平面区域上的每个点,事件发生的可能性都相等,事件发生的概率等于所求事件A发生的区域面积除以此事件所有可能发生的区域面积,即()AP A事件可能的结果所组成的图形的面积=.所有可能的结果所组成的图形的面积【设计意图】通过例2,归纳出与几何图形面积有关的概率的求法.课堂小结板书设计一、与几何图形有关的概率的求法二、利用概率解决实际问题课后任务完成教材第133页练习第3题.。

人教版九年级数学上册《随机事件》参考教案1

人教版九年级数学上册《随机事件》参考教案1

事件 A 发生的次数 10 次摸球
事件 B 发生的次数
结果(指哪个事件发生的次数多 )
20 次摸球
【设计意图:设计“10 次摸球”和“20 次摸球”,意在引起结果的变化。】
2、小组汇报试验结果,教师统计结果填于表 2。
得到结果 1 的组数
得到结果 2 的组数
10 次摸球
20 次摸球
注:结果 1 指事件 A 发生的次数多,结果 2 指事件 B 发生的次数多。
提出问题,探索概念 1 上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在 哪里 ?
2 怎样的事件称为ຫໍສະໝຸດ 机事件呢? 【设计意图:教师让学生充分发表意见,相互补充,相互交流,然后引导学
生建构随机事件的定义,充分发挥学生的主观能动性。】 三、应用练习,巩固新知 练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随
机 事件。
(1)两直线平行,内错角相等;(2)刘翔再次打破 110 米栏的世界纪录; (3)打靶命中靶心;(4)掷一次骰子,向上一面是 3 点; (5)13 个人中,至少有两个人出生的月份相同; (6)经过有信号灯的十字路口,遇见红灯;(7)在装有 3 个球的布袋里 摸 出 4 个球
(8)物体在重力的作用下自由下落。(9)抛掷一千枚硬币,全部正面朝上。 【设计意图:第(9)题可能出现不同答案,这是意料之中的,意在让学生 明白,只要可能性存在,哪怕可能性很小,我们也不能认定它为不可能事件; 同 样,尽管某些事件发生的可能性很大,也不能等同于必然事件。】 四、小结并布置作业。
2.引发思考 我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6) 称 为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的 特 点各是什么? 【设计意图:概念也让学生来完成,把课堂尽量多地还给学生,以此来体现

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计一. 教材分析本节课为人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时,主要内容包括随机事件的定义、必然事件、不可能事件以及概率的定义。

本节课的内容是学生对概率知识的一次初步认识,为后续学习更高级的概率知识打下基础。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于事件的分类和概率的概念有一定的理解。

但同时,学生对于概率这一概念的理解还需要通过具体的例子来进行引导。

三. 教学目标1.了解随机事件的定义、必然事件、不可能事件。

2.理解概率的定义,并能运用概率知识解决简单问题。

3.培养学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.重点:随机事件的定义、必然事件、不可能事件,概率的定义。

2.难点:概率的计算和应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过具体的例子引导学生理解概率的概念,培养学生的动手操作能力和团队协作能力。

