【精品】2016年浙江省宁波市镇海中学高一上学期期中数学试卷
浙江省宁波市高一上学期期中数学试卷
浙江省宁波市高一上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知集合A={2,4,6,8},集合B={1,4,5,6},则A∩B等于()A . {2,4,6,8}B . {1,2,5}C . {1,2,4,6,8}D . {4,6}2. (2分) (2016高三上·荆州模拟) 设集合A=[0,),B=[ ,1],函数f (x)= ,若x0∈A,且f[f (x0)]∈A,则x0的取值范围是()A . (0, ]B . [ , ]C . (,)D . [0, ]3. (2分) (2018高一上·苏州期中) 若函数f(x)的定义域为(1,2),则f(x2)的定义域为()A . {x|1<x<4}B . {x|1<x< }C . {x|-<x<﹣1或1<x< }D . {x|1<x<2}4. (2分) (2019高一上·齐齐哈尔月考) 下列各组函数中,表示同一函数的是()A .B .C .D .5. (2分)下列四个函数中,以π为最小正周期,且在区间(,π)上单调递减函数的是()A . y=sin2xB . y=2|cosx|C .D . y=tan(﹣x)6. (2分)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A . 0B . 1C . 2D . 37. (2分) (2017高二下·南昌期末) 对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”.给出下列四个函数:①f(x)=sin x;②f(x)=2x2﹣1;③f(x)=|1﹣2x|其中存在“可等域区间”的“可等域函数”为()A . ①B . ②C . ①②D . ①②③8. (2分) (2016高一上·汉中期中) 若f(x)= ,则f(2)=()A . 3B . 2C .D .9. (2分) (2018高一上·大庆期中) 二次函数y=ax2+bx与指数函数y=()x的图象只可能是().A .B .C .D .10. (2分)设a=sin13°+cos 13°,b=2 cos214°﹣,c= ,则a,b,c的大小关系为()A . b<c<aB . a<c<bC . c<a<bD . c<b<a11. (2分)(2019·湖北模拟) 已知函数是定义域为的奇函数,当时,,则不等式的解集为()A .B .C .D .12. (2分) (2016高二下·宁波期末) 已知a= ,b= ,c= ,则下列关系中正确的是()A . a>b>cB . b>a>cC . a>c>bD . c>a>b二、填空题 (共4题;共4分)13. (1分)已知集合P={4,5},Q={1,2,3},定义P⊕Q={x|x=p﹣q,p∈P,q∈Q},则集合P⊕Q用列举法表示为________.14. (1分) (2019高一上·南京期中) 计算的值是________.15. (1分) (2017高一下·徐州期末) 已知函数f(x)=ax2+8x+b(a,b为互不相等的正整数),方程f(x)=0的两个实根为x1 , x2(x1≠x2),且|x1|<1,|x2|<1,若f(1)+f(﹣1)的最大值与最小值分别为M,m,则M+m的值为________.16. (1分) (2017高三上·泰州开学考) 已知函数f(x)满足f(x+1)=﹣f(x﹣1),且当x∈(0,2)时,f(x)=2x ,则f(log280)=________.三、解答题 (共6题;共70分)17. (10分) (2015高一下·新疆开学考) 计算下列各题:(1)﹣()0+16 +(• )6;(2) log3 +lg25+lg4+7log72+(﹣9.8)0 .18. (10分) (2016高一上·新疆期中) 已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log (﹣x+1).(1)求f(x)的解析式;(2)若f(a﹣1)<﹣1,求实数a的取值范围.19. (10分) (2016高一上·西湖期中) 已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.(1)求A∩B、(∁UA)∪(∁UB);(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.20. (10分) (2019高一上·合肥月考) 已知函数是定义在上的奇函数,且当时,(1)求函数在上的解析式;(2)是否存在非负实数,使得当时,函数的值域为若存在,求出所有的值;若不存在,说明理由21. (15分)已知函数f(x)= .(1)判断f(x)的奇偶性;(2)求证f(x)在[0,+∞)上是减函数;(3)求f(x)的最大值.22. (15分) (2018高一上·盘锦期中) 设函数f(x)是增函数,对于任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求f(0);(2)证明f(x)是奇函数;(3)解不等式 f(x2)—f(x)> f(3x).参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共70分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:。
浙江省宁波市高一上学期数学期中考试试卷
浙江省宁波市高一上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列不等式中解集为∅的是()A . x2≤0B . |x﹣5|>0C .D .2. (2分) (2019高一上·盘山期中) 已知函数的定义域为()A .B .C .D .3. (2分) (2017高一上·钦州港月考) 若函数,那么()A . 1B . 3C . 15D . 304. (2分)已知三个数,则三个数的大小关系是()A . a>b>cB . b>c>aC . a>c>bD . c>b>a5. (2分)(2018·吉林模拟) 函数的零点所在的区间为()A .B .C .D .6. (2分) (2016高二下·普宁期中) 若函数为奇函数,则a=()A .B .C .D . 17. (2分) (2016高一上·玉溪期中) 已知函数f(x)=4x2﹣kx﹣8在[2,10]上具有单调性,则k的取值范围是()A . (﹣∞,﹣80]∪[﹣16,+∞)B . [﹣80,﹣16]C . (﹣∞,16]∪[80,+∞)D . [16,80]8. (2分) (2015高三上·潍坊期中) 设函数f(x)= ,若f(f())=4,则b=()A . ﹣1B . ﹣C . ﹣1或﹣D . 29. (2分)函数f(x)=x|x+a|+b是奇函数的充要条件是()A . ab=0B . a+b=0C . a=bD . =010. (2分)下列函数中,在其定义域内既是增函数又是奇函数的是()A .B .C .D .二、填空题 (共5题;共9分)11. (5分)已知二次函数f(x)=ax2+bx+c(b>a),且f(x)≥0恒成立,则的最小值是()A . 1B . 2C . 3D . 412. (1分) (2016高二下·芒市期中) 已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=________.13. (1分) (2016高一上·石嘴山期中) 设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为,则a=________.14. (1分) (2016高一上·苏州期中) 已知满足对任意x1≠x2 ,都有>0成立,那么a的取值范围是________.15. (1分)已知f(x)是定义在R上的增函数,函数y=f(x﹣1)的图象关于点(1,0)对称,若对任意的x,y∈R,等式f(y﹣3)+f()=0恒成立,则的取值范围是________.三、解答题 (共6题;共65分)16. (10分) (2016高一上·鼓楼期中) 解方程ln(2x+1)=ln(x2﹣2);求函数f(x)=()2x+2×()x(x≤﹣1)的值域.17. (10分)(2018高一上·河南月考) 已知集合,若,,求p+q+r的值18. (10分) (2019高一上·翁牛特旗月考) 在某服装商场,当某一季节即将来临时,季节性服装的价格呈现上升趋势.设一种服装原定价为每件70元,并且每周(7天)每件涨价6元,5周后开始保持每件100元的价格平稳销售;10周后,当季节即将过去时,平均每周每件降价6元,直到16周末,该服装不再销售.(1)试建立每件的销售价格 (单位:元)与周次之间的函数解析式;(2)若此服装每件每周进价 (单位:元)与周次之间的关系为,,试问该服装第几周的每件销售利润最大?(每件销售利润=每件销售价格-每件进价)19. (10分) (2019高一上·会宁期中) 已知函数f(x)=x2﹣2(a﹣1)x+4.(1)若f(x)为偶函数,求f(x)在[﹣1,2]上的值域;(2)若f(x)在区间(﹣∞,2]上是减函数,求f(x)在[-1,a]上的最大值.20. (15分) (2019高一上·安庆月考) 已知函数是奇函数.(1)求实数b的值;(2)若对任意的,不等式恒成立,求实数k的取值范围.21. (10分)已知f(x)是定义在[﹣1,1]上的奇函数,f(1)=1,且若∀a、b∈[﹣1,1],a+b≠0,恒有>0,(1)证明:函数f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x∈[﹣1,1]及∀a∈[﹣1,1],不等式f(x)≤m2﹣2am+1恒成立,求实数m的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共9分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共65分)16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、。
