2018届高三数学二轮复习课件 第7讲三角恒等变换与解三角形

合集下载

第七讲 解三角形

第七讲 解三角形

第7讲│ 命题立意追溯
命题立意追溯
应用意识——通过解三角形进行数学建模 示例 某城市有一块不规则的绿地如图2-7-2所示,城建 部门欲在该地上建造一个底座为三角形的环境标志,
图2-7-2
第7讲│ 命题立意追溯
小李、小王设计的底座形状分别为△ABC、△ABD, 经测量AD=BD=14,BC=10,AC=16,∠C=∠D. (1)求AB的长度; (2)若建造环境标志的费用与用地面积成正比,不考虑 其他因素,小李、小王谁的设计使建造费用最低,请说明 理由.
第7讲 │ 二轮复习建议
预计2013年对该部分的考查会延续前几年的命题方向, 并有适度的创新,如把平面向量、三角恒等变换等结合起来 进行考查. 复习建议:该部分的知识点不多,但可以与三角函数、 平面向量、实际应用题等问题相互交汇,具有较为广阔的命 题背景.从五年来课程标准卷的考查情况看,该部分出现过 一个实际应用题、一个解三角形与三角变换交汇的解答题, 出现过两个难度为C级的解三角形的试题,因此复习该部分 时要重在引导学生提高使用正弦定理、余弦定理解一般的斜 三角形的能力(实际应用题也是解一般的斜三角形).
第7讲│ 要点热点探究
[思考流程] (1)(分析)欲求cosC只要求出cos2B ⇨ (推理)只 需求出cosB ⇨ (结论)在8b=5c,C=2B下使用正弦定理即得. (2)(分析)欲求cosC的最小值,建立cosC关于边a,b,c的 关系式 ⇨ (推理)代入a2+b2=2c2消去c得关于a,b的关系式 ⇨ (结论)使用基本不等式a2+b2≥2ab即得.
第7讲 │ 主干知识整合
3.面积公式 1 abc 1 S= absinC.导出公式:S= (R为外接圆半径),S= (a 2 4R 2 +b+c)r(r为内切圆半径). 4.常用技巧 (1)利用正弦定理实现边角互化; π (2)若三角形ABC为锐角三角形,则A+B> ,sinA>cosB, 2 cosA<sinB,a2+b2>c2.类比三角形ABC为钝角三角形可得相 应结论.

2018届高三数学理高考二轮复习书讲解课件第一部分 专题二 第二讲 三角恒等变换与解三角形 精品

2018届高三数学理高考二轮复习书讲解课件第一部分 专题二 第二讲 三角恒等变换与解三角形 精品

由已知及余弦定理得 a2+b2-2abcos C=7,
故 a2+b2=13,从而(a+b)2=25.
所以△ABC 的周长为 5+ 7.
考点三 三角恒等变换与解三角形的综合问题
试题 解析
考点一 考点二 考点三
5.(2016·高考山东卷)在△ABC 中,角 A,B,C 的对边分别为 a, b,c.已知 2(tan A+tan B)=tcaons BA+tcaons AB. (1)证明:a+b=2c; (2)求 cos C 的最小值.
试题 解析
(1)证明:根据正弦定理,可设sina A=sinb B=sinc C=k(k>0). 则 a=ksin A,b=ksin B,c=ksin C, 代入coas A+cobs B=sinc C中,有kcsoisnAA+kcsoisnBB=kssiinnCC,变形可得 sin Asin B=sin Acos B+cos Asin B=sin(A+B). 在△ABC 中,由 A+B+C=π, 有 sin(A+B)=sin(π-C)=sin C, 所以 sin Asin B=sin C.
试题 解析
考点三
考点一 考点二 考点三
根据上面所做题目,请填写诊断评价
错因(在相应错因中画√)
考点 错题题号

知识性 方法性 运算性 审题性
断 考点一
评 价 考点二
考点三
※ 用自己的方式诊断记录 减少失误从此不再出错
考点一 三角恒等变换
考点一 考点二 考点三
[经典结论·全通关] 三角函数恒等变换“四大策略” (1)常值代换:特别是“1”的代换,1=sin2θ+cos2θ=tan 45° 等; (2)项的分拆与角的配凑:如 sin2α+2cos2α=(sin2α+cos2α)+cos2α, α=(α-β)+β 等; (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦.

三角恒等变换与解三角形课件-2023届高三数学二轮专题复习

三角恒等变换与解三角形课件-2023届高三数学二轮专题复习
a2+c2=3ac,则 b=
.
解析:由题意得 S△ABC= acsin B= ac=

,则 ac=4,所以 a2+c2=3ac=3×4=12,
所以 b2=a2+c2-2accos B=12-2×4× =8,则 b=2
答案:2
,B=60°,
.
5. △ABC 的内角 A,B,C 的对边分别为 a,b,c.已知 B=150°.
=
( cos α- sin α)=
cos(α+ )=
sin( -α)=



得 sin( -α)= .

所以 sin(α+

答案:-

)=-sin[2π-(α+


)]=-sin( -α)=- .

,
(1)三角恒等变换的基本思路:统一名称,统一角度.一个流程:一角、二名、
三结构,即一看角的变化(已知角和所求角之间的联系),二看函数名称的变化,
D.473
解析:如图所示,根据题意过 C 作 CE∥C′B′,交 BB′于 E,过 B 作 BD∥A′B′,交 AA′于 D,
则 BE=100,C′B′=CE=


°
.
′′× °
在△A′C′B′中,∠C′A′B′=75°,则 BD=A′B′=
角为 45°,所以 AD=BD=

,
结合 A= 知 bc=12.
又 b+c=4
,
所以由余弦定理得 a2=b2+c2-2bccos A=(b+c)2-2bc-2bccos =(4
所以 a=2
.故选 A.
)2-3bc=48-3×12=12,

