17.2勾股定理的逆定理(第2课时)课件
17.2勾股定理及其逆定理的综合应用
第2课时勾股定理及其逆定理的综合应用姓名:基础题知识点1 勾股定理逆定理的应用1.在一根长为30个单位长度的绳子上,分别标出A,B,C,D四个点,将绳子分成长为5个单位长度,12个单位长度和13个单位长度的三条线段.自己握住绳子的两个端点(A点和D点交于一处),两个同伴分别握住B点和C点,将绳子拉成一个几何图形,会得到( )A.直角三角形B.锐角三角形C.钝角三角形D.不能组成三角形2.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A,乙客轮用20分钟到达点B.若A,B两点的直线距离为1 000 m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是( )A.南偏东60°B.南偏西60°C.北偏西30°D.南偏西30°3.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列选项中正确的是( )A B C D4.某小区的一所健身中心的平面图如图所示,活动区是面积为200 m2的长方形,其长为20 m,餐饮区是一个半圆形,面积为 4.5π m2,休息区是一个三角形,边AE=8 m,求休息区的面积.知识点2 勾股定理及其逆定理的综合应用5.如图,正方形网格中的△ABC.若小方格边长为1,则△ABC的形状为( )A.直角三角形B.B.锐角三角形C.钝角三角形D.以上答案都不对6.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.7.如图,已知点C是线段BD上的一点,∠B=∠D=90°.若AB=3,BC=2,CD=6,DE=4,AE=65.(1)求AC,CE的长.(2)求证:∠ACE=90°.中档题8.已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是( )A.6013B.5 C.3013D.129.如图,A,B两个村庄分别在两条公路MN和EF 的边上,且MN∥EF,某施工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160 km,BC=120 km,则A,C两村之间的距离为( )A.250 km B.240 kmC.200 km D.180 km10.如图所示的网格是正方形网格,则∠ACB-∠DCE= (点A,B,C,D,E是网格线交点).11.如图,某小区的两个喷泉A,B位于小路AC的同侧,两个喷泉的距离AB的长为250 m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M 到AB的距离MN的长为120 m,BM的长为150 m.(1)求供水点M到喷泉A,B需要铺设的管道总长.(2)直接写出喷泉B到小路AC的最短距离.12.(教材P34习题T5变式)如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°.(1)求∠BAD的度数.(2)求四边形ABCD的面积(结果保留根号).(3)将△ABC沿AC翻折至△AB′C,如图所示,连接B′D,求四边形ACB′D的面积.综合题13.通过对《勾股定理》的学习,我们知道:如果一个三角形中,两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.如果我们新定义一种三角形——两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗? (填“是”或“不是”).(2)若某三角形的三边长分别为1,7,2,则该三角形是不是奇异三角形?请做出判断并写出判断依据.(3)在Rt△ABC中,三边长分别为a,b,c,且a2=50,c2=100,则这个三角形是不是奇异三角形?请做出判断并写出判断依据.探究:在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a.若Rt△ABC是奇异三角形,求a2∶b2∶c2.1.A 2.A 3.C4.解:根据题意,得12π×(ED 2)2=4.5π,∴ED =6.∵AD ·AB =200,AB =20, ∴AD =10. ∵AE =8,∴AE 2+ED 2=AD 2,即∠AED =90°.∴S △AED =8×62=24(m 2),即休息区的面积为24 m 2.5.A6.解:在△ABC 中,∵AB =4,BC =3,∠ABC =90°, ∴根据勾股定理,得AC 2=AB 2+BC 2=42+32=52. ∴AC =5.∵AC 2+CD 2=52+122=25+144=169, AD 2=132=169, ∴AC 2+CD 2=AD 2.∴△ACD 是直角三角形,且AD 为斜边, 即∠ACD =90°.7.解:(1)∵在Rt △ABC 中,∠B =90°,AB =3,BC =2,∴AC =AB 2+BC 2=32+22=13.∵在Rt △EDC 中,∠D =90°,CD =6,DE =4, ∴CE =CD 2+DE 2=62+42=52=213. (2)证明:∵AC =13,CE =52,AE =65, ∴AE 2=AC 2+CE 2.∴∠ACE =90°. 8. A 9. C 10.45°11.解:(1)在Rt △MNB 中,BN =BM 2-MN 2=1502-1202=90(m),∴AN =AB -BN =250-90=160(m).在Rt △AMN 中,AM =AN 2+MN 2=1602+1202=200(m).∴供水点M 到喷泉A ,B 需要铺设的管道总长为AM +BM =200+150=350(m).(2)喷泉B 到小路AC 的最短距离是BM =150 m. 12.解:(1)∵AB =BC =1,∠B =90°,∴∠BAC =∠ACB =45°,AC =AB 2+BC 2= 2. 