浙江省宁波市高一上学期数学期中联考试卷
浙江省宁波市高一上学期数学期中联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)设x为实数,则f(x)与g(x)表示同一个函数的是()A .B .C .D .2. (2分)若{1,a, }={0,a2 , a+b},则a2009+b2009的值为()A . 0B . 1C . ﹣1D . 1或﹣13. (2分) (2017高一上·长春期中) 函数f(x)=(x﹣)0+ 的定义域为()A .B . [﹣2,+∞)C .D .4. (2分)函数y=的部分图象大致为()A .B .C .D .5. (2分) (2019高一上·温州期中) 在如图所示的三角形空地中,欲建一个如图所示的内接矩形花园(阴影部分),则该矩形花园的面积的最大值为()A .B .C .D .6. (2分) (2019高一上·兰州期中) 已知是定义在上的奇函数,对任意,都有,若,则等于()A .B .C .D .7. (2分)指数函数f(x)=(2﹣a)x是单调函数,则a的取值范围是()A . (1,2)∪(﹣∞,1)B . (1,2)C . (﹣∞,1)D . (1,2)∪(﹣∞,1)∪(﹣1,1)8. (2分) (2016高一上·会宁期中) 若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式x5f(x)>0的解集为()A . (﹣2,0)∪(2,+∞)B . (﹣∞,﹣2)∪(0,2)C . (﹣2,0)∪(0,2)D . (﹣∞,﹣2)∪(2,+∞)9. (2分) (2019高二上·南宁月考) 设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称和在上是关联函数,称为关联区间,若与在上是关联函数,则的取值范围是()A .B .C .D .10. (2分) (2019高一上·南充期中) 给出下列四个命题:①映射不一定是函数,但函数一定是其定义域到值域的映射;②函数的反函数是,则;③函数的最小值是;④对于函数,则既是奇函数又是偶函数.其中所有正确命题的序号是().A . ①③B . ②③C . ①③④D . ②③④二、填空题 (共6题;共6分)11. (1分) (2017高一上·扬州期中) 已知集合A={x|﹣1≤x<2},集合B={x|x<1},则A∩B=________.12. (1分) (2018高一上·台州期中) 已知幂函数f(x)=xα经过点(2,),则α=________.方程f (x)=3的解为________.13. (1分) (2019高一上·哈尔滨月考) 已知函数,则f(1)﹣f(3)=________14. (1分)坐标为x0 ,函数g(x)=a +4的图象恒过定点B,则B点的坐标为________.15. (1分)计算:+π0﹣3﹣1=________.16. (1分)(2017·杨浦模拟) 已知函数f(x)= 的最小值为a+1,则实数a的取值范围为________.三、解答题 (共4题;共35分)17. (5分) (2016高一上·南昌期中) 计算下列各式(1);(2).18. (10分)(2019高一上·湖北期中) 已知集合,.(1)求;(2)若,求实数的取值范围.19. (10分) (2016高一上·成都期中) 已知幂函数f(x)=(m2﹣m﹣1)x﹣5m﹣3在(0,+∞)上是增函数,又g(x)=loga (a>1).(1)求函数g(x)的解析式;(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.20. (10分) (2019高一上·永嘉月考) 已知函数.(1)求函数的定义域;(2)判断的奇偶性并加以证明;(3)若在上恒成立,求实数的范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5、答案:略6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共4题;共35分) 17-1、17-2、18、答案:略19-1、19-2、20-1、20-2、20-3、。
宁波数学高一上期中经典测试题(培优)
一、选择题1.(0分)[ID :11807]如图,点O 为坐标原点,点(1,1)A ,若函数xy a =及log b y x =的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则a ,b 满足.A .1a b <<B .1b a <<C .1b a >>D .1a b >>2.(0分)[ID :11798]在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件3.(0分)[ID :11797]关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③4.(0分)[ID :11778]对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( )A .315,22⎛⎫⎪⎝⎭ B .[]28, C .[)2,8D .[]2,75.(0分)[ID :11774]若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .6.(0分)[ID :11757]设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 7.(0分)[ID :11753]已知函数224()(log )log (4)1f x x x =++,则函数()f x 的最小值是A .2B .3116C .158D .18.(0分)[ID :11752]已知函数)245f x x x =+,则()f x 的解析式为( )A .()21f x x =+B .()()212f x x x =+≥C .()2f x x =D .()()22f x xx =≥9.(0分)[ID :11749]设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z10.(0分)[ID :11739]函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( ) A .5B .4C .3D .611.(0分)[ID :11736]函数()245f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则实数m 的取值范围是( )A .[)2,+∞B .[]2,4C .[]0,4D .(]2,412.(0分)[ID :11731]已知函数21,0,()|log ,0,x x f x x x ⎧+≤⎪=⎨⎪⎩若函数()y f x a =-有四个零点1x ,2x ,3x ,4x ,且12x x <3x <4x <,则312342()x x x x x ++的取值范围是( ) A .(0,1)B .(1,0)-C .(0,1]D .[1,0)-13.(0分)[ID :11729]已知函数f(x)={(2a −1)x +7a −2,(x <1)a x ,(x ≥1)在(-∞,+∞)上单调递减,则实数 a 的取值范围是( ) A .(0,1)B .(0,12)C .[38,12)D .[38,1)14.(0分)[ID :11803]设0.13592,ln ,log 210a b c ===,则,,a b c 的大小关系是 A .a b c >>B .a c b >>C .b a c >>D .b c a >>15.(0分)[ID :11768]已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若12log 3a f ⎛⎫= ⎪⎝⎭,()1.22b f -=,12c f⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( ) A .a c b >> B .b c a >> C .b a c >> D .a b c >>二、填空题16.(0分)[ID :11896]函数()f x 的定义域是__________.17.(0分)[ID :11885]设f(x)={1−√x,x ≥0x 2,x <0,则f(f(−2))=________18.(0分)[ID :11874]已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.19.(0分)[ID :11867]已知函数1)4f x +=-,则()f x 的解析式为_________. 20.(0分)[ID :11862]若幂函数()a f x x 的图象经过点1(3)9,,则2a -=__________.21.(0分)[ID :11859]已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. 若关于x 的方程()0f x m -=有四个不同的实数解,则实数m 的取值范围是_____.22.(0分)[ID :11846]已知312ab +=a b =__________. 23.