概率题与数理统计(1-3章)(命题:屠瑶瑶 审核:马兰)
《概率论与数理统计》前三章习题解答
P{Y m} P{ X n, Y m}
e
14
nm 14
(7.14) (6.86) m!(n m)!
nm m
nm
e (6.86) e (6.86) m m (7.14) (7.14) m! m! k! n m ( n m)! k 0
第一章 概率论的基本概念
解:
令事件Ai分别表示输入AAAA,输入BBBB, 输入CCCC, i 1, , . 令事件A 表示输出ABCA. 23
由已知条件及独立性知
1 P( A | A2 ) P( A | A3 ) . 2
3
1 P( A | A1 ) , 2
14
k
返回主目录
第三章 多维随机变量及其分布
(2)当m 0,1,2,时 P{ X n, Y m} P{ X n | Y m} P{Y m}
e 14 (7.14) m (6.86) nm e 7.14 (7.14) m m!(n m)! m! (6.86) nm e 6.86 , n m, m 1, (n m)!
FY ( y) P| X | y 1 , 1 x 2, f X x 3 0, 其它.
返回主目录
第三章 多维随机变量及其分布
9.以X记某医院一天出生的婴儿的个数,以Y 记其中男婴的个数,设X和Y的联合分布律为
e 14 (7.14) m (6.86) nm P{ X n, Y m} , m!(n m)! m 0,1,2,, n; n 0,1,2,. (1)求边缘分布律 (2)求条件分布律 (3)写出X=20时,Y的条件分布律
概率论与数理统计习题答案1-19章
1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则(1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=3 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==A PB P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=4 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+ 0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=6 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度. (3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π. 五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Aex f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx.7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,1)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上 的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan(),(y C x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度.解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ 2arctan 121xπ+=yx y Y y dy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan 1)9(3),()(2ππ 3arctan 121yπ+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f 求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰0030006),()(3032y y e x x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx e dy e dx dxdy y x f X Y P x xy xy xy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n k i Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki kn n k i n in q p C C2121)( 由knm ki ik n k m C C C +=-=∑, 有kn n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z z z z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i个并联组才停止工作,所以有)3,2,1(),max(21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为X1 2 3 …… n ……p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2Xpp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf . 弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRRd R4sin 4cos 4202===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0, 0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元, 调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni i n i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰22022220223]11)1ln([1)1(211rr dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x0),(10===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==n p q D ξ 于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ (2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯=故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++=212222212221μσμσσσ++=.14 二维正态分布·正态随机变量线性函数的分布·中心极限定理四、 设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而2516)53(1122=-=-r ,5412=-r .进一步按公式])())((2)([)1(21222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x ey x f +--=π.二、设随机变量X 与Y 独立,并且)1,0(~N X ,)2,1(~2N Y .求随机变量32+-=Y X Z 的概率密度. 解:由题设,有0)(=X E ,1)(=X D ,1)(=Y E ,4)(=Y D .又根据关于数学期望的定理和方差的定理以及独立正态随机变量线性组合的分布,我们有2)3()()(2)32()(=+-=+-=E Y E X E Y X E Z E . 8)3()()(4)32()(=++=+-=D Y D X D Y X D Z D .且)8,2())(,)((~N Z D Z E N Z =,故随机变量32+-=Y X Z 的概率密度为16)2(82)2(2241821)(--⨯--==z z Z eez f ππ )(+∞<<-∞z .三、 台机床分别加工生产轴与轴衬.设随机变量X (mm)表示轴的直径,随机变量Y (mm)表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴衬的内径与轴的直径之差在3~1(mm)之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率. 解:由题设,知随机变量X 与Y 是独立的,且)3.0,50(~2N X ,)4.0,52(~2N Y .设X Y Z -=根据独立正态随机变量线性组合的分布,我们有)5.0,2()3.0)1(4.0,50)1(52(~2222N N Z =⨯-+⨯-+.根据题目假设,我们知道当31≤-=≤X Y Z 时,轴与轴衬可以配套使用.于是所求概率为1)2(2)2()2()25.022()5.0235.025.021()31(-Φ=-Φ-Φ=≤-≤-=-≤-≤-=≤≤Z P Z P Z P9544.019772.02=-⨯=.四、100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%,求: (1) 任一时刻有70至86台车床在工作的概率;。
概率论与数理统计答案_浙江大学_张帼奋_主编
P ( A B ) 1 P ( A B ) 1 0.9 0.1 ;
(3) A 不发生同时 B 发生可表示为: A
B ,又因为 A,B 不相容,于是
P ( A B ) P ( B ) 0.6 ;
5 解:由题知 p AB AC BC 0.3 , P ABC 0.05 . 因 p AB AC BC p AB p AC p BC 2 p ABC 得,
21i1a111111????iiiiiippcpcpcpcccpp??ppccccpccccpbp?124321432142papppppabpabp??1123114143ppppppbabpbap??11234144122解设a照明灯管使用寿命大于1000小时b照明灯管使用寿命大于2000小时c照明灯管使用寿命大于4000小时由题意可知pa095pb03pc0051所要求的概率为
所要求的概率分别是: (1) P ( B ) P ( A) P ( B | A) P ( A) P ( B | A) (2) P ( A | B )
37 ; 80
P ( AB ) P ( A) P ( B | A) 1 。 P( B) P( B) 37
15 解 : 设 A1 入市时间在1年以内 , A2 入市时间在 1年以上不到 4年 ,
(1)
p B1 p B1 A1 p A1 p B1 A2 p A2 p B1 A3 p A3
0.22
p A1 B3
(2)
p A1 B3 pB3
p B3 A1 p A1 p B3 A2 p A2 p B3 A3 p A3
概率论与数理统计习题答案(第一章)
概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.”B =“至少有一次出现正面.”C =“两次出现同一面.”【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ======= ,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2.设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示下列事件: (1) A 发生,B ,C 都不发生; (2) A 与B 发生,C 不发生; (3) A ,B ,C 都发生;(4) A ,B ,C 至少有一个发生; (5) A ,B ,C 都不发生; (6) A ,B ,C 不都发生;(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A B C (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A B C ∪A BC ∪A B C ∪AB C ∪ABC =AB C(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪A B C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.指出下列等式命题是否成立,并说明理由:(1) A∪B=(AB)∪B;(2) A B=A∪B;(3) BA ∩C=AB C;(4) (AB)( AB)= ∅;(5) 若A⊂B,则A=AB;(6) 若AB=∅,且C⊂A,则BC=∅;(7) 若A⊂B,则B⊃A;(8) 若B⊂A,则A∪B=A.【解】(1)不成立.特例:若Α∩B=φ,则ΑB∪B=B.所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.故不成立.(2)不成立.若事件Α发生,则A不发生,Α∪B发生,所以A B不发生,从而不成立.(3)不成立.BA ,AB画文氏图如下:不发生,所以,若Α-B发生,则AB发生, A B故不成立.(4)成立.因为ΑB与AB为互斥事件.(5)成立.若事件Α发生,则事件B发生,所以ΑB发生.若事件ΑB发生,则事件Α发生,事件B发生.故成立.(6)成立.若事件C发生,则事件Α发生,所以事件B不发生,故BC=φ.(7)不成立.画文氏图,可知B A⊂.(8)成立.若事件Α发生,由()A A B ⊂ ,则事件Α∪B 发生. 若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.若事件B 发生,由B A ⊂,则事件Α发生.4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7,求: (1) 在什么条件下P (AB )取到最大值? (2) 在什么条件下P (AB )取到最小值? 【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8. 对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同)(2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.【解】与次序无关,是组合问题.从50个产品中取3个,有350C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次品的取法为245C15C 种,所以所求概率为21455350C C P C =.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果: (1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nMN M N -- (2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P P Pmmn mn M N MnN --由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N MnN--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n种,n次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/mmn mnn P A MN M N -=-此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为()C 1mn mmnM M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9).【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列问题.用10个数去排4个位置,有410P 种排法,故所求概率为4410/10P P =.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C35C35P A P A ====故 232322()()()35P A A P A P A =+=14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1) 两粒都发芽的概率;(2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯= (3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15. 掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == 16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率. 【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+2222333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617. 从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】 4111152222410C C C C C 131C21p =-=18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A ===(2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19. 已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521⨯==⨯+⨯ 21. 两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x-y|>30.如图阴影部分所示.22301604P==22. 从(0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=-==(2) xy=<14.1111244111d d ln242xp x y⎛⎫=-=+⎪⎝⎭⎰⎰23. 设P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】()()()()()()()()P A B P A P A BP B A BP A B P A P B P A B-==+-0.70.510.70.60.54-==+-24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率. 【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P BA P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C CCCCCC C=∙+∙+∙+∙0.089= 25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知 (1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P A B P A B P B P A P B A P A P B A ==+0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少? 【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27. 在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种) 【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P BA P A ===∑2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率. 【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯ 29. 某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得 ()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.97=-⨯⨯⨯= 31. 设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n-≥即为 (0.8)0.n≤ 故 n ≥11 至少必须进行11次独立射击.32. 证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P A B P A B P B P B =亦即 ()()()()P A B P B P A B P B = ()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P A B P A P B = 故A 与B 相互独立.33. 三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()iii P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835. 已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1) 310110C(0.35)(0.65)0.5138k k kk p -===∑(2) 10102104C(0.25)(0.75)0.2241kk kk p -===∑36. 一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n nn --''===≥38. 将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率 【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =.39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关. 【证】 11P 1,1,2,,P k n k np k n n--=== 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ). 【证】 ()[()](P A P A BC P A BA C≥= ()()()P A B P A C P A BC =+-()()()P A B P A C P B C ≥+- 42. 将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A ==43. 将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率. 【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22nn n n P C C =故 2211()[1C ]22nn n P A =-44. 掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =- 45. 设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246. 证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P A C P B C ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P A C P B C ≥ 故 ()()()()()()P A P A C P A C P B C P B CP B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率. 【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n kki kki j ki i i n P A nnP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个.显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)()(1)n n nk ki n i ki j n i j nn kn i i i n i i i nn nn i ni S P A n nnS P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C(1)kkn n kn nn n nnn--=---++-- 故所求概率为121121()1C (1)C (1)n k i i n n i P A nn=-=--+--+ 111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()nn ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知 (),()m n P B P B m nm n==++1(|),(|)12rP A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrr mm m n m n m nm n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少?【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
概率题与数理统计(1-3章)(屠瑶瑶)
一 、随机事件及其概率二 、事件的概率三 、条件概率与事件的独立性一、填空题1. 设5.0)(=A P ,2.0)(=B A P ,则=)(A B P __________.2. 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且2.0)(5.0)()(===C P B P A P ,,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.3. 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________.4. 设8.0)(,6.0)(5.0)(===A B P B P A P ,,则B A ,至少发生一个的概率为_________.5. 设B A ,为两个随机事件,且0)(>B P ,则由乘法公式知=)(B A P __________.6. 某柜台有4个服务员 ,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概率为 41,则4人中至多1人需用台秤的概率为_______________. 7. 从1,2,…,10共十个数字中任取一个 ,然后放回 ,先后取出5个数字 ,则所得5个数字全不相同的事件的概率等于 ___________.8. 设A ,B ,C 是随机事件,81)(0)()(41)()()(======AC P BC P AB P C P B P A P ,,, 则A ,B ,C 三个事件恰好出现一个的概率为__________.9. 甲、乙二人独立地向同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲命中的概率是__________.10. 4.0)(=A P ,3.0)(=B P ,4.0)(=B A P ,则___________)(=B A P .11. 设B A ,是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P __________.12. 设B A ,为随机事件,且8.0)(,6.0)(5.0)(===A B P B P A P ,,则=)(B A P __________.13. 某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率14. 设B A ,为随机事件,且 4.0)(=A P ,3.0)(=B P ,6.0)(=B A P , 则=)(B A P __________.15. 设B A ,为随机事件,且 7.0)(=A P ,3.0)(=-B A P ,,则=)(B A P __________.16. 四个人独立地破译一份密码,已知各人能译出的概率分别为,,,,61314151则密码能被译出的概率是__________.17. 设B A ,为随机事件,且 6.0)(=A P ,)()(B A P AB P =,则=)(B P _________.18. 设B A ,为随机事件,且 4.0)(=A P ,3.0)(=B P ,6.0)(=B A P , 则=)(B A P __________.19. 设B A ,为两个随机事件,7.0)(5.0)(4.0)(===B A P B P A P ,,,则=)(B A P __________.20. 在三次独立重复射击中,若至少有一次击中目标的概率为6437,则每次射击击中目标的 概率为__________.21. 一袋中有2个黑球和若干个白球,现有放回地摸球4次,若至少摸到一个白球的概率是8180,则袋中白球的个数是__________. 22. 事件B A 、互斥且B A =,则)(A P =__________.23. 已知25.0)()()(===C P B P A P ,15.0)()(0)(===BC P AB P AC P ,,则C B A 、、中至少有一个发生的概率为 __________.24. 设某试验成功的概率为0.5,现独立地进行该试验3次,则至少有一次成功的概率为__________.25. 把9本书任意地放在书架上,其中指定3本书放在一起的概率为__________.26. 已知2.0)(6.0)(5.0)(===B A P B P A P ,,,则)(AB P =__________.27. 设B A ,为随机事件,且8.0)(6.0)(5.0)(===A B P B P A P ,,,则=)(B A P __________.28. 某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率__________. 29. 已知6.0)(=A P ,8.0)(=B P ,则)(AB P 的最大值为__________.二、选择题(3分)10题1. 设C B A ,,为三个事件,且B A ,相互独立,则以下结论中不正确的是( )A. 若1)(=C P ,则AC 与BC 也独立.B. 若1)(=C P ,则C A 与B 也独立.C. 若0)(=C P ,则C A 与B 也独立.D. 若B C ⊂,则A 与C 也独立.2. 设C B A ,,为三个事件,0)(>AB P 且1)(=AB C P ,则有( )A. 1)()()(-+≤B P A P C PB. )()(B A P C P ≤C. 1)()()(-+≥B P A P C PD. )()(B A P C P ≥3. C B A ,,是任意事件,在下列各式中,不成立的是( )A. B A B B A =-)(.B. B A B A =-)( .C. B A B A AB B A =-)(.D. )()()(C B C A C B A --= . 4. 打靶 3 发,事件 i A 表示“击中 i 发” , 3210,,,=i . 那么事 件 321A A A A =表示( )A. 全部击中B. 至少有一发击中C. 必然击中D. 击中3发5. 设1)()(1)(01)(0=+<<<<B A P B A P B P A P ,,,则下列结论成立的是( ) A. 事件A 和B 互不相容B. 事件A 和B 互相对立C. 事件A 和B 互不独立D. 事件A 和B 互相独立6. 当事件A 与事件B 同时发生时,事件C 必发生,则( )A. 1)()()(-+≤B P A P C PB. 1)()()(-+≥B P A P C PC. )()(AB P C P =D. )()()(B P A P AB P =7. 设B A 、互不相容,且0)(0)(>>B P A P ,,则必有( ) A. 0)(>A B P B. )()(A P B A P = C. 0)(=B A P D. )()()(B P A P AB P =8. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的,中奖的概率分别为,,,02.0)(01.0)(03.0)(===C P B P A P 如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率约为( )A. 0.05B. 0.06C. 0.07D. 0.089. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为( ) A. 11-+-b a a B. )1)(()1(-++-b a b a a a C. b a a + D. 2⎪⎭⎫ ⎝⎛+b a a10. 设事件A 与B 互不相容,且0)(0)(≠≠B P A P ,,则下面结论正确的是( ) A. A 与B 互不相容 B. 0)(>A B PC. )()()(B P A P AB P =D. )()(A P B A P =三、计算题(6-10分,以6分为主)20题1. 设C B A 、、是Ω中的随机事件,将下列事件用C B A 、、表示出来(1)仅A 发生,C B 、都不发生;(2)C B A 、、中至少有两个发生;(3)C B A 、、中不多于两个发生.2. 把长为a 的棒任意折成三段,求它们可以构成三角形的概率.3. 装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率.4. 一年有12个月,假设有365天。
概率论与数理统计答案
(3)当 P( AB) 1 时, P( AB) P(B) P( AB) 3 .