高考数学二轮复习 第二篇 专题通关攻略 专题2 三角函数及解三角形 专题能力提升练七 2.2.2 三

高考数学二轮复习 第二篇 专题通关攻略 专题2 三角函数及解三角形 专题能力提升练七 2.2.2 三

专题能力提升练七三角恒等变换与解三角形(45分钟80分)一、选择题(每小题5分,共30分)1.cos15°-4sin215°cos15°=()A. B. C.1D.【解析】选D.cos 15°-4sin215°cos 15°=cos 15°-2sin 15°×2sin 15°cos 15°=cos 15°-2sin 15°sin 30°=cos 15°-sin 15°=2cos(15°+30°)=.2.(2018·永州二模)已知△ABC的内角A,B,C的对边分别是a,b,c,若+=2a,则△ABC是()A.等边三角形B.锐角三角形C.等腰直角三角形D.钝角三角形【解析】选 C.因为+=2a,所以由正弦定理可得,+=2sinA≥2=2,所以sin A=1,当=时,“=”成立,所以A=,b=c,所以△ABC是等腰直角三角形.3.(2018·全国卷Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB= ( )A.4B.C.D.2【解析】选A.cos C=2cos2-1=2×-1=-,在△ABC中,由余弦定理AB2=CA2+CB2-2CA·CB·cos C,得AB2=25+1-2×1×5×=32,所以AB=4.4.若向量a=,向量b=(1,sin22.5°),则a·b=( )A.2B.-2C.D.-【解析】选A.由题得a·b=tan67.5°+=tan 67.5°+=tan 67.5°-tan 22.5°=tan 67.5°-==2×=2×=2.【加固训练】(2018·会宁一中一模)已知x为锐角,=,则a的取值X围为( ) A.[-2,2] B.(1,)C.(1,2]D.(1,2)【解析】选C.由=,可得:a=sin x+cos x=2sin,又x∈,所以x+∈,所以a的取值X围为(1,2].5.在锐角△ABC中,A=2B,则的取值X围是( )A.(-1,3)B.(1,3)C.(,)D.(1,2)【解析】选D.====3-4sin2B.因为△ABC是锐角三角形,所以得<B<⇒sin2B∈.所以=3-4sin2B∈(1,2).6.(2018·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C= ()A. B. C. D.【解析】选C.由题意S△ABC=absin C=,即sin C=,由余弦定理可知sin C=cos C,即tan C=1,又C∈(0,π),所以C=.【加固训练】(2018·某某一模) 已知△ABC中,sinA,sinB,sinC成等比数列,则的取值X围是( )A. B.C.(-1,]D.【解析】选 B.由已知可知sin2B=sin A·sin C,即b2=ac,cos B==≥=,即0<B≤,sin B+cos B=sin∈(1,],原式==,设t=sin B+cos B,即原式==t-(1<t≤),函数是增函数,当t=1时,函数等于0,当t=时,函数等于,所以原式的取值X围是.二、填空题(每小题5分,共10分)7.(2018·全国卷Ⅱ)已知tan=,则tanα=________.【解析】因为tan=tan=,所以=,解得tan α=.答案:【加固训练】(2018·某某市一模) 已知cos=,则sin2α=________.【解析】sin 2α=sin=-cos2=1-2cos2=1-2×=-.答案:-8.为了竖起一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC 比AB长0.5米,为了稳定广告牌,要求AC越短越好,则AC最短为________.【解题指南】首先根据余弦定理找出边BC与AC之间的关系,用边BC表示出边AC,结合函数知识即可求解.【解析】由题意设BC=x(x>1)米,AC=t(t>0)米,依题设AB=AC-0.5=(t-0.5)米,在△ABC中,由余弦定理得:AB2=AC2+BC2-2AC·BCcos 60°,即(t-0.5)2=t2+x2-tx,化简并整理得:t=(x>1),即t=x-1++2,因为x>1,故t=x-1++2≥2+,当且仅当x=1+时取等号,此时取最小值2+. 答案:2+三、解答题(每小题10分,共40分)9.(2018·全国卷Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB.(2)若DC=2,求BC.【解析】(1)在△ABD中,由正弦定理得=.由题设知,=,所以sin∠ADB=.由题意知,∠ADB<90°,所以cos∠ADB==.(2)由题意及(1)知,cos∠BDC=sin∠ADB=.在△BCD中,由余弦定理得BC2=BD2+DC2-2·BD·DC·cos∠BDC=25+8-2×5×2×=25. 所以BC=5.10.如图,在△ABC中,AB=2,cosB=,点D在线段BC上.(1)若∠ADC=,求AD的长.(2)若BD=2DC,△ACD的面积为,求的值.【解题指南】(1)首先利用同角三角函数间的基本关系求得sin B的值,然后利用正弦定理即可求得AD的长.(2)首先利用三角形面积间的关系求得S△ABC,然后利用三角形面积公式结合余弦定理即可求得的值.【解析】(1)在三角形中,因为cos B=,所以sin B=,在△ABD中,由正弦定理得=,又AB=2,∠ADB=,sin B=.所以AD=.(2)因为BD=2DC,所以S△ABD=2S△ADC,S△ABC=3S△ADC,又S△ADC=,所以S△ABC=4,因为S△ABC=AB·BCsin∠ABC,所以BC=6,因为S△ABD=AB·ADsin∠BAD,S△ADC=AC·ADsin∠CAD,S△ABD=2S△ADC,所以=2·,在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BCcos∠ABC.所以AC=4,所以=2·=4.11.已知函数f(x)=2sinxcosx+2cos2x-1(x∈R).(1)求函数f(x)的最小正周期及在区间上的最大值和最小值.(2)若f(x0)=,x0∈,求cos2x0的值.【解析】(1)f(x)=2sin xcos x+2cos2x-1=(2sin xcos x)+(2cos2x-1)=sin 2x+cos 2x=2sin,所以函数f(x)的最小正周期为π;因为x∈,所以2x+∈,sin∈,所以函数f(x)=2sin在区间上的最大值为2,最小值为-1.(2)由(1)可知f(x0)=2sin,又因为f(x0)=,所以sin=,由x0∈,得2x0+∈,从而cos=-=-,所以cos 2x0=cos=cos cos +sin sin =12.在△ABC中,D是边BC上的点,AB=AD=,cos∠BAD=.(1)求sinB.(2)若AC=4,求△ADC的面积.【解题指南】(1)直接利用余弦定理和正弦定理求出结果.(2)利用(1)的结论和余弦定理求出三角形的面积.【解析】(1)在△ABD中,BD2=AB2+AD2-2AB·AD·cos∠BAD=7+7-2×××=12,得BD=2.由cos∠BAD=,得sin∠BAD=,在△ABD中,由正弦定理得=,所以sin B=×=.(2)因为sin B=,B是锐角,所以cos B=,设BC=x,在△ABC中,AB2+BC2-2AB·BC·cos B=AC2,即7+x2-2·x··=16,化简得:x2-2x-9=0,解得x=3或x=-(舍去),则CD=BC-BD=3-2=,由∠ADC和∠ADB互补,得sin∠ADC=sin∠ADB=sin B=,所以△ADC的面积S=·AD·DC·sin∠ADC=×××=.【加固训练】(2018·某某二模)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为acsin2B.(1)求sinB的值.(2)若c=5,3sin2C=5sin2B·sin2A,且BC的中点为D,求△ABD的周长.【解析】(1)由S△ABC=acsinB=acsin2B,得sin B=2sin B·cos B,因为0<B<π,所以sin B>0,故cos B=,又sin2B+cos2B=1,所以sin B=.(2)由(1)和3sin2C=5sin2B·sin2A得16sin2C=25sin2A,由正弦定理得16c2=25a2,因为c=5,所以a=4,BD=a=2,在△ABD中,由余弦定理得:AD2=c2+BD2-2c·BD·cos B=52+22-2×5×2×=24,所以AD=2.所以△ABD的周长为c+BD+AD=7+2.(建议用时:50分钟)1.(2018·某某一模)南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:S=,c>b>a),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A.82平方里B.83平方里C.84平方里D.85平方里【解析】选C.由题意可得:a=13,b=14,c=15代入:S===84,则该三角形田面积为84平方里.2.已知△ABC的三个内角A,B,C的对边分别为a,b,c,若2sin=1,且a=2,则△ABC 的面积的最大值为( )A. B. C. D.2【解析】选B.sin=,-=,A=,由于a=2为定值,由余弦定理得4=b2+c2-2bccos ,即4=b2+c2+bc.根据基本不等式得4=b2+c2+bc≥2bc+bc=3bc,即bc≤,当且仅当b=c时,等号成立.S△=bcsin A≤··=.3.在△ABC中,a,b,c分别是内角A,B,C的对边,sinAcosB-(c-cosA)·sinB=0,则边b=________.【解析】由sin Acos B-(c-cos A)·sin B=0,得sin Acos B+cos Asin B=csin B,所以sin C=csin B,即=sin B,由正弦定理=,故b==1.答案:14.在△ABC中,角A,B,C的对边分别为a,b,c,设△ABC的面积为S,若3a2=2b2+c2,则的最大值为________.【解析】因为3a2=2b2+c2,所以3a2=3b2-b2+3c2-2c2,所以b2+2c2=3(b2+c2-a2)=6bccos A,所以==tan A.由题得a2=,所以 cos A===≥=,所以tan A=≤=,当且仅当b=c时取等号.所以的最大值为.答案:【加固训练】(2018·某某中学模拟)在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知a=,(b2+c2-3)tanA=bc,2cos2=(-1)cosC,则△ABC的面积等于________.【解析】条件(b2+c2-3)tan A=bc即为(b2+c2-a2)tan A=bc,由余弦定理得2bccos Atan A=bc,所以得sin A=,又A为锐角,所以A=.又2cos2=1+cos(A+B)=1-cos C=(-1)cos C,所以cos C=,得C=,故B=.在△ABC中,由正弦定理得=,所以c===.故△ABC的面积S=acsin B=×××sin =.答案:5.△ABC的内角A,B,C的对边分别为a,b,c,已知(b-c)2=a2-bc.(1)求sinA.(2)若a=2,且sinB,sinA,sinC成等差数列,求△ABC的面积.【解析】(1)由(b-c)2=a2-bc,得b2+c2-a2=bc,即=,由余弦定理得cos A=,因为0<A<π,所以sin A=.(2)由sin B,sin A,sin C成等差数列,得sin B+sin C=2sin A,由正弦定理得b+c=2a=4,所以16=(b+c)2,所以16=b2+c2+2bc.由(1)得16=a2+bc,所以16=4+bc,解得bc=,所以S△ABC=bcsin A=××=.6.(2018·某某一模)△ABC的内角为A,B,C的对边分别为a,b,c,已知=+.(1)求sin(A+B)+sinAcosA+cos(A-B)的最大值.(2)若b=,当△ABC的面积最大时,求△ABC的周长.【解题指南】(1)先根据正弦定理将边角关系转化为角的关系,再根据三角公式转化为二次函数求解.(2)根据余弦定理利用基本不等式求解.【解析】(1)由=+得:=,a=bcos C+csin B,即sin A=sin Bcos C+sin Csin B,所以cos B=sin B,B=;由sin(A+B)+sin Acos A+cos(A-B)=(sin A+cos A)+sin Acos A,令t=sin A+cos A,原式=t2+t-,当且仅当A=时,上式取最大值,最大值为.(2)S=acsin B=ac,b2=a2+c2-2accos B,即2=a2+c2-ac≥(2-)ac,ac≤2+,当且仅当a=c=等号成立;S max=,周长L=a+b+c=2+.7.(2018·某某二模) 如图,在平面四边形ABCD中,AB=2,AC=2,∠ADC= ∠CAB=90°,设∠DAC=θ.(1)若θ=60°,求BD 的长度;(2)若∠ADB=30°,求tanθ.【解题指南】(1)在△ABD中,利用余弦定理直接求出BD.(2)在△ABD中,写出正弦定理再化简即得解.【解析】(1)由题意可知,AD=1.在△ABD中,∠DAB=150°,AB=2,AD=1,由余弦定理可知,BD2=(2)2+12-2×2×1×=19,BD=.(2)由题意可知,AD=2cos θ,∠ABD=60°-θ,在△ABD中,由正弦定理可知,=,所以=4,所以tan θ=.。

2018年高考数学二轮复习课件 专题3 第2讲三角恒等变换与解三角形(58张)

2018年高考数学二轮复习课件 专题3 第2讲三角恒等变换与解三角形(58张)

• • • • • • • •
[解析] 等式右边=sin Acos C+(sin Acos C+cos Asin C) =sin Acos C+sin(A+C) =sin Acos C+sin B, 等式左边=sin B+2sin Bcos C, ∴sin B+2sin Bcos C=sin Acos C+sin B. 由cos C>0,得sin A=2sin B. 根据正弦定理,得a=2b. 故选A.
• (3)tan 2α=______________.
1-cos 2α • 5.降幂公式 2 1+cos 2α 2 (1)sin2α=_____________ ;
1-tan2α

• (2)cos2α=_____________.
6.正弦定理
b a c sin B sin A=__________=sin C=2R(2R 为△ABC 外接圆的直径).
1 bcsin A 1 1 2 S△ABC=____________=2acsin B=2absin C.
• 1.同角关系应用错误:利用同角三角函数的平方关系开 方时,忽略判断角所在的象限或判断出错,导致三角函数 符号错误. • 2.诱导公式的应用错误:利用诱导公式时,三角函数名 变换出错或三角函数值的符号出错.
2 2 2 2 a + b sin( α + φ ) = a + b cos(α+θ) . (4)辅助角公式:asin α+bcos α=____________________________________
• 4.二倍角的正弦、余弦、正切公式 2sin αcos α • (1)sin 2α=_____________ ; cos2α-sin2α 2α-1=1-2sin2α; • (2)cos 2α=_______________ = 2cos 2tan α

2018届高考数学二轮复习专题五三角恒等变换与解三角形课件文

2018届高考数学二轮复习专题五三角恒等变换与解三角形课件文

解析:由于tan 20°+msin 20°=
3,所以m=
3-tan 20° sin 20°

3scions2200°°c-oss2in0°20°=2
3 2 cos
20°-12sin
1
20°
2sin 40°
=4sinsi6n0°4-0°20°=4.
答案:4
正、余弦定理解三角形及其应用
[师生共研·悟通] 1.正弦定理及其变形 在△ABC中,sina A=sinb B=sinc C=2R(R为△ABC的外接圆 半径). 变形:a=2Rsin A,sin A=2aR,a∶b∶c=sin A∶sin B∶ sin C等. 2.余弦定理及其变形 在△ABC中,a2=b2+c2-2bccos A. 变形:b2+c2-a2=2bccos A,cos A=b2+2cb2c-a2.
[典例] (1)(2017·全国卷Ⅱ)△ABC 的内角 A,B,C 的对 边分别为 a,b,c,若 2bcos B=acos C+ccos A,则 B=________.
[解析] 法一:由2bcos B=acos C+ccos A及正弦定 理,得
2sin Bcos B=sin Acos C+sin Ccos A =sin(A+C)=sin B>0, 因此cos B=12. 又0<B<π,所以B=π3.
3.如图,为了估测某塔的高度,在同一水 平面的A,B两点处进行测量,在点A处 测得塔顶C在西偏北20°的方向上,仰角 为60°;在点B处测得塔顶C在东偏北40° 的方向上,仰角为30°.若A,B两点相距130 m,则塔的高 度CD=________m.
解析:设CD=h,则AD= h3,BD= 3h, 在△ADB中,∠ADB=180°-20°-40°=120°, ∴由余弦定理AB2=BD2+AD2-2BD·AD·cos 120°, 可得1302=3h2+h32-2· 3h·h3·-12, 解得h=10 39,故塔的高度为10 39 m. 答案:10 39