又∵CD =3,DA =1, ∴AC 2+DA 2=CD 2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°. (2)∵S △ABC =12AB ·BC =12,S △ADC =12AD ·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.(3)过点D 作DE ⊥AB ′,垂足为E , 由(1)知∠DAC =90°.根据折叠可知∠B ′AC =∠BAC =45°,AB =AB ′=1,S △AB ′C =S △ABC =12.∴∠DAE =∠DAC -∠B ′AC =45°. ∴AE =DE.设DE =AE =x ,在Rt △ADE 中,AE 2+DE 2=AD 2. ∴x 2+x 2=1.∴x =22. ∴S △ADB ′=12×1×22=24.∴S 四边形ACB ′D =S △AB ′C +S △ADB ′=12+24=2+24.13.解:(2)∵12+(7)2=2×22,∴该三角形是奇异三角形.(3)当c 为斜边时,b 2=c 2-a 2=50,Rt △ABC 不是奇异三角形;当b 为斜边时,b 2=c 2+a 2=150,∵50+150=2×100,∴a 2+b 2=2c 2.∴Rt △ABC 是奇异三角形.探究:Rt △ABC 中,∠C =90°,∴a 2+b 2=c 2. ∵c >b >a ,∴2c 2>b 2+a 2,2a 2<b 2+c 2. ∵Rt △ABC 是奇异三角形, ∴2b 2=a 2+c 2.∴2b 2=a 2+a 2+b 2. ∴b 2=2a 2.∴c 2=3a 2. ∴a 2∶b 2∶c 2=1∶2∶3.。
17.2 勾股定理的逆定理(2)旋转勾股
17.2 勾股定理的逆定理(二)基础版【教学目标】1.掌握勾股定理及逆定理与旋转综合的图形特征、基本思路以及问题类型,熟练解此类问题.2.掌握勾股定理及逆定理与常规问题的图形特征、基本思路以及问题类型,熟练解此类问题.3.掌握勾股定理及逆定理与夹半角综合的图形特征、基本思路和变式类型,熟练解此类问题.【重点难点】1.旋转问题(构手拉手全等&Rt△);2.常规问题(导角导线、Rt△斜边中点处的直角、逆命题);3.夹半角模型(构Rt△).【夯实基础】1.勾股定理及逆定理与旋转问题的图形特征:.2.勾股定理及逆定理与旋转问题的基本思路:.3.勾股定理及逆定理与旋转问题的问题类型:.【基本图形】1.旋转问题:2.等腰Rt△夹半角:(1)基本图已知等腰Rt△ABC,∠ACB=90°,E、F是斜边AB上两点,△ECF=45°.结论AE2+BF2=EF2.证法①旋转法(vs过A作AF′△AB且AF′=BF,连CF′、EF′);②轴对称法.△CEF′ ≌△CEF(SAS),Rt△AEF′△CFA′ ≌△CFB(SAS),Rt△A′EF(2)变式图已知等腰Rt△ABC,∠ACB=90°,E、F是直线AB上两点,△ECF=45°.结论AE2+BF2=EF2.证法①旋转法(vs过A作AF′△AB且AF′=BF,连CF′、EF′);②轴对称法.△CEF′ ≌△CEF(SAS),Rt△AEF′△CFA′ ≌△CFB(SAS),Rt△A′EF重难点1勾股定理及逆定理与旋转问题♀例一♀.(手拉手)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA、DB、PB,则BD是否有最大值和最小值,若有直接写出,若图1 图2 图3♂巩固练习♂1.如图,在△ABC中,△ACB=90°,AC=BC,P是△ABC内一点,且P A=3,PB=1,CD=CP=2,CD ⊥CP,求△BPC的度数.♀例二♀.如图,在△ABD中,AB=AD,△BAD=90°,P A=a,PB=b.(1)若P点在△ABD外,且△APB=45°,求PD的长;(2)若P点在△ABD内,且△APB=135°,求PD的长.1.正方形ABCD内一点P,连接P A、PB、PC.(1)若P A:PB:PC=1:2:3,求△APB的度数;(2)若P A2+PC2=2PB2,求证:点P在对角线AC上.♀例三♀.(1)利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,P A=1,PB3,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△P AP′中,易证∠P AP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内一点,∠ACB=90°,P A=2,PB2,PC=1.求∠APC的度数;(3)拓展应用如图3,在四边形ABCD中,BC=4,CD=5,AB=AC=12AD,∠BAC=2∠ADC,请直接写出BD的长.图1 图2 图31.在△ACD中,AD=4,CD=3;在△ABC中,AB=AC.(1)如图1,若△CAB=60°,△ADC=30°,△在△ACD外作等边△ADD′,求证:BD=CD′;△求BD的长;(2)如图2,若△CAB=90°,△ADC=45°,求BD的长.图1 图22.请阅读下面的材料:问题:如图△,在等边△ABC内有一点P,且P A=2,PB=PC=1,求△BPC的度数和等边△ABC的边长;李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图②).连接PP′.根据李明同学的思路,进一步思考后可求得∠BPC=°,等边△ABC的边长为.(2)请你参考李明同学的思路,探究并解决下列问题:如图③,在正方形ABCD内有一点P,且P A,BP PC=1,求∠BPC的度数和正方形ABCD的边长.①②③♀例四♀.如图,在等腰Rt△ABC中,∠ACB=90°,点P是△ABC内一点,连接P A、PB、PC,且P A=2PC,设∠APB=α,∠CPB=β.(1)如图1,若∠ACP=45°,将△PBC绕点C顺时针旋转90°至△DAC,连结DP,易证△DAP为等边三角形,则α=,β=;(2)如图2,若PB=2P A,则α=,β=;(3)如图3,试猜想α与β之间的数量关系,并给予证明.图1 图2 图3♂巩固练习♂1.如图,P是正△ABC内一点,且P A=6,PB=8,PC=10,求S△P AB+S△P AC的值.重难点2勾股定理及逆定理与常规问题♀例五♀.