8
解:这是一个几何概型,样本空间 S 如图所示:
y
设事件 A ={两数之和小于 1.5}={(x, y) | x y 1.5, x 0, y 0} ,
1
如阴影部分所示,故
AS
1 1 0.5 0.5
P( A) 2
0.875
1
O
(1) 设 事 件 B = { 两 数 之 积 小 于 0 . 2 5 } = y
2.举例说明两事件 A, B “都不发生”与“不都发生”的区别. 解:甲 乙 2 人同 时向目 标射 击 1 次, 事件 A={甲命中目标} ,事件 B={乙命中目标},事件 A, B 都不发生表示甲乙都没有命中目标, A, B 不都发 生包含甲乙都没有命中目标、甲没有命中目标但乙命中目标、甲命中目标但
2
22
P(C)
SEFG
1 .
SOAB 4
8.设每个人在一年的 12 个月中出生是等可能的.试求 4 个人中至少有 2 个
人是同月出生的概率.
解:显然事件 A ={4 个人中至少有 2 个人是同月出生}与事件 B ={4 个人中没
有 2 个人是同月出生}互为逆事件.由题意知每个人在一年的 12 个月中出生是等 可能的,故试验可以看做一个古典概型,其中样本空间S 中含有样本点数为124 , 故
解:(1) 23 =8 ;(2) C320 =435 ;(3) 34 =81.
第二节 随机事件的概率 习 题 1-2
1.三个学生证混放在一起,现将其随意发给这三名学生,求事件 A ={没 有一名学生拿到自己的学生证}的概率.
概率论与数理统计习题册答案
第一章 随机事件与概率 § 随机试验 随机事件 一、选择题1. 设B 表示事件“甲种产品畅销”,C 表示事件“乙种产品滞销”,则依题意得A=BC .于是对立事件 {}A B C ==甲产品滞销或乙产品畅销,故选D.2. 由A B B A B B A AB =⇔⊂⇔⊂⇔=Φ,故选D.也可由文氏图表示得出. 二 写出下列随机试验的样本空间1. {}3,420,,2 []0,100 3. z y x z y x z y x z y x ,,},1,0,0,0|),,{(=++>>>=Ω分别表示折后三段长度;三、1任意抛掷一枚骰子可以看作是一次随机试验,易知共有6个不同的结果.设试验的样本点 ""1,2,3,4,5,6i i i ω==出点点, ;则{}246,,A ωωω=,{}36,B ωω=2{}135,,A ωωω=,{}1245,,,B ωωωω=,{}2346,,,A B ωωωω=,{}6AB ω=,{}15,AB ωω=四、1ABC ;2ABC ;3“A B C 、、不都发生”就是“A B C 、、都发生”的对立事件,所以应记为ABC ;4A B C ;5“A B C 、、中最多有一事件发生”就是“A B C 、、中至少有二事件发生”的对立事件,所以应记为:AB AC BC .又这个事件也就是“A B C 、、中至少有二事件不发生”,即为三事件AB AC BC 、、的并,所以也可以记为AB ACBC .§ 随机事件的概率 一、填空题1. 试验的样本空间包含样本点数为10本书的全排列10,设{}A =指定的3本书放在一起,所以A 中包含的样本点数为8!3!⋅,即把指定的3本书捆在一起看做整体,与其他三本书全排,然后这指定的3本书再全排;故8!3!1()10!15P A ⋅==; 2. 样本空间样本点7!5040n ==,设事件A 表示这7个字母恰好组成单词SCIENCE,则因为C 及C, E 及E 是两两相同的,所以A 包含的样本点数是2!2!4A =⨯=,故2!2!1()7!1260P A ⋅==二、求解下列概率1. 1 25280.36C C ≈; 2 1515373766885!0.3756!C C C A C A == 2. 412410.427112A -≈3. 由图所示,样本点为随机点M 落在半圆202 ()y ax x a <<-为正常数内,所以样本空间测度可以用半圆的面积S 表示;设事件A 表示远点O 与随机点M 的连线OM 与x 轴的夹角小于4π,则A 的测度即为阴影部分面积s , 所以2221142()22a a s P A S aπππ+===+ §概率的性质 一. 填空题 1.; 2. 1p -; 3. 16; 4. 712二. 选择题1. C;2. A;3. D;4. B;5. B. 三. 解答题解:因为,AB A AB ⊆⊆所以由概率的性质可知:()()().P AB P A P A B ≤≤又因为()0,P AB ≥所以可得 ()()(),P AB P A P B ≤+于是我们就有()P AB ≤ ()()P A P A B ≤()()P A P B ≤+.如果,A B ⊆则,AB A = ()()P AB P A =; 如果,B A ⊆则,AB A =这时有()().P A P A B =如果,AB φ=则(0,P AB =)这时有()()().P A B P A P B =+§ 条件概率与事件的独立性aa2a1.1图一. 填空题 1.23;2. 0.3、;3. 23;4. 14; 5. 2; 5. 因为AB AB =,所以()(),()()AB AB AABB AB AB AB AB φ====,则有,AB A B A B φ=+=+=Ω,因为,AB A B φ=+=Ω且所以A 与B 是对立事件,即A B A B ==,;所以,()()1,P A B P A B ==于是()()2P A B P A B +=二. 选择题1. D ;2. B ;3. A ;4. D ;5. B1. 已知()()1,P A B P A B +=又()()1,P A B P A B +=所以()(),P A B P A B =于是得()()()()P AB P AB P B P B =,注意到()()(),()1(),P AB P A P AB P B P B =-=-代入上式并整理后可得()()()P AB P A P B =;由此可知,答案D; 三. 解答题 1.33105,; 2. 2n§ 全概率公式和逆概率Bayes 公式 解答题 1. 2. 1;23.10.943;20.848§ 贝努利概型与二项概率公式 一. 填空题1. 11(1),(1)(1)n n n p p np p ----+-;2.23二. 解答题 1. .2. 0.94n,222(0.94)(0.06)n n n C --,11(0.94)(0.06)(0.94)n n n ---3.1,2,3章节测验一. 填空题 1.825; 2. 对立;3. 0.7; 4. 84217,二. 选择题 三、解答题 1.1; 22232. .0038 四、证明题略; 随机变量 分布函数一、填空题1.)(1a F -;)1()1(--F F ;)()()(b F a F b F -;2. 1,12a b ==/π;3.121--e二、选择题1、D ;2、A ; 三、计算题1.所以得随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=5,154,10443,1013,0)(x x x x x F2.解:1由条件知,当1-<x 时,0)(=x F ; 由于81}1{=-=X P ,则81}1{)1(=-≤=-X P F ; 从而有 8581411}1{}1{1}11{=--=-=-=-=<<-X P X P X P ;由已知条件当11<<-x 时,有 )1(}111{+=<<-≤<-x k X x X P ; 而1}1111{=<<-≤<-X X P ,则21=k 于是,对于11<<-X 有}111{}11{}11,1{}1{<<-≤<-⋅<<-=<<-≤<-=≤<-X x X P X P X x X P x X P 16)1(52185+=+⨯=x x 所以 167516)1(581}1{}1{)(+=++=≤<-+-≤=x x x X P X P x F 当1≥x 时,1)(=x F ,从而⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<=1,111,16751,0)(x x x x x F2略;离散型与连续性随机变量的概率分布 一、填空题1.3827;2.2二、选择题; ;三、计算题1.12,1==B A ;2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤--<≤<=2,121,12210,20,0)(22x x x x x x x x F ;343 2.略;常用的几个随机变量的概率分布 一、填空题1.649;2.232-e ;3.2.0 二、计算题 1、43;2、352.0;3、5167.0;4、19270.01)5.1()5.2(=-Φ+Φ;229.3=d随机向量及其分布函数 边际分布 一、填空题1、(,)(,)(,)(,)F b b F a b F b a F a a --+;(,)(,)F b b F a b -;2、0;1 二、计算题1、12,2,12πππ===C B A ;2161; 3R x x x F X ∈+=),2arctan 2(1)(ππ,R y yy F Y ∈+=),3arctan 2(1)(ππ 2、1⎩⎨⎧≤>-=-0,00,1)(2x x e x F x X ,⎩⎨⎧≤>-=-0,00,1)(y y e y F y Y ,;242---e e;3、⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-+<=2,120),cos 1(sin 210,0)(ππx x x x x x F X ,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-+<=2,120),cos 1(sin 210,0)(ππy y y y y y F Y二维离散型与连续性随机向量的概率分布一、填空题1、87;2、∑+∞=1j ij p ,∑+∞=1i ij p ;3、41;4、41二、计算题1、1=c ;⎩⎨⎧≤>=-0,00,)(x x e x f xX ;⎪⎩⎪⎨⎧≤>+=0,00,)1(1)(2y y y y f Y2、16,(,)(,)0,x y Df x y ∈⎧=⎨⎩其它;226(),01()0,X x x x f x ⎧-<<=⎨⎩其它;),01()0,Y y y f y ⎧<<⎪=⎨⎪⎩其它3、条件分布 随机变量的独立性一、选择题1、B ;2、A ;3、D ;4、C ;5、D 二、计算题1、2、||2,012,01(|),(|)0,0,X Y Y X x x y y f x y f y x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其它其它 3、18=c ;241}2{=<X Y P ;3不独立; 4、)1(11121Φ-+⎪⎪⎭⎫ ⎝⎛--e π 随机变量函数的概率分布一、填空题1、2、1,01()0,Y y f y ≤≤⎧=⎨⎩其它二、选择题1、B ;2、D ; 三、计算题1、⎩⎨⎧<<=else y y f ,010,1)(;2、⎪⎩⎪⎨⎧≥-<<-<=--1,)1(10,10,0)(z e e z e z z f z zZ3、⎪⎪⎩⎪⎪⎨⎧≥<<≤=1,110,21,0)(z z z z f Z ;⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<≤=1,21110,20,0)(z zz z z z F Z 第二章测验一、填空题1、41;2、34;3、0;4、2.0 二、选择题1、C ;2、A ;3、B 三、计算题1、~(3,0.4)X B ,则随机变量的概率函数为其分布函数为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=3,132,12511721,1258110,125270,0)(x x x x x x F2、124=A ;2⎩⎨⎧≤≤-=其它,010),1(12)(2x x x x f X ,⎩⎨⎧≤≤-=其它,010),1(12)(2y y y x f X ;3不独立;4⎪⎩⎪⎨⎧<<<<=⎪⎩⎪⎨⎧<<<<--=其它其它,010,10,2)|(,,010,10,)1()1(2)|(2|2|y x x y x y f y x y x y x f X Y Y X ;3、1⎩⎨⎧≤>=-0,00,)(z z ze z f z Z ;2⎪⎩⎪⎨⎧≤>+=0,00,)1(1)(2z z z z f Z第三章 随机变量的数字特征数学期望 一 、填空题1、13,23,3524 ; 2、21,0.2 3、 2 ,4796二、计算题1. 解: 11211()(1)(1)1k k k k k a a a E X k k a a a -+∞+∞+==⎛⎫== ⎪+++⎝⎭∑∑ 根据公式()''12111(1)11k k k k x kx x x x x +∞+∞-==⎛⎫⎛⎫===< ⎪ ⎪-⎝⎭-⎝⎭∑∑ 得到221()(1)11a E X a a a a ==+⎛⎫- ⎪+⎝⎭2. 0 ;3.:2a4. 2/3,4/3 ,-2/3,8/5 ; 5.4/5,3/5,1/2,16/15 方差一、填空题1. 0.49 ;2. 1/6 ;3. 8/9 ;4. 8 , 二、计算题 1.: , 提示: 设0,1,i i X i ⎧=⎨⎩部件个不需要调整部件个需要调整则123,,X X X 相互独立,并且123X X X X =++,显然1(1,0.1),X B2(1,0.2),X B 3(1,0.3)X B2.:1/3,1/3 ; 3.: 16/3 ,28三、 证明题提示: [][]22()())D XY E XY E XY E XY EX EY =-=-[]2)E XY YEX YEX EX EY =-+-[]2()()E Y X EX EX Y EY DX DY =-+-≥ 协方差与相关系数 一、 选择题 1. A ; ; 二、 计算题1. ()()0E X E Y ==,()()0.75D X D Y ==, 0XY ρ=, () 1.5D X Y += X 与Y 不独立2. 0 ,0提示:111()0Y y f y π⎧=-≤≤⎪=⎨⎪⎩⎰其它 1211()10E Y yy dy π-=-=⎰()0.25D Y =同理可得()()0E X E Y ==,()()0.25D X D Y ==221(,)()0x y xyCov X Y E XY dxdy π+≤===⎰⎰3. :2222a b a b-+ 矩与协方差矩阵1. 33321132v v v v μ=-+2.1,,, ;2 ;340.210.020.020.24-⎡⎤⎢⎥-⎣⎦第三章 测验 一、 填空题1. ; 2. 1 ,; 3. ab二、 选择题 1.B ; ;三、 计算题1.解:设X 表示该学徒工加工的零件中报废的个数,又设 0,1,i i X i ⎧=⎨⎩第个零件未报废第个零件报废则由题设知1111iX i i i ⎡⎤⎢⎥⎢⎥++⎣⎦于是有 101i i X X ==∑ 且1()(1,2,,10)1i E X i i ==+从而1010101111111()()() 2.0212311i i i i i E X E XE X i =======+++=+∑∑∑ 2.: 10分25秒提示:设乘客到达车站的时间为X ,由题意可知X 为0,60上的均匀分布,根据发车时间可以得到等候时间Y ,且Y 是关于X 的函数10010301030()553055705560X X X X Y g X X X XX -<≤⎧⎪-<≤⎪==⎨-<≤⎪⎪-<≤⎩3. 0,0第四章习题切比雪夫不等式 随机变量序列的收敛性 1.解:由切比雪夫不等式知,2221(37)(|5|2)12221(|5|8)832P X P X P X <<=-<≥-=->≤=2.解:设X 为在n 次试验中事件A 出现的次数,则~(,)X B n p ,Xn为频率. 21110.750.25()()0.750.75,()()X X E E X n D D X n n n n n n⨯==⨯⨯=== 由题意知{0.70.8}0.9,XP n<<≥而由切比雪夫不等式有20.750.25{|0.75|0.05}10.05X n P n ⨯-<≥- 所以有20.750.2510.90.05n ⨯-=,得750n =大数定理1. 证:有题设知n n=2,3,…的概率分布为:故n 的数学期望为()012101n -)(n =⨯+⎪⎪⎭⎫⎝⎛-⨯+⨯=nn n n X EX n 的方差为()(22222121()[()]012n nn D X E X E X n n n⎛⎫=-=⨯+⨯-+⨯= ⎪⎝⎭故∑==Nnn X NX 11的数学期望 ()()01111==⎪⎪⎭⎫ ⎝⎛=∑∑==Nnn Nn n X E N X NE X E方差()()NN X D N X ND X D Nn Nn n Nn n 2211112121===⎪⎪⎭⎫ ⎝⎛=∑∑∑===在利用车比雪夫不等式得(){}()0222−−−−→−≤≤≥-+∞→N N X D XE X P εεε因此,X 1,X 2,…,X n ,…服从大数定理;2.证:由于X 1,X 2,…,X n 相互独立,且()i i E X μ=,()i D X 存在,令 n 11ni i X X n ==∑则 ()()k k 111111n nn nki i i EX E X E X n n n μ===⎛⎫=== ⎪⎝⎭∑∑∑有限;()()k k 211110n n n ni i D X D X D X n n →∞==⎛⎫==−−−→ ⎪⎝⎭∑∑故由车比雪夫不等式知,0>∀ε; ()()()()1222111nknn k n n D XD X P XE X n εεε→∞=-≤≥-=-−−−→∑即 1111lim {||}1n ni i n i i P X n n με→+∞==-<=∑∑中心极限定理1.解:设X 为抽取的100件中次品的件数,则(100,0.2)XB ,()1000.220,()200.816E X D X =⨯==⨯=则18202025201205{1825}{}{}444244(1.25)(0.5)(1.25)(0.5)10.89440.691510.5859X X P X P P ----<<=<<=-<<=Φ-Φ-=Φ+Φ-=+-=2.