高三数学二轮复习 2-8三角恒等变换、解三角形

高三数学二轮复习  2-8三角恒等变换、解三角形

3.(2017·北京高考)在平面直角坐标系 xOy 中,角 α 与角 β 均以 Ox 为
始边,它们的终边关于 y 轴对称。若 sinα=13,则 sinβ=________。
答案
1 3
解析 解法一:当角 α 的终边在第一象限时,取角 α 终边上一点 P1(2 2, 1),其关于 y 轴的对称点(-2 2,1)在角 β 的终边上,此时 sinβ=13;当角 α 的
解法二:求△BDC 的面积同解法一。先在△BDC 中,由余弦定理,得 CD2 =BC2+BD2-2BC·BD·cos∠DBC=22+22-2×2×2×-14=10,所以 CD=
第7页
赢在微点 无微不至
考前顶层设计·数学文·二轮教案
2.(2017·江苏高考)若 tanα-π4=16,则 tanα=________。
答案
7 5
解析 tanα=tanα-π4+4π =1t-antaαn-α4π-+π4ttaannπ4π4=161+ -116=75。
第8页
赢在微点 无微不至
考前顶层设计·数学文·二轮教案
第15页
赢在微点 无微不至
考前顶层设计·数学文·二轮教案
■方向 3 三角形的实际应用 【例 4】 某观测站 C 在目标 A 的南偏西 25°方向,从 A 出发有一条 南偏东 35°走向的公路,在 C 处测得与 C 相距 31 km 的公路 B 处有一个人 正沿着此公路向 A 走去,走 20 km 到达 D,此时测得 CD 距离为 21 km, 若此人必须在 20 分钟内从 D 处到达 A 处,则此人的最小速度为( )
15 4
= 215。在△BDC 中,因为 BD=BC,所以∠BDC=∠BCD,所以∠BDC=
第21页

高三数学二轮复习课件课标专题第讲三角恒等变换与三角函数-精品文档

高三数学二轮复习课件课标专题第讲三角恒等变换与三角函数-精品文档
专题二
三角函数、平面向量
Evaluation only. 第6讲 解三角形 ed with Aspose.Slides for .NET 3.5 Client Profile 5.2 第7讲 平面向量 Copyright 2019-2019 Aspose Pty Ltd.
第5讲 三角恒等变换与三角函数
ed with Aspose.Slides for .NET 3.5 Client Profile 5.2
专题二 │ 考情分析预测
Evaluation only. ed with Aspose.Slides for .NET 3.5 Client Profile 5.2 Copyright 2019-2019 Aspose Pty Ltd.
专题二 │ 考情分析预测
考情分析预测
考向预测
该专题是高考重点考查的部分,从最近几年考查的情况看,主要考查三角函数 的图象和性质、三角函数式的化简与求值、正余弦定理解三角形、三角形中的三角 恒等变换、平面向量的线性运算、平面向量的数量积、平面向量的平行与垂直,以 及三角函数、解三角形和平面向量在立体几何、解析几何等问题中的应用.该部分 在试卷中一般是 2~3 个选择题或者填空题,一个解答题,选择题在于有针对性地 考查本专题的重要知识点(如三角函数性质、平面向量的数量积等),解答题一般有 三个命题方向,一是以考查三角函数的图象和性质为主,二是把解三角形与三角函 数的性质、三角恒等变换交汇,三是考查解三角形或者解三角形在实际问题中的应 用.由于该专题是高中数学的基础知识和工具性知识,在试题的难度上不大,一般 都是中等难度或者较为容易的试题.基于这个实际情况以及高考试题的相对稳定 性,我们预测在 2012 年的高考中该部分的可能考查情况如下:

2018届高三数学二轮复习第一篇专题突破专题三三角函数及解三角形第2讲三角恒等变换与解三角形课件理

2018届高三数学二轮复习第一篇专题突破专题三三角函数及解三角形第2讲三角恒等变换与解三角形课件理

tan x 等于 ( 4
(
7 A.
)
9 B. 4
5 9 D. 或 4
4 5 7 C. 或 4 4
4
答案 (1)A (2)A
2 2 解析 (1)由cos 2 x =sin x得sin 2x=sin x, 2



tan x 1 1 x ∵x∈(0,π),∴tan x=2,∴tan = . =
a2 1 解析 (1)由题设得 acsin B= , 3sin A 2 a 1 即 csin B= . 3sin A 2 sin A 1 由正弦定理得 sin Csin B= . 3sin A 2 2 故sin Bsin C= . 3
2 2 2
3.三角形面积公式 S△ABC= absin C= bcsin A= acsin B.
1 2 1 2 1 2
典型例题
(2017课标全国Ⅰ,17,12分)△ABC的内角A,B,C的对边分别为a,b,c.已知
a2 △ABC的面积为 . 3sin A
(1)求sin Bsin C; (2)若6cos Bcos C=1,a=3,求△ABC的周长.
2 1 7 1 把sin 代入,原式=- 1 2 =- . α = 4 3 4 8
3
1 4
3

.
7 8

2来自2
cos10(1 3 tan10) 2.(2017新疆第二次适应性检测) 的值是 cos50
1.正弦定理及其变形
c a b sin A sin B sin C a Rsin A,sin A= ,a∶b∶c=sin A∶sin B∶sin C. 2R

高考数学(理科)二轮复习【专题2】三角变换与解三角形(含答案)

高考数学(理科)二轮复习【专题2】三角变换与解三角形(含答案)