六. 教学准备1.教学PPT。

2.教学案例和问题。

3.小组合作学习的任务单。

七. 教学过程1.导入(5分钟)通过一个简单的抛硬币实验,引导学生思考:抛硬币时,正面朝上和反面朝上的可能性是否相等?从而引出随机事件的定义。

2.呈现(15分钟)呈现必然事件、不可能事件的例子,让学生通过观察和分析,理解必然事件和不可能事件的含义。

3.操练(10分钟)让学生通过PPT上的练习题,巩固对随机事件、必然事件、不可能事件的理解。

4.巩固(10分钟)学生分小组,根据任务单,探讨并计算一些简单的概率问题,如抛硬币、掷骰子等。

教师巡回指导,帮助学生解决遇到的问题。

5.拓展(10分钟)让学生思考并讨论:如何计算一个事件的概率?引导学生理解概率的计算方法。

6.小结(5分钟)教师引导学生总结本节课所学的知识,让学生明确随机事件、必然事件、不可能事件的定义,以及概率的计算方法。

九年级数学综合实践教案

九年级数学综合实践教案

九年级数学综合实践教案第一章:概率与统计1.1 随机事件的概率教学目标:了解随机事件的定义,掌握计算简单随机事件概率的方法。

教学内容:引导学生通过实际例子了解随机事件的定义,解释随机事件发生的可能性。

通过实验和问题讨论,让学生掌握计算简单随机事件概率的方法。

教学步骤:(1) 引入随机事件的定义,解释随机事件发生的可能性。

(2) 引导学生参与实验,观察实验结果,引导学生总结计算简单随机事件概率的方法。

(3) 通过问题讨论,巩固学生对概率计算方法的掌握。

1.2 统计量与数据分析教学目标:了解统计量的概念,学会计算众数、中位数和平均数。

能从数据中提取信息,对数据进行分析。

教学内容:通过实际例子让学生了解统计量的概念,解释众数、中位数和平均数的含义。

引导学生通过实验和问题讨论,掌握计算众数、中位数和平均数的方法,并能从数据中提取信息,对数据进行分析。

教学步骤:(1) 引入统计量的概念,解释众数、中位数和平均数的含义。

(2) 引导学生参与实验,观察实验结果,引导学生总结计算众数、中位数和平均数的方法。

(3) 通过问题讨论,巩固学生对统计量计算方法的掌握,并能从数据中提取信息,对数据进行分析。

第二章:几何与代数2.1 勾股定理与平方根教学目标:了解勾股定理,掌握求一个数的平方根的方法。

教学内容:通过实际例子让学生了解勾股定理,解释勾股定理的应用。

引导学生通过实验和问题讨论,掌握求一个数的平方根的方法。

教学步骤:(1) 引入勾股定理,解释勾股定理的应用。

(2) 引导学生参与实验,观察实验结果,引导学生总结求一个数的平方根的方法。

(3) 通过问题讨论,巩固学生对勾股定理和平方根计算方法的掌握。

2.2 一元二次方程教学目标:了解一元二次方程的解法,能解一元二次方程。

教学内容:通过实际例子让学生了解一元二次方程的定义和解法。

引导学生通过实验和问题讨论,掌握解一元二次方程的方法。

(1) 引入一元二次方程的定义,解释一元二次方程的解法。

九上数学第25章《概率初步》全章教案

九上数学第25章《概率初步》全章教案

第二十五章概率初步25.1随机事件与概率25.随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点.了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同.重点随机事件的特点.难点判断现实生活中哪些事件是随机事件.一、情境引入分析说明下列事件能否一定发生:①今天不上课;②煮熟的鸭子飞了;③明天地球还在转动;④木材燃烧会放出热量;⑤掷一枚硬币,出现正面朝上.二、自主探究1.提出问题教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球,分组讨论从这三个袋子里摸出黄色乒乓球的情况.学生积极参加,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.2.概念得出从上面的事件可看出,对于任何事件发生的可能性有三种情况:(1)必然事件:在一定条件下必然要发生的事件;(2)不可能事件:在一定条件下不可能发生的事件;(3)随机事件:在一定条件下可能发生也可能不发生的事件.3.随机事件发生的可能性有大小袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的情况下,随机地从袋子中摸出一个球.(1)是白球还是黑球?(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?结论:一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.三、巩固练习教材第128页练习四、课堂小结(学生归纳,老师点评)本节课应掌握:(1)必然事件,不可能事件,随机事件的概念.(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.五、作业布置教材第129页 练习1,2.25. 概 率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系. 2.理解概率的定义及计算公式P(A)=mn ,明确概率的取值范围,能求简单的等可能性事件的概率.重点在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=mn .难点了解概率的定义,理解概率计算的两个前提条件.活动1 创设情境(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题. 