解:1 设X 为一年中死亡的人数,则(,)XB n p ,其中n =10000,p =保险公司亏本则必须1000X>120000,即X>120 P{保险公司亏本}={120}P X >=P >=7.769}P >1(7.769)0≈-Φ=2P{保险公司获利不少于40000元}{120000100040000}{80}(2.59)0.995P X P X P -≥=≤=≤=Φ=3.解:设X i ={每个加数的舍入误差},则X i ~ U, ,()0i =X E ,()121i =X D ,i = 1, 2, …故由独立同分布中心极限定理知X 1,X 2,…服从中心极限定理;1[][][]802.10)9099.01(2)4.31(121)4.31(21)4.31()4.31(11211500015001512115000150012115000150015-1151511511515001150011500115001=-⨯=Φ-=-Φ-=-Φ-Φ-≈⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯-≤⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯-≤⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯--=⎪⎭⎫⎝⎛≤≤--=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>∑∑∑∑====i i i i i i i i X P X P X P X P 21{||10}0.9n i i P X =<≥∑,|0.9n i X P ⎧⎫⎪⎪⎪<≥⎨⎪⎪⎩∑由中心极限定理得,210.9,0.95Φ-≥Φ≥,所以1.65≥,解得440n =.第四章 测验一、填空题 1.1/4;211k-. 2.221n σε-.提示:利用切比雪夫不等式估计. 3.1/12 4.0. 5.. 6.()x Φ. 二、选择题1.A 2.C 3 D .三、应用题1.解:设X 为1000次中事件A 出现的次数,则(1000,0.5)X B()500,()5000.5250E X D X ==⨯=25039{400600}{|500|100}10.9751000040P X P X <<=-<≥-==2.解:设至少要掷n 次,有题设条件知应有()9.06.04.0≥<<n X P其中∑==nii X nX 1n1, i=1,2,…独立同分布,且()()5.001i i ====X P X P , 5.0)(i =X E ,25.05.05.0)(i =⨯=X D1 用切比雪夫不等式确定()()()2n 1.011.05.06.04.0nn X D X P X P -><-=<<而()nnX D n X n D X D ni ni i ni 25.05.0111)(12212n ===⎪⎪⎭⎫ ⎝⎛=∑∑∑==即要求90.01.025.012≥-n即)次(2501.025.03=≥n 即至少应掷250次才能满足要求; 2用中心极限定理确定()0.40.60.50.50.5210.90555n n X P X P n n n n n n ⎛⎫<<=<<⎛⎫⎛⎫⎛⎫=Φ-Φ-=Φ-≥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得10.900.9552n ⎛⎫+Φ≥= ⎪ ⎪⎝⎭查标准正态分布表的645.15≥n ,225.8645.15=⨯≥n所以6865.67225.82≈=≥n即在这种情况下至少应掷68次才能满足要求; 3.解:设X 为每天去阅览室上自习的人数; 则有(12000,0.08),()120000.08960,()9600.92883.2X B E X D X =⨯==⨯=1{880}1{880}9608809601{}883.2883.21( 2.692)(2.692)0.996P X P X X P >=-≤--=-≤≈-Φ-=Φ= 2设总座位数为n960960{}0.8,{}0.8883.2883.2X n P X n P --<=≤=由中心极限定理知, 960()0.8883.2n -Φ=,查表得960883.2n -=,986n =,所以应增添986-880=105个座位; 4.解:令n 为该药店需准备的治胃药的瓶数 X 为在这段时间内购买该药的老人数则由题意知(2000,0.3)XB ,()20000.3600,()6000.7E X D X =⨯==⨯{}0.99600600{}0.99420420P X n X n P ≤=--≤=由中心极限定理知, 600()0.99420n -Φ≈,查表得6002.33420n -=,所以648n ≈四、证明题1.证明:设则有,11,()()(1)4nn k k k k k k k M X E X p D X p p ====-≤∑ 11111()()().nknn n k k k k k pM E E X E X n n n n======∑∑∑12221111114()()().4nnnn k k k k k M D D X D X n n n nn=====≤≤∑∑∑ 由切比雪夫不等式得,1222()111{||}4nn nM D M p p p n P n n n εεε++-≤-≤-<,所以当n →+∞时121{||}1n nM p p p P n nε++≤-<≤,即12{||}1n n M p p p P n nε++-<=.2.证:因为12,,,n X X X 相互独立且同分布,所以21X ,22X ,…,2n X 相互独立且同分布,且有相同的数学期望与方差:()22a X E i =,()()()[]()0a -22242242≠=-==σa X E X E X D ii i满足独立分布中心极限定理条件,所以∑=nii X 12近似服从正太分布()22,σn na N,即∑==ni i nX n Y 121近似服从⎥⎦⎤⎢⎣⎡-n a a a N 2242)(, 第五章 数理统计的基本概念总体 样本 统计量 一、选择题 1.D2.A ()9922221192859257.591918iii i XX XX S ==--⨯-⨯====--∑∑3. D二、应用题1. 5,2.551251511()(,,...)(),,...0,i X i i b a f x x x f x a x x b=⎧⎪-==<<⎨⎪⎩∏其它3.0,11,124()3,2341,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩抽样分布 一、选择题 1.C 注:1~(1)t n -才是正确的.2.B 根据()()2221~1n S n χσ--得到()221()~1ni i X X n χ=--∑ 3.A 解:()99211~(0,9)9~0,1ii i i XN X N ==⇒∑∑,()92219~9i i Y χ=∑由t()9t 二、应用题 1. (1,1)F n -2. 13~(10,)2X N 23.第五章 测验一、选择题 1. C2.C 注:统计量是指不含有任何未知参数的样本的函数 3D对于答案D,由于~(0,1),1,2,,i X N i n μσ-=,且相互独立,根据2χ分布的定义有2212()~()nii Xx n μσ=-∑4.C 注:1~(0,)X N n~(1)t n -才是正确的5.C 12345{max(,,,,)15}P X X X X X >123451{max(,,,,)15}P X X X X X =-≤ ()15115,,15P X X =-≤≤=5)]5.1([1Φ- 二、填空题 1.μ,2nσ2.1nii Xn=∑()2111n i i X X n =--∑,11i n k i X n =∑,()11nk i i X X n =-∑ 3. ,pqp n4. 252(1)n χ-三、应用题1.(1)21211(,,...)()!!n n knn n ni i f x x x e e k k λλλλ+--====∏∏2. 0.13.(1)t n -第六章 参数估计参数的点估计 一、选择题二、解答题 1.解 1()()∑∑∞=-∞=-===1111}{x x x p p x x X xP X E ∑∞='⎪⎪⎭⎫ ⎝⎛-==11x x q q p q dq dpp1=()p q -=1 用X 代替()X E ,则得p 的矩估计量Xp 1=⎪⎭⎫ ⎝⎛=∑=n i i X n X 112分布参数p 的似然函数()()∏∏=-=-===ni x i n i p p x X P p L i 1111}{()∑-=-=ni i nx np p 11取对数 ()()p n x p n p L n i i -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1解似然方程 ()011ln 1=⎪⎭⎫⎝⎛---=∑=n i i n x p p n dp p L d得p 的极大似然估计量 Xp 1=⎪⎭⎫⎝⎛=∑=n i i X n X 112.解 1()()()26;32θθθθθ=-==⎰⎰∞+∞-dx x x dx x xf X E ,用∑==ni i X n X 11代替总体均值()X E ,则得参数θ的矩估计量为.2X =θ2()()()⎪⎭⎫ ⎝⎛===∑=n i i X n D X D X D D 11442θ()()()∑====ni iX D nX nD nX D n122444因为()()()()⎰∞+∞-⎪⎭⎫⎝⎛-=-=22222;][θθdx x f x X E XE X D ()⎰=--=θθθθθ022332046 dx x x 所以 ()nn D 520422θθθ==3.解 取()()∑-=+-=112121,,,,n i i i n X X C X X X ϕ由定义()]()⎢⎢⎣⎡⎢⎣⎡=⎥⎦⎤-=∑-=+112121,,,n i i i n X X C E X X X E ϕ()∑-=+=-1121n i i i X X E C][=+-∑-=++1121212n i i i i i X X X X E C ()()()][∑-=++=+-1121212n i i i i i X E X X E X E C()()()()][=+-∑-=++1121212n i iii i X E X E X E XE C ()()()][∑-=+=+-1122212n i ii X E X E X E C()()21122221σσσσ=-=+∑-=n i n C C所以 ()121-=n C参数的区间估计 一、选择题1. C2. A一个总体均值的估计1.解 由于,99.01=-α 故,31,01.0=-=n 又α查t 分布表得()0.0123 5.841,t =又%,03.0%,34.8==s x 故得μ的99%的置信区间为][%428.8%,252.8)%403.0841.534.8()%,403.0841.534.8( =⎢⎣⎡⎥⎦⎤⨯+⨯- 2.解 计算得样本均值16,0171.0,125.22===n s x10.120.10,1.645,0.01,u ασ=== 总体均值μ的90%的置信区间为]22 2.121, 2.129x u x u αα⎡⎤⎡-+=⎢⎣⎢⎣2.151,10.0=-=n α查t 分布表得()0.1215 1.753t =()753.11510.0=t ,总体均值μ的90%的置信区间为((]2211 2.117, 2.133x t n x t n αα⎡⎤⎡--+-=⎢⎣⎢⎣3.解:计算得265,3000,0.05x s α===, n -1=7,查t 分布表得()0.1027 1.895t =,计算得株高绝对降低值μ的95%的置信下限为(2128.298x t n α--=. 4.解 每20.10hm 的平均蓄积量为315m ,以及全林地的总蓄积量375000m ,估计精度为0.9505A =5. ,一个总体方差与频率的估计1.解 由样本资料计算得3750.60=x ,3846.02=s ,6202.0=s ,又由于05.0=α,025.02=α,975.021=-α,151=-n 查2χ分布表得临界值,488.27)15(2025.0=χ,262.6)15(2975.0=χ从而2σ及σ的置信概率为%95的置信区间分别为,与,.2. 解 1由于,14=n ,05.0=α查t 分布表得()0.05213 2.16,t =又67.1,7.8==s x ,故得总体均值μ的95%的置信的区间为((]22117.736,9.664x t n x t n αα⎡⎤⎡--+-=⎢⎣⎢⎣2由于,10.0=α 05.0=2α,,95.021=-α,131=-n 查2χ分布表得()362.2213205.0=χ,()892.513295.0=χ,故得总体方差2σ的90%的置信区间为()()()()][153.6,621.111,112212222=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----n S n n S n ααχχ 3. 解,41,95.021,05.02,10.0=-=-==n ααα查2χ分布表得(),488.94205.0=χ ()711.04295.0=χ,又计算得1.21=x ,505.82=s ,故得该地年平均气温方差2σ的90%的置信区间为()()()()][85.47,58.311,112212222=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----n s n n s n ααχχ 4. 解 造林成活率的置信区间为[0.8754,0.9369] 两个总体均值差的估计1. 解 由于182,05.021=-+=n n α,查t 分布表得临界值()0.05218 2.101.t =又,8.126,06.14,1021====y x n n ,96.71,93.162221==s s 从而求得21μμ-的置信概率为95%的置信区间为,.即以95%的概率保证每块试验田甲稻种的平均产量比乙稻种的平均产量高7.536kg 到20.064kg.2.解由样本值计算得5,5,27,4.24221=====A B A n n y x σ,82=Bσ,05.0=α,,96.105.0=u 故21μμ-的95%的置信区间为()()]5.76,0.56A B A B x y x y ⎡⎢⎡---+=-⎣⎢⎣3.解由样本值计算得222211.10,875.75,30.11,44.81====B B A A s y s x ,,91=n ,82=n ,05.0=α 查t 分布表得()0.05215 2.131,t =故得B A μμ-的95%的置信区间为4. ,两个总体方差比的估计解 ,025.02,05.0,911===-=-ααB A n n 查F 分布表得()=--1,12B A n n F α()(),03.49,91,1025.02==--F n n F A B α故 2221σσ的95%的置信区间为:()()][⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤----6008.3,2217.01,1·,1,11·222222 n n F s s n n F s s A B BA B AB A αα第六章 测验一、选择题二、填空题 1.12α=2.21ˆ2X θ-= 3. ][588.5,412.4 4. 21;1λλ 5. ()0.351t n k -=三、计算题1.解 因为X ~N (),4,2μ所以(),9492222χχ~S =于是, ⎩⎨⎧=⎭⎬⎫>=>1.0169169}{22σS P a S P 查2χ分布表得,684.14169=a所以.105.26≈a ()(()(12212222 5.58,16.71.A B A B x y t n n x y t n n αα⎡--+-⎢⎣⎡⎤⎤-++-=-⎢⎥⎥⎦⎦⎣2.解 1()()λλλ-==∏∏==ex x f x x x f n i ni ix in i1121!;,,, ∏=-∑==ni i x n x eni i 1!·1λλ;2()()()λλλnn S E nX D X E n 1,,2-===. 3.解 因为X ~N()22,30 ,于是()(),)21(,30)162(,3022 =N ~N X 从而()1,02130 ~N X U -=,故 }{⎩⎨⎧⎭⎬⎫-<-<-=<<2/130312/1302/130293129X P X P()()()9545.0197725.0212222221302=-⨯=⎩⎨⎧-Φ=-Φ-Φ=⎭⎬⎫<-<-=X P4.解 1178320,314022====b x σμ ;219813322==s σ5.解 设施肥与不施肥的收获量分别为总体,,Y X 且X ~N (),,21σμY ~N)(~22σμ,N Y ,计算可得,1738.1,9227.0,7.9,4.11222221====s s y x 又,05.0,162,10,82121==-+==αn n n n 查t 分布表得临界值()0.05216 2.12,t =从而计算均值差21μμ-的95%的置信区间为()()][.7773.2,6227.016810181738.199227.0712.27.94.11,16810181738.199227.0712.27.94.112222=⎥⎦⎤⨯⨯⨯+⨯+-⎢⎣⎡⨯⨯⨯+⨯--故在置信概率下,每201亩水稻平均收获量施肥比不施肥的增产到斤.