等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图△).(1)求证:AM=AN;(2)连接DE分别与边AB、AC交于点G、H,如图②,当∠BAD是多少度时,AD=DH?①△♂巩固练习♂1.如图,在△ABC中,△ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF、CD分别交于点G、H,△ABE=△CBE.(1)线段HB与AC相等吗?若相等,请给予证明;若不相等,请说明理由;(2)求证:BG2-GE2=EA2.♀例六♀.(Rt△斜边中点处的直角)如图,在△ABC中,D是BC的中点,点M是AB上的点,点N在AC边上,并且△MDN=90°,如果BM2+CN2=DM2+DN2,求证:△BAC=90°.♂巩固练习♂1.如图△,在△ABC中,CA=CB,△ACB=90°,D为AB的中点,M、N分别为AC、BC上的点,且DM ⊥DN.(1)求证:CM+CN=2BD;(2)如图△,若M、N分别在AC、CB的延长线上,探究CM、CN、BD之间的数量关系.①△2.如图,在△ABC中,AB=6,AC=10,AD是BC边上的中线,且AD=4,延长AD到点E,使DE=AD,连接CE.(1)求证:△AEC是直角三角形;(2)求BC边的长.3.如图,CD是△ABC的高,D在边AB上,且CD2=AD·DB,求证:△ABC为直角三角形.重难点3勾股定理及逆定理与夹半角模型♀例七♀.△ABC中,△BAC=90°,AB=AC,点D、E在直线BC上,如图1,若△DAE=45°,求证:BD2+CE2=DE2.【阅读理解】要证明BD2+CE2=DE2,设法将BD、CE、DE转化为某直角三角形的三边即可,故过A作AF⊥AD,且AF=AD.连接CF、EF.再通过证明△ABD≌△ACF,△AED≌△AEF.即可将BD、CE、DE 三边转化到直角△ECF中解决问题.【拓展应用】如图2,若∠DAE=135°,其他条件不变,请探究:以线段BE、CD、DE的长度为三边长的三角形是何种三角形?并说明理由.图1 图2♂巩固练习♂1.(1)如图△,在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求△EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M、N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN、ND、DH之间的数量关(3)在图①中,连接BD分别交AE、AF于点M、N,若EG=4,GF=6,BM=32,求AG、MN的长.①△2.如图,已知在Rt△AOB中,OA=OB,△AOB=90°,E、F在AB上,且△EOF=45°.(1)求证:EF2=AE2+BF2;(2)如图,过E作EM⊥OA于M,过F作FN⊥OB于N,ME、NF交于点P,若设NF=x,ME=y,PE =a,则x2+y2与a2之间的关系式为,若△AME、△BFN、△PEF的面积分别为S1、S2、S3,则S1+S2与S3之间的数量关系为.♀例八♀.某数学兴趣小组开展了一次活动,过程如下:如图1,在等腰△ABC中,AB=AC,△BAC=90°,小敏将一块三角板中含45°角的顶点放在点A处,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE存在等量关系:BD2+CE2=DE2.同组的小颖和小亮随后想出了两种不同的方法进行解决:小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);小亮的想法:将△ABD绕点A逆时针旋转90°得到△ACG,连接EG(如图3);(3)小敏继续旋转三角板,在探究中得出当45°<α<135°且α≠90°时,等量关系BD2+CE2=DE2仍然成立,现请你继续研究:当135°<α<180°时(如图4)等量关系BD2+CE2=DE2是否仍然成立?若成立,给出证明;若不成立,说明理由.图1 图2 图3 图4♂巩固练习♂1.已知Rt△ABC中,△ACB=90°,CA=CB,有一个圆心角为45°,半径长等于CA的扇形CEF绕点C 旋转,且直线CE、CF分别与直线AB交于点M、N.(1)如图①,当AM=BN时,将△ACM沿CM折叠,点A落在弧EF的中点P处,再将△BCN沿CN折叠,点B也恰好落在点P处,此时,PM=AM,PN=BN,△PMN的形状是,线段AM、BN、MN之间的数量关系是.(2)如图②,当扇形CEF绕点C在∠ACB内部旋转时,线段MN、AM、BN之间的数量关系是.试证明你的猜想;(3)当扇形CEF绕点C旋转至图③的位置时,线段MN、AM、BN之间的数量关系是.(无需证明)①△ △2.(1)如图△,在△ABC中,BA=BC,D、E是AC边上的两点,且满足△DBE=12△ABC(0°<△CBE<12△ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D、E是AC边上的两点,且满足∠DBE=12∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.(3)如图3,在△ABC中,BA=BC,∠ABC=90°,点E是AC边上的点,点D是CA边延长线上的点,且∠DBE=45°.第(2)题中的结论:DE2=AD2+EC2还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图1 图2 图3。
《勾股定理的逆定理》数学教学PPT课件(5篇)
证明:画一个△A′B′C′,
使∠
C′=900,
B′C′= a,
A'
A
B
b
b
a
C
B'
a
C'
在△ ABC和△ A′B′C′中
BC = a = B′C′,
CA = b = C′A′,
AB = c = A ′B′
C′A′=b
∵ ∠ C′=900
∴ A′B′ 2= a2+b2
∵ a2+b2=c2
c
b
C
作用:已知三角形的三边长,判断
这个三角形是否为直角三角形。
a
B
,
自主学习
例1:注意归纳例题的解题步骤和解题技巧!