活动2 试验活动试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?活动3 引出概率1.从数量上刻画一个随机事件A 发生的可能性的大小,我们把它叫做这个随机事件A 的概率,记为P(A).2.概率计算必须满足的两个前提条件:(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.3.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=________.4.随机事件A 发生的概率的取值范围是________,如果A 是必然发生的事件,那么P(A)=________,如果A 是不可能发生的事件,那么P(A)=________.活动4 精讲例题例1 下列事件中哪些是等可能性事件,哪些不是? (1)运动员射击一次中靶心与不中靶心; (2)随意抛掷一枚硬币反面向上与正面向上;(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;(4)分别从写有1,3,5,7,9中一个数的五张卡片中任抽1张结果是1,或3,或5,或7,或9.答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件. 例2 学生自己阅读教材第131页~132页例1及解答过程.例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?例4 教师引导学生分析讲解教材第133页例3. 活动5 过关练习教材第133页 练习第1~3题.,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.(1)出现数字1的概率是多少?(2)出现的数字是偶数的概率是多少?(3)哪两个数字出现的概率相等?分别是多少?答案:,P(摸到红球)=58,P(摸到绿球)=38;2.(1)16;(2)23;(3)数字1和3出现的概率相同,都是16,数字2和4出现的概率相同,都是13.活动6 课堂小结与作业布置 课堂小结1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=mn.2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同. 作业布置教材第134页~135页 习题第3~6题. 用列举法求概率(2课时)第1课时 用列举法和列表法求概率1.会用列举法和列表法求简单事件的概率.2.能利用概率知识解决计算涉及两个因素的一个事件概率的简单实际问题.重点正确理解和区分一次试验中涉及两个因素与所包含的两步试验. 难点当可能出现的结果很多时,会用列表法列出所有可能的结果.活动1 创设情境我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这就是一个游戏双方获胜概率大小的问题. 下面我们来做一个小游戏,规则如下:老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问:你们觉得这个游戏公平吗?学生思考计算后回答问题:把其所能产生的结果全部列出来,应该是正正、正反、反正、反反,共有四种可能,并且每种结果出现的可能性相同.(1)记满足两枚硬币一正一反的事件为A ,则P(A)=24=12;(2)记满足两枚硬币两面一样的事件为B ,则P(B)=24=12.由此可知,双方获胜的概率一样,所以游戏是公平的.当一次试验涉及两个因素,并且可能出现的结果数目比较少时,我们看到结果很容易被全部列出来;若出现结果的数目较多时,要想不重不漏地列出所有可能的结果,还有什么更好的方法呢?我们来看下面的这个问题.活动2 探索交流例1 为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A ,B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A ,B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.在这个环节里,首先可以让学生自己用列举法列出所有的情况,很多学生会发现列出所有的情况会有困难,会漏掉一些情况.这个时候可以要求学生分组讨论,探索交流,然后引导学生将实际问题转化为数学问题,即“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”由于事件的随机性,我们必须考虑事件发生概率的大小.此时,首先引导学生观看转盘动画,同学们会发现这个游戏涉及A ,B 两个转盘,即涉及两个因素,与上节课所讲授单转盘概率问题相比,可能产生的结果数目增多了,变复杂了,列举时很容易造成重复或遗漏.怎样避免这个问题呢?实际上,可以将这个游戏分两步进行,教师指导学生构造下列表格:BA 45 7 1 68分析:首先考虑转动,可能出现的结果就会有3个;接着考虑转动B 盘:当A 盘指针指向1时,B 盘指针可能指向4,5,7三个数字中的任意一个.当A 盘指针指向6或8时,B 盘指针同样可能指向4,5,7三个数字中的任意一个,这样一共会产生9种不同的结果.学生独立填写表格,通过观察与计算,得出结论(即列表法).B A 4 5 7 1 (1,4) (1,5) (1,7) 6(6,4)(6,5)(6,7)8(8,4) (8,5) (8,7) 从表中可以发现:A 盘数字大于B 盘数字的结果共有5种,而B 盘数字大于A 盘数字的结果共有4种.