第七章 假设检验假设检验概念和原理 一、填空题:1、概率很小的事件在一次试验抽样中是不至于发生的;2、0H 为真,通过一次抽样拒绝0H 所犯错误; 0H 为假,通过一次抽样接受0H 所犯错误; 二、选择题 1、B ;2、D;三、应用计算题1、解:{}1232|1258P x x x p α=++≥=={}1232|14364P x x x pβ=++<==2、解:1、0.62c ==2、因c u α= 故拒绝原假设00:0H μμ==;3、{}1.15P x P α⎫=≥=≥[]3.6412(3.64)10.0003P ⎫⎪=≥=-Φ-=⎬⎪⎭一个总体参数的假设检验 一、填空题:1、X U =12(,,):1n X x x u α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭;3、1(,,):n R x x u p α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭二、选择题1.A 3. B 三、应用计算题1、1若根据以往资料已知σ=14 ;2σ未知; 解:101:500:500H H μμ=↔≠ 0.452x u ===因 20.452 1.96u u α=<= 故接受原假设0H . 从而包装机工作正常; 2.先检验标准差 0010:=15:H H σσσσ≥↔< 22222(1)(101)1610.2415n S χσ--=== 22110.24 3.325(1)n αχχ-=<=- 故拒绝原假设00:=15H σσ≥其次检验01:500:500H H μμ=↔≠ 0.395x T ===因2T 0.395 2.262(1)t n α=<=- 故接受原假设0:500H μ= 所以,综合上述两个检验可知包装机工作正常;2、解:0010:=0.3:=0.3H H σσσσ≤↔<22222(1)(251)(0.36)0.3456(0.3)n S χσ--=== 220.345636.415(1)n αχχ=<=- 故接受原假设;标准差没有明显增大;3、解:0010:0.9:0.9H p p H p p ≤=↔>= 4400.88500W ==1.49U ===-0.050.011.645, 2.33u u ==0.05 1.645U u <= 0.01 2.33U u <= 故两个水平下均接受原假设;两个总体参数的假设检验 一、填空题 1、等方差; 2、22122212S S F σσ=服从12(1,1)F n n --.分布;3、U =, 其中112212n W n W W n n +=+;二、选择题 1、 B 2. A 三、应用计算题1、解:012112::H H μμμμ=↔≠X YT =0.206==-因20.206 2.131(15)T t α=<= 故接受原假设;2、解:检验012112::H H μμμμ=↔≠1.5X Y U ==-因21.5 1.96U u α=<= 故接受原假设即认为两种工艺下细纱强力无显著差异; 3、解:012112::H p p H p p ≤↔>1202000.1W == 2152000.75W ==112212350.07500nW n W W n n +===+5.97U ==因 5.97 1.645U u α=>= 故拒绝原假设,即认为乙厂产品的合格率显著低于甲厂; 非参数假设检验 一、填空题 1、1m k --2、由抽样检验某种科学科学理论假设是否相符合;3、(1)(1)r c --; 二、选择题 1. A ;2. C 三、应用计算题1、解:0:H 该盒中的白球与黑球球的个数相等;记总体X 表示首次出现白球时所需摸球次数,则X 服从几何分布{}1(1)k P X k p p -==-,1,2,k=其中p 表示从盒中任摸一球为白球的概率;若何种黑球白球个数相等,则此时12p = 从而{}1112p P X ===, {}2214p P X === ,{}3318p P X === {}44116p P X ===,{}552116kk P X +∞-=≥==∑2521() 3.2i i i i v np np χ=-=∑2(4)9.488αχ= 223.29.488(4)αχχ<= 则接受原假设;2、解:0:H X 的概率密度为()2f x x = (01)x <≤{}100.250.0625p P X =<≤=,{}20.250.50.1875p P X =<≤={}30.50.750.3125p P X =<≤=,{}40.7510.4375p P X =<≤= 2421()64 1.82935i i i i v np np χ=-==∑ 2(3)7.815αχ= 因221.8297.815(3)αχχ<=故接受原假设即认为X 的概率密度为()2f x x = (01)x <≤; 3、解:0:H 公民对这项提案的态度与性别相互独立223211()2173.7ij ij i j ijn e e χ==-==∑∑因222173.7 5.991(2)αχχ>= 故拒绝0H ,即认为公民对这项提案的态度与性别不独立;4、略;第七章 测验一、填空题每小题4分,共20分1、12(,,):2n X R x x u α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭2、X T =3、222(1)n S χσ-=;2χ;4、2122S F S =;(){}222211221212,,:,n R x x S S F S S F αα-=≥≤或;5、 =14α; 916β=.二、选择题每空4分,共20分1、A ;2、C ;3、B ;4、C ;5、A三、应用题共60分1、解:检验01:70:70H H μμ=↔≠ 1.4x T ===因2T 1.4 2.02(1)t n α=<=- 故接受原假设0:70H μ= 2、解: 001:=8:8H H σσσ=↔≠ 2220(1)(101)75.73310.6564n S χσ--⨯===221210.65 2.7(1)n αχχ-=>=- 故拒绝原假设00:=8H σσ=3、解:先检验2222012112::H H σσσσ=↔≠2122 3.3251.492.225S F S ==2212S S > 查表的212((1),(1)) 5.35F n n α--=因2121.49 5.35((1),(1))F F n n α=<=--故可认为方差相等; 其次检验012112::H H μμμμ≤↔>X YT =3.52=-因 3.52 2.552(18)T t α=-<= 故接受原假设012:H μμ≤ 4、解:0010:0.2:H p p H p p ≤=↔>,3.5U ===因 3.5 1.645U u α=>= 故拒绝原假设; 5、解:(1)1.026α= (2)0.0132β=第八章 方差分析与回归分析方差分析的概念与基本思想 一、名词解释1. 因素:影响试验指标变化的原因;2. 水平:因素所设置的不同等级3. 单因素试验:在试验中仅考察一个因素的试验4. 多因素试验:在试验中考察两个或两个以上因素的试验,这类试验一般可用因素的数目来命名5. 处理:一个试验中所考察因素不同水平的组合6. 处理效应组间误差:试验中所考虑且加以控制的因素不同水平对试验指标的影响7. 随机误差:试验中为考虑或未控制的随机因素所造成的试验指标的变异 二、问答题1. 单因素试验中,因素的每一个水平即为一个处理,试验有几个水平,就相应地有几个处理;多因素试验中,处理的数目是各因素水平的乘积;例如,三因素试验中,A 因素有a 个水平,B 因素有b 个水平,C 因素有c 个水平,则处理数为abc 个;2. 方差分析的基本思想:将测量数据的总变异按照变异来源分解为处理效应和随机误差,利用数理统计的相关原理建立适当的统计量,在一定显著性水平下比较处理效应和随机误差,从而检验处理效应是否显著; 单因素方差分析 一、填空题1. 平方根变换,角度弧度反正弦变换,对数变换;2. 最小显著差数法,最小显著极差法;新复极差法,q 法;3. 总平方和,随机误差平方和,组间平方和; 二、计算题 1.2.解:112229i n r i j i j T X ====∑∑,211199327in rij i j X ===∑∑, ()222112229199327589.3625in rT ij i j T SS X n ===-=-=∑∑()()222122291200704219024174724495.36525ri A i iT T SS n n ==-=+++-=∑589.36495.3694e T A SS SS SS =-=-=方差分析表如下:因为0.01=26.35 4.43(4,20)F F >=,所以,当显著性水平=0.01α,5个温度对产量的影响有显著差异;3.该题属于单因素4水平等重复试验的方差分析;其方差分析表如下:多重比较省略;4.母猪对仔猪体重存在极显著的影响作用; 双因素方差分析1.F 检验结果表明,品种和室温对家兔血糖值的影响均达极显著水平; 2.; 回归分析的基本概念1.如何用数学语言描述相关关系相关关系就是一个或一些变量X 与另一个或一些变量Y 之间有密切关系,但还没有确切到由其中一个可以唯一确定另一个的程度,其数学语言描述可为:如果给定变量X 任意一个具体取值0x ,存在变量Y 的一个概率分布与其对应,并且该概率分布随0x 的不同而不同;同时给定变量Y 任意一个具体取值0y ,存在变量X 的一个概率分布与其对应,并且该概率分布随0y 的不同而不同,则称X 与Y 之间具有相关关系;相关关系是两个随机变量之间的平行相依关系;2.什么是回归关系回归关系与相关关系有何联系回归关系是指在相关关系中,如果X 容易测定或可人为控制,就将X 看成为非随机变量,并记为x 称为预报因子,这时x 与Y 称为预报量之间的关系称为回归关系; 回归关系是相关关系的简化,是变量之间的因果关系;一元线性回归模型的建立与检验 一、填空题 1.()211ˆ2n i i i Y y n =--∑; 2.01ˆˆy x ββ=- , ()()()1121ˆ=ni i xy i n xxi i x x Y Y L L x x β==--=-∑∑; 二、应用题1. 解:21111211113755.68,11xx i i i i L x x ==⎛⎫=-= ⎪⎝⎭∑∑11111111118708.58,11xy i i i i i i i L x y x y ===⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭∑∑∑2111121116050.58311yy i i i i L y y ==⎛⎫=-= ⎪⎝⎭∑∑1先求回归方程,由于1=0.633,xy xxL L β=01=-38.97,y x ββ-=所以Y 关于x 的回归方程为ˆy0.633-38.97,x = 2用相关系数检验法计算样本相关系数00.955r ==因为()0.0190.7348,r =而()00.019,r r >故可认为Y 与x 的线性相关关系是极显著的 3把0200x =代入回归直线方程,得ˆ0.633200-38.9787.63y=⨯=, 2. 略; 3. 证明略;预测、控制与残差分析(1) 解:211112211113675051013104.55,1111xx i i i i L x x ==⎛⎫=-=-⨯= ⎪⎝⎭∑∑11111111111139105102143988.18,1111xy i i i i i i i L x y x y ===⎛⎫⎛⎫=-=-⨯⨯= ⎪⎪⎝⎭⎝⎭∑∑∑2111122111154222141258.731111yy i i i i L y y ==⎛⎫=-=-⨯= ⎪⎝⎭∑∑1先求回归方程,由于13988.18=0.304,13104.55xy xxL L β==01214510=0.304 5.36,1111y x ββ-=-⨯= 所以Y 关于x 的回归方程为ˆy5.360.304,x =+ 在检验,用相关系数检验法计算样本相关系数00.982r ===取=0.01α,查相关系数检验表得,()0.0190.7348,r =由于()00.019,r r >故可认为Y 与x 的线性相关关系是极显著的;2把075x =代入回归直线方程,得ˆ 5.360.3047528.16y=+⨯=, ˆ 2.301σ==,0.05(9) 2.626t =, 故当075x s =时,腐蚀深度Y 的95%预测区间为[]28.16 2.262 2.301 1.074,28.16 2.262 2.301 1.074,-⨯⨯+⨯⨯即 []22.57.7,335. 3要使腐蚀深度在1020m μ之间,即1210,20,y y Y ==的取值在区间[]1020,内时,则由方程组10112012ˆ2ˆ2,y x y x ββσββσ=+-⎧⎨=++⎩ 解得()()()()1101220111ˆ210 5.362 2.30130.40,0.30411ˆ220 5.362 2.30133.02.0.304x y x y βσββσβ=-+=⨯-+⨯==--=⨯--⨯=可线性化的一元非线性回归 一、填空题011ln ,ln ,ln ,Y Y x x ββββ''''====;00111ln ,,ln ,Y Y x xββββ''''====;ln ,lg Y Y x x ''==;二、解答题解:做散点图如右图;由于Y 与x 散点图呈指数曲线形状,于是有•,x Y e βαε=()2ln 0,N εσ两边取对数,令ln ,ln ,,,ln Y Y a b x x αβεε'''=====模型转化为线性模型()2,0,Y a bx N εεσ''''=++对所给数据进行形影变换得到10ˆˆ0.29768,8.164585ββ=-= 所以Y '对x '的样本回归方程为 8.164585-0.29768Y x ''=用t 检验法检验'Y 对'x 的回归效果是否显著,取显著性水平为,可得()0.02532.36938 2.3060t t ==>=即线性回归效果是显著的;代回原变量,得曲线回归方程()0.29768ˆˆexp 3514.26x yy e -'== 第八章 测验一、选择题1、A ;2、C ;3、B ;4、D 二、填空题1. 正态 ,独立, 等方差 ;2. ()201,~0,Y x N ββεεσ=++;3. ˆr β=三、解答题 1.提示与解答:方差分析结果表明,农药的杀虫效果是极显著的;2. 提示与解答:一元线性回归方程建立、检验、应用. 销售费用Y 与销售收入x 之间的经验回归方程为ˆ 3.140.108Yx =+ 销售费用Y 与销售收入x 之间的线性回归关系是显著的;。
《概率论与数理统计》第一章课后习题解答共16页word资料
吴赣昌编 《概率论与数理统计》(理工类)三版课后习题解答习题1-31、袋中5个白球,3个黑球,一次任取两个。
(1)求取到的两个求颜色不同的概率;(2)求取到的两个求中有黑球的概率。
解:略2、10把钥匙有3把能打开门,今取两把,求能打开门的概率。
解:设A=“能打开”,则210S n C =法一,取出的两把钥匙,可能只有一把能打开,可能两把都能打开,则112373A n C C C =+ 所以()A Sn P A n = 法二,A ={都打不开},即取得两把钥匙是从另7把中取得的,则27A n C =,所以27210()1()1C P A P A C =-=- 3、两封信投入四个信筒,求(1)前两个信筒没有信的概率,(2)第一个信筒内只有一封信的概率。
解:24S n =(两封信投入四个信筒的总的方法,重复排列)(1)设A=“前两个信筒没有信”,即两封信在余下的两个信筒中重复排列,22A n =;(2)设B=“第一个信筒内只有一封信”,则应从两封信中选一封放在第一个信筒中,再把余下的一封信放入余下的三个信筒中的任一个,1123B n C =带入公式既得两个概率。
4、一副扑克牌52张,不放回抽样,每次取一张,连续抽4张,求花色各异的概率.解:略5、袋中有红、黄、黑色求各一个,有放回取3次,求下列事件的概率。
A=“三次都是红球”;B=“三次未抽到黑球”,C=“颜色全不相同”,D=“颜色不全相同” 解:略6、从0,1,2,,9L 等10个数字中,任意选出不同的三个数字,试求下列事件的概率:1A =‘三个数字中不含0和5’,2A =‘三个数字中不含0或5’,3A =‘三个数字中含0但不含5’.解 3813107()15C P A C ==. 333998233310101014()15C C C P A C C C =+-=, 或 182231014()1()115C P A P A C =-=-=, 2833107()30C P A C ==. 7、从一副52张的扑克牌中任取3张,不重复,计算取出的3张牌中至少有2张花色相同的概率。
概率论与数理统计课后习题答案1-8章_习题解答
第一章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B 解:(1)()()A B AB AB AB B B ==, (2) ()()A B A B ()A B A B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
概率论与数理统计 课后习题详解(浙大第四版)。盛骤
解
利用组合法计数基本事件数。从 10 人中任取 3 人组合数为 C10 ,即样本空间
3 S= C10 = 120个基本事件 。
{
}
(1)令事件 A={最小号码为 5}。最小号码为 5,意味着其余号码是从 6,7,8,9,10 的 5 个号码中取出的,有 C5 种取法,故 A= C5 = 10个基本事件 ,所求概率为
概率论与数理统计作业习题解答(浙大第四版)
第一章 概率的基本概念 习题解析 第 1、2 题 随机试验、 随机试验、样本空间、 样本空间、随机事件 ------------------------------------------------------------------------------1.写出下列随机试验的样本空间: (1)记录一个小班一次数学考试的平均分数(设以百分制记分) 。 (2)生产产品直到有 10 件正品为止,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的记上“正品” ,不合格的记上“次品” ,如连续 查出 2 个次品就停止检查,或检查 4 个产品就停止检查,记录检查的结果。 (4)在单位圆内任意取一点,记录它的坐标。 解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n 个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 样本空间为 S=
2 2
{
}
5! C 10 1 P ( A) = = 2!3! = = 10! 120 12 C 3!7!