已知三角形三条边的长度分别是:(1)1,
,
(2)2,3,4;
(3)3n,4n,5n(n > 0), 它们是否分别构成直角三角形?
解
(1)在 1, ,,
中,
)2 ,所以,边长为1,
(
∴S四边形ABCD=S△ABD+S△BCD
B
1
= -AB×AD+
2
1
= -×3×4+
2
1
-BD×CD
2
1
-×5×12
2
= 36
所以四边形ABCD的面积
为36.
C
知识升华
满足
a b的三个正整数,
c
2
称为勾股数组.
2
2
自主检测
1、满足________
勾股数组。
的三个____
__
正整数
如:
人教版八年级下册数学:17.2.2-勾股定理的逆定理课件
过了2秒后行驶了50米,此时测得小汽车与车速检测仪
间的距离为40米. 问:2秒后小汽车在车速检测仪的哪
个方向?这辆小汽车超速了吗?
小汽车在车 速检测仪的2秒后
你觉的此题解对了吗?
50米
小汽车
北偏西60° 方向 25米/秒=90千米/时 40米 >70千米/时∴小汽车超速了
30米 北 30°
60°
车速检测仪
∠B=90°
B
答:C在B地的正北方向.
13cm
A 12cm
2、有一电子跳蚤从坐标原点O出发向正东方向跳1cm,
又向南跳2cm,再向西跳3cm,然后又跳回原点,问电
子跳蚤跳回原点的运动方向是怎样的?所跳距离是多
少厘米?
y
电子跳蚤跳回原点 的运动方向是
东北方向;
所跳距离是 2 2 厘
米.
O1 x
22 2 2 2
(1)类似这样的关系6,8,10;9,12,15是否 也是勾股数?如何验证?
(2)通过对以上勾股数的研究,你有什么样的 猜想?
结论:若a,b,c是一组勾股数,那么ak,bk,ck (k为正整数)也是一组勾股数.
北
Q
30
R S 东 12×1.5=1485° 16×1.5=24 P
港口
解:根据题意画图,如图所示:
N
PQ=16×1.5=24
Q
PR=12×1.5=18
30
S
QR=30 ∵242+182=302,
R
16×1.5=24
12×1.5=18 45°45°
即 PQ2+PR2=QR2 ∴∠QPR=900
P
E
3
3、小明向东走80m后,又向某一方向走60m后,再沿
17.2 勾股定理逆定理
想一想:
互逆命题与互逆定理有何关系?
下面以a,b,c为边长的三角形是不是直角 三角形?如果是,那么哪一个角是直角?
(1) a=25 b=20 c=15
(2) a=13 b=14 c=15 (3) a=1 b=2 c= 3 (4) a=9 b=40 c=41
0 是 ∠ A=90 ____ _____ ;
1.三角形三边长分别为6、8、10,那么它 最短边上的高为______. 2.测得一个三角形花坛的三边长分别为 5cm,12cm,13cm,则这个花坛的面积是 ________. 3.直角三角形三边是连续整数,则这三角 形的各边分别为___
4.一个三角形的三边的比为5∶12∶13,它的 周长为60cm,则它的面积是___
已知∠ACB=90°,
CD⊥AB,AC=3,BC=4.
A D 3 C B
求CD的长.
解 由三角形面积公式得
S ABC 1 1 AB CD BC AC 2 2
4
所以 AB· CD=BC· AC
BC AC CD AB
3 4 12 5 5
已知:在△ ABC中, AB=15cm,AC=20cm, 练习 BC=25cm,AD是BC边上的高。求AD的长。
练:说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等.
逆命题: 内错角相等,两条直线平行. 成立 成立
(2)如果两个实数相等,那么它们的立方相等.
逆命题:如果两个实数的立方相等,那么这两个实数相等.
(3)如果两个实数相等,那么它们的绝对值相等.