第2讲 三角变换与解三角形考情解读 (1)高考中常考查三角恒等变换有关公式的变形使用,常和同角三角函数的关系或诱导公式结合.(2)利用正弦定理或余弦定理解三角形或判断三角形的形状、求值等,经常和三角恒等变换结合进行综合考查.1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)tan 2α=2tan α1-tan 2α.3.三角恒等式的证明方法(1)从等式的一边推导变形到另一边,一般是化繁为简. (2)等式的两边同时变形为同一个式子. (3)将式子变形后再证明.4.正弦定理 a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 5.余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab .变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B , a 2+b 2-c 2=2ab cos C .6.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .7.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.热点一 三角变换例1 (1)已知sin(α+π3)+sin α=-435,-π2<α<0,则cos(α+2π3)等于( )A .-45B .-35C.45D.35(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2思维启迪 (1)利用和角公式化简已知式子,和cos(α+23π)进行比较.(2)先对已知式子进行变形,得三角函数值的式子,再利用范围探求角的关系. 答案 (1)C (2)B解析 (1)∵sin(α+π3)+sin α=-435,-π2<α<0,∴32sin α+32cos α=-435, ∴32sin α+12cos α=-45, ∴cos(α+2π3)=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β,∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现张冠李戴的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.设函数f (x )=cos(2x +π3)+sin 2x .(1)求函数f (x )的最小正周期和最大值;(2)若θ是第二象限角,且f (θ2)=0,求cos 2θ1+cos 2θ-sin 2θ的值.解 (1)f (x )=cos(2x +π3)+sin 2x =cos 2x cos π3-sin 2x sin π3+1-cos 2x 2=12-32sin 2x .所以f (x )的最小正周期为T =2π2=π,最大值为1+32.(2)因为f (θ2)=0,所以12-32sin θ=0,即sin θ=33,又θ是第二象限角,所以cos θ=-1-sin 2θ=-63. 所以cos 2θ1+cos 2θ-sin 2θ=cos 2θ-sin 2θ2cos 2θ-2sin θcos θ=(cos θ+sin θ)(cos θ-sin θ)2cos θ(cos θ-sin θ)=cos θ+sin θ2cos θ=-63+332×(-63)=6-326=2-24.热点二 解三角形例2 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a =2sin A ,cos B cos C +2a c +bc =0.(1)求边c 的大小;(2)求△ABC 面积的最大值.思维启迪 (1)将cos B cos C +2a c +bc=0中的边化成角,然后利用和差公式求cos C ,进而求c .(2)只需求ab 的最大值,可利用cos C =a 2+b 2-c 22ab和基本不等式求解.解 (1)∵cos B cos C +2a c +bc =0,∴c cos B +2a cos C +b cos C =0,∴sin C cos B +sin B cos C +2sin A cos C =0, ∴sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =-12,∵C ∈(0,π)∴C =2π3,∴c =a sin A·sin C = 3.(2)∵cos C =-12=a 2+b 2-32ab ,∴a 2+b 2+ab =3,∴3ab ≤3,即ab ≤1. ∴S △ABC =12ab sin C ≤34.∴△ABC 面积最大值为34.思维升华 三角形问题的求解一般是从两个角度,即从“角”或从“边”进行转化突破,实现“边”或“角”的统一,问题便可突破. 几种常见变形:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin A ,b =2R sin B ,c =2R sin C ,其中R 为△ABC 外接圆的半径; (3)sin(A +B )=sin C ,cos(A +B )=-cos C .(1)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba 等于( )A. 2 B .2 2 C. 3 D .2 3(2)(2014·江西)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932C.332 D .3 3 答案 (1)A (2)C解析 (1)因为a sin A sin B +b cos 2A =2a ,由正弦定理得sin 2A sin B +sin B cos 2A =2sin A ,即sin B =2sin A , 即sin B sin A =2,b a =sin B sin A= 2. (2)∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得ab =6.∴S △ABC =12ab sin C =12×6×32=332.热点三 正、余弦定理的实际应用例3 (2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35.(1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 思维启迪 (1)直接求sin B ,利用正弦定理求AB .(2)利用余弦定理和函数思想,将甲乙距离表示为乙出发后时间t 的函数.解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1 040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.思维升华 求解三角形的实际问题,首先要准确理解题意,分清已知与所求,关注应用题中的有关专业名词、术语,如方位角、俯角等;其次根据题意画出其示意图,示意图起着关键的作用;再次将要求解的问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识建立数学模型,从而正确求解,演算过程要简练,计算要准确;最后作答.如图,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A 地侦察发现,在南偏东60°方向的B 地,有一艘某国军舰正以每小时13海里的速度向正西方向的C 地行驶,企图抓捕正在C 地捕鱼的中国渔民.此时,C 地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的速度赶往C 地救援我国渔民,能不能及时赶到?(2≈1.41,3≈1.73,6≈2.45)解 过点A 作AD ⊥BC ,交BC 的延长线于点D .因为∠CAD =45°,AC =10海里,所以△ACD 是等腰直角三角形.所以AD =CD =22AC =22×10=52(海里).在Rt △ABD 中,因为∠DAB =60°,所以BD =AD ×tan 60°=52×3=56(海里). 所以BC =BD -CD =(56-52)(海里).因为中国海监船以每小时30海里的速度航行,某国军舰正以每小时13海里的速度航行,所以中国海监船到达C 点所用的时间t 1=AC 30=1030=13(小时),某国军舰到达C 点所用的时间t 2=BC 13=5×(6-2)13≈5×(2.45-1.41)13=0.4(小时). 因为13<0.4,所以中国海监船能及时赶到.1.求解恒等变换问题的基本思路一角二名三结构,即用化归转化思想“去异求同”的过程,具体分析如下:(1)首先观察角与角之间的关系,注意角的一些常用变换形式,角的变换是三角函数变换的核心.(2)其次看函数名称之间的关系,通常“切化弦”. (3)再次观察代数式的结构特点. 2.解三角形的两个关键点(1)正、余弦定理是实现三角形中边角互化的依据,注意定理的灵活变形,如a =2R sin A ,sin A =a2R (其中2R 为三角形外接圆的直径),a 2+b 2-c 2=2ab cos C 等,灵活根据条件求解三角形中的边与角.(2)三角形的有关性质在解三角形问题中起着重要的作用,如利用“三角形的内角和等于π”和诱导公式可得到sin(A +B )=sin C ,sin A +B 2=cos C2等,利用“大边对大角”可以解决解三角形中的增解问题等.3.利用正弦定理、余弦定理解决实际问题的关键是如何将实际问题转化为数学问题,抽象出三角形模型.真题感悟1.(2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.用降幂公式化简得:4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34.故选C.2.(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 答案 6-24解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c .由余弦定理得cos C =a 2+b 2-c 22ab=a 2+b 2-(a +2b )242ab =34a 2+12b 2-2ab 22ab≥2⎝⎛⎭⎫34a 2⎝⎛⎭⎫12b 2-2ab 22ab =6-24,故6-24≤cos C <1,且3a 2=2b 2时取“=”.故cos C 的最小值为6-24.押题精练1.在△ABC 中,已知tan A +B2=sin C ,给出以下四个结论: ①tan Atan B=1;②1<sin A +sin B ≤2;③sin 2A +cos 2B =1;④cos 2A +cos 2B =sin 2C . 其中一定正确的是( )A .①③B .②③C .①④D .②④ 答案 D解析 依题意,tan A +B2=sinA +B 2cos A +B 2=2sin A +B 2cos A +B22cos2A +B 2=sin (A +B )1+cos (A +B )=sin C 1+cos (A +B )=sin C . ∵sin C ≠0,∴1+cos(A +B )=1,cos(A +B )=0.∵0<A +B <π,∴A +B =π2,即△ABC 是以角C 为直角的直角三角形.对于①,由tan Atan B=1,得tan A =tan B ,即A =B ,不一定成立,故①不正确;对于②,∵A +B =π2,∴sin A +sin B =sin A +cos A =2sin(A +π4),∴1<sin A +sin B ≤2,故②正确; 对于③,∵A +B =π2,∴sin 2A +cos 2B =sin 2A +sin 2A =2sin 2A ,其值不确定,故③不正确;对于④,∵A +B =π2,∴cos 2A +cos 2B =cos 2A +sin 2A =1=sin 2C ,故④正确.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,q =(2a,1),p =(2b -c ,cos C ),且q ∥p . (1)求sin A 的值;(2)求三角函数式-2cos 2C1+tan C+1的取值范围.解 (1)∵q =(2a,1),p =(2b -c ,cos C )且q ∥p ,∴2b -c =2a cos C , 由正弦定理得2sin A cos C =2sin B -sin C ,又sin B =sin(A +C )=sin A cos C +cos A sin C , ∴12sin C =cos A sin C . ∵sin C ≠0,∴cos A =12,又∵0<A <π,∴A =π3,∴sin A =32.(2)原式=-2cos 2C 1+tan C+1=1-2(cos 2C -sin 2C )1+sin C cos C=1-2cos 2C +2sin C cos C =sin 2C -cos 2C =2sin(2C -π4),∵0<C <23π,∴-π4<2C -π4<1312π,∴-22<sin(2C -π4)≤1,∴-1<2sin(2C -π4)≤2,即三角函数式-2cos 2C1+tan C+1的取值范围为(-1,2].(推荐时间:60分钟)一、选择题1.(2014·浙江)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( )A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位答案 C解析 因为y =sin 3x +cos 3x =2sin(3x +π4)=2sin[3(x +π12)],又y =2cos 3x =2sin(3x +π2)=2sin[3(x +π6)],所以应由y =2cos 3x 的图象向右平移π12个单位得到.2.已知α∈(π2,π),sin(α+π4)=35,则cos α等于( )A .-210 B.7210C .-210或7210D .-7210答案 A解析 ∵α∈(π2,π),∴α+π4∈(34π,54π),∵sin(α+π4)=35,∴cos(α+π4)=-45,∴cos α=cos(α+π4-π4)=cos(α+π4)cos π4+sin(α+π4)sin π4=-45×22+35×22=-210.3.在△ABC 中,若sin C sin A =3,b 2-a 2=52ac ,则cos B 的值为( )A.13B.12C.15D.14 答案 D解析 由正弦定理:c a =sin C sin A=3,由余弦定理:cos B =a 2+c 2-b 22ac =c 2-52ac2ac =12×c a -54=32-54=14.4.(2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形C .钝角三角形D .不确定答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形. 5.已知tan β=43,sin(α+β)=513,其中α,β∈(0,π),则sin α的值为( ) A.6365 B.3365C.1365D.6365或3365答案 A解析 依题意得sin β=45,cos β=35.注意到sin(α+β)=513<sin β,因此有α+β>π2(否则,若α+β≤π2,则有0<β<α+β≤π2,0<sin β<sin(α+β),这与“sin(α+β)<sin β”矛盾),则cos(α+β)=-1213,sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β=6365. 6.已知△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且tan B =2-3a 2-b 2+c2,BC →·BA →=12,则tan B 等于( )A.32B.3-1 C .2 D .2- 3答案 D解析 由题意得,BC →·BA →=|BC →|·|BA →|cos B=ac cos B =12,即cos B =12ac, 由余弦定理, 得cos B =a 2+c 2-b 22ac =12ac⇒a 2+c 2-b 2=1, 所以tan B =2-3a 2-b 2+c 2=2-3,故选D. 二、填空题7.已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=________. 答案 -255解析 由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0,可得sin α=-1010.故2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α) =22sin α=-255. 8.在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,则b =________.答案 4解析 由sin A cos C =3cos A sin C 得:a 2R ·a 2+b 2-c 22ab =3·b 2+c 2-a 22bc ·c 2R , ∴a 2+b 2-c 2=3(b 2+c 2-a 2),a 2-c 2=b 22, 解方程组:⎩⎪⎨⎪⎧a 2-c 2=2b a 2-c 2=b 22,∴b =4. 9.已知0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45,则cos(α+π4)=________. 答案 82-315解析 因为0<α<π2<β<π, 所以π4<β-π4<3π4,π2<α+β<3π2. 所以sin(β-π4)>0,cos(α+β)<0. 因为cos(β-π4)=13,sin(α+β)=45, 所以sin(β-π4)=223,cos(α+β)=-35. 所以cos(α+π4)=cos[(α+β)-(β-π4)] =cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4) =-35×13+45×223=82-315. 10.如图,嵩山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°;从B 处攀登400米到达D 处,回头看索道AC ,发现张角∠ADC =150°;从D 处再攀登800米方到达C 处,则索道AC 的长为________米.答案 40013解析 如题图,在△ABD 中,BD =400米,∠ABD =120°.因为∠ADC =150°,所以∠ADB =30°.所以∠DAB =180°-120°-30°=30°.由正弦定理,可得BD sin ∠DAB =AD sin ∠ABD. 所以400sin 30°=AD sin 120°,得AD =4003(米). 在△ADC 中,DC =800米,∠ADC =150°,由余弦定理,可得AC 2=AD 2+CD 2-2×AD ×CD ×cos ∠ADC=(4003)2+8002-2×4003×800×cos 150°=4002×13,解得AC =40013(米).故索道AC 的长为40013米.三、解答题11.(2014·安徽)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B .(1)求a 的值;(2)求sin ⎝⎛⎭⎫A +π4的值. 解 (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理得a =2b ·a 2+c 2-b 22ac. 因为b =3,c =1,所以a 2=12,a =2 3.(2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13. 由于0<A <π,所以sin A =1-cos 2A =1-19=223. 故sin ⎝⎛⎭⎫A +π4=sin A cos π4+cos A sin π4=223×22+⎝⎛⎭⎫-13×22=4-26. 12.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π. (1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值. 解 (1)f (x )=4cos ωx ·sin(ωx -π6)+1 =23sin ωx cos ωx -2cos 2ωx +1=3sin 2ωx -cos 2ωx =2sin(2ωx -π6). 最小正周期是2π2ω=π,所以,ω=1, 从而f (x )=2sin(2x -π6). 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z . 解得-π6+k π≤x ≤π3+k π,k ∈Z . 所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ).(2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π12], f (x )=2sin(2x -π6)∈[6-22,2], 所以f (x )在[π8,3π8]上的最大值和最小值分别为2,6-22. 13.已知角A 、B 、C 是△ABC 的三个内角,若向量m =(1-cos(A +B ),cos A -B 2),n =(58,cos A -B 2),且m ·n =98. (1)求tan A tan B 的值;(2)求ab sin C a 2+b 2-c 2的最大值. 解 (1)m ·n =58-58cos(A +B )+cos 2A -B 2=98-18cos A cos B +98sin A sin B =98, ∴cos A cos B =9sin A sin B 得tan A tan B =19. (2)tan(A +B )=tan A +tan B 1-tan A tan B =98(tan A +tan B )≥98·2tan A tan B =34. (∵tan A tan B =19>0, ∴A ,B 均是锐角,即其正切值均为正)ab sin C a 2+b 2-c 2=sin C 2cos C =12tan C =-12tan(A +B )≤-38, 所求最大值为-38.。

高三数学二轮复习 三角恒等变换与解三角形 课件 (全国通用)