2 5 3 10
(2)令事件 B={最大号码为 5},最大号码为 5,其余两个号码是从 1,2,3,4 的 4 个号码 中取出的,有 C4 种取法,即 B= C4 个基本事件 ,! 2 C4 6 1 P ( B ) = 3 = 2!2! = = C10 10! 120 20 3!7!
963编号《概率论与数理统计》习题及答案
概率论与数理统计 第一部份 习题 第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设,且A 与B 互不相容,则 。
3.0)(,1.0)(=⋃=B A P A P =)(B P 3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,,则 。
3.0(,7.0)(==B A P A P =)(B A P7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,,则 。
2.0)(,5.0)(=-=B A P A P =)(AB P 9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A ,则 。
{}Y X B >==)|(A B P 11、设是两事件,则的差事件为 。
B A ,B A ,12、设构成一完备事件组,且则 , 。
C B A ,,,7.0)(,5.0)(==B P A P =)(C P =)(AB P 13、设与为互不相容的两事件,则 。
A B ,0)(>B P =)|(B A P 14、设与为相互独立的两事件,且,则 。
A B 4.0)(,7.0(==B P A P =)(AB P 15、设是两事件,则 。
B A ,,36.0)(,9.0)(==AB P A P =)(B A P16、设是两个相互独立的事件,则 。
B A ,,4.0)(,2.0)(==B P A P =)(B A P 17、设是两事件,如果,且,则 。
B A ,B A ⊃2.0)(,7.0)(==B P A P =)|(B A P 18、设,则 。
概率论与数理统计第一章习题及答案【范本模板】
概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生,(2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C )或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。
故表示为ABC C B A 或++(8)A,B ,C 中至少有二个发生.相当于AB ,BC ,AC 中至少有一个发生.故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0。
7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0。
6+0。
7=1.3〉1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0。
概率论与数理统计习题答案详解版(廖茂新复旦版)
概率论与数理统计习题答案详解版(廖茂新复旦版)习 题 一1.设A ,B ,C 为三个事件,用A ,B ,C 的运算式表示下列事件: (1) A 发生而B 与C 都不发生; (2) A ,B ,C 至少有一个事件发生; (3) A ,B ,C 至少有两个事件发生; (4) A ,B ,C 恰好有两个事件发生; (5) A ,B 至少有一个发生而C 不发生; (6) A ,B ,C 都不发生.解:(1)A C B 或A -B -C 或A -(B ∪C ). (2)A ∪B ∪C .(3)(AB )∪(AC )∪(BC ). (4)(AB C )∪(AC B )∪(BC A ). (5)(A ∪B )C . (6)C B A 或C B A .2.对于任意事件A ,B ,C ,证明下列关系式: (1)(A +B ) (A +B )(A + B )(A +B )= ∅;(2)AB +A B +A B +A B AB -= AB ;(3)A -(B +C )= (A-B )-C . 证明:略.3.设A,B为两事件,P(A)=0.5,P(B)=0.3,P(AB)=0.1,求:(1)A发生但B不发生的概率;(2)A,B都不发生的概率;(3)至少有一个事件不发生的概率.解(1)P(A B)=P(A-B)=P(A-AB)=P(A)-P(AB)=0.4;(2) P(B A)=P(BA )=1-P(A∪B)=1-0.7=0.3;(3) P(A∪B)=P(AB)=1-P(AB)=1-0.1=0.9.4.调查某单位得知。
购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD占10%,购买电脑和DVD占5%,三种电器都购买占2%。
求下列事件的概率。
(1)至少购买一种电器的;(2)至多购买一种电器的;(3)三种电器都没购买的.解:(1)0.28, (2)0.83, (3)0.725.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。
概率论与数理统计第四版课后习题答案
概率论与数理统计第四版课后习题答案概率论与数理统计习题答案第四版盛骤 (浙江大学)浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为: CB A 或A - (AB+AC )或A -(B ∪C ) (2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ??(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生相当于C A C B B A ,,中至少有一个发生。
故表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
概率论与数理统计(茆诗松)第二版第一章课后习题.参考答案(精品)
习题1.41. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门课都不及格的占3%.(1)已知一学生数学不及格,他语文也不及格的概率是多少?(2)已知一学生语文不及格,他数学也不及格的概率是多少?解:设A =“数学不及格”,B =“语文不及格”,有P (A ) = 0.15,P (B ) = 0.05,P (AB ) = 0.03,(1)所求概率为2.015.003.0)()()|(===A P AB P A B P ; (2)所求概率为6.005.003.0)()()|(===B P AB P B A P . 2. 设一批产品中一、二、三等品各占60%, 35%, 5%.从中任意取出一件,结果不是三等品,求取到的是一等品的概率.解:设A , B , C 分别表示“取出一、二、三等品”,有P (A ) = 0.6,P (B ) = 0.35,P (C ) = 0.05, 故所求概率为191205.016.0)(1)()()()|(=−=−==C P A P C P C A P C A P . 3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率P (A | B ) 和P (B | A ).解:样本点总数n = 6 2 = 36,则事件A 中的样本点有 (4, 6), (5, 5), (6, 4),即个数k A = 3,有363)(=A P , 事件B 中所含样本点个数k B = 5 + 4 + 3 + 2 + 1 + 0 = 15,有3615)(=B P , 事件AB 中的样本点有 (4, 6),即个数k C = 1,有361)(=AB P , 故1513615361)()()|(===B P AB P B A P ,31363361)()()|(===A P AB P A B P . 4. 以某种动物由出生活到10岁的概率为0.8,而活到15岁的概率为0.5,问现年为10岁的这种动物能活到15岁的概率是多少?解:设A , B 分别表示“这种动物能活到10岁, 15岁”,有P (A ) = 0.8,P (B ) = 0.5, 故所求概率为858.05.0)()()()()|(====A P B P A P AB P A B P . 5. 设10件产品中有4件不合格品,从中任取两件,已知其中一件是不合格品,求另一件也是不合格品的概率.解:设A =“其中一件是不合格品”,B =“两件都是不合格品”,有AB = B ,样本点总数45210=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 中所含样本点个数30624241614=+=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=A k ,得4530)(=A P , 事件AB = B 中所含样本点个数624=⎟⎟⎠⎞⎜⎜⎝⎛=B k ,得456)()(==B P AB P ,故所求概率为2.04530456)()()|(===A P AB P A B P . 6. 设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率.解:设A =“两件中至少有一件是合格品”,B =“两件都是合格品”,有AB = B , 样本点总数2)1(2−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A 中所含样本点个数2)1)((2)1)(()(211−+−=−−−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=m n m n m n m n m n m m n m n m k A , 得)1()1)(()(−−+−=n n m n m n A P , 事件AB = B 中所含样本点个数2)1)((2−−−=⎟⎟⎠⎞⎜⎜⎝⎛−=m n m n m n k B , 得)1()1)(()()(−−−−==n n m n m n B P AB P , 故所求概率为11)1()1)(()1()1)(()()()|(−+−−=−−+−−−−−==m n m n n n m n m n n n m n m n A P AB P A B P . 7. 掷一颗骰子两次,以x , y 分别表示先后掷出的点数,记A = {x + y < 10},B = {x > y },求P (B | A ),P (A | B ).解:样本点总数n = 6 2 = 36,则事件A 中所含样本点个数k A = 6 + 6 + 6 + 5 + 4 + 3 = 30,有3630)(=A P , 事件B 中所含样本点个数k B = 0 + 1 + 2 + 3 + 4 + 5 = 15,有3615)(=B P , 事件AB 中所含样本点个数k AB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有3613)(=AB P , 故301336303613)()()|(===A P AB P A B P ,151336153613)()()|(===B P AB P B A P . 8. 已知P (A ) = 1/3,P (B | A ) = 1/4,P (A | B ) = 1/6,求P (A ∪B ). 解:因1214131)|()()(=×==A B P A P AB P ,2161121)|()()(===B A P AB P B P , 故431212131)()()()(=−+=−+=AB P B P A P B A P U . 9. 已知3.0)(=A P ,P (B ) = 0.4,5.0(=B A P ,求)|(B A B P U . 解:因2.05.03.01)()(1)()()(=−−=−−=−=B A P A P B A P A P AB P ,且8.05.04.013.01()(1)(1)()()()(=−−+−=−−+−=−+=B A P B P A P B A P B P A P B A P U , 故25.08.02.0)()()())(()|(====B A P AB P B A P B A B P B A B P U U U U . 10.设A , B 为两事件,P (A ) = P (B ) = 1/3,P (A | B ) = 1/6,求|(B A P . 解:因1816131)|()()(=×==B A P B P AB P ,有18111813131)()()()(=−+=−+=AB P B P A P B A P U , 则18718111)(1)()(=−=−==B A P B A P B A P U U ,且32311)(1)(=−=−=B P B P , 故12732187)()()|(===B P B A P B A P . 11.口袋中有1个白球,1个黑球.从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第n 次,试验没有结束;(2)取到第n 次,试验恰好结束.解:设A k =“第k 次取出的是黑球”,k = 1, 2, ……(1)所求概率为P (A 1A 2…A n − 1A n ) = P (A 1A 2…A n − 1)P (A n | A 1A 2…A n − 1)1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L ; (2)所求概率为)|()()(121121121−−−=n n n n n A A A A P A A A P A A A A P L L L)1(1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L . 12.一盒晶体管有8只合格品,2只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品的概率.解:设A 1, A 2分别表示“第一次取出的是合格品、不合格品”,B 表示“第二次取出的是合格品”, 故所求概率为8.090729810297108)|()()|()()(2211==×+×=+=A B P A P A B P A P B P . 13.甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率;(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率.解:(1)设A 0 , A 1分别表示“从甲口袋取出的是白球、黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) )1)(()1(111+++++=++×+++++×+=n m b a bn n a m n n b a b m n n b a a ; (2)设A 0 , A 1 , A 2分别表示“从甲口袋取出的是2个白球、1个白球1个黑球、2个黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) + P (A 2)P (B | A 2)2)1)(()1(21)1)((222)1)(()1(++×−++−++++×−++++++×−++−=m n n b a b a b b m n n b a b a ab m n n b a b a a a )2)(1)(()1()1(2)2)(1(++−++−++++−=m n b a b a n b b n ab n a a . 14.有n 个口袋,每个口袋中均有a 个白球、b 个黑球.从第一个口袋中任取一球放入第二个口袋,再从第二个口袋中任取一球放入第三个口袋,如此下去,从第n − 1个口袋中任取一球放入第n 个口袋,最后再从第n 个口袋中任取一球,求此时取到的是白球的概率.解:设A k 表示“从第k 个口袋取出的是白球”,当k = 1时,有ba a A P +=)(1, 设对于k − 1,有b a a A P k +=−)(1, 则111)|()()|()()(1111++⋅+++++⋅+=+=−−−−b a a b a b b a a b a a A A P A P A A P A P A P k k k k k k k ba ab a b a b a a b a b a ab a a +=+++++=+++++=)1)(()1()1)(()1(, 故由数学归纳法可知,对任意自然数k ,b a a A P k +=)(,即ba a A P n +=)(. 15.钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是50%、30%和20%,而掉在上述三处地方被找到的概率分别是0.8、0.3和0.1.试求找到钥匙的概率.解:设A 1 , A 2 , A 3分别表示“钥匙掉在宿舍里、掉在教室里、掉在路上”,B 表示“找到钥匙”,故所求概率为P (B ) = P (A 1)P (B | A 1) + P (A 2)P (B | A 2) + P (A 3)P (B | A 3)= 0.5 × 0.8 + 0.3 × 0.3 + 0.2 × 0.1 = 0.51.16.两台车床加工同样的零件,第一台出现不合格品的概率是0.03,第二台出现不合格品的概率是0.06,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任取一个零件是合格品的概率;(2)如果取出的零件是不合格品,求它是由第二台车床加工的概率.解:设A 1, A 2分别表示“取出的是第一台、第二台车床加工的零件”,B 表示“取出的是合格品”,(1)所求概率为96.094.03197.032)|()()|()()(2211=×+×=+=A B P A P A B P A P B P ; (2)所求概率为5.004.006.031)()|()()()()|(2222=×===B P A B P A P B P B A P B A P . 17.有两箱零件,第一箱装50件,其中20件是一等品;第二箱装30件,其中18件是一等品,现从两箱中随意挑出一箱,然后从该箱中先后任取两个零件,试求(1)第一次取出的零件是一等品的概率;(2)在第一次取出的是一等品的条件下,第二次取出的零件仍然是一等品的概率.解:设A 1 , A 2分别表示“挑出第一箱、第二箱”,B 1 , B 2分别表示“第一次、第二次取出的是一等品”,(1)所求概率为5.0301821502021)|()()|()()(2121111=×+×=+=A B P A P A B P A P B P ; (2)因14210360129173018214919502021)|()()|()()(2212121121=××+××=+=A B B P A P A B B P A P B B P , 故所求概率为5068.0710536015.0142103601)()()|(12112====B P B B P B B P .18.学生在做一道有4个选项的单项选择题时,如果他不知道问题的正确答案时,就作随机猜测.