逆命题:如果两个实数的绝对值相等,那么这两个实数相等. 不成立
小正方形的边 长是1,请剪 拼出一个面积 是5的正方形。
新人教版初中数学八年级下册17.2.1 勾股定理的逆定理
8.(2018·南通)下列长度的三条线段能组成直角三角形的是( A )
A.3,4,5
B.2,3,4
C.4,6,7
D.5,11,12
9.(2019·益阳)已知 M,N 是线段 AB 上的两点,AM=MN=2, NB=1,以点 A 为圆心,AN 长为半径画弧;再以点 B 为圆 心,BM 长为半径画弧,两弧交于点 C,连接 AC,BC,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
答案显示
1.如果两个命题的题设和结论刚好相反,那么这样的两个命题 叫做__互__逆___命__题___,如果把其中一个命题叫做原命题,那么 另一个叫做它的__逆__命__题____.
2.一般地,如果一个定理的逆命题经过证明是正确的,那么它 也是一个定理,称这两个定理互为_逆__定___理__.
3.下列命题的逆命题正确的是( A ) A.两条直线平行,内错角相等 B.若两个实数相等,则它们的绝对值相等 C.全等三角形的对应角相等 D.若两个实数相等,则它们的平方也相等
17.(2019·河北)已知:整式 A=(n2-1)2+(2n)2,整式 B>0. 尝试 化简整式 A. 解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1 =(n2+1)2.
发现 A=B2,求整式 B. 解:∵A=B2,B>0,∴B=n2+1.
联想 由上可知,B2=(n2-1)2+(2n)2,当 n>1 时,n2-1,2n,
(30°,60°,45°)的和的形式; (2)用旋转法将△CPB 绕点 C 顺时针旋转 90°到△CP′A 的位置.
解:如图,将△CPB 绕点 C 顺时针旋转 90°得△CP′A,则 P′C =PC=2,P′A=PB=1,∠BPC=∠AP′C,连接 PP′. 因为∠PCP′=90°,所以 PP′2=22+22=8. 又因为 P′A=1,PA=3, 所以 PP′2+P′A2=8+1=9,PA2=9. 所以 PP′2+P′A2=PA2. 所以∠AP′P=90°. 易知∠CP′P=45°, 所以∠BPC=∠AP′C=∠AP′P+∠CP′P=90°+45°=135°.
人教版八年级数学下册课件勾股定理复习课(课2)
c
(1)如果∠A和∠B是邻补角,那么∠A+∠B=180〫.
重难点3:勾股定理逆定理的应用
Ca B
知识梳理
3. 勾股定理逆定理的应用
② 实质:由“数”到“形”的转化; ③ 应用:判定一个三角形是否为直角三角形.
知识梳理
4. 勾股数
勾股数
正整数
判断一组数是不是勾股数的步骤: 看、找、算、判.
重点解析
反走私艇 B 离走私艇 C 12 海里,若走私艇 C
从边的方面判断:如果已知条件与边有关系,则可以通过勾股定理的逆定理进行判断.
两个角都是40〫
重点解析
1.有些命题在不容易确定题设和结论的情况下,可 以先改写成“如果……那么……”的形式,然后确 定题设和结论. 2.判断一个命题是假命题只需要举出一个反例即可.
重点解析
重难点2:勾股定理的逆定理
判断满足下列条件的三角形是不是直角三角形.如果是, 请指出哪个角是直角. (1)在△ABC中,∠A=25〫、∠B=65〫; 解:(1)在△ABC中,因为∠A=25〫、∠B=65〫,所以 ∠C=180〫-∠A-∠B=90〫,所以这个三角形是直角三角形. ∠C是直角.
重点解析
重难点4:勾股数
判断下列各组数是不是勾股数:
深化练习
1.在△ABC中,∠A、 ∠B 、 ∠C的对边分别是a、b、c,下列判断 错误的是( B ).
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形.
深化练习
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形. 解析:因为∠C- ∠B=∠A,所以 ∠C=∠B+∠A. 因为∠C+∠B+∠A=180〫,所以 ∠C+∠C=180〫. 解得:∠C=90〫,所以△ABC是直角三角形.
17.2.1勾股定理的逆定理(课件)八年级数学下册(人教版)
下面以a,b,c为边长的三角形是不是直角三角形?
(1) a5,b12,c13; 52+122132
是
(2) a6,b7,c8; (3) a1,b2,c 3. (4) a:b: c=3:4:5;
62+7282 12+( 3 )222
不是 是 是
(4)解:设a=3k,b=4k,c=5k, 因为(3k)2+(4k)2=25k2,(5k)2=25k2, 所以(3k)2+(4k)2=(5k)2,根据勾股定理的逆定理, 这个三角形是直角三角形,∠C是直角.
角形,其中摆放方法正确的是
( D)
A.
B.
C.
D.