高三数学二轮复习  三角恒等变换与解三角形  课件 (全国通用)
所以
π a+b+c=5+10sinA+ ∈(10,15]. 6
【点评】1.解三角形常见类型及解法 在三角形的六个元素中要知三个 ( 除三角外 ) 才能 求解,常见类型及其解法见下表:
已知条件 一边和二角 (如 a,B,C) 应用 定理 正弦 定理 一般解决 由 A+B+C=180°,求角 A;由正弦定理 1 求出 b 与 c; S△= acsin B,在有解时只有一 2 解 由余弦定理求第三边 c;由正弦定理求出一 边所对的角,再由 A+B+C=180°求出另 一角. 1 S△= absin C,在有解时只有一解 2 由余弦定理求出角 A,B,再利用 A+B+C 1 =180°求出角 C.S△= absin C,在有解时 2 只有一解 由正弦定理求出角 B;由 A+B+C=180° 1 求出角 C;再利用正弦定理求出 c 边.S△= 2 absin C,可有两解、一解或无解
第5讲
三角恒等变换与解三角形
【命题趋势】 1.三角恒等变换是高考的热点内容,主要考查: ①利用三角恒等变换求值和化简.其中降幂公式、 辅助角公式是考查的重点,切化弦、角的变换是常考的 三角变换思想. ②利用三角恒等变换研究三角函数的图象与性质. 三种题型均可能出现,以基础题和中档题为主.
2.解三角形问题是高考的必考内容,主要考查: ①利用正、余弦定理求边、角、面积、判断三角 形的形状; ②利用正、余弦定理解决一些现实生活中的实际 问题; ③处理正、余弦定理与三角函数、平面向量的交 汇问题. 三种题型均可能出现,以基础题或中档题为主.
2 2 2
14 . 2
【点评】三角恒等变换的方法: (1)弦切互化:一般是切化弦. (2) 常值代换:特别是 “1” 的代换 , 如 1 = sin2 α+ cos2α=tan 45°等. (3)降次与升次: 正用二倍角公式升次,逆用二倍角 公式(降幂公式)降次. (4)公式的变形应用: 如 sin α=cos αtan α, 1-cos 2α 2 sin α= , 2 1+cos 2α 2 cos α= , 2 tan α+tan β=tan(α+β)(1-tan αtan β), α α 2等 . 1±sin α=sin ±cos 2 2

高考数学二轮复习考点十《三角恒等变换与解三角形》课件

高考数学二轮复习考点十《三角恒等变换与解三角形》课件

B,∴sin
A=a
sin b
B=183.
10.(2021·辽宁沈阳高三年级质量监测)若 cos x-π6=13,则 sin 2x+π6 =________.
答案 -79 解析 sin 2x+π6=sin 2x-π6+2π=cos 2x-π6=2cos2x-π6-1=-79.
11.(2021·广东高州第二次模拟)已知 α∈π2,π,且 2cos2α=sin α-1, 则 tan α=________.
号.
四、解答题 13.(2021·山东济宁高三第一次模拟)已知△ABC 的三个内角 A,B,C 的对边分别是 a,b,c,且 b cos C+c cos B=2a cos A. (1)求角 A; (2)若 a=2 3,△ABC 的面积为 2 3,求 b+c 的值.
解 (1)因为 b cos C+c cos B=2a cos A, 由正弦定理得,sin B cos C+sin C cos B=2sin A cos A, 所以 sin (B+C)=sin A=2sin A cos A, 因为 0<A<π,所以 sin A≠0,所以 cos A=12,所以 A=π3.
所以 cos α= 415,tan α=csoins αα= 1155.故选 A.
二、选择题(在每小题给出的四个选项中,有多项符合题目要求)
8.(2021·三湘名校教育联盟高三联考)在△ABC 中,角 A,B,C 的对边
分别为 a,b,c,若 c= 23b=3,B=2C,则下列结论正确的是( )
A.sin
(2)因为△ABC 的面积为 2 3,所以12bc sin A=2 3, 因为 A=π3,所以12bc sin π3=2 3,所以 bc=8. 由余弦定理得,a2=b2+c2-2bc cos A, 因为 a=2 3,A=π3, 所以 12=b2+c2-2bc cos π3=(b+c)2-3bc=(b+c)2-24, 所以 b+c=6.