现从卷面上看题是答对了,试在以下情况下求学生确实知道正确答案的概率.(1)学生知道正确答案和胡乱猜测的概率都是1/2;(2)学生知道正确答案的概率是0.2.解:设A 1 , A 2分别表示“学生知道正确答案、胡乱猜测”,B 表示“题答对了”,(1)因P (A 1) = 0.5,P (A 2) = 0.5, 故所求概率为8.0625.05.025.05.015.015.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P , (2)因P (A 1) = 0.2,P (A 2) = 0.8, 故所求概率为5.04.02.025.08.012.012.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P . 19.已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女比例为22:21的人群中随机地挑选一人,发现恰好是色盲患者,问此人是男性的概率是多少?解:设A 1 , A 2分别表示“此人是男性、女性”,B 表示“此人是色盲患者”, 故所求概率为9544.00025.0432105.0432205.04322)|()()|()()|()()|(2211111=×+××=+=A B P A P A B P A P A B P A P B A P . 20.口袋中有一个球,不知它的颜色是黑的还是白的.现再往口袋中放入一个白球,然后再从口袋中任意取出一个,发现取出的是白球,试问口袋中原来那个球是白球的可能性为多少?解:设A 1 , A 2分别表示“原来那个球是白球、黑球”,B 表示“取出的是白球”, 故所求概率为3275.05.05.05.015.015.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P . 21.将n 根绳子的2n 个头任意两两相接,求恰好结成n 个圈的概率.解:样本点总数为N = (2n − 1) (2n − 3)…3 ⋅ 1 = (2n − 1)!!,事件A =“恰好结成n 个圈”所含样本点个数K = 1, 故所求概率为!)!12(1)(−=n A P . 22.m 个人相互传球,球从甲手中开始传出,每次传球时,传球者等可能地把球传给其余m − 1个人中的任何一个.求第n 次传球时仍由甲传出的概率.解:设A k 表示“第k 次传球时由甲传出”,k = 1, 2, ……,有P (A 1) = 1, 则)(111111)](1[0)|()()|()()(111111−−−−−−−−−=−⋅−+=+=k k k k k k k k k A P m m m A P A A P A P A A P A P A P , 故⎥⎦⎤⎢⎣⎡−−−−−−=−−−=−−)(11111111)(1111)(11n n n A P m m m m A P m m A P )(111111122−⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛−−−=n A P m m m )(11)1(11)1(11)1(111111112232A P m m m m m n n n n n n −−−−−−⎟⎠⎞⎜⎝⎛−−+⎟⎠⎞⎜⎝⎛−−+⎟⎠⎞⎜⎝⎛−−++⎟⎠⎞⎜⎝⎛−−−=L⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−−=⎟⎠⎞⎜⎝⎛−−−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−−−=⎟⎠⎞⎜⎝⎛−−++⎟⎠⎞⎜⎝⎛−−−=−−−−2223211111111111111)1(1111n n n n m m m m m m m m L . 23.甲、乙两人轮流掷一颗骰子,甲先掷.每当某人掷出1点时,则交给对方掷,否则此人继续掷,试求第n 次由甲掷的概率.解:设A k 表示“第k 次由甲掷骰子”,k = 1, 2, ……,有P (A 1) = 1, 则)(326161)](1[65)()|()()|()()(1111111−−−−−−−+=⋅−+⋅=+=k k k k k k k k k k A P A P A P A A P A P A A P A P A P , 故)(32613261)(32613261)(3261)(2221−−−⎟⎠⎞⎜⎝⎛+⋅+=⎥⎦⎤⎢⎣⎡++=+=n n n n A P A P A P A P 1111123221213232132161)(326132613261−−−−−⎟⎠⎞⎜⎝⎛⋅+=⎟⎠⎞⎜⎝⎛+−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=⋅⎟⎠⎞⎜⎝⎛+⋅⎟⎠⎞⎜⎝⎛++⋅+=n n n n n A P L . 24.甲口袋有1个黑球、2个白球,乙口袋有3个白球.每次从两口袋中各任取一球,交换后放入另一口袋.求交换n 次后,黑球仍在甲口袋中的概率.解:设A k 表示“交换k 次后黑球在甲口袋中”,k = 1, 2, ……,有P (A 0) = 1, 则)(313131)](1[32)()|()()|()()(1111111−−−−−−−+=⋅−+⋅=+=k k k k k k k k k k A P A P A P A A P A P A A P A P A P , 故)(313131)(31313131)(3131)(22221−−−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⎥⎦⎤⎢⎣⎡++=+=n n n n A P A P A P A P n n n n n A P ⎟⎠⎞⎜⎝⎛⋅+=⎟⎠⎞⎜⎝⎛+−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=⋅⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+=3121213131131131)(3131313102L . 25.假设只考虑天气的两种情况:有雨或无雨.若已知今天的天气情况,明天天气保持不变的概率为p ,变的概率为1 − p .设第一天无雨,试求第n 天也无雨的概率.解:设A k 表示“第k 天也无雨”,k = 1, 2, ……,有P (A 1) = 1, 则)1()](1[)()|()()|()()(111111p A P p A P A A P A P A A P A P A P k k k k k k k k k −⋅−+⋅=+=−−−−−−= 1 − p + (2p − 1) P (A k − 1),故P (A n − 1) = 1 − p + (2p − 1) P (A n − 1) = 1 − p + (2p − 1)[1 − p + (2p − 1) P (A n − 2)]= 1 − p + (2p − 1)(1 − p ) + (2p − 1)2 P (A n − 2)= 1 − p + (2p − 1)(1 − p ) + … + (2p − 1)n − 2 (1 − p ) + (2p − 1)n − 1P (A 1)111)12(2121)12()12(1])12(1)[1(−−−−+=−+−−−−−=n n n p p p p p . 26.设罐中有b 个黑球、r 个红球,每次随机取出一个球,取出后将原球放回,再加入c (c > 0)个同色的球.试证:第k 次取到黑球的概率为b /(b + r ),k = 1, 2, ….证:设B k (b , r ) 表示“罐中有b 个黑球、r 个红球时,第k 次取到黑球”,k = 1, 2, …,用数学归纳法证明r b b r b B P k +=)),((, 当k = 1时,rb b r b B P +=)),((1,结论成立, 设对于k − 1,结论成立,即rb b r b B P k +=−)),((1, 对于k ,设A 1 , A 2分别表示“第一次取到黑球、红球”,有P (B k (b , r ) | A 1) = P (B k − 1 (b + c , r )),P (B k (b , r ) | A 2) = P (B k − 1 (b , r + c )),则P (B k (b , r )) = P (A 1) P (B k (b , r ) | A 1) + P (A 2) P (B k (b , r ) | A 2)= P (A 1) P (B k − 1 (b + c , r )) + P (A 2) P (B k − 1 (b , r + c ))rb bc r b r b br c b b c r b b r b r c r b c b r b b +=+++++=++⋅+++++⋅+=))(()(, 故对于k ,结论成立,rb b r b B P k +=)),((. 27.口袋中a 个白球,b 个黑球和n 个红球,现从中一个一个不返回地取球.试证白球比黑球出现得早的概率为a /(a + b ),与n 无关.证:设B n 表示“口袋中有n 个红球时白球比黑球出现得早”,n = 0, 1, 2, …, 用数学归纳法证明ba a B P n +=)(,与n 无关, 当n = 0时,显然有ba a B P +=)(0,结论成立, 设对于n − 1,结论成立,即ba a B P n +=−)(1, 对于B n ,设A 1 , A 2 , A 3分别表示“第一次取球时取到白球、黑球、红球”,有P (B n | A 3) = P (B n −1), 则P (B n ) = P (A 1) P (B n | A 1) + P (A 2) P (B n | A 2) + P (A 3) P (B n | A 3) = P (A 1) ⋅ 1 + P (A 2) ⋅ 0 + P (A 3) P (B n −1) ba ab a n b a an b a a b a a n b a n n b a a +=+++++=+⋅+++++=))(()(, 故对于n ,结论成立,b a a B P n +=)(,与n 无关. 28.设P (A ) > 0,试证)()(1)|(A P B P A B P −≥. 证:)()(1)()(1)()()()()()|(A P B P A P B A P A P B A P A P A P AB P A B P −≥−=−==. 29.若事件A 与B 互不相容,且0)(≠B P ,证明:)(1)()|(B P A P B A P −=. 证:因事件A 与B 互不相容,有B A ⊂,故)(1)()()()()()|(B P A P B P A P B P B A P B A P −===. 30.设A , B 为任意两个事件,且A ⊂ B ,P (B ) > 0,则成立P (A ) ≤ P (A | B ). 证:)()()()()()|(A P B P A P B P AB P B A P ≥==.31.若)|()|(B A P B A P >,试证)|()|(A B P A B P >. 证:因)(1)()()()()|()()()|(B P AB P A P B P B A P B A P B P AB P B A P −−==>=,有P (AB )[1 − P (B )] > P (B )[P (A ) − P (AB )], 则P (AB ) > P (A ) P (B ),得P (AB )[1 − P (A )] > P (A )[P (B ) − P (AB )], 故)|()()()(1)()()()()|(A B P A P B A P A P AB P B P A P AB P A B P ==−−>=. 32.设P (A ) = p ,P (B ) = 1 − ε ,证明:εεε−≤≤−−1)|(1p B A P p . 证:因P (AB ) ≤ P (A ) = p ,且P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1 = p + 1 − ε − 1 = p − ε , 故p − ε ≤ P (AB ) ≤ p ,即εεεε−≤−==≤−−11)()()()|(1p AB P B P AB P B A P p . 33.若P (A | B ) = 1,证明:1|(=A B P . 证:因1)()()|(==B P AB P B A P ,有P (AB ) = P (B ), 则P (A ∪B ) = P (A ) + P (B ) − P (AB ) = P (A ),即()()(1)(1)(B A P B A P B A P A P A P ==−=−=U U , 故1)()()|(==A P B A P A B P .。
概率论与数理统计、王琼-阮宏顺主编-习题集答案-第三章-第八章复习题含答案
第四章 随机变量的数字特征1. 设随机变量X ~N(1,4),Y ~N(0,16),X ,Y 相互独立,则U =X-Y+7服从( D )分布. A N(8,23) B N(8,65)C N(1,20)D N(8,20)2.设有两个随机变量X 和Y 相互独立且同分布:{1}{1}1/2,P X Y =-==-={1}{1}1/2,P X Y ====则下列各式成立的是 ( A )(A ){}1/2==P X Y (B) {}1==P X Y (C) {0}1/4+==P X Y (D) {0}1/4==P XY3. 若X 服从[-1,1]上的均匀分布,则期望EX= 0 DX=13.若X 服从B (12,0.3),则期望EX= 3.6 DX= 2.52 . 若X 服从)(λP ,则期望EX=λDX=λ. 若X 服从)(λE ,则期望EX=1λDX=21λ.已知X ~B(n ,p ),则EX= np .4. 已知X ~B(n ,p ),且EX=5,DX=2.5,则p= 0.5 .5. (2012cczu)5分设随机变量,X Y 的数学期望分别是-2,1,方差分别是1,4,两者相关系数是0.5ρ=-,则由切比雪夫不等式估计(2)()4()4(,)(26)3636D X Y D X D Y Cov X Y P XY ++++≥≤=13363636==.6.盒中有3只黑球,2只红球,从中任取2只,若所取的2只中没有黑球,那么在剩下的球中再取1个球.以X 表示所取得的黑球数,以Y 表示所取得的红球数.求(X,Y)的联合分布列 与边缘分布列,并判断X 与Y 的独立性,为什么?因}{}{}{010,1==≠==Y P X P Y X P,所以YX ,不独立.7. 将两封信随意地投入3个空邮筒,设X 、Y 分别表示第1、第2个邮筒中信的数量,求(1)X 与Y 的联合概率分布。
(2)求出第3个邮筒里至少投入一封信的概率. (3)求其边缘分布(2)P=5/9.8.袋中装有标有1,1,2,3的四个球,从中任取一个并且不再放回,然后再从袋中任取一球,以ηξ,分别记为第一,第二次取到的球上的号码数,求(1)),(ηξ的联合分布律(2)ηξ+的分布律(3)ηξ-的分布律解:(2)9.设二维随机变量)(Y X ,的联合密度函数为 0101()0Cxy x y f x y ≤≤≤≤=⎧⎨⎩,,,,其它,求(1) 常数C ,(2)}1{<+Y X P ,(3)}{Y X P >. 解:(1)因1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ,即1101=⎰⎰dxdy cxy ,解得.4=c(2)}{614111==<+⎰⎰+-xydy dx Y X P x .(3)}{21410==>⎰⎰xydy dx Y X P x. 10. 设(,)~(,)(arctan )(arctan )23xy X Y F x y A B C =++;①.求常数C B A ,,②求(,),(),()X Yf x y f x f y ③X 与Y 是否相互独立?解:(1)见课本p60(2)联合密度函数),(y x f 求解过程见课本边缘分布函数为)2arctan 2(1)22)(2arctan 2(1),()(2x x x F x F X +=++=+∞=ππππππ )3arctan 2(1)3arctan 2)(22(1),()(2yy y F y F Y +=++=+∞=ππππππ边缘密度函数为)4(2)()(2+='=x x F x f XX π)9(3)()(2+='=y y F y f Y Y π(3)因为)()(),(y F x F y x F Y X =(或)()(),(y f x f y x f Y X =),所以YX ,相互独立.11. 设(X,Y)的联合概率密度是(2),01(,)0,cy x y x f x y -≤≤≤⎧=⎨⎩其它,求 (1) c 的值;(2)两个边缘密度 (3) 并判断X ,Y的独立性 (4)}1{<+Y X P (1) 因1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ,即1)2(1=-⎰⎰dy x cy dx x,解得524=c (2)dy y x f x f X ⎰+∞∞-=),()(,+∞<<∞-x当0<x或1>x 时,00)(==⎰+∞∞-dy x f X .当10≤≤x 时,325125240)2(5240),()(x x dy dy x y dy dy y x f x f xx X -=+-+==⎰⎰⎰⎰∞-+∞+∞∞-所以⎪⎩⎪⎨⎧≤≤-=othersx x x x f X ,010,512524)(32dx y x f y f Y ⎰+∞∞-=),()(,+∞<<∞-y当0<y 或1>y 时,00)(==⎰+∞∞-dx y f Y .当10≤≤y 时,123124364812()(,)0(2)05555yY y f y f x y dx dy y x dx dy y y y +∞+∞-∞-∞==+-+=-+⎰⎰⎰⎰ 所以23364812,01()5550,Yy y y y f y others ⎧-+≤≤⎪=⎨⎪⎩ (3)因)1()1()21,21(Y X f f f ⨯≠,所以Y X ,不独立.(4)}{103)2(52411210=-=<+⎰⎰-dx x y dy Y X P yy12. 设在3次独立试验中,每次试验事件A 发生的概率相等.设X 为3次试验中事件A 发生次数且()2E X =.求在3次独立试验中事件A 至少发生一次的概率.解: 设A 发生的概率为p , 则~(,)X B n p . 由()32E X p ==得,23p =. 所以, 3126{1}1{0}1327P X P X ⎛⎫≥=-==-= ⎪⎝⎭.13.从只含有3黑,4白两种颜色球的球袋中逐次取一球,令1,,1,20,,ii X i i ⎧==⎨⎩第次取出黑球第次取出白球.试在不放回模式下求12,X X因为121216{0,0}{0}{0}77749P X X P X P X ===≠===⨯=,所以不独立. 14.设,X Y 相互独立,且(1)(1)0P XP X p ====>,(0)(0)10P X P X p ====->,令10X Y Z X Y +⎧=⎨+⎩,当为偶数,,当为奇数,求Z 的分布律. 解:15.设随机变量X 服从参数为λ的泊松分布且()1E X =,求λ的值并写出随机变量X 的分布列.