∴P(A 数较大)=59,P(B 数较大)=49,∴P(A 数较大)>P(B 数较大),∴选择A 装置的获胜可能性较大.在学生填写表格过程中,注意向学生强调数对的有序性.由于游戏是分两步进行的,我们也可用其他的方法来列举.即先转动B 盘,可能出现4,5,7三种结果;第二步考虑转动A 盘,可能出现1,6,8三种情况.活动3 例题精讲通过上面例1的分析,学生对用列表法求概率有了初步的了解,为了帮助学生熟练掌握这种方法,教师引导学生分析解决教材第136页例2.然后引导学生进行题后小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:(1)列表;(2)通过表格计数,确定公式P(A )=mn 中的m 和n 的值;(3)利用公式P(A )=mn计算事件发生的概率.活动4 过关练习教材第138页 练习第1~2题. 活动5 课堂小结与作业布置 课堂小结引导学生从知识、方法、情感三方面来谈一谈这节课的收获,要求每个学生在组内交流,派小组代表发言.作业布置教材第139页~140页 习题第1~3题和第5题.第2课时 用树状图求概率1.理解并掌握用树状图求概率的方法,并利用它们解决问题.2.正确认识在什么条件下使用列表法,在什么条件下使用树状图法.重点理解树状图的应用方法及条件,用画树状图的方法求概率. 难点用树状图列举各种可能的结果,求实际问题中的概率.一、复习引入用列举法求概率的方法.(1)总共有几种可能,即求出n ;(2)每个事件中有几种可能的结果,即求出m ,从而求出概率.什么时候用列表法?列举所有可能的结果的方法有哪些? 二、探索新知 画树状图求概率例1 甲口袋中装有2个相同的球,它们分别写有字母A 和B ;乙口袋中3个相同的球,它们分别写有字母C ,D 和E ;丙口袋中2个相同的球,. (1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?(2)取出的三个球上全是辅音字母的概率是多少?例1与上节课的例题比较,有所不同:要从三个袋子里摸球,即涉及到三个因素.此时同学们会发现用列表法就不太方便,可以尝试树状图法.本游戏可分三步进行.分步画图和分类排列相关的结论是解题的关键.从图形上可以看出所有可能出现的结果共有12个,即:A A A A A AB B B B B BC CD DE E C C D D E E H I H I H I H I H I H I (幻灯片上用颜色区分)这些结果出现的可能性相等.(1)只有一个元音字母的结果(黄色)有5个,即ACH ,ADH ,BCI ,BDI ,BEH ,所以P (1个元音)=512;有两个元音的结果(白色)有4个,即ACI ,ADI ,AEH ,BEI ,所以P (2个元音)=412=13;全部为元音字母的结果(绿色)只有1个,即AEI ,所以P (3个元音)=112.(2)全是辅音字母的结果(红色)共有2个,即BCH ,BDH ,所以P (3个辅音)=212=16.通过例1的解答,很容易得出题后小结:当一次试验要涉及3个或更多的因素时,通常采用“画树形图”. 运用树状图法求概率的步骤如下:(幻灯片) ①画树状图;②列出结果,确定公式P (A )=mn 中m 和n 的值;③利用公式P (A )=mn 计算.三、巩固练习教材第139页 练习四、课堂小结本节课应掌握:1.利用树状图法求概率.2.什么时候用列表法,什么时候用树状图法,各自的应用特点:有两个元素且情况较多时用列表法,当有三个或三个以上元素时用树状图法.五、作业布置教材第140页习题6,9.用频率估计概率1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.会设计模拟试验,能应用模拟试验求概率.重点对利用频率估计概率的理解和应用.难点对利用频率估计概率的理解.一、情境引入某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率错误!(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1),,,,0.75,;(2)0.75.二、自主探究利用频率估计概率1.试验要求:(1)把全班分成10或12组,每组中有一名学生投掷硬币,另一名同学做记录,其余同学观察试验,计算结果,各组必须在同样条件下进行.(2)明确任务,每组掷币50次,认真统计“正面朝上”的频数,算出“正面朝上”的频率,整理试验的数据,并记录下来.2.各组汇报试验结果:把各组试验数据汇报给教师,教师积累后填入表格,板书,学生计算出累加后的频率.(由于试验次数较小,有可能有些组的最后结果和自己的猜想有出入)3.根据列表填在教材第142页图中,观察频率变化情况,小组交流后阐述所得结论.4.思考:教材第143页“思考”.5.问题1:教材第144页问题1.分析:幼树的成活率是实际问题中的概率,在这个实验过程中,移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举法求概率,只能用频率估计概率.解:教师引导学生完成方法总结:(1)先计算出每次试验的频率;(2)观察频率活动情况,选择最接近且围绕波动的频率数作为概率.用频率估计概率的应用教材第145页问题2分析:学生阅读表25-6提供的信息:(1)估测出损坏率.(实质也是概率问题)(2)算出完好柑橘的质量.(3)计算出实际成本,再确定定价.三、巩固练习教材第147页练习.四、课堂小结(1)利用频率估计概率,建立在大量重复试验的基础上.(2)利用频率估计概率,得到的概率是近似值.五、作业布置教材第147~148页习题1,2,5.。