新高考数学大一轮复习专题二平面向量与三角函数第7讲三角恒等变换与解三角形

新高考数学大一轮复习专题二平面向量与三角函数第7讲三角恒等变换与解三角形

第7讲 三角恒等变换与解三角形[考情分析] 1.三角恒等变换的求值、化简是命题的热点,利用三角恒等变换作为工具,将三角函数与解三角形相结合求解最值、范围问题.2.单独考查可出现在选择题、填空题中,综合考查以解答题为主,中等难度. 考点一 三角恒等变换 核心提炼1.三角求值“三大类型”“给角求值”“给值求值”“给值求角”. 2.三角恒等变换“四大策略”(1)常值代换:常用到“1”的代换,1=sin 2θ+cos 2θ=tan45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等.(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化.例1 (1)(2020·全国Ⅰ)已知α∈(0,π),且3cos2α-8cos α=5,则sin α等于( ) A.53 B.23C.13D.59答案 A解析 由3cos2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0,解得cos α=-23或cos α=2(舍去).又因为α∈(0,π),所以sin α>0, 所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-232=53. (2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β等于( ) A.5π12B.π3C.π4D.π6答案 C解析 因为α,β均为锐角,所以-π2<α-β<π2.又sin(α-β)=-1010,所以cos(α-β)=31010. 又sin α=55,所以cos α=255, 所以sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =55×31010-255×⎝ ⎛⎭⎪⎫-1010=22. 所以β=π4.易错提醒 (1)公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现“张冠李戴”的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解. 跟踪演练1 (1)已知α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,tan α=cos2β1-sin2β,则( )A .α+β=π2B .α-β=π4C .α+β=π4D .α+2β=π2答案 B解析 tan α=cos2β1-sin2β=cos 2β-sin 2βcos 2β+sin 2β-2sin βcos β =cos β+sin βcos β-sin βcos β-sin β2=cos β+sin βcos β-sin β=1+tan β1-tan β=tan ⎝ ⎛⎭⎪⎫π4+β, 因为α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,所以α=π4+β,即α-β=π4.(2)(tan10°-3)·cos10°sin50°=________.答案 -2 解析(tan10°-3)·cos10°sin50°=(tan10°-tan60°)·cos10°sin50°=⎝ ⎛⎭⎪⎫sin10°cos10°-sin60°cos60°·cos10°sin50°=sin -50°cos10°cos60°·cos10°sin50°=-1cos60°=-2.考点二 正弦定理、余弦定理 核心提炼1.正弦定理:在△ABC 中,a sin A =b sin B =csin C=2R (R 为△ABC 的外接圆半径).变形:a =2R sinA ,b =2R sinB ,c =2R sinC ,sin A =a 2R ,sin B =b 2R ,sin C =c2R,a ∶b ∶c =sin A ∶sin B ∶sin C 等.2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc.3.三角形的面积公式:S =12ab sin C =12ac sin B =12bc sin A .考向1 求解三角形中的角、边例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin C1-cos A=3c .(1)求角A 的大小;(2)若b +c =10,△ABC 的面积S △ABC =43,求a 的值.解 (1)由正弦定理及a sin C1-cos A=3c ,得sin A sin C1-cos A=3sin C ,∵sin C ≠0,∴sin A =3(1-cos A ),∴sin A +3cos A =2sin ⎝⎛⎭⎪⎫A +π3=3,∴sin ⎝ ⎛⎭⎪⎫A +π3=32,又0<A <π,∴π3<A +π3<4π3,∴A +π3=2π3,∴A =π3.(2)∵S △ABC =12bc sin A =34bc =43,∴bc =16.由余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-2bc -bc =(b +c )2-3bc ,又b +c =10,∴a 2=102-3×16=52,∴a =213.考向2 求解三角形中的最值与范围问题例 3 (2020·新高考测评联盟联考)在:①a =3c sin A -a cos C ,②(2a -b )sin A +(2b -a )sin B =2c sin C 这两个条件中任选一个,补充在下列问题中,并解答.已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,c =3,而且________. (1)求角C ;(2)求△ABC 周长的最大值.解 (1)选①:因为a =3c sin A -a cos C , 所以sin A =3sin C sin A -sin A cos C , 因为sin A ≠0,所以3sin C -cos C =1,即sin ⎝⎛⎭⎪⎫C -π6=12,因为0<C <π,所以-π6<C -π6<5π6,所以C -π6=π6,即C =π3.选②:因为(2a -b )sin A +(2b -a )sin B =2c sin C , 所以(2a -b )a +(2b -a )b =2c 2, 即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab =12,因为0<C <π,所以C =π3.(2)由(1)可知,C =π3,在△ABC 中,由余弦定理得a 2+b 2-2ab cos C =3,即a 2+b 2-ab =3,所以(a +b )2-3=3ab ≤3a +b24,所以a +b ≤23,当且仅当a =b 时等号成立, 所以a +b +c ≤33,即△ABC 周长的最大值为3 3.规律方法 (1)利用余弦定理求边,一般是已知三角形的两边及其夹角.利用正弦定理求边,必须知道两角及其中一边,且该边为其中一角的对边,要注意解的多样性与合理性. (2)三角形中的最值与范围问题主要有两种解决方法:一是利用基本不等式求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围确定所求式的范围.跟踪演练2 (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为S ,且a =1,4S=b 2+c 2-1,则△ABC 外接圆的面积为( ) A .4πB.2πC.πD.π2答案 D解析 由余弦定理得,b 2+c 2-a 2=2bc cos A ,a =1, 所以b 2+c 2-1=2bc cos A , 又S =12bc sin A,4S =b 2+c 2-1,所以4×12bc sin A =2bc cos A ,即sin A =cos A ,所以A =π4,由正弦定理得,1sinπ4=2R ,得R =22,所以△ABC 外接圆的面积为π2. (2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =3B ,则a b的取值范围是( ) A .(0,3) B .(1,3) C .(0,1] D .(1,2] 答案 B 解析A =3B ⇒sin A sin B =sin3B sin B =sin 2B +Bsin B=sin2B cos B +cos2B sin Bsin B=2sin B cos 2B +cos2B sin B sin B =2cos 2B +cos2B =2cos2B +1,即a b =sin A sin B=2cos2B +1,又A +B ∈(0,π),即4B ∈(0,π)⇒2B ∈⎝⎛⎭⎪⎫0,π2⇒cos2B ∈(0,1),∴a b ∈(1,3).(3)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若tan C =125,a =b =13,BC 边上的中点为D ,则sin∠BAC =________,AD =________.答案31313 352解析 因为tan C =125,所以sin C =1213,cos C =513,又a =b =13,所以c 2=a 2+b 2-2ab cos C =13+13-2×13×13×513=16,所以c =4.由asin∠BAC =c sin C ,得13sin∠BAC =41213,解得sin∠BAC =31313.因为BC 边上的中点为D ,所以CD =a2,所以在△ACD 中,AD 2=b 2+⎝ ⎛⎭⎪⎫a 22-2×b ×a 2×cos C =454,所以AD =352.专题强化练一、单项选择题1.(2020·全国Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则cos B 等于( )A.19B.13C.12D.23 答案 A解析 由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9,所以AB =3,所以cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.2.(2020·全国Ⅲ)已知sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=1,则sin ⎝ ⎛⎭⎪⎫θ+π6等于( )A.12B.33C.23D.22 答案 B解析 因为sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3 =sin ⎝ ⎛⎭⎪⎫θ+π6-π6+sin ⎝ ⎛⎭⎪⎫θ+π6+π6=sin ⎝ ⎛⎭⎪⎫θ+π6cos π6-cos ⎝ ⎛⎭⎪⎫θ+π6sin π6+ sin ⎝ ⎛⎭⎪⎫θ+π6cos π6+cos ⎝ ⎛⎭⎪⎫θ+π6sin π6 =2sin ⎝ ⎛⎭⎪⎫θ+π6cos π6=3sin ⎝ ⎛⎭⎪⎫θ+π6=1.所以sin ⎝⎛⎭⎪⎫θ+π6=33. 3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,sin2C 1-cos2C =1,B =π6,则a 的值为( ) A.3-1 B .23+2 C .23-2 D.2+ 6答案 D解析 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,sin2C1-cos2C =1,所以2sin C cos C 2sin 2C =1,所以tan C =1,C =π4. 因为B =π6,所以A =π-B -C =7π12,所以sin A =sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+cos π4sin π3=2+64.由正弦定理可得a2+64=2sinπ6,则a =2+ 6.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a cos B +b cos A =2c cos C ,c =7,且△ABC 的面积为332,则△ABC 的周长为( )A .1+7B .2+7C .4+7D .5+7答案 D解析 在△ABC 中,a cos B +b cos A =2c cos C , 则sin A cos B +sin B cos A =2sin C cos C , 即sin(A +B )=2sin C cos C ,∵sin(A +B )=sin C ≠0,∴cos C =12,∴C =π3,由余弦定理可得,a 2+b 2-c 2=ab , 即(a +b )2-3ab =c 2=7,又S =12ab sin C =34ab =332,∴ab =6,∴(a +b )2=7+3ab =25,即a +b =5, ∴△ABC 的周长为a +b +c =5+7. 5.若α,β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525B.255C.2525或255D.55或525答案 A解析 因为α,β都是锐角,且cos α=55<12, 所以π3<α<π2,又sin(α+β)=35,而12<35<22,所以3π4<α+β<5π6,所以cos(α+β)=-1-sin2α+β=-45,又sin α=1-cos 2α=255,所以cos β=cos(α+β-α)=cos(α+β)cos α+sin(α+β)·sin α=2525.6.在△ABC 中,A ,B ,C 的对边分别是a ,b ,c .若A =120°,a =1,则2b +3c 的最大值为( ) A .3B.2213C .32D.352答案 B解析 因为A =120°,a =1,所以由正弦定理可得bsin B=csin C =a sin A =1sin120°=233, 所以b =233sin B ,c =233sin C ,故2b +3c =433sin B +23sin C=433sin ()60°-C +23sin C =433sin C +2cos C =2213sin(C +φ). 其中sin φ=217,cos φ=277, 所以2b +3c 的最大值为2213.二、多项选择题7.(2020·临沂模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =23,c =3,A +3C =π,则下列结论正确的是( ) A .cos C =33B .sin B =23C .a =3D .S △ABC = 2答案 AD解析 因为A +3C =π,A +B +C =π,所以B =2C .由正弦定理b sin B =c sin C ,得23sin2C =3sin C,即232sin C cos C =3sin C ,所以cos C =33,故A 正确;因为cos C =33,所以sin C =63,所以sin B =sin2C =2sin C cos C =2×63×33=223,故B 错误;因为cos B =cos2C =2cos 2C -1=-13,所以sin A =sin(B +C )=sin B cos C +cos B sin C =223×33+⎝ ⎛⎭⎪⎫-13×63=69,则cos A =539,所以a 2=b 2+c 2-2bc cos A =(23)2+32-2×23×3×539=1,所以a =1,故C 错误;S △ABC =12bc sin A =12×23×3×69=2,故D 正确. 8.已知0<θ<π4,若sin2θ=m ,cos2θ=n 且m ≠n ,则下列选项中与tan ⎝ ⎛⎭⎪⎫π4-θ恒相等的有( ) A.n1+m B.m 1+n C.1-n m D.1-mn答案 AD解析 ∵sin2θ=m ,cos2θ=n , ∴m 2+n 2=1,∴1-m n =n 1+m,∴tan ⎝ ⎛⎭⎪⎫π4-θ=1-tan θ1+tan θ=cos θ-sin θcos θ+sin θ=cos θ-sin θcos θ-sin θcos θ+sin θcos θ-sin θ=1-sin2θcos2θ=1-m n =n1+m.三、填空题9.(2020·保定模拟)已知tan ⎝ ⎛⎭⎪⎫π4+α=12,则sin2α-cos 2α1+cos2α=________.答案 -56解析 因为tan ⎝ ⎛⎭⎪⎫π4+α=12,所以tan π4+tan α1-tan π4tan α=12,即1+tan α1-tan α=12,解得tan α=-13,所以sin2α-cos 2α1+cos2α=2sin αcos α-cos 2α2cos 2α=tan α-12=-56. 10.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b +a sin C =2a sin B -c sin B -sin A,则A =________.答案π4解析 由正弦定理a sin A =b sin B =csin C ,得b +ac =2a sin B -cb -a, 整理得b 2-a 2=2ac sin B -c 2, 即b 2+c 2-a 2=2ac sin B =2bc sin A , 由余弦定理得,b 2+c 2-a 2=2bc cos A , ∴2bc cos A =2bc sin A ,即cos A =sin A , ∴tan A =1,∴A =π4.11.(2020·全国Ⅰ)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos∠FCB =________.答案 -14解析 在△ABD 中,∵AB ⊥AD ,AB =AD =3,∴BD =6,∴FB =BD = 6. 在△ACE 中,∵AE =AD =3,AC =1,∠CAE =30°, ∴EC =32+12-2×3×1×cos30°=1,∴CF =CE =1.又∵BC =AC 2+AB 2=12+32=2,∴在△FCB 中,由余弦定理得cos∠FCB =CF 2+BC 2-FB 22×CF ×BC =12+22-622×1×2=-14. 12.(2020·山东省师范大学附中月考)在△ABC 中,设角A ,B ,C 对应的边分别为a ,b ,c ,记△ABC 的面积为S ,且4a 2=b 2+2c 2,则Sa 2的最大值为________.答案 106解析 由题意知,4a 2=b 2+2c 2⇒b 2=4a 2-2c 2=a 2+c 2-2ac cos B , 整理,得2ac cos B =-3a 2+3c 2⇒cos B =3c 2-a 22ac ,因为⎝ ⎛⎭⎪⎫S a 22=⎝ ⎛⎭⎪⎪⎫12ac sin B a 22=⎝ ⎛⎭⎪⎫c sin B2a 2=c 21-cos 2B4a 2,代入cos B =3c 2-a 22ac ,整理得⎝ ⎛⎭⎪⎫S a 22=-116⎝ ⎛⎭⎪⎫9×c 4a 4-22×c2a 2+9,令t =c 2a 2,则⎝ ⎛⎭⎪⎫Sa 22=-116(9t 2-22t +9)=-116⎝ ⎛⎭⎪⎫3t -1132+1036,所以⎝ ⎛⎭⎪⎫S a 22≤1036,所以Sa 2≤106,故S a 2的最大值为106.四、解答题13.(2020·全国Ⅱ)△ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求△ABC 周长的最大值.解 (1)由正弦定理和已知条件得BC 2-AC 2-AB 2=AC ·AB .①由余弦定理得BC 2=AC 2+AB 2-2AC ·AB cos A .②由①②得cos A =-12.因为0<A <π,所以A =2π3.(2)由正弦定理及(1)得AC sin B =AB sin C =BCsin A =23,从而AC =23sin B ,AB =23sin(π-A -B )=3cos B -3sin B .故BC +AC +AB =3+3sin B +3cos B=3+23sin ⎝⎛⎭⎪⎫B +π3. 又0<B <π3, 所以当B =π6时,△ABC 周长取得最大值3+2 3. 14.(2020·重庆模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,2b 2=(b 2+c 2-a 2)(1-tan A ).(1)求角C ;(2)若c =210,D 为BC 的中点,在下列两个条件中任选一个,求AD 的长度.条件①:△ABC 的面积S =4且B >A ;条件②:cos B =255. 解 (1)在△ABC 中,由余弦定理知, b 2+c 2-a 2=2bc cos A ,所以2b 2=2bc cos A (1-tan A ),所以b =c (cos A -sin A ),又由正弦定理知,b c =sin B sin C, 得sin B =sin C (cos A -sin A ),所以sin(A +C )=sin C (cos A -sin A ),即sin A cos C +cos A sin C =sin C cos A -sin C sin A ,所以sin A cos C =-sin C sin A ,因为sin A ≠0,所以cos C =-sin C ,所以tan C =-1,又因为0<C <π,所以C =3π4. (2)选择条件②,cos B =255, 因为cos B =255,且0<B <π,所以sin B =55, 因为sin A =sin(B +C )=sin B cos C +sin C cos B=55×⎝ ⎛⎭⎪⎫-22+22×255=1010,由正弦定理知c sin C =asin A ,所以a =c sin A sin C =210×101022=22,在△ABD 中,由余弦定理知 AD 2=AB 2+BD 2-2AB ·BD ·cos B=(210)2+(2)2-2×210×2×255=26,所以AD =26.。

高三数学二轮复习 专题整合突破三角恒等变换与解三角形 课件理

高三数学二轮复习 专题整合突破三角恒等变换与解三角形      课件理

π 1 sin3=2.
π 2π π (2)∵α∈3,2,∴2α∈ 3 ,π ,
1 3 又由(1)知 sin2α=2,∴cos2α=- 2 2 2 1 sinα cosα sin α-cos α -2cos2α ∴ tanα- tanα = cosα - sinα = sinαcosα = sin2α = 3 -2 -2× 1 =2 3. 2

π 1 sin2α+3=-2.
π π 4π π ∵α∈3,2,∴2α+3∈π, 3 , π ∴cos2α+3 =-
3 2,
π π π π π ∴ sin2α = sin 2α+3-3 = sin 2α+3 cos 3 - cos 2α+3
解答此类问题的关键是结合已知条件, 求出相应角的三 角函数值,然后根据角的范围确定角的具体取值.
题型 2 典例 2
求值 [2016· 安徽合肥质检]已知
π π cos6+α· cos3-α
π π 1 =-4,α∈3,2 .
[重要结论] 1.判断三角形形状的常用结论 (1)sinA=sinB 且 A+B≠π⇒ 等腰三角形
π (2)sin2A=sin2B⇒ A=B 或 A+B=2
; ⇒等腰或直角
三角形; (3)cosA=cosB⇒ A=B ⇒ 等腰 三角形; (4)cos2A=cos2B⇒ A=B ⇒ 等腰 三角形; (5)sin(A-B)=0⇒ A=B ⇒ 等腰 三角形; (6)A=60° 且 b=c⇒ 等边 三角形;
5.降幂公式
1-cos2α 2 (1)sin2α=

1+cos2α 2 (2)cos2α= .