(0分)[ID :11844]有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两 种都没买的有 人.24.(0分)[ID :11835]甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程()(1,2,3,4)i f x i =关于时间(0)x x ≥的函数关系式分别为1()21x f x =-,22()f x x =,3()f x x =,42()log (1)f x x =+,有以下结论:①当1x >时,甲走在最前面; ②当1x >时,乙走在最前面;③当01x <<时,丁走在最前面,当1x >时,丁走在最后面; ④丙不可能走在最前面,也不可能走在最后面; ⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分). 25.(0分)[ID :11832]若关于x 的方程|x 2−2x −2|−m =0有三个不相等的实数根,则实数m 的值为_______.三、解答题26.(0分)[ID :12018]设()4f x x x=- (1)讨论()f x 的奇偶性;(2)判断函数()f x 在()0,∞+上的单调性并用定义证明. 27.(0分)[ID :11995]已知函数()2x f x =,1()22xg x =+.(1)求函数()g x 的值域;(2)求满足方程()()0f x g x -=的x 的值.28.(0分)[ID :11974]已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.29.(0分)[ID :11971]设集合A ={x ∈R|x 2+4x =0},B ={x ∈R|x 2+2(a +1)x +a 2-1=0,a ∈R },若B ⊆A ,求实数a 的值.30.(0分)[ID :11931]已知函数()f x A ,函数()0(11)2xg x x ⎫-⎛=⎪⎭≤ ≤⎝的值域为集合B .(1)求AB ;(2)若集合{}21C x a x a =≤≤-,且CB B =,求实数a 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.B 3.C4.C5.A6.A7.B8.B9.D10.A11.B12.C13.C14.A15.B二、填空题16.【解析】由得所以所以原函数定义域为故答案为17.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1-18.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力19.【解析】【分析】利用换元法求解析式即可【详解】令则故故答案为【点睛】本题考查函数解析式的求法换元法是常见方法注意新元的范围是易错点20.【解析】由题意有:则:21.【解析】【分析】若方程有四个不同的实数解则函数与直线有4个交点作出函数的图象由数形结合法分析即可得答案【详解】因为函数是定义在R上的偶函数且当时所以函数图象关于轴对称作出函数的图象:若方程有四个不同22.3【解析】【分析】首先化简所给的指数式然后结合题意求解其值即可【详解】由题意可得:【点睛】本题主要考查指数幂的运算法则整体数学思想等知识意在考查学生的转化能力和计算求解能力23.【解析】【分析】【详解】试题分析:两种都买的有人所以两种家电至少买一种有人所以两种都没买的有人或根据条件画出韦恩图:(人)考点:元素与集合的关系24.③④⑤【解析】试题分析:分别取特值验证命题①②;对数型函数的变化是先快后慢当x=1时甲乙丙丁四个物体又重合从而判断命题③正确;指数函数变化是先慢后快当运动的时间足够长最前面的动物一定是按照指数型函数 25.3【解析】令fx=x2-2x-2则由题意可得函数y=fx 与函数y=m 的图象有三个公共点画出函数fx=x2-2x-2的图象如图所示结合图象可得要使两函数的图象有三个公共点则m=3答案:3三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】 【分析】由,M N 恰好是线段OA 的两个三等分点,求得,M N 的坐标,分别代入指数函数和对数函数的解析式,求得,a b 的值,即可求解. 【详解】由题意知(1,1)A ,且,M N 恰好是线段OA 的两个三等分点,所以11,33M ⎛⎫ ⎪⎝⎭,22,33N ⎛⎫ ⎪⎝⎭, 把11,33M ⎛⎫ ⎪⎝⎭代入函数xy a =,即1313a =,解得127a =,把22,33N ⎛⎫ ⎪⎝⎭代入函数log b y x =,即22log 33b =,即得3223b ⎛⎫== ⎪⎝⎭,所以1a b <<. 故选A. 【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答熟练应用指数函数和对数函数的解析式求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.2.B解析:B 【解析】 【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.3.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .4.C解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.5.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减,故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.6.A解析:A 【解析】 由题意{1,2,3,4}AB =,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.7.B解析:B 【解析】 【分析】利用对数的运算法则将函数()()()224log log 41f x x x =++化为()2221log 1log 12x x +++,利用配方法可得结果.【详解】化简()()()224log log 41f x x x =++()2221log 1log 12x x =+++22211131log log 224161616x x ⎛⎫=++-≥-= ⎪⎝⎭,即()f x 的最小值为3116,故选B.【点睛】本题主要考查对数的运算法则以及二次函数配方法求最值,属于中档题. 求函数最值常见方法有,①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图象法.8.B解析:B 【解析】 【分析】利用换元法求函数解析式,注意换元后自变量范围变化. 【详解】 令2x t +=,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+ ()2x ≥.【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.9.D解析:D 【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.10.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.11.B解析:B 【解析】 【分析】由函数的解析式可得函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1,当x =0或x =4时,函数值等于5,结合题意求得m 的范围. 【详解】∵函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1, 当x =0或x =4时,函数值等于5.且f (x )=x 2﹣4x +5在区间[0,m ]上的最大值为5,最小值为1, ∴实数m 的取值范围是[2,4], 故选:B . 【点睛】本题主要考查二次函数的性质应用,利用函数图像解题是关键,属于中档题.12.C解析:C 【解析】作出函数函数()21,0,|log ,0,x x f x x x ⎧+≤⎪=⎨⎪⎩的图象如图所示,由图象可知,123442,1,12x x x x x +=-=<≤, ∴ ()312334422222x x x x x x x ++=-+=-+, ∵422y x =-+在412x <≤上单调递增,∴41021x <-+≤,即所求范围为(]0,1。
浙江省宁波市高一上学期期中数学试卷(1)