解: 1==EX λ; X 的分布列为}{)2,1,0(!11 ===-k e k k X P .16. 设二维随机变量)(Y X ,的联合分布列为求EX 、)(XY E 和DX . 所以24341=⨯+⨯=EX . 因为所以4890603828180)(=⨯+⨯+⨯+⨯+⨯+⨯=XY E . 又因为,3419431)(2=⨯+⨯=XE 所以43)()(22=-=EX X E DX17.盒中有4张卡片,其上所标的数字分别为1、2、3、4.从中任取一张,然后在剩下的卡片(其上的数字大于1)中再取1张.以X 表示第一次所取卡片上的数字,以Y 表示第二次所取卡片上的数字.求),(Y X 的联合分布列和边缘分布列及EX ,EY .解: 联合分布列为3,2==EY EX . 18. 设随机变量X 服从区间[a,b]上的均匀分布,EX=1且DX=1.求a,b 的值并写出随机变量的密度函数f(x). 解: 因为112)(,122=-==+=a b DX b a EX ,b a <,解得31,31+=-=b a .所以⎪⎩⎪⎨⎧+-∈=⎪⎩⎪⎨⎧∈-=others x others b a x a b x f ,0]31,31[,321,0],[,1)(19. 设]6,3[~U X,]1,0[~U Y 且X ,Y 独立,试求E(XY),D(XY).解:因为21210,29263=+==+=EY EX,Y X ,相互独立,所以49)(=⨯=EY EX XY E .因为,12112)01(,4312)36(22=-==-=DY DX 所以21)()(22=+=EX DX X E ,31)()(22=+=EY DY Y E , 又因为22,Y X 相互独立,所以 2222222221931()()[()]()[()]()()[()]21().3416D XYE XY E XY E X Y E XY E X E Y E XY =-=-=-=⨯-=20.设随机变量X 密度函数为⎩⎨⎧≤≤-=其他,010),1(2)(x x x f ,求EX, E(5X-1), )(2X E , DX 和D(2X ). 解: 31)1(2)(10=-⋅==⎰⎰+∞∞-dx x x dx x xf EX,3215)15(=-=-EX X E ,61)1(2)()(10222=-⋅==⎰⎰+∞∞-dx x x dx x f x X E ,181)()(22=-=EX X E DX ,924)2(==DX X D .21.设随机变量X 的密度函数为23,01()0,x x f x ⎧≤≤=⎨⎩其他,求(1)Y=2X+1的密度函数).(y f Y (2)求EY 及DY.解: (1)因为}{}{11()21()22Y X y y F y P Y y P X y P X F ⎧--⎫=≤=+≤=≤=⎨⎬⎭⎩,所以 11111()()()()()()22222Y Y X X X y y y y f y F y F f f ----'''====23(1),1380,y y others ⎧-≤≤⎪=⎨⎪⎩.(2) 因为32135()()(1)82Y E Y yf y dy y y dy +∞-∞==-=⎰⎰,322221332()()(1)85Y E Y y f y dy y y dy +∞-∞==-=⎰⎰. 所以223()()20DY E Y EY =-=.22. 设(X ,Y )的联合密度函数为⎩⎨⎧≤≤≤≤=其他,010,10,4),(y x xy y x f ,问X ,Y 是否独立?求EX ,DX.解: ),(Y X 的边缘密度函数为⎰+∞∞-+∞<<-∞=.,),()(x dy y x f x f X当0<x或1>x 时,⎰+∞∞-==.00)(dy x f X当10≤≤x 时,⎰⎰+∞∞-===124),()(x xydy dy y x f x f X .所以⎩⎨⎧≤≤=others x x x f X ,010,2)(. ⎰+∞∞-+∞<<-∞=.,),()(y dx y x f y f Y当0<y 或1>y 时,⎰+∞∞-==.00)(dx y f Y当10≤≤y 时,⎰⎰+∞∞-===124),()(y xydx dx y x f y f Y .所以⎩⎨⎧≤≤=others y y y f Y ,010,2)(. 因为)()(),(y f x f y x f Y X ⋅=,所以YX ,相互独立.12()23X EX xf x dx x x dx +∞-∞==⋅=⎰⎰,122201()()22X E X x f x dx x x dx +∞-∞==⋅=⎰⎰,181)()(22=-=EY Y E DY .23.. 设(X,Y)的联合密度函数为=01,01,(,)0x yx y f x y +≤≤≤≤⎧=⎨⎩其它,,试求Y X+,XY 的数学期望.解: ,67))((),()()(11=++=+=+⎰⎰⎰⎰+∞ℵ-+∞∞-dy y x y x dx dxdy y x f y x Y X E .第五章 中心极限定理(10分)24.计算机在每次进行数字计算时遵从四舍五入原则.为使我们此题简单考虑,我们假定对小数点后面的第一位进行四舍五入运算,则可以认为误差~[0.5,0.5]X U -. 现若在一项计算中一共进行了100次数字计算,求平均误差落在区间[上的概率. 解: 设i X 表示第i 次计算的误差,则]5.0,5.0[~-U X i . 121,0==ii DX EX .由中心极限定理得100125~(0,)3i i X N =∑,所以10010011100i i i i X P P X ==⎧⎪⎧⎪≤≤=-≤≤⎨⎨⎩⎪⎪⎪⎪⎭⎩∑∑2(3)10.9974.ΦΦΦ≈-=-= 25.生产灯泡的合格率为0.9,求10000个灯泡中合格数在8900~9100的概率. 解: 设合格灯泡数为X , 则)9.0,1000(~B X , 由中心极限定理得~(9000,900)X N ,所以}{89009100P X ΦΦ<<≈-101010()()2()10.9976333ΦΦΦ=--=-=.26. 将一枚质地均匀的硬币抛10000次,求出现正面的次数不超过5200的概率.(用()x Φ表示) 解: 设出现正面的次数为X , 则~(10000,0.5)X B ,由中心极限定理得~(5000,2500)X N . 因此, 500052005000{5200}{}(4)5050X P X P Φ--≤=≤≈. 27.某车间有200台机床,它们独立地工作着,设每台机器开工率为0.6,开工时耗电1千瓦,问供电所至少要供多少电才能以不小于0.999的概率保证车间不会因供电不足而影响生产?解: 设开工的机器数为X ,则)6.0,200(~B X ,由中心极限定理(120,48)X N ,设至少供应m 千瓦的电,由题意}{999.01≥≤⋅m X P,即999.0)48120(≥-Φm ,查表解得34.141≥m .所以至少供应142千瓦的电能.28.某单位有200部电话分机,每部电话约有5%的时间要使用外线通话.设每部电话是否使用外线通话是相互独立的. 求该单位总机至少需要安装多少条外线才能以0.90以上的概率保证每部电话需要使用外线时可以打通? 解:设同时要使用外线的电话数为X ,则)05.0,200(~B X ,由中心极限定理(10,9.5)XN ,设至少需要安装m 条外线,由题意}{9.0≥≤m X P ,即9.0)5.910(≥-Φm查表解得.94.13≥m 所以至少安装14条外线.29.某市保险公司开办一年人身保险业务.被保险人每年需交付保险费160元. 若一年内发生重大人身事故,其本人或家属可获2万元赔金. 己知该市人员一年内发生重大人身事故的概率为0.005.现有5000人参加此项保险.求保险公司一年内从此项业务所得到的总收益在20万元到40万元之间的概率.解:设发生重大人身事故的人数为X,则)005.0,5000(~B X ,由中心极限定理(25,24.875)X N , 所以}{}{2050000.0162402030P X P X ≤⨯-≤=≤≤0.6826ΦΦ≈-=.第六章 抽样和抽样分布1.设总体X 服从正态分布),(2σμN ,其中μ是已知的,而2σ未知的, ),,(321X X X 是从总体中抽取的一个简单随机样本.(1)求),,(321X X X 的密度函数; (2) 指出321X X X ++,μ2+X ,),,min(321X X X ,∑=3122i i X σ,213X X -之中,哪些是统计量,哪些不是统计量,为什么?解:(1)2212)(22121),,(σμσπ--=x ex x x f2222)(21σμσπ--x e2232)(21σμσπ--x e;(2)321X X X ++,μ2+X ,),,min(321X X X ,213X X -是统计量.2. 若12,,,nX X X 是总体X 的简单随机样本,12(,,,)n g X X X 是12,,,n X X X 的函数, 则( D )(A) 统计量一定不含未知参数 (B) 12(,,,)n g X X X 一定是一个统计量(C)统计量的分布一定不含未知参数 (D) A 、C 都对 3. (2011cczu)10分设12,,,X X X 是来自具有分布的总体的随机样本,试用中心极限定理计算()5P X >.(已知(2)0.508Φ=.)解: 由题知1()3i E X =,2()1i E X =,故()228()9i i i D X EX EX =-=. 由中心极限定理知,20012001600(,)39i i X N =∑.所以, 11111()4014052005n i n n i i i i i X P X P P X P X ===⎛⎫ ⎪⎛⎫⎛⎫ ⎪>=>=>=-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭∑∑∑1200200403311(2)(2)0.508404033n i i X P =⎛⎫-- ⎪ ⎪=-≤≈-Φ-=Φ= ⎪ ⎪⎝⎭∑. 4. 从某班级的期末考试成绩中,随机抽取10名同学的成绩分别为:100,85,70,65,90,95,63,50,77,86.(1)试写出总体,样本,样本值,样本容量;(2)求样本均值,样本方差及样本二阶中心矩的观察值. 解:设X 表示全班同学的期末考试成绩,则总体为X ,样本为),,,(1021X X X ,样本值为(100,85,70,65,90,95,63,50,77,86),样本容量为10=n,样本均值的观察值为1.78108685100=+++= x,样本方差的观察值为54.252)(9121012=-=∑=i i x x s .样本二阶中心矩的观察值为29.227)(10121012=-=∑=i i x x b . 5.设随机变量22~(,),~(),X N Y n T μσχ=则( B ).(A )T 服从(1)t n -分布 (B )T 服从()t n 分布 C )T 服从正态分布(0,1)N(D )T 服从(1,)F n 分布6.设12,,,n X X X 为正态总体),(2σμN 的一个样本,则样本均值~X 2(,)N nσμ.数学期望21[()]nii E X X =-=∑2(1)n σ-.(2011cczu)数学期望21[()]ni i E X μ=-=∑2n σ. 7.总体X 服从正态分布),(2σμN ,2,μσ为未知参数,12,,,nX X X 是来自X 的样本,则∑=-ni iX E X122)(1σ服从2()n χ分布.8.(2011cczu)设12,,,n X X X 为正态总体(,1)N μ的一个样本,则2(1)~n S -2(1)n χ-,其中2S 为样本方差.9.),,,(21n X X X 为总体)2,1(2N 的一个样本,X为样本均值,则下列结论中正确的是( D ).A )(~/21n t n X - B )1,(~)1(4112n F X n i i ∑=- C )1,0(~/21N n X - D )(~)1(41212n X n i i χ∑=- 10.,2X ,…,n X 相互独立,且都服从标准正态分布(0,1)N ,则∑=ni iX 12服从的分布为2()n χ.11.(2012cczu) 5分设1216,,,X X X 为总体2(0,)N σ的一个样本,S 为样本均方差,则1614ii X S=∑服从的分布是(15)t .12.2012cczu) 5分设1281,,,~(,9)X X X N μ.要检验假设0:0H μ=,则当0H 为真时,用于检验的统计量3X 服从的分布是(0,1)N .13.一个样本,X 是样本均值,试问样本容量n 至少应取多大才能使{||0.1}0.95P X μ-≤≥成立.解:因为4~(,)X N nμ,所以}{0.1210.95P X μΦ-≤=-≥,即0.975(1.96)ΦΦ≥=,得1537n =. 14.X 分布为下述情形(1)X ~),(p n B ;(2)~()X P λ;(3)2(,)XN μσ~,1,,n X X 为取自总体的样本,X 与2S分别为样本均值与样本方差,试分别求2(),(),()E X D X E S . 解:(1))1()(),1(1,2p np DX S E p p DX nX D np EX X E -==-====; (2)λλλ======DX S E n DX n X D EX X E )(,1,2; (3)222)(,1,σσμ======DX S E nDX n X D EX X E .第七章 参数估计(10分)1. (2011cczu) 10分设总体X 的密度函数为1,01(;),00,其他x x f x θθθθ-⎛<<=>⎝.设0.97,0.06,0.18,0.24,0.88,0.11,0.70,0.51,0.62,0.73为来自该总体的样本值.求参数θ的矩估计值. 解: 依题意,110()1E X x x dx X θθθθ-===+⎰,得参数θ的矩估计量为ˆ1X X θ=-. 而样本均值1(0.970.060.73)0.510x =+++=,所以估计值为ˆ1θ=. 2. (2012cczu) 10分设总体X 的密度函数为36(),0,(;)0,其他,x x x f x θθθθ⎧-<<⎪=⎨⎪⎩求θ的矩估计ˆθ并计算ˆD θ. 解: 306()()2xE X xx dx X θθθθ=-==⎰,得参数θ的矩估计量为ˆ2X θ=.4ˆ4D DX DX n θ==. 而2223063()()10x E X x x dx θθθθ=-=⎰,故22244ˆ()5D DX EX E X n n n θθ==-=.第八章 假设检验(10分)1. (2011cczu) 10分某车间用一台包装机包装精盐,额定标准每袋净重400g.设包装机包装出的盐每袋重2~(,)X N μσ,其中10σ=.每天随机地抽取9袋秤得净重为(单位:g)397,406,418,424,388,411,410,415,412.问包装机工作是否正常?(取0.05α=). 查表(1.96)0.975,(1.64)0.95Φ=Φ=.解: (1)假设0:400H μ=; (2)取统计量~(0,1)U N =;(3)由0.05α=, 确定临界值21.96u α=, 使得2{||}0.05P U u α>=;(4)由样本值1(397406412)4099x =+++=, 得统计量U的观察值 2.7x u ===.(5)因为 1.96u >,所以拒绝原假设0H ,认为包装机不正常工作.2. (2012cczu) 10分某电器零件平均电阻一直保持在2.64Ω,使用新工艺后,测得100个零件平均电阻在2.62Ω,如改变工艺前后电阻均方差保持在0.06Ω,问新工艺对零件电阻有无显著影响?(取0.01α=)(1.96)0.975,Φ=(1.64)0.95,Φ=(2.58)0.995Φ=.解: 设X 为零件的平均电阻, 则2~(,0.06)X N μ. (1)假设0: 2.64H μ=; (2)取统计量~(0,1)U N=;(3)由0.01α=, 确定临界值22.58u α=, , 使得2{||}0.01P U u α>=;(4)由样本值 2.62x =, 得统计量U 的观察值 3.33x u ==≈-.(5)因为 2.58u >,所以拒绝原假设0H ,认为新工艺对零件电阻有显著影响.。
概率论与数理统计统计课后习题答案_总主编_邹庭荣_主编_程述汉_舒兴明之欧阳育创编
第一章习题解答1.解:(1) Ω={0,1,…,10}; (2) Ω={=i ni|0,1,…,100n },其中n 为小班人数; (3) Ω={√,×√, ××√, ×××√,…},其中√表示击中,×表示未击中;(4) Ω={(y x ,)|22y x +<1}。
2.解:(1)事件C AB 表示该生是三年级男生,但不是运动员; (2)当全学院运动员都是三年级学生时,关系式C ⊂B 是正确的; (3)全学院运动员都是三年级的男生,ABC=C 成立;(4)当全学院女生都在三年级并且三年级学生都是女生时,A =B 成立。
3.解:(1)ABC ;(2)AB C ;(3)C B A ;(4)C B A )(⋃;(5)C B A ⋃⋃; (6)C B C A B A ⋃⋃;(7)C B A ⋃⋃;(8)BC A C B A C AB ⋃⋃4.解:因ABC ⊂AB ,则P (ABC )≤P(AB )可知P (ABC )=0 所以A 、B 、C 至少有一个发生的概率为P (A∪B∪C)=P (A )+P (B )+P (C )-P (AB )-P (AC )-P (BC )+P (ABC ) =3×1/4-1/8+0 =5/85.解:(1)P (A∪B)= P (A )+P (B )-P (AB )=0.3+0.8-0.2=0.9)(B A P =P (A )-P (AB )=0.3-0.2=0.1(2)因为P (A∪B)= P (A )+P (B )-P (AB )≤P(A )+P (B )=α+β,所以最大值maxP (A∪B)=min(α+β,1);又P (A )≤P (A∪B),P (B )≤P (A∪B),故最小值min P (A∪B)=max(α,β)6.解:设A 表示事件“最小号码为5”,B 表示事件“最大号码为5”。
概率论与数理统计课后习题答案(魏宗舒编)(1-4章)
2 3 6 9 。 8 7 14 1.6 有五条线段,长度分别为 1、3、5、7、9。从这五条线段中任取三条,求所取三条线段 能构成一个三角形的概率。 P ( A)
5 解 样本点总数为 3 10 。所取三条线段能构成一个三角形,这三条线段必须是 3、5、7 或 3、7、9 或多或 5、7、9。所以事件 A “所取三条线段能构成一个三角形”包含 3 个样本点, 3 于是 P ( A) 。 10 1.7 一个小孩用 13 个字母 A, A, A, C , E , H , I , I , M , M , N , T , T 作组字游戏。如果字母的各种排 列是随机的(等可能的) ,问“恰好组成“MATHEMATICIAN”一词的概率为多大? 解 显然样本点总数为 13 ! ,事件 A “恰好组成“MATHEMATICIAN”包含 3 ! 2 ! 2 ! 2 ! 个样本点。 所以 P ( A)
n m N 1
(3)指定的 m 个盒中正好有 j 个球的概率为 m 1
m j 1 N m n j 1 ,1 n j N n 1 n
m N ,0 j N .