4.一个三角形的三边长分别是5,12,13,则这个三角形的面积是( A ) A. 30 B. 60 C. 78 D.不能确定
5. 一个三角形的三边长的平方分别为32,42,x2,若三角形是直角三角形,
则x2的值是( D )
A. 42
B. 25
C. 7
8.下列四组线段,不能构成直角三角形的是( D ) A. a8,b15,c17; B. a9,b12,c15;
C. a 5,b 3,c 2 ;
D. a b c2 3 4.
9.写出下列命题的逆命题,并判断逆命题是否成立. (1)全等三角形的对应角相等. (2)两直线平行,内错角相等. (3)互为相反数的两个数的绝对值相等.
12.如图,在△ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开 始沿AB边向B点以每秒2cm的速度移动,点Q从点C沿CB边向点B以每秒 1cm的速度移动,如果同时出发,则过3s时,求PQ的长. 解:设AB为3xcm,BC为4xcm,AC为5xcm, ∵周长为36cm,即AB+BC+AC=36cm, ∴3x+4x+5x=36,解得x=3. ∴AB=9cm,BC=12cm,AC=15cm. ∵AB2+BC2=AC2, ∴△ABC是直角三角形, 过3秒时,BP=9-3×2=3(cm),BQ=12-1×3=9(cm), 在Rt△PBQ中,由勾股定理得 PQ 32 92 3 10(cm).
《勾股定理的逆定理》勾股定理PPT课件(第2课时)
13
4
12
┐
3
探究新知
解:连接BD 在Rt△ABD中
∵AB=3,AD=4 ∴BD= AB 2 AD 2 =5
在△BCD中 ∵CD=13 , BC=12
∴CD2=BC2+BD2
13
45
12
┐
3
∴△BCD是直角三角形 ∴∠DBC=90°
∴S四边形ABCD=S△ABD+S△BCD = 1×3×4+ 1×5×12=36
此时四边形ABCD 的面积是多少?
5、 已知a、b、c为△ABC的三边,且 满足 a2+b2+c2+338=10a+24b+26c. 试判断△ABC的形状.
思维训练
6、△ABC三边a,b,c为边向外作 正方形,正三角形,以三边为 直则径作是半直圆角,三若角S形1+吗S2=?S3成立,
C
S2
A
b
ca
能替工人师傅想办法完成任务吗?
9.三个半圆的面积分别为S1=3π, S2=4π,S3=7π,把三个半圆拼成如 右图所示的图形,则△ABC一定是
直角三角形吗?
B
C
D
B'
A'
A
B
勾股定理:
如果直角三角形的两直角边为a,b, 斜边长为c ,那么a2+b2=c2.
B
反过来,如果一个 a
c
三角形的三边长a、b、
(C)1:2:4; (D)1:3:5.
3. 三角形的三边分别是a、b、c, 且满足
(a+b)2-c2=2ab, 则此三角形是:( )
A. 直角三角形;
B. 是锐角三角形;
勾股定理的逆定理 课件 2022—2023学年人教版数学八年级下册 (2)
1.两军舰同时从港口O出发执行任务,甲舰以30海里/小时的
速度向西北方向航行,乙舰以一定的速度向西南方向航行,
它们离开港口2小时后测得两船的距离为100海里,求轮船B的
速度是多少?
甲(A) 北
西
O
东
乙(B) 南
知识&回顾☞ 实际应用
2.小明向东走80m后,又向某一方向走60m后,再沿另 一方向又走100m回到原地.小明向东走80m后又向哪个方 向走的?
“中华人民共和国道路交通管理条例”规定:小汽车在城市街 路上行驶的速度不得超过70千米/时,一辆小汽车在一条城市街 路的直道上行驶,某一时刻刚好行驶在路边车速检测仪的北偏 东30°距离30米处,过了2秒后行驶了50米,此时测得小汽车与 车速检测仪间的距离为40米. 问:2秒后小汽车在车速检测仪的 哪个方向?这辆小汽车超速了吗?
(1)城市A是否受到台风影响? 请说明理由。
(2)若城市A受到台风影响, 则持续时间有多长?
(3)城市A受到台风影响的最 大风力为几级?
C A
240 30°
B
(1)城市A是否受到台风影响? 请说明理由。
解:(1)根据题意可知 作 AD⊥BC 于 D 点. 在 Rt△ABD 中,∠B=30°, AB=240 千米, ∴AD=120 千米, ∵25×(12-4)=200>120 ∴城市 A 是受到台风影响。
15km/h的速度沿东北方向前进.甲船航行2小时到达C
处时发现渔具丢在乙船上,于是快速(匀速)沿北偏
东75°方向追赶,结果两船在B处相遇.
(1)甲船从C处追赶上乙船用了多少时间?
(2)甲船追赶乙船的速度是多少千米/时?
北 速度 (30 30 B3) 2 15 15 3
八年级数学勾股定理的逆定理课件-应用
人教版
第2课时勾股定理的逆定 理(二) —— 应用
(2)在图2中,画一个三边长分别为3,2, 13的三角形,一共可以画 16 个这样的三角形. 解析:如图2,一共可以画16个这样的三角形.
图2
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
10.在某小区在社区工作人员及社区居民的共同努力之下,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
8.如图,明明在距离水面高度为5 m的岸边C处,用绳子拉船 靠岸,开始时绳子BC的长为13 m.若明明收绳6 m后,船到 达D处,则船向岸边A处移动了多少米?