浙江省宁波市高一上学期期中数学试卷(1)姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019高一上·喀什月考) 以下5个关系:,,,,正确的是()A . 1B . 2C . 3D . 42. (2分) (2017高一上·沙坪坝期中) 设集合A={x|x2﹣4x+3≥0},B={x|2x﹣3≤0},则A∪B=()A . (﹣∞,1]∪[3,+∞)B . [1,3]C .D .3. (2分)下列各图表示两个变量x、y的对应关系,则下列判断正确的是()A . 都表示映射,都表示y是x的函数B . 仅③表示y是x的函数C . 仅④表示y是x的函数D . 都不能表示y是x的函数4. (2分) (2020高二上·黄陵期末) 设 , 是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A .B .C .D .5. (2分)已知f(x)=,则f{f[f()]}=()A . -1B . 0C . 1D . 26. (2分)若集合{1,,a}={0,a+b,a2},则a2+b3=()A . ﹣1B . 1C . 0D . ±17. (2分) (2016高一下·定州开学考) 下列函数f(x)中,满足“对任意x1 ,x2∈(﹣∞,0),当x1<x2时,都有f(x1)<f(x2)”的函数是()A . f(x)=﹣x+1B . f(x)=x2﹣1C . f(x)=2xD . f(x)=ln(﹣x)8. (2分) (2018高三上·昭通期末) 已知定义域为(-3,3)的函数f(x)=27x-x3 ,如果f(3-m)+f (3-m2)<0,则实数m的取值范围为()A . (2, )B . (- , )C . (- ,-2)D . (- ,-2) (2, )二、填空题 (共7题;共7分)9. (1分) (2017高二下·伊春期末) 若函数在区间(-∞,2 上是减函数,则实数的取值范围是________10. (1分)如图所示,AB为⊙O的直径,AB=2,OC是⊙O的半径,OC⊥A B,点D在上, =2 ,点P是OC上一动点,则PA+PD的最小值为________.11. (1分) (2016高一上·南通期中) 已知函数f(x)=kx2+2kx+1在[﹣3,2]上的最大值为5,则k的值为________12. (1分) (2016高一上·平阳期中) 已知f(x)是偶函数,当x<0时,f(x)=x2+x,则f(3)=________.13. (1分) (2019高一上·锡林浩特月考) 已知f(x)=2x+3,g(x+2)=f(x),则g(x)=________.14. (1分) (2015高一上·柳州期末) 函数的定义域是________.15. (1分) (2016高一上·东海期中) 已知R上的奇函数f(x),对任意x∈R,f(x+1)=﹣f(x),且当x∈(﹣1,1)时,f(x)=x,则f(3)+f(﹣7.5)=________.三、解答题 (共5题;共55分)16. (5分)(2017高一上·钦州港月考) 已知全集 , 集合 ,.(I)求 , ;(II)求 , .17. (15分) (2019高一上·番禺期中) 某产品生产厂家生产一种产品,每生产这种产品(百台),其总成本为万元,其中固定成本为42万元,且每生产1百台的生产成本为15万元总成本固定成本生产成本销售收入万元满足,假定该产品产销平衡即生产的产品都能卖掉,根据上述条件,完成下列问题:(1)写出总利润函数的解析式利润销售收入总成本;(2)要使工厂有盈利,求产量的范围;(3)工厂生产多少台产品时,可使盈利最大?18. (15分) (2018高一上·如东期中) 已知f(x)=,x∈(-2,2).(1)判断f(x)的奇偶性并说明理由;(2)求证:函数f(x)在(-2,2)上是增函数;(3)若f(2+a)+f(1-2a)>0,求实数a的取值范围.19. (10分) (2019高一上·海林期中) 已知函数(1)若的定义域为 ,求实数的取值范围.(2)若其中 =1,求函数f(x)的单调区间.20. (10分) (2019高一上·长春月考) 已知二次函数的最小值为1,且 . (1)求的解析式;(2)若在区间上不单调,求实数a的取值范围.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共7题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共5题;共55分)16-1、17-1、17-2、17-3、18-1、18-2、18-3、19-1、19-2、20-1、20-2、。
高一数学第一学期期中试卷
一第一学期数学期中试卷一、选择题(本大题共12小题,每小题4分,共48分,每小题都只有一个正确答案)1、已知集合A = {}41|≤≤xx,B = {}Rkkxx∈>,,若A⊆B,则k取值的集合是····( )A) {}1|≤kk B) {}4|<kk C) {}4|≤kk D) {}1|<kk2、与函数lg(1)10xy-=的图象相同的函数是········································()A)1y x=-B)1y x=-C)211xyx-⎛⎫= ⎪-⎝⎭D)211xyx-=+3、已知4,(6)()(2),(6)x xf xf x x-≥⎧=⎨+<⎩,则(3)f=·······························()A)3 B)2 C)1 D)44、已知2221()(1)m mf x m m x--=++是幂函数,则m=·····························()A)0B)1-C)01-或D)m R∈5、函数ln26y x x=+-的零点必位于如下的哪一个区间·······················()A)(1,2)B)(2,3)C)(3,4)D)(4,5)6、已知10radα=,则α是················································()A)第一象限角B)第二象限角C)第三象限角D)第四象限角7、设偶函数)(xf的定义域为R,当x],0[+∞∈时)(xf是增函数,则(2),(),(3)f f fπ--的大小关系是································································()A)()(3)(2)f f fπ>->-B)()(2)(3)f f fπ>->-C)()(3)(2)f f fπ<-<-D)()(2)(3)f f fπ<-<-8、已知函数log()ay x b=+的图象如图所示,则a b、的取值范围分别是···········( )A) 01,1a b<<>B) 1,1a b>>C) 01,1a b<<<D) 1,1a b><9、已知)(xf是奇函数,当0>x时)1()(xxxf+-=,当0<x时)(xf=··········()1A)(1)x x + B) (1)x x - C) (1)x x -+ D) (1)x x -10、若函数432--=x x y 的定义域为[0 ,m],值域为⎥⎦⎤⎢⎣⎡--4,425,则 m 的取值范围 是·······························································( )A)[0 ,4] B)[23 ,4] C)[23 ,3] D)⎪⎭⎫⎢⎣⎡+∞,2311、某电子公司七年来,生产VCD 机总产量C (万台)与生产时间t(年)的函数关系如图,下列四种说法(1)前3年中,产量增长速度越来越快; (2)前3年中,产量增长速度越来越慢; (3)三年后,这种产品停止生产; (4)三年后,年产量保持为100万台;其中说法正确的是····················································· ( ) A)(1)(3) B)(2)(3) C)(2)(4) D)(1)(4)12、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是············ ( )A)(0,1) B)(1,2) C)(0,2) D)(2,)+∞二、填空题(本大题共7小题,每小题3分,共21分) 13、已知2(21)2,f x x x +=-则(2)f = .14、已知函数53()2f x ax bx cx =-++,且(5)17f -=,则(5)f =15、已知8123==y x,则yx 11-=_________ 16、函数223y x x =+-的单调减区间为 .17、已知,,a b c 依次为方程20.520,log 2log xx x x x +===和的实根,则,,a b c 的大小关系为18、已知函数)(x f 为偶函数,当[)+∞∈,0x 时,1)(-=x x f ,则(1)0f x -<的解集是19、已知函数22log ()y x ax a =--定义域为R ,则实数a 的取值范围是___________.三、解答题(本大题共5小题,共51分,请写出详细解答过程) 20、(本小题10分)求下列各式的值。
镇海中学数学高一上期中习题(含答案解析)
一、选择题1.(0分)[ID :11825]设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,52.(0分)[ID :11805]三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<<B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<3.(0分)[ID :11801]设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 4.(0分)[ID :11782]设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1x x x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( )A .1-B .13- C .12- D .135.(0分)[ID :11778]对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( )A .315,22⎛⎫ ⎪⎝⎭B .[]28,C .[)2,8D .[]2,76.(0分)[ID :11773]如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()U M P S ⋂⋂D .()()U M P S ⋂⋃7.(0分)[ID :11755]函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ).A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]8.