第7讲 三角恒等变换与解三角形

第7讲 三角恒等变换与解三角形

第6讲 三角恒等变换与解三角形自主学习导引 真题感悟1.(2018·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α=( )A .-53B .-59 C.59D.53答案 A解析 利用同角三角函数的基本关系及二倍角公式求解.∵sin α+cos α=33, ∴(sin α+cos α)2=13, ∵2sin αcos α=-23, 即sin 2α=-23. 又∵α为第二象限角且sin α+cos α=33>0,∴2k π+π2<α<2k π+34π(k ∈Z ),∴4k π+π<2α<4k π+32π(k ∈Z ),∴2α为第三象限角,∴cos 2α=-1-sin 22α=-53.2.(2018·浙江)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积.解析 (1)因为0<A <π,cos A =23,得sin A =1-cos 2A =53.又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C ,所以tan C = 5. (2)由tan C =5,得sin C =56,cos C =16.于是sin B =5cos C =56,由a =2及正弦定理a sin A =c sin C ,得c = 3. 设△ABC 的面积为S ,则S =12ac sin B =52.考题分析新课标高考对本部分的考查,一般多以小题考查三角变换在求值、化简等方面的应用,而解答题常常有以下三种:三角变换与内部相关知识的综合性问题、三角变换与向量的交汇性问题、三角变换在实际问题中的应用问题.网络构建高频考点突破考点一:三角变换及求值【例1】设π3<α<3π4,sin ⎝ ⎛⎭⎪⎫α-π4=35,求sin α-cos 2α+1tan α的值. [审题导引] 解答本题的关键是求出sin α与cos α,观察所给的条件式会发现求sin α与cos α的方法有两个,一是利用角的变换,二是解关于sin α与cos α的方程组.[规范解答] 解法一 由π3<α<3π4,得π12<α-π4<π2, 又sin ⎝ ⎛⎭⎪⎫α-π4=35,∴cos ⎝ ⎛⎭⎪⎫α-π4=45.∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π4+π4 =cos ⎝ ⎛⎭⎪⎫α-π4cos π4-sin ⎝ ⎛⎭⎪⎫α-π4sin π4=210. ∴sin α=7210.故原式=sin α+2sin 2αsin αcos α=cos α()1+2sin α=14+5250.【规律总结】sin α、cos α的求值技巧当已知sin ⎝ ⎛⎭⎪⎫α±π4,cos ⎝ ⎛⎭⎪⎫α±π4时,利用和、差角的三角函数公式展开后都含有sin α+cos α或sin α-cos α,这两个公式中的其中一个平方后即可求出2sin αcos α,根据同角三角函数的平方关系,即可求出另外一个,这两个联立即可求出sin α,cos α的值.或者把sin α+cos α、sin α-cos α与sin 2α+cos 2α=1联立,通过解方程组的方法也可以求出sin α、cos α的值.[易错提示]三角函数求值中要特别注意角的范围,如根据sin 2α=1-cos 2α2求sin α的值时,sin α=± 1-cos 2α2中的符号是根据角的范围确定的,即当α的范围使得sin α≥0时,取正号,反之取负号.注意在运用同角三角函数关系时也有类似问题.【变式训练】1.(2018·烟台一模)若α∈⎝ ⎛⎭⎪⎫0,π2,且cos 2α+sin ⎝ ⎛⎭⎪⎫π2+2α=12,则tan α=( )A .1 B.33 C.36 D. 3答案 A解析 cos 2α+sin ⎝ ⎛⎭⎪⎫π2+2α=cos 2α+cos 2α=2cos 2α-sin 2α=2cos 2α-sin 2αcos 2α+sin 2α=2-tan 2α1+tan 2α=12,即tan 2α=1. 又α∈⎝ ⎛⎭⎪⎫0,π2,tan α>0,∴tan α=1.2.(2018·南京模拟)已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos α=________. 答案33-410解析 sin ⎝ ⎛⎭⎪⎫α+π3+sin α=12sin α+32cos α+sin α=32sin α+32cos α=3sin ⎝ ⎛⎭⎪⎫α+π6=-435, ∴sin ⎝ ⎛⎭⎪⎫α+π6=-45.又∵-π2<α<0,∴-π3<α+π6<π6,∴cos ⎝ ⎛⎭⎪⎫α+π6=35, ∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6=32cos ⎝ ⎛⎭⎪⎫α+π6+12sin ⎝ ⎛⎭⎪⎫α+π6=33-410.考点二:正、余弦定理的应用【例2】 (2018·湖南师大附中模拟)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且(2a -c )cos B =b cos C . (1)求角B 的大小;(2)若cos A =22,a =2,求△ABC 的面积. [审题导引] (1)把条件式中的边利用正弦定理转化为角后进行三角恒等变换可求B (2)利用(1)的结果求b 及c ,利用公式求面积.[规范解答] (1)因为(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C .∴2sin A cos B =sin C cos B +sin B cos C =sin(B +C )=sin A .∵0<A <π,∴sin A ≠0,∴cos B =12. 又∵0<B <π,∴B =π3.(2)由正弦定理a sin A =b sin B ,得b =6,由cos A =22可得A =π4,由B =π3,可得sin C =6+24,∴S =12ab sin C =12×2×6×6+24=3+32【规律总结】解三角形的一般方法是(1)已知两角和一边,如已知A 、B 和c ,由A +B +C =π求C ,由正弦定理求a 、b .(2)已知两边和这两边的夹角,如已知a 、b 和C ,应先用余弦定理求c ,再应用正弦定理先求较短边所对的角,然后利用A +B +C =π求另一角.(3)已知两边和其中一边的对角,如已知a 、b 和A ,应先用正弦定理求B ,由A +B +C =π求C ,再由正弦定理或余弦定理求c ,要注意解题时可能有多种情况. (4)已知三边a 、b 、c ,可应用余弦定理求A 、B 、C .【变式训练】 3.(2018·北京东城11校联考)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若sin A =3sin C ,B=30°,b =2,则边c =________. 答案 2解析 由正弦定理得a =3c ,由余弦定理可知b 2=a 2+c 2-2ac cos B , 即4=3c 2+c 2-23c 2×32,解得c =2.考点三:解三角形与实际应用问题【例3】(2018·宿州模拟)已知甲船正在大海上航行.当它位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C 处的乙船,乙船当即也决定匀速前往救援,并且与甲船同时到达.(供参考使用:取tan 41°=32) (1)试问乙船航行速度的大小 (2)试问乙船航行的方向(试用方位角表示,譬如北偏东……度).[审题导引] 据题意作出示意图,把实际问题转化为解三角形,利用正、余弦定理求解. [规范解答] 设乙船运动到B 处的距离为t 海里.则t 2=AC 2+AB 2-2AB ·AC cos 120° =102+202+2×10×20×12=700,∴t =107,又设∠ACB =θ, 则tsin 120°=20sin θ,10732=20sin θ, 则sin θ=217=0.65,∴θ=41°,∴乙船应朝北偏东71°的方向沿直线前往B 处求援.速度为57海里/小时.【规律总结】应用解三角形知识解决实际问题需要下列四步(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解; (4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案【变式训练】4.如图所示,小丽家住在成都市锦江河畔的电梯公寓AD 内,她家河对岸新建了一座大厦BC ,为了测得大厦的高度,小丽在她家的楼底A 处测得大厦顶部B 的仰角为60°,爬到楼顶D 处测得大厦顶部B 的仰角为30°,已知小丽所住的电梯公寓高82米,请你帮助小丽算出大厦高度BC 及大厦与小丽所住电梯公寓间的距离AC .解析 设AC =x 米,则BC =3x 米, 过点D 作DE ⊥BC ,易得BE =33x , ∴3x -33x =82. ∴x =413米. ∴BC =3×413=123米. 名师押题高考【押题1】已知sin ⎝ ⎛⎭⎪⎫α-π4cos ()π+2α=2,则sin α+cos α=________.答案12解析sin ⎝ ⎛⎭⎪⎫α-π4+2α=sin ⎝ ⎛⎭⎪⎫α-π4-cos 2α=22α-cos αsin 2α-cos 2α=22·1sin α+cos α=2,则sin α+cos α=12.[押题依据] 诱导公式、倍角公式等都是高考的热点,应用这些公式进行三角恒等变换是高考的必考内容.本题考点设置恰当、难度适中,体现了对基础知识和基础能力的双重考查,故押此题. 【押题2】在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列.(1)若b =13,a =3,求c 的值; (2)设t =sin A sin C ,求t 的最大值.解析 (1)因为A ,B ,C 成等差数列,所以2B =A +C , 因为A +B +C =π,所以B =π3.因为b =13,a =3,b 2=a 2+c 2-2ac cos B , 所以c 2-3c -4=0. 所以c =4或c =-1(舍去). (2)因为A +C =23π, 所以t =sin A sin ⎝ ⎛⎭⎪⎫2π3-A =sin A ⎝ ⎛⎭⎪⎫32cos A +12sin A=34sin 2A +12⎝ ⎛⎭⎪⎫1-cos 2a 2=14+12sin ⎝ ⎛⎭⎪⎫2A -π6. 因为0<A <2π3,所以-π6<2A -π6<7π6. 所以当2A -π6=π2,即A =π3时,t 有最大值34.[押题依据] 本题将三角函数、余弦定理、数列巧妙地结合在一起,综合考查了三角恒等变换及余弦定理的应用,体现了高考在知识的交汇处命题的理念,故押此题.。