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
解:∵开始时绳子BC的长为13 m,明明收绳6 m后,船到达D处,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
知识点 勾股定理逆定理的应用 【例题】如图,甲船以5海里/时的速度离开港口O沿南偏东 30°方向航行,乙船同时同地沿某方向以12海里/时的速度 航行.已知它们离开港口2小时后分别到达B,A两点,且AB =26海里.你知道乙船是沿哪个方向航行的吗?
数学 人教版 八年级 下册
目 录
CONTENTS
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
第十七章 勾股定理
17.2 勾股定理的逆定理 第2课时勾股定理的逆定理(二) —— 应用
01 课标要求
02 基础梳理
03 典例探究
04 课时训练
数学
八年级 下册
人教版八年级数学下册勾股定理逆定理课件第二课时
检测目标
2.如图,在正方形ABCD中,F是CD的中点,E为BC上一 点,且CE=1 CB,试判断AF与EF的位置关系,并说明理由.
4
解:AF⊥EF.理由如下: 设正方形的边长为4a, 则EC=a,BE=3a,CF=DF=2a. 在Rt△ABE中,得AE2=AB2+BE2=16a2+9a2=25a2. 在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2. 在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2. 在△AEF中,AE2=EF2+AF2, ∴△AEF为直角三角形,且AE为斜边. ∴∠AFE=90°,即AF⊥EF.
例1 如图,某港口P位于东西方向的海岸线上. (3) 本题正确的结论是________ 如图,在△ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开始沿AB边向B点以每秒2cm的速度移动,点Q从点C沿CB边向 点B以每秒1cm的速度移动,如果同时出发,则过3s时,求PQ的长. 思考1 认真审题,弄清已知是什么?要解决的 在△AEF中,AE2=EF2+AF2,
我们学会了用勾股定理解决生活中的很多问 题,那么勾股定理的逆定理可以解决哪些实际问 题呢?我们一起来探究吧。
人教版八年级数学 下册
沧海可填山可移,男儿志气当如斯。
壮志与毅力是事业的双翼。
母鸡的理想不过是一把糠。
生无一锥土,常有四海心。
远大的希望造就伟大的人物。
志高山峰矮,路从脚下伸。
雄心志四海,万里望风尘。
检测目标
3.已知 △ABC三角形的三边分别为 a,b,c 且a = m2 - n2 ,b = 2mn,c = m2 n2 (m > n,m,n是正整数), △ABC是直角三角形吗?说明理由
勾股定理(第2课时)(课件)-2022-2023学年八年级数学下册同步精品课堂(人教版)
勾股定理应用的常见类型
1.已知直角三角形的任意两边求第三边;
2.已知直角三角形的任意一边确定另两边的关系;
3.证明包含有平方(算术平方根)关系的几何问题;
4.求解几何体表面上的最短路径问题;
5.构造方程(或方程组)计算有关线段长度,解决生产、
生活中的实际问题.
课堂练习
1.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯
三角形的面积公式可求BD,再利用
勾股定理便可求CD.
北东
A
C
D
Q
课堂练习
P
解:∵AC10,BC8,AB6,
B
∴AC2AB2BC2
北东
A
即△ABC是直角三角形,
C
D
Q
1
1
而S△ABC BC AB AC BD
2
2
24
解得:BD .
5
2
24
在Rt△BCD中,CD = BC 2 BD 2 82 6.4
路线最短?
B
A
B
A
方案①
B
A
方案②
方案③
针对练习
(2)如图,将圆柱侧面剪开展成一个长方形,点A到点B的最短路线是什么?
你画对了吗?
B
A
B
A
B
∵两点之间线段最短,
∴方案③的路线最短.
A
针对练习
(3)蚂蚁从点A出发,想吃到点B上的食物,它沿圆柱侧面爬行的最短路程是
多少?
解:在Rt△ABC中,
C
B
AC=12 cm,BC=18÷2=9(cm).
在Rt△A′DB中,由勾股定理得
《勾股定理的逆定理》课件PPT1
3.(2017·常德)命题:“如果m是整数,那么它是有理数”,则它的逆命题 为:_____如___果__m__是__有__理___数__,__那__么___它__是__整__数_.
4.说出下列命题的逆命题,并判断逆命题的真假. (1)同旁内角互补,两条直线平行; (2)线段垂直平分线上的点到线段两端点的距离相等; (3)直角三角形中,30°角所对的直角边等于斜边的一半. 解:(1)逆命题为:两条直线平行,同旁内角互补.是真命题. (2)逆命题为:到线段两端点的距离相等的点在这条线段的垂直平分线上.是真 命题. (3)逆命题为:直角三角形中,一条直角边等于斜边的一半,则这条直角边所对 的角是30°.是真命题.
仔细观察命题1、命题2的题设和结论,你能发现什么?
2
2
2
对应角相等的两个三角形全等.