(0分)[ID :11752]已知函数)245f x x x =+,则()f x 的解析式为( )A .()21f x x =+B .()()212f x x x =+≥ C .()2f x x = D .()()22f x x x =≥9.(0分)[ID :11749]设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z 10.(0分)[ID :11762]已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数B .奇函数,且在(0,10)是增函数C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数 11.(0分)[ID :11740]三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( )A .a c b >>B .a b c >>C .b a c >>D .c a b >>12.(0分)[ID :11737]已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<13.(0分)[ID :11732]方程 4log 7x x += 的解所在区间是( )A .(1,2)B .(3,4)C .(5,6)D .(6,7)14.(0分)[ID :11729]已知函数f(x)={(2a −1)x +7a −2,(x <1)a x ,(x ≥1)在(-∞,+∞)上单调递减,则实数 a 的取值范围是( ) A .(0,1) B .(0,12)C .[38,12)D .[38,1) 15.(0分)[ID :11803]设0.13592,ln,log 210a b c ===,则,,a b c 的大小关系是 A .a b c >> B .a c b >> C .b a c >> D .b c a >>二、填空题16.(0分)[ID :11920]已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.17.(0分)[ID :11915]幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.18.(0分)[ID :11912]已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += .19.(0分)[ID :11871]关于下列命题:①若函数2x y =的定义域是{|0}x x ≤,则它的值域是{|1}y y ≤;② 若函数1y x =的定义域是{|2}x x >,则它的值域是1|2y y ⎧⎫≤⎨⎬⎩⎭; ③若函数2y x 的值域是{|04}y y ≤≤,则它的定义域一定是{|22}x x -≤≤; ④若函数2log y x =的值域是{|3}y y ≤,则它的定义域是{|08}x x <≤.其中不正确的命题的序号是_____________( 注:把你认为不正确的命题的序号都填上).20.(0分)[ID :11869]如果函数221x x y aa =+-(0a >,且1a ≠)在[]1,1-上的最大值是14,那么a 的值为__________.21.(0分)[ID :11850]已知函数f(x)=log a (2x −a)在区间[12,23],上恒有f (x )>0则实数a 的取值范围是_____.22.(0分)[ID :11849]若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是__________. 23.(0分)[ID :11839]用{}min ,,a b c 表示,,a b c 三个数中最小值,则函数{}()min 41,4,8f x x x x =++-+的最大值是 .24.(0分)[ID :11926]已知()2x a x af x ++-=,g(x)=ax+1 ,其中0a >,若()f x 与()g x 的图象有两个不同的交点,则a 的取值范围是______________.25.(0分)[ID :11904]已知函数())ln 1f x x =+,()4f a =,则()f a -=________.三、解答题26.(0分)[ID :12025]已知函数()()log 1x a f x a =-(0a >,1a ≠) (1)当12a =时,求函数()f x 的定义域; (2)当1a >时,求关于x 的不等式()()1f x f <的解集;(3)当2a =时,若不等式()()2log 12x f x m -+>对任意实数[]1,3x ∈恒成立,求实数m 的取值范围.27.(0分)[ID :11977]围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元).(Ⅰ)将y 表示为x 的函数;(Ⅱ)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.28.(0分)[ID :11969]2019年,随着中国第一款5G 手机投入市场,5G 技术已经进入高速发展阶段.已知某5G 手机生产厂家通过数据分析,得到如下规律:每生产手机()010x x ≤≤万台,其总成本为()G x ,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入()R x 万元满足()24004200,05,20003800,510.x x x R x x x ⎧-+≤≤=⎨-<≤⎩(1)将利润()f x 表示为产量x 万台的函数;(2)当产量x 为何值时,公司所获利润最大?最大利润为多少万元?29.(0分)[ID :11960]设()()()log 1log (30,1)a a f x x x a a =++->≠,且()12f =. (1)求a 的值及()f x 的定义域;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值. 30.(0分)[ID :11953]设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A∪B=A ,求实数a 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.A3.B4.B5.C6.C7.D8.B9.D10.C11.B12.C13.C14.C15.A二、填空题16.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实17.【解析】【分析】由条件得MN则结合对数的运算法则可得αβ=1【详解】由条件得MN可得即α=loβ=lo所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生18.【解析】若则在上为增函数所以此方程组无解;若则在上为减函数所以解得所以考点:指数函数的性质19.①②③【解析】【分析】通过定义域和值域的相关定义及函数的增减性即可判断①②③④的正误【详解】对于①当时故①不正确;对于②当时则故②不正确;对于③当时也可能故③不正确;对于④即则故④正确【点睛】本题主20.3或【解析】【分析】令换元后函数转化为二次函数由二次函数的性质求得最大值后可得但是要先分类讨论分和求出的取值范围【详解】设则对称轴方程为若则∴当时解得或(舍去)若则∴当时解得或(舍去)答案:3或【点21.(131)【解析】【分析】根据对数函数的图象和性质可得函数f(x)=loga(2x﹣a)在区间1223上恒有f(x)>0即0<a<10<2x-a<1或a>12x-a>1分别解不等式组可得答案【详解】22.【解析】【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实23.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题24.(01)【解析】结合与的图象可得点睛:数形结合是数学解题中常用的思想方法数形结合的思想可以使某些抽象的数学问题直观化生动化能够变抽象思维为形象思维有助于把握数学问题的本质在运用数形结合思想分析和解决25.【解析】【分析】发现计算可得结果【详解】因为且则故答案为-2【点睛】本题主要考查函数的性质由函数解析式计算发现是关键属于中档题三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+=∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C 2.A解析:A【解析】【分析】利用指数函数与对数函数的单调性即可得出.【详解】∵0<0.32<1,20.3>1,log 0.32<0,∴20.3>0.32>log 0.32.故选A .【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.3.B解析:B【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算4.B解析:B【解析】【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解.【详解】易知函数()f x 在[)0,+∞上单调递减,又函数()f x 是定义在R 上的偶函数,所以函数()f x 在(),0-∞上单调递增,则由()()1f x f x m -≤+, 得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立, 则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩, 解得113m -≤≤-,即m 的最大值为13-.