2018年高考数学二轮复习 专题07 三角恒等变换与解三角形讲学案 文

2018年高考数学二轮复习 专题07 三角恒等变换与解三角形讲学案 文

专题07 三角恒等变换与解三角形和差角公式、二倍角公式是高考的热点,常与三角函数式的求值、化简交汇命题.既有选择题、填空题,又有解答题,难度适中,主要考查公式的灵活运用及三角恒等变换能力.1.和差角公式(1)cos(α±β)=cos αcos β∓sin αsin β; (2)sin(α±β)=sin αcos β±cos αsin β; (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.倍角公式(1)sin2α=2sin αcos α;(2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3) tan2α=2tan α1-tan 2α. 3.半角公式 (1)sin α2=±1-cos α2; (2)cos α2=±1+cos α2; (3)tan α2=±1-cos α1+cos α;(4)tan α2=sin α1+cos α=1-cos αsin α.4.正弦定理a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径).5.余弦定理a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .6.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .7.解三角形(1)已知两角及一边,利用正弦定理求解;(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一,需讨论; (3)已知两边及其夹角,利用余弦定理求解; (4)已知三边,利用余弦定理求解.8.“变”是解决三角问题的主题,变角、变名、变表达形式、变换次数等比比皆是,强化变换意识,抓住万变不离其宗——即公式不变,方法不变,要通过分析、归类把握其规律.考点一 三角恒等变换及求值例1、【2017山东,文7】函数2cos 2y x x =+ 最小正周期为A.π2 B. 2π3C.πD. 2π 【答案】C【解析】因为π2cos 22sin 23y x x x ⎛⎫=+=+⎪⎝⎭,所以其周期2ππ2T ==,故选C 【变式探究】(1)(2016·高考全国卷Ⅰ)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.【答案】-433∴θ=α-π4,∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫α-π2=-tan ⎝ ⎛⎭⎪⎫π2-α.如图,在Rt△ACB 中,不妨设∠A =α,由sin α=35可得,BC =3,AB =5,AC =4,∴∠B =π2-α,∴tan B =43,∴tan ⎝⎛⎭⎪⎫θ-π4=-tan B =-43. (2)(2016·高考全国卷Ⅲ)若tan α=34,则cos 2α+2sin 2α=( )A.6425B.4825 C .1 D.1625【答案】A(3)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .3α+β=π2C .2α-β=π2D .2α+β=π2【答案】C【解析】通解:由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin ⎝ ⎛⎭⎪⎫π2-α,所以sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,又因为α∈⎝⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,所以-π2<α-β<π2,0<π2-α<π2,因为α-β=π2-α,所以2α-β=π2,故选C.5【方法规律】1.三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等;(2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等; (3)降幂与升幂:正用二倍角公式升幂,逆用二倍公式降幂; (4)弦、切互化:切化弦,弦化切,减少函数种类. 2.解决条件求值问题的三个关注点(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.【变式探究】已知sin ⎝ ⎛⎭⎪⎫α-π4=7210,cos 2α=725,则sin α等于( ) A.45B .-45C .-35D.35考点二 正、余弦定理的简单应用例2、【2017课标3,文15】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b,c =3,则A =_________.【答案】75°【解析】由题意:sin sin b c B C= ,即s in 2s in 32b C Bc === ,结合b c < 可得45B = ,则18075A B C =--=.【变式探究】(1)(2016·高考全国卷Ⅲ)在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =( )A.310 B.1010 C.55D.31010【答案】D【解析】通解:设BC 边上的高为AD ,则BC =3AD ,DC =2AD ,所以AC =AD 2+DC 2=5AD .由正弦定理,7知AC sin 45°=BC sin A,即5AD 22=3AD sin A ,解得sin A =31010,故选D.优解:设出BC 长度求边,用正弦定理求sin A . 设BC =3,则高AD =BD =1,DC =2. ∴AC =5,∴sin A =3×225=31010.(2)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sinC,则△ABC 面积的最大值为________.【答案】 3形时,S =12×22×sin 60°= 3.【方法技巧】1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”.【变式探究】在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin(B +A )+sin(B -A )=3sin 2A ,且c =7,C =π3,则△ABC 的面积是( )A.334 B.736 C.213D.334或736考点三 正余弦定理的综合应用例3、【2017课标1,文11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

三角恒等变换与解三角形(教学案)-2018年高考数学(理)考纲解读与热点难点突破含解析

三角恒等变换与解三角形(教学案)-2018年高考数学(理)考纲解读与热点难点突破含解析

专题 6 三角恒等变换与解三角形【2018年高考考纲解读】高考对本内容的考查主要有:(1)两角和(差)的正弦、余弦及正切是C级要求,二倍角的正弦、余弦及正切是B级要求,应用时要适当选择公式,灵活应用.(2)正弦定理、余弦定理及其应用,要求是B级,能够应用定理实现三角形中边和角的转化,以及应用定理解决实际问题.试题类型一般是填空题,同时在解答题中与三角函数、向量等综合考查,构成中档题。

【重点、难点剖析】1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β。

(2)cos(α±β)=cos αcos β∓sin αsin β。

(3)tan(α±β)=错误!.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α.(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α。

(3)tan 2α=错误!.3.正弦定理错误!=错误!=错误!=2R(2R为△ABC外接圆的直径).变形:a=2R sin A,b=2R sin B,c=2R sin C.sin A=错误!,sin B=错误!,sin C=错误!.a∶b∶c=sin A∶sin B∶sin C。

4.余弦定理a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C。

推论:cos A=错误!,cos B=错误!,cos C=错误!.5.三角形面积公式S△ABC=错误!bc sin A=错误!ac sin B=错误!ab sin C.6.三角恒等变换的基本思路(1)“化异为同",“切化弦”,“1”的代换是三角恒等变换的常用技巧.如1=cos2θ+sin2θ=tan 45°等.“化异为同”是指“化异名为同名”,“化异次为同次”,“化异角为同角”.(2)角的变换是三角变换的核心,如β=(α+β)-α,2α=(α+β)+(α-β),错误!=错误!-错误!等.7.解三角形的四种类型及求解方法(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一.(3)已知两边及其夹角,利用余弦定理求解.(4)已知三边,利用余弦定理求解.8.利用解三角形的知识解决实际问题的思路把实际问题中的要素归入到一个或几个相互关联的三角形中,通过解这样的三角形即可求出实际问题的答案.注意要检验解出的结果是否具有实际意义,对结果进行取舍,从而得出正确结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲 三角恒等变换 与解三角形
-2热点考题诠释 高考方向解读
1.(2017山东,理9)在△ABC中,角A,B,C的对边分别为a,b,c,若△ABC 为锐角三角形,且满足sin B(1+2cos C)=2sin Acos C+cos Asin C,则 下列等式成立的是( ) A.a=2b B.b=2a C.A=2B D.B=2A
=
3 13 . 13
故 b 的值为 13,sin A 的值为
=
7 2 . 26
-6热点考题诠释 高考方向解读
4.(2017 全国 1,理 17)△ABC 的内角 A,B,C 的对边分别为 a,b,c.已知 △ABC
������2 的面积为3sin������.
(1)求 sin Bsin C; (2)若 6cos Bcos C=1,a=3,求△ABC 的周长.
3 13 . 13 2 13 (2)由(1)及 a<c,得 cos A= 13 , 12 所以 sin 2A=2sin Acos A= , 13 5 cos 2A=1-2sin2A=- . 13 π π π 故 sin 2������ + 4 =sin 2Acos4+cos 2Asin4 ������sin������ A= ������
-9热点考题诠释 高考方向解读
解: (1)由题设及 A+B+C=π,得 sin B=8sin , 故 sin B=4(1-cos B). 上式两边平方,整理得 17cos2B-32cos B+15=0,
15 解得 cos B=1(舍去),cos B= . 17 15 8 (2)由 cos B= ,得 sin B= , 17 17 1 4 故 S△ABC=2acsin B=17ac. 17 又 S△ABC=2,则 ac= 2 . 2Βιβλιοθήκη -7热点考题诠释 高考方向解读
1 ������2 1 解: (1)由题设得2acsin B=3sin������,即2csin 1 sin������ 由正弦定理得 sin Csin B= . 2 3sin������ 2 故 sin Bsin C=3.
������ B=3sin������.
(2)由题设及(1)得 cos Bcos C-sin Bsin 以 B+C= 3 ,故 A=3.
又△ABC为锐角三角形, ∴2sin B=sin A, 由正弦定理 ,得a=2b.故选A. A
解析
关闭
关闭
答案
-3热点考题诠释 高考方向解读
2.(2017浙江,14)已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一 关闭 点,BD=2,连接CD,则△BDC的面积 如图,取 BC 中点 E,DC 中点 F,由题意知 AE⊥BC,BF⊥CD. 是 ,cos∠BDC= . ������������ 1 在 Rt△ABE 中,cos∠ABE= = ,
������������ 4
∴cos∠DBC=-4,sin∠DBC= 1- 16 = ∴S△BCD=2×BD×BC×sin∠DBC=
1 1 15 . 2
1
1
15 . 4
∵cos∠DBC=1-2sin2∠DBF=-4,且∠DBF 为锐角, ∴sin∠DBF=
10 . 4
在 Rt△BDF 中,cos∠BDF=sin∠DBF=
π 2������ + 4 3 5
的值.
-5热点考题诠释 高考方向解读
解: (1)在△ABC 中,因为 a>b, 故由 sin B=5,可得 cos B=5.
������ ������ 3 4
由已知及余弦定理,有 b2=a2+c2-2accos B=13, 所以 b= 13. 由正弦定理sin������ = sin������, 得 sin
2π π 1 由题设得2bcsin ������2 A=3sin������,即
1 C=-2,即
1 cos(B+C)=-2.所
bc=8.
由余弦定理得 b2+c2-bc=9,即(b+c)2-3bc=9,得 b+c= 33. 故△ABC 的周长为 3+ 33.
-8热点考题诠释 高考方向解读
5.(2017全国2,理17)△ABC的内角A,B,C的对边分别为a,b,c.已知 sin(A+C)=8sin2 ������ . 2 (1)求cos B; (2)若a+c=6,△ABC的面积为2,求b.
15 10 综上 2 ,可得 4 △BCD
的面积是
15 10 ,cos ∠ BDC= . 2 4
10 . 4
关闭
解析
答案
-4热点考题诠释 高考方向解读
3.(2017 天津,理 15)在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,已 知 a>b,a=5,c=6,sin B= . (1)求 b 和 sin A 的值; (2)求 sin
2������
由余弦定理及 a+c=6 得 b2=a2+c2-2accos B=(a+c)2-2ac(1+cos B) 17 15 =36-2× 2 × 1 + 17 =4. 所以 b=2.
-10热点考题诠释 高考方向解读
本部分主要考查三角函数的基本公式、三角恒等变换及解三角 形等基本知识.三角函数与解三角形相结合或三角函数与平面向量 相结合是考向的主要趋势,试题难度为中低档.三角恒等变换是高考 的热点内容,主要考查利用各种三角函数进行求值与化简,其中降幂 公式、辅助角公式是考查的重点,切化弦、角的变换是常考的三角 变换思想.正弦定理、余弦定理以及解三角形问题是高考的必考内 容,主要考查:①边和角的计算;②三角形形状的判断;③面积的计算; ④有关的范围问题. 考向预测:三角恒等变换和解三角形综合的问题是浙江高考主要 考查方式,以考查三角恒等变换公式、正余弦定理公式和面积公式 为主.这部分内容是解答题常考题型,但从2017年高考和样卷角度来 看目前这部分内容以填空题形式出现,2018年很可能延续这种风格.
∵sin B(1+2cos C)=2sin Acos C+cos Asin C, ∴sin B+2sin Bcos C=(sin Acos C+cos Asin C)+sin Acos C, ∴sin B+2sin Bcos C=sin B+sin Acos C, ∴2sin Bcos C=sin Acos C,
相关文档
最新文档