-b|=0,则△ABC 的形状是____________________________. 等腰直角三角形 (1)如果两个角相等,那么这两个角的补角相等.
解:∵AC2=AD2+CD2=20,BC2=CD2+BD2=80,AB2=(AD+BD)2=100,∴AC2+BC2=AB2.
A.两条直线平行,内错角相等
(1)如果两个角相等,那么这两个角的补角相等.
8.测得一块三角形花坛的三边长分别为1.5 (1)如果两个角相等,那么这两个角的补角相等.
(2)判断一个命题是假命题,只需要能够举出一个反例即可.
m,2
m,2.5
m,则这个花坛的
∴∠DAB=∠DAC+∠BAC=90°+45°=135°.
16.如图,在△ABC中,CD为AB边上的高,AD=2,BD=8,CD=4,试说 明△ABC是直角三角形. 解:∵AC2=AD2+CD2=20,BC2=CD2+BD2=80,AB2=(AD+BD)2=100 ,∴AC2+BC2=AB2.∴△ABC为直角三角形.
八年级数学下册教学课件《勾股定理 单元解读》
教材内容
勾股定理分为两节。第17.1节介绍勾股定理及其应用,第17.2节介绍勾 股定理的逆定理及其应用.
17.1 勾股定理. 首先结合引言了解到在我国古代就对直角三角形有了初步认识,然后通过对等腰直 角三角形的三边关系进行探究到一般的直角三角形的三边关系,最后介绍了我国古 代,“赵爽弦图”通过对图形的切割,拼接巧妙地证明了勾股定理.
17.1 勾股定理 17.2 勾股定理的逆定理
数学活动 小结
4课时 3课时
2课时
教学建议
1.重视提高学生分析问题、解决问题的能力 在勾股定理的教学中,一方面要重视学生观察、 猜想能力的培养,
另一方面也要重视从特殊结论到一般结论的严密逻辑思维能力的培养. 从勾股定理到它的逆定理,学生往往会从直觉出发想当然地认为勾股 定理的逆命题也一定成立.而从这种直觉上升到逻辑严密的思考和证 明,认识到两个结论有联系但却并不相同,认识到新的结论仍需要经 过严格的证明,这是思维能力提高的重要体现,这在教学中是应该引 起重视的另外,逆命题的教学也是一个教学难点,怎样写出一个命题 的逆命题,原命题和逆命题真假的多种可能性,怎样的命题可以称为 逆定理,这些都是学生容易出错的知识点.
直角三角形是一种极常见而特殊的三角形,它有许多性质.本章所研究的勾股 定理,就是直角三角形非常重要的性质之一,有极其广泛的应用.不仅在平面 几何中是重要的定理,而且在三角学、解析几何学、微积分学中都是理论的基 础,对现代数学的发展也产生了重要而深远的影响.本章教学时间约需9个课 时,具体安排如下(仅供参考):
通过这一节内容的学习,可以培养 学生逻辑思维能力、分析问题和解 决问题的能力.
教材内容
勾股定理分为两节。第17.1节介绍勾股定理及其应用,第17.2节介绍勾 股定理的逆定理及其应用.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尝试应用
1.A、B、C三地两两距离如下图所示,A地在B地的正东方 向,C地在B地的什么方向?
.
八年级 数学
第十七章 勾股定理
思维训练 1、 已知a,b,c为△ABC的三边,且 满足 a2+b2+c2+50=6a+8b+10c. 试判断△ABC的形状.
八年级 数学
第十七章 勾股定理
3、已知 △ABC三角形的三边分别为 a,b,c 且a = m 2 - n 2 ,b = 2mn, c = m 2 n2 (m > n,m,n是正整数), △ABC是直角三角形吗?说明理由
分析:先来判断a,b,c三边哪条最长,可以代m,n为满 足条件的特殊值来试,m=5,n=4.则a=9,b=40,c=41,c 最大。
解: a b (m n ) (2mn) (m n ) c
2 2 2 2 2 2 2 2 2
2
∴△ABC是直角三角形
3、如图,在正方形ABDC中,E是CD的中点, F为BD上一点,且BF=3FD,求证:∠AEF=90º.章 17.2
勾股定理
勾股定理的逆定理 第2课时
课中探究
探究一:某港口位于东西方向的海岸线上.“远航”号、“海天”号 轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航
行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时
后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天” 号沿哪个方向航行吗? 解:根据题意,得 PQ=16×1.5=24,PR=12×1.5=18,QR=30. 2 2 2 ∵24 +18 =30 , 2 2 2 即PQ +PR =QR , ∴∠QPR=90°. 由“远洋号”沿东北方向航行可知, ∠QPS=45°,则∠SPR=45°,即“海天”号 沿西北方向航行.
A
C E B F D
尝试应用
3.如图,点A是一个半径为 400 m的圆形森林公园的中心,在森林公
园附近有 B .C 两个村庄,现要在 B.C 两村庄之间修一条长为 1000 m 的笔直公路将两村连通,经测得 AB=600m,AC=800m,问此公路是
否会穿过该森林公园?请通过计算说明.
第3题图