【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m -≤+ 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题. 5.C解析:C【解析】【分析】【详解】 分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<,选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.6.C解析:C【解析】【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可.【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S).故选C .【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.7.D解析:D【解析】【分析】【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤- (1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.8.B解析:B【解析】【分析】利用换元法求函数解析式,注意换元后自变量范围变化.【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥ 即()21f x x =+ ()2x ≥. 【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.9.D解析:D【解析】令235(1)x y z k k ===>,则2log x k =,3log =y k ,5log =z k ∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.10.C解析:C【解析】【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论.【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数,而()()2lg(10)lg(10)lg 100f x x x x=++-=-, 因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增,故函数()f x 在()0,10上单调递减,故选C.【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法, ()()1f x f x -=±(1 为偶函数,1- 为奇函数) .11.B解析:B【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.12.C解析:C【解析】 由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>, 即,a b c c b a >><<.本题选择C 选项.【考点】 指数、对数、函数的单调性 【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.解析:C 【解析】 【分析】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数,根据(5)(6)0f f ⋅<,可得函数4()log 7xf x x =+-的零点所在的区间为()5,6,由此可得方程4log 7x x +=的解所在区间. 【详解】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数.∵(5)0f <,(6)0>f ∴(5)(6)0f f ⋅<∴故函数4()log 7xf x x =+-的零点所在的区间为()5,6∴方程4log 7x x +=的解所在区间是()5,6 故选C. 【点睛】零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.14.C解析:C 【解析】 【分析】由函数单调性的定义,若函数f(x)在(−∞,+∞)上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当x =1时,f 1(x)≥f 2(x),求解即可. 【详解】若函数f(x)={(2a −1)x +7a −2,(x <1)a x ,(x ≥1)在(−∞,+∞)上单调递减,则{2a −1<00<a <1(2a −1)×1+7a −2≥a ,解得38≤a <12. 故选C. 【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证y 随x 的增大而减小,故解答本题的关键是f 1(x)的最小值大于等于f 2(x)的最大值.15.A解析:A试题分析:,,即,,.考点:函数的比较大小.二、填空题16.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a ;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.17.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】 由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即α=lo 2313g ,β=lo 1323g . 所以αβ=lo 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.18.【解析】若则在上为增函数所以此方程组无解;若则在上为减函数所以解得所以考点:指数函数的性质解析:32-【解析】若1a >,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+=,此方程组无解;若01a <<,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=-,解得1{22a b ==-,所以32a b +=-.考点:指数函数的性质.19.①②③【解析】【分析】通过定义域和值域的相关定义及函数的增减性即可判断①②③④的正误【详解】对于①当时故①不正确;对于②当时则故②不正确;对于③当时也可能故③不正确;对于④即则故④正确【点睛】本题主解析:①②③ 【解析】 【分析】通过定义域和值域的相关定义,及函数的增减性即可判断①②③④的正误. 【详解】对于①,当0x ≤时,01y <≤,故①不正确;对于②,当2x >时,则1102x <<,故②不正确;对于③,当04y ≤≤时,也可能02x ≤≤,故③不正确;对于④,即2log 3x ≤,则08x <≤,故④正确.【点睛】本题主要考查定义域和值域的相关计算,利用函数的性质解不等式是解决本题的关键,意在考查学生的计算能力.20.3或【解析】【分析】令换元后函数转化为二次函数由二次函数的性质求得最大值后可得但是要先分类讨论分和求出的取值范围【详解】设则对称轴方程为若则∴当时解得或(舍去)若则∴当时解得或(舍去)答案:3或【点解析:3或13【解析】 【分析】令x t a =,换元后函数转化为二次函数,由二次函数的性质求得最大值后可得a .但是要先分类讨论,分1a >和01a <<求出t 的取值范围. 【详解】设0x t a =>,则221y t t =+-,对称轴方程为1t =-.若1,[1,1]a x >∈-,则1,xt a a a ⎡⎤=∈⎢⎥⎣⎦,∴当t a =时,2max 2114y a a =+-=,解得3a =或5a =-(舍去).若01a <<,[1,1]x ∈-,则1,xt a a a ⎡⎤=∈⎢⎥⎣⎦∴当1t a =时,2max 112114y a a ⎛⎫=+⨯-= ⎪⎝⎭解得13a =或15a =-(舍去)答案:3或13【点睛】本题考查指数型复合函数的最值,本题函数类型的解题方法是用换元法把函数转化为二次函数求解.注意分类讨论.21.(131)【解析】【分析】根据对数函数的图象和性质可得函数f (x )=loga (2x ﹣a )在区间1223上恒有f (x )>0即0<a<10<2x-a<1或a>12x-a>1分别解不等式组可得答案【详解】 解析:(13,1)【解析】【分析】根据对数函数的图象和性质可得,函数f (x )=log a (2x ﹣a )在区间[12,23]上恒有f (x )>0,即{0<a <10<2x −a <1 ,或{a >12x −a >1,分别解不等式组,可得答案.【详解】 若函数f (x )=log a (2x ﹣a )在区间[12,23]上恒有f (x )>0,则{0<a <10<2x −a <1 ,或{a >12x −a >1当{0<a <10<2x −a <1时,解得13<a <1,当{a >12x −a >1时,不等式无解.综上实数a 的取值范围是(13,1) 故答案为(13,1). 【点睛】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.22.【解析】【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实 解析:[)1,0-【解析】 【分析】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,将问题转化为函数y m =-与函数()y g x =的图象有交点,利用数形结合思想可求出实数m 的取值范围.