94 9 解 用 A 表示“牌照号码中有数字 8” ,显然 P( A) ,所以 10000 10
4
P ( A) 1 - P ( A) 1
94 9 1 10000 10
4
1.11 任取一个正数,求下列事件的概率: (1)该数的平方的末位数字是 1; (2)该数的四次方的末位数字是 1; (3)该数的立方的最后两位数字都是 1; 1 解 (1) 答案为 。 5 (2)当该数的末位数是 1、3、7、9 之一时,其四次方的末位数是 1,所以答案为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 、随机事件及其概率二 、事件的概率三 、条件概率与事件的独立性一、填空题1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________.2. 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且2.0)(5.0)()(===C P B P A P ,,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.3. 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________.4. 设8.0)(,6.0)(5.0)(===A B P B P A P ,,则B A ,至少发生一个的概率为_________.5. 设B A ,为两个随机事件,且0)(>B P ,则由乘法公式知=)(AB P __________.6. 某柜台有4个服务员 ,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概率为 41,则4人中至多1人需用台秤的概率为_______________. 7. 从1,2,…,10共十个数字中任取一个 ,然后放回 ,先后取出5个数字 ,则所得5个数字全不相同的事件的概率等于 ___________.8. 设A ,B ,C 是随机事件,81)(0)()(41)()()(======AC P BC P AB P C P B P A P ,,, 则A ,B ,C 三个事件恰好出现一个的概率为__________.9. 甲、乙二人独立地向同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲命中的概率是__________.10. 4.0)(=A P ,3.0)(=B P ,4.0)(=B A P ,则___________)(=B A P .11. 设B A ,是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P __________.12. 设B A ,为随机事件,且8.0)(,6.0)(5.0)(===A B P B P A P ,,则=)(B A P __________.13. 某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率14. 设B A ,为随机事件,且 4.0)(=A P ,3.0)(=B P ,6.0)(=B A P , 则=)(B A P __________.15. 设B A ,为随机事件,且 7.0)(=A P ,3.0)(=-B A P ,,则=)(B A P __________.16. 四个人独立地破译一份密码,已知各人能译出的概率分别为,,,,61314151则密码能被译出的概率是__________.17. 设B A ,为随机事件,且 6.0)(=A P ,)()(B A P AB P =,则=)(B P _________.18. 设B A ,为随机事件,且 4.0)(=A P ,3.0)(=B P ,6.0)(=B A P , 则=)(B A P __________.19. 设B A ,为两个随机事件,7.0)(5.0)(4.0)(===B A P B P A P ,,,则=)(B A P __________.20. 在三次独立重复射击中,若至少有一次击中目标的概率为6437,则每次射击击中目标的 概率为__________.21. 一袋中有2个黑球和若干个白球,现有放回地摸球4次,若至少摸到一个白球的概率是8180,则袋中白球的个数是__________. 22. 事件B A 、互斥且B A =,则)(A P =__________.23. 已知25.0)()()(===C P B P A P ,15.0)()(0)(===BC P AB P AC P ,,则C B A 、、中至少有一个发生的概率为 __________.24. 设某试验成功的概率为0.5,现独立地进行该试验3次,则至少有一次成功的概率为__________.25. 把9本书任意地放在书架上,其中指定3本书放在一起的概率为__________.26. 已知2.0)(6.0)(5.0)(===B A P B P A P ,,,则)(AB P =__________.27. 设B A ,为随机事件,且8.0)(6.0)(5.0)(===A B P B P A P ,,,则=)(B A P __________.28. 某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率__________. 29. 已知6.0)(=A P ,8.0)(=B P ,则)(AB P 的最大值为__________.30. 设5.0)(=A P ,2.0)(=B A P ,则=)(A B P __________.二、选择题1. 设C B A ,,为三个事件,且B A ,相互独立,则以下结论中不正确的是( )A. 若1)(=C P ,则AC 与BC 也独立.B. 若1)(=C P ,则C A 与B 也独立.C. 若0)(=C P ,则C A 与B 也独立.D. 若B C ⊂,则A 与C 也独立.2. 设C B A ,,为三个事件,0)(>AB P 且1)(=AB C P ,则有( )A. 1)()()(-+≤B P A P C PB. )()(B A P C P ≤C. 1)()()(-+≥B P A P C PD. )()(B A P C P ≥3. C B A ,,是任意事件,在下列各式中,不成立的是( )A. B A B B A =-)(.B. B A B A =-)( .C. B A B A AB B A =-)(.D. )()()(C B C A C B A --= . 4. 打靶 3 发,事件 i A 表示“击中 i 发” , 3210,,,=i . 那么事 件 321A A A A =表示( )A. 全部击中B. 至少有一发击中C. 必然击中D. 击中3发5. 设1)()(1)(01)(0=+<<<<B A P B A P B P A P ,,,则下列结论成立的是( ) A. 事件A 和B 互不相容B. 事件A 和B 互相对立C. 事件A 和B 互不独立D. 事件A 和B 互相独立6. 当事件A 与事件B 同时发生时,事件C 必发生,则( )A. 1)()()(-+≤B P A P C PB. 1)()()(-+≥B P A P C PC. )()(AB P C P =D. )()()(B P A P AB P =7. 设B A 、互不相容,且0)(0)(>>B P A P ,,则必有( ) A. 0)(>A B P B. )()(A P B A P = C. 0)(=B A P D. )()()(B P A P AB P =8. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的,中奖的概率分别为,,,02.0)(01.0)(03.0)(===C P B P A P 如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率约为( )A. 0.05B. 0.06C. 0.07D. 0.089. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为( ) A. 11-+-b a a B. )1)(()1(-++-b a b a a a C. b a a + D. 2⎪⎭⎫ ⎝⎛+b a a10. 设事件A 与B 互不相容,且0)(0)(≠≠B P A P ,,则下面结论正确的是( ) A. A 与B 互不相容 B. 0)(>A B PC. )()()(B P A P AB P =D. )()(A P B A P =三、计算题1. 设C B A 、、是Ω中的随机事件,将下列事件用C B A 、、表示出来(1)仅A 发生,C B 、都不发生;(2)C B A 、、中至少有两个发生;(3)C B A 、、中不多于两个发生.2. 把长为a 的棒任意折成三段,求它们可以构成三角形的概率.3. 装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率.4. 一年有12个月,假设有365天。
试计算:(1)教室里有r个学生,求他们的生日都不相同的概率;(2)房间里有4个人,求至少两个人的生日在同一个月的概率.5. 一袋中装有m枚正品硬币,n枚次品硬币(次品硬币的两面均印有国徽)从袋中任取一枚,已知将它投掷r次,每次都得到国徽,问这枚硬币是正品的概率是多少?6. 设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为 20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为5%,试求:( 1 ) 该地区居民患高血压病的概率;( 2 ) 若知某人患高血压,则他属于肥胖者的概率有多大?7. 假设有两箱同种零件,第一箱内装50件,其中10件一等品,第二箱内装30件,其中18件一等品.现从两箱中随意挑出一箱,然后从该箱中先后随机取两个零件(取出的零件均不放回),试求:(1)先取出的零件是一等品的概率;(2)在先取出的零件是一等品的下,第二次取出的零件仍然是一等品的概率.8. 三架飞机:一架长机两架僚机,一同飞往某目的地进行轰炸。
但要到达目的地,一定要有无线电导航,而只有长机有此设备.一旦到达目的地,各机将独立进行轰炸,且每架飞机炸毁目标的概率均为0.3.在到达目的地之前,必须经过高射炮阵地上空.此时任一飞机被击落的概率为0.2,求目标被炸毁的概率.9. 某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%,求:全厂产品的次品率.10. 两台机床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,已知第一台加工的零件比第二台加工的零件多一倍,加工出来的零件放在一起,求:任意取出的零件是合格品(A)的概率.11.市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的两倍,第二、第三厂家相等,且第一、第二、第三厂家的次品率依次为2%,2%,4%.若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率为多少?12. 甲、乙、丙三车间加工同一产品,加工量分别占总量的25%、35%、40%,次品率分别为0.03、0.02、0.01.现从所有的产品中抽取一个产品,试求:(1)该产品是次品的概率;(2)若检查结果显示该产品是次品,则该产品是乙车间生产的概率是多少?13. 一个机床有1/3的时间加工零件A ,其余时间加工零件B.加工零件A 时停机的概率是0.3,加工零件A 时停机的概率是0.4.试求:(1)该机床停机的概率;(2)若该机床已停机,求它是在加工零件A 时发生停机的概率.14. 甲、乙、丙三台机床加工一批同一种零件,各机床加工的零件数量之比为5:3:2,各机床所加工的零件合格率依次为94%,90%,95%.现从加工好的整批零件中随机抽查一个,发现是废品,判断它是由甲机床加工的概率.15. 某人外出可以乘坐飞机、火车、轮船、汽车四种交通工具,其概率分别为5%、15%、30%、50%,乘坐这几种交通工具能如期到达的概率依次为100%、70%、60%、90%.已知该人误期到达,求他是乘坐火车的概率.16. 设B A ,是两事件且7.0)(6.0)(==B P A P ,.问: (1)在什么条件下)(AB P 取到最大值,最大值是多少?(2)在什么条件下)(AB P 取到最小值,最小值是多少?17. 设C B A ,,是三事件, 且81)(0)()(41)()()(======AC P BC P AB P C P B P A P ,,. 求C B A ,,至少有一个发生的概率.18. 在房间里有10人,分别佩戴着从1号到10号的纪念章,任意选3人记录其纪念章的号码.试求(1)最小的号码为5的概率;(2)最大的号码为5的概率.19. 设由以往记录的数据分析.某船只运输某种物品损坏2%(这一事件记为1A ),10%(事件2A ),90%(事件3A )的概率分别为05.0)(15.0)(8.0)(321===A P A P A P ,,.现从中随机地独立地取三件,发现这三件都是好的(这一事件记为B ),试分别求)()()(321B A P B A P B A P ,,.(注:这里设物品件数很多,取出第一件以后不影响取第二件的概率,所以取第一、第二、第三件是互相独立的.)20. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3的概率各为多少?四、证明题(8-10分,以8分为主)4题1. 设0)(0)(>>B P A P ,,证明B A ,互不相容与B A ,相互独立不能同时成立. 2. 若已知事件A 与B 独立,证明A 与B 也独立.3. 一个工厂有甲、乙、丙三个车间生产同一种螺钉,每个车间的产量分别占产量的25%、35%、40%,如果每个车间成品中的次品率分别占产量的5%、4%、2%.王师傅说现在从全厂中任意抽取一个螺钉,此螺钉3.45%的可能性是次品.王师傅说的对吗?4. 有两个盒子,第一个盒子装有2个红球1个黑球,第二个盒子装有2个红球2个黑球,现从这两个盒子中各任取一球放在一起,再从中任取一球.证明这个球有127的可能性是红球.五、有实际背景的应用题1. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶.在搬运中所标笺脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少?2. 据以往资料表明,某三口之家,患某种传染病的概率有以下规律:,孩子得病母亲得病,孩子得病5.0)()(6.0)()(====P A B P P A P 4.0)()(==病母亲及孩子得病孩子得父亲得病P AB C P .求母亲及孩子得病但父亲未得病的概率.。