九年级数学上册 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教

九年级数学上册 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教

第一课时随机事件的概率一、教学目标:1、知识与技能:(1)通过实例了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.2、过程与方法:(1)发现法教学,通过在抛硬币试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”、“掷骰子”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:概率的概念的理解,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。

例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。

请观看下面事件,它们发生的情况如何?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;a ”;(4)“若a为实数,则0(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5X标签中任取一X,得到4号签”;(8)“某机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.根据引例导出概念:2、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;请同学们根据概念判断引列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件.组织学生利用带来的硬币做试验导入频数与频率的概念:活动:1:全班每人各取一枚硬币,做10次掷硬币的试验,每人记录下试验的结果,填入下表中:思考:与其它同学的试验结果比较,你的结果和他们一致吗?为什么会出现这样的情况?2:每组把本组同学的试验结果统计一下,填入下表中思考:与其它小组的试验结果比较,各组结果一致吗?为什么会出现这样的情况?3:请一位同学把本班同学的试验结果统计一下,填入下表中:4:请把全班每个同学的试验中正面朝上的次数收集起来,并用条形图表示 5:请同学们找出掷硬币时“正面朝上”这个事件发生的规律性。

初中九年级数学教案-《 随机事件》教学设计-全国公开课一等奖

初中九年级数学教案-《  随机事件》教学设计-全国公开课一等奖

《随机事件》教学设计教材:义务教育课程标准实验教科书九年级上册(新人教版)一、教学内容1教学内容分析:随机事件这节课主要研究事件的分类,概率的意义。

现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。

作为“概率初步”这个学习领域中的第一节课,它在人们的生活和生产建设中有着广泛的应用,也是今后学习概率统计的预备知识,本节课掌握得如何,直接关系“概率”整个知识体系的“坚实”性。

所以它在教材中处于非常重要的位置。

另外,通过这节课的学习让学生充分体会到数学的奇异美和应用美,能够提高学生的分析问题、解决问题的能力。

因此,无论在知识上,还是对学生能力的培养上和情感的熏陶上,这节课都起到十分重要的作用。

2学生情况分析:本节课是概率初步的第一课时,是在学生学习了频数、频率等基本知识,具备统计数据的基本方法的基础上展开的。

学生学会怎样用观察的方法去认识身边随机现象。

在新课程理念的指导下,注重对学生的动手能力,合作交流能力和对学生探究问题的习惯和意识的培养。

对此班级中已初步形成合作交流、敢于探索与实践的良好学风,学生间互相提问的互动气氛较浓。

二、教学设计理念根据基础教育课程改革的具体目标,结合我校初二学生的实际情况,改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,实施“三学六步”课堂改革教学模式。

三、教学目标1.知识与技能:①理解必然事件、不可能事件、随机事件的概念,并会根据经验判断一个简单事件是属于必然事件、不可能事件、还是随机事件。

②理解随机事件发生的可能性大小的特点,并会判断随机事件发生的可能性的大小。

2 过程与方法:经历活动体验、操作、观察、讨论、归纳、总结的过程,发展学生从复杂的表象中,提炼出本质特征并加以抽象概括的能力。

3 情感态度与价值观:感受数学与现实生活的联系,在独立思考的基础上,积极参与对数学问题的讨论,感受数学就在身边,促进学生乐于亲近数学,喜欢数学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.1随机事件与概率25.1.1随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(D) A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是(A) A.cab B.acb C.bca D.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是(A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破(B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是(C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球;(8)物体在重力的作用下自由下落;(9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点.2.对随机事件发生的可能性大小进行定性分析.3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=m n (在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.难点:对P(A)=m n (在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页.归纳:1.当A 是必然事件时,P(A)=__1__;当A 是不可能事件时,P(A)=__0__;任一事件A 的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A 发生的可能性大小为__m n __,那么这个常数m n 就叫做事件A 的概率,记作__P(A)__.4.在上面的定义中,m ,n 各代表什么含义?m n 的范围如何?为什么?点拨精讲:(1)刻画事件A 发生的可能性大小的数值称为事件A 的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A 为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.解:(1)16;(2)12;(3)13.2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟)1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=__m n __且 __0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=m n 解决一些实际问题.重点:运用P(A)=m n 解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟)自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少? 解:5种;15.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少? 解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.解:(1)14;(2)34;(3)12.点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=m n ”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率:A .两枚硬币全部正面朝上;B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )A .116B .516C .38D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )A .536B .38C .1536D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)。

相关文档
最新文档