【详解】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,则直线y m =-与函数()y g x =的图象有交点,作出函数()111,122,1x x x g x x --⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩与函数y m =-的图象如下图所示,由图象可知()01g x <≤,则01m <-≤,解得10m -≤<. 因此,实数m 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用函数有零点求参数的取值范围,在含单参数的函数零点问题的求解中,一般转化为参数直线与函数图象有交点来处理,考查数形结合思想的应用,属于中等题.23.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题解析:6 【解析】试题分析:由414,418,48x x x x x x +>++>-++>-+分别解得1, 1.4,2x x x >>>,则函数()8,2{4,1241,1x x f x x x x x -+≥=+<<+≤则可知当2x =时,函数{}()min 41,4,8f x x x x =++-+取得最大值为6 考点:分段函数的最值问题24.(01)【解析】结合与的图象可得点睛:数形结合是数学解题中常用的思想方法数形结合的思想可以使某些抽象的数学问题直观化生动化能够变抽象思维为形象思维有助于把握数学问题的本质在运用数形结合思想分析和解决解析:(0,1), 【解析】(),,2x x a x a x af x a x a≥++-⎧==⎨<⎩, 结合()f x 与()g x 的图象可得()0,1.a ∈点睛:数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念及其几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围25.【解析】【分析】发现计算可得结果【详解】因为且则故答案为-2【点睛】本题主要考查函数的性质由函数解析式计算发现是关键属于中档题 解析:2-【解析】 【分析】发现()()f x f x 2+-=,计算可得结果. 【详解】因为()()))()22f x f x lnx 1lnx 1ln 122x x +-=+++=+-+=,()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-2 【点睛】本题主要考查函数的性质,由函数解析式,计算发现()()f x f x 2+-=是关键,属于中档题.三、解答题 26.(1)(),0-∞;(2)()0,1;(3)21,log 3⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭.【解析】 【分析】(1)由a x -1>0,得a x >1 下面分类讨论:当a >1时,x >0;当0<a <1时,x <0即可求得f (x )的定义域(2)根据函数的单调性解答即可;(3)令()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈可知()g x 在[1,3]上是单调增函数,只需求出最小值即可. 【详解】本题考查恒成立问题. (1)当12a =时,()121log 12x f x ⎛⎫=- ⎪⎝⎭,故:1102x ->,解得:0x <,故函数()f x 的定义域为(),0-∞;(2)由题意知,()()log 1xa f x a =-(1a >),定义域为()0,x ∈+∞,用定义法易知()f x 为()0,x ∈+∞上的增函数,由()()1f x f <,知:01x x >⎧⎨<⎩,∴()0,1x ∈.(3)设()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈,设21212121x x xt -==-++,[]1,3x ∈, 故[]213,9x+∈,2171,2139x t ⎡⎤=-∈⎢⎥+⎣⎦,故:()min 211log 33g x g ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 又∵()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,故:()min 21log 3m g x ⎛⎫<= ⎪⎝⎭.【点睛】本题主要考查对数函数有关的定义域、单调性、值域的问题,属于中档题.27.(Ⅰ)y =225x +2360360(0)x x-〉(Ⅱ)当x =24m 时,修建围墙的总费用最小,最小总费用是10440元. 【解析】试题分析:(1)设矩形的另一边长为am ,则根据围建的矩形场地的面积为360m 2,易得360a x=,此时再根据旧墙的维修费用为45元/m ,新墙的造价为180元/m ,我们即可得到修建围墙的总费用y 表示成x 的函数的解析式;(2)根据(1)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x 值 试题解析:(1)如图,设矩形的另一边长为a m 则45x+180(x-2)+180·2a=225x+360a-360由已知xa=360,得a=,所以y=225x+(2).当且仅当225x=时,等号成立.即当x=24m 时,修建围墙的总费用最小,最小总费用是10440元. 考点:函数模型的选择与应用28.(1) ()24003200800,05,10004600,510.x x x f x x x ⎧-+-≤≤=⎨-<≤⎩ (2) 当产量为4万台时,公司所获利润最大,最大利润为5600万元. 【解析】 【分析】(1)先求得总成本函数()G x ,然后用()()()f x R x G x =-求得利润()f x 的函数表达式.(2)用二次函数的最值的求法,一次函数最值的求法,求得当产量x 为何值时,公司所获利润最大,且求得最大利润. 【详解】(1)由题意得()8001000G x x =+.因为()24004200,05,20003800,510.x x x R x x x ⎧-+≤≤=⎨-<≤⎩所以()()()24003200800,05,10004600,510.x x x f x R x G x x x ⎧-+-≤≤=-=⎨-<≤⎩(2)由(1)可得,当05x ≤≤时,()()240045600f x x =--+. 所以当4x =时,()max 5600f x =(万元)当510x <≤时,()10004600f x x =-,()f x 单调递增, 所以()()105400f x f ≤=(万元). 综上,当4x =时,()max 5600f x =(万元).所以当产量为4万台时,公司所获利润最大,最大利润为5600万元. 【点睛】本小题主要考查分段函数模型在实际生活中的运用,考查二次函数、一次函数最值有关问题的求解,属于基础题.29.(1)2a =,定义域为()1,3-;(2)2 【解析】 【分析】(1)由()12f =,可求得a 的值,结合对数的性质,可求出()f x 的定义域; (2)先求得()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数的最大值. 【详解】(1)()1log 2log l 242og a a a f =+==,解得2a =. 故()()22log 1)g 3(lo f x x x =++-,则1030x x +>⎧⎨->⎩,解得13x , 故()f x 的定义域为()1,3-.(2)函数()()()()()222log 1log 3log 31f x x x x x =++-=-+,定义域为()1,3-,()130,2,3⎡⎤⊆⎥-⎢⎣⎦,由函数2log y x =在()0,∞+上单调递增,函数()()31y x x =-+在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减,可得函数()f x 在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减. 故()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值为()21log 42f ==.【点睛】本题考查了函数的定义域,考查了函数的单调性与最值,考查了学生的计算求解能力,属于基础题.30.(1)B ∩A =[1,4),B ∩(∁U A )= [-4,1)∪[4,5);(2)1[,)2+∞ . 【解析】 【分析】(1)利用补集的定义求出A 的补集,然后根据交集的定义求解即可直接求解即可;(2 )分类讨论B 是否是空集,列出不等式组求解即可. 【详解】(1)∵A ={x |1≤x <4},∴∁U A ={x |x <1或x ≥4},∵B ={x |2a ≤x <3-a },∴a =-2时,B ={-4≤x <5},所以B ∩A =[1,4), B ∩(∁U A )={x |-4≤x <1或4≤x <5}=[-4,1)∪[4,5). (2)A ∪B =A ⇔B ⊆A , ①B =∅时,则有2a ≥3-a ,∴a ≥1, ②B ≠∅时,则有,∴, 综上所述,所求a 的取值范围为.【点睛】本题主要考查集合的交集、集合的补集以及空集的应用,属于简答题.要解答本题,首先必须熟练应用数学的转化与划归思想及分类讨论思想,将并集问题转化为子集问题,其次分类讨论进行解答,解答集合子集过程中,一定要注意空集的讨论,这是同学们在解题过程中容易疏忽的地方,一定不等掉以轻心.。
浙江省宁波市高一数学上学期期中试题(12)新人教A版
(答案请做在答题卷上,试卷上作答的一律无效)一.选择题(本大题共10小题,每小题3分,共30分.)1.已知命题p 为真命题,命题q 为假命题,则由它们组成的""""""""p q p q p q ∨∧⌝⌝形式的复合命题中,真命题有A.0个B.1个C.2个D.3个2.若直线l 的斜率k 满足1k -≤<,则l 的倾斜角α的取值范围为A.3(,]34ππB. 3(0,)[,)34πππC. 3[0,)[,]34πππD. 3[0,)[,)34πππ 3.已知圆的方程为22680x y x y ++-=,设该圆中过点(3,5)M -的最长弦、最短弦分别为,AC BD ,则四边形ABCD 的面积为A.4.双曲线22134y x -=的焦点到渐近线的距离等于2 C.3 D. 45.1m =是直线(21)20mx m y +++=和直线310x my -+=垂直的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.光线沿直线21y x =+入射到直线50x y ++=后反射,则反射光线所在直线方程为 A.270x y ++= B. 240x y --= C. 10x y --= D. 280x y ++=7.已知12,F F 为椭圆22221(0)x y a b a b +=>>的左右焦点,在此椭圆上存在点P ,使1260F PF ∠=︒,且12||2||PF PF =,则此椭圆的离心率为A.2 B.3 C. 6 D. 138.直线l 过抛物线22(0)y px p =>的焦点,且与抛物线交于,A B 两点,若线段AB 的长为6,AB 的中点到y 轴的距离为2,则该抛物线的方程是A.28y x = B. 26y x = C. 24y x = D. 22y x =9.圆222650x y x y a ++++=关于直线2y x b =+成轴对称图形,则b a -的取值范围是 A.(,1)-∞ B. (,3)-∞- C. (1,)+∞ D. (3,)-+∞10.设双曲线22221(,0)x y a b a b-=>两焦点为12,F F ,点Q 为双曲线上除顶点外的任一点,过焦点2F 作12FQF ∠的平分线的垂线,垂足为P ,则P 点轨迹是A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.圆的一部分二.填空题(本大题共7小题,每小题3分,共21分.)11.已知,x y 满足0,202x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则2z x y =+的最小值为__▲__.12.过点(1,2)的直线l 与,x y 轴的正半轴分别交于,A B 两点,O 为坐标原点,当AOB ∆的面积最小时,直线l 的方程为__▲__.13.已知,A B 为抛物线22y x =上两动点,O 为坐标原点且OA OB ⊥,若直线AB 的倾斜角为135︒,则AOB S ∆=__▲__.14.已知以抛物线24y x =过焦点的弦为直径且圆心在第四象限的圆截y 轴所得弦长为4,那么该圆的方程是__▲__.15.已知,,A B P 为椭圆22221(,0)x y m n m n+=>上不同的三点,且,A B 连线经过坐标原点,若直线,PA PB 的斜率乘积32PA PB k k =-,则该椭圆的离心率为__▲__. 16.已知抛物线21:4C x y =和圆222:(1)1C x y +-=,直线l 过1C 焦点,从左到右依次交12,C C 于,,,A B C D 四点,则AB CD =__▲__.17.若直线y xb =+与曲线1y 有公共点,则b 的取值范围是__▲__. 三.解答题(本大题共5小题,共49分.) 18.(本小题满分8分)已知C 的圆心在x 轴上,直线y x =截C 所得弦长为2,且C过点. (1)求C 方程;(2)设(,)P x y 为C 上任一点,求22(1)(3)x y -++的最大值.19.(本小题满分11分)已知双曲线C 的焦点分别为12(2,0),(2,0)F F -,一条渐近线方程为3y x =,过1F 的直线l 交双曲线于,A B 两点. (1)写出C 的方程;(2)若,A B 分别在左右两支,求直线l 斜率的取值范围; (3)若直线l 斜率为1,求2ABF ∆的周长.20.(本小题满分8分)已知点(1,0)F ,动点P 到直线2x =-的距离比到F 的距离大1. (1)求动点P 所在的曲线C 的方程;(2),A B 为曲线C 上两动点,若||||4AF BF +=,求证:AB 垂直平分线过定点,并求出该定点.21.(本小题满分11分)已知椭圆22221(0)x y a b a b+=>>的右焦点(1,0)F ,离心率为e .(1)若2e =,求椭圆方程; (2)设直线(0)y kx k =>与椭圆相交于,A B 两点,,M N 分别为线段,AF BF 的中点,若坐标原点O 在以MN 为直径的圆上.(i)将k 表示成e 的函数;(ii)当,22e ∈时,求k 的取值范围.22.(本小题满分11分)已知点(2,0)M ,P 为抛物线2:2(0)C y px p =>上一动点,若||PM 的最小值为2. (1)求抛物线C 的方程; (2)已知222:(2)(0)M x y r r -+=>,过原点O 作M 的两条切线交抛物线于,A B 两点,若直线AB 与M 也相切. (i)求r 的值;(ii)对于点2(,)Q t t ,抛物线C 上总存在两个点,R S ,使得QRS ∆三边与M 均相切,求t 的取值范围.宁波效实中学2011学年度第二学期高二(1)(2)班数学期中答题案一、选择题(本题共10小题,每小题3分,共30分)二、填空题(本题共7小题,每小题3分,共21分)11. 3 12. 2x+y-4=0 13.14.22325()(1)24x y -++= 16. 117.[5,3]-三、解答题(本大题有5题,共49分) 18.解:(1)设圆心(,0)a ,则2221(2)5a +=-+ 解得224,(4)9a x y =∴-+=(2)设43cos 3sin x y θθ=+⎧⎨=⎩,故22(1)(3)9(3))274x y πθ-++=++≤+19.解:(1)2213x y -= (2)222222(2)(31)12123033y k x k x k x k x y =+⎧⇒-+++=⎨-=⎩22212212(1)013(41)3031k k k k x x k ⎧∆=+>⎪⇒<⇒<<⎨+=<⎪-⎩(3)22||||||2||AB AF BF AB ++=+=20.(1)24y x =(2)12||||4,2AF BF x x +=∴+=,设AB 中点0(1,)M y ,则02AB k y = 所以中垂线00(1)2y y y x -=--,过(3,0) 21.(1)2212x y +=(2)(i)212121[(1)(1)]04OM ON xx y y k =+++=⇒=(ii)44k k ≥≤- 22.(1)222242212||2(1)424y PM y y y p p p ⎛⎫=-+=+-+ ⎪⎝⎭,对称轴2(2)p p - 当2p ≥,min ||2PM =,舍当02p <<,2min 7||44PMp p =-=,解得12p =或72(舍),所以2y x =(2)(i)由题意(2(2,A rB r ++,OA k ∴=:OA y x =,2(1)(2)11r r r r =⇒-+=⇒=(ii)设22112212(,),(,)()R t t S t tt t ≠,则1111:tt QR y x t t t t =+++ 1=,从而22211(1)230t t tt t --+-=,将1t 换成2t 也成立因为12t t ≠,所以21t ≠故12,t t 为方程222(1)230t x tx t --+-=的两根212122223,11t t t t t t t t -∴+==--,故1212121:t t RS y x t t t t =+++,即221322t t y x t t--=+圆心到RS 221=,故1t≠±。
2015-2016年浙江省宁波市镇海中学高一上学期数学期中试卷和解析
2015-2016学年浙江省宁波市镇海中学高一(上)期中数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)函数f(x)=+lg(3x+1)的定义域是()A.(﹣,+∞)B.(﹣,1)C.(﹣,)D.(﹣∞,﹣)2.(5分)已知点(α,﹣1)在函数y=log2x的图象上,则函数y=xα的定义域为()A.{x|x≥0}B.{x|x>0}C.{x|x∈R,x≠0}D.R3.(5分)函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)4.(5分)若集合A={0,2,x},B={x2},A∪B=A,则满足条件的实数x有()A.4个 B.3个 C.2个 D.1个5.(5分)设<<<1,那么()A.a a<a b<b a B.a a<b a<a b C.a b<a a<b a D.a b<b a<a a6.(5分)已知定义在R上的奇函数f(x)=的图象如图所示,则a,b,c 的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.a>c>b7.(5分)已知,若[x]是不超过x的最大整数,则函数y=[f(x)]﹣[f(﹣x)]的值域为()A.[﹣1,0]B.{﹣1,1}C.{﹣1,0,1}D.[﹣1,1]8.(5分)设函数f(x)=e|lnx|(e为自然对数的底数).若x1≠x2且f(x1)=f(x2),则下列结论一定不成立的是()A.x2f(x1)>1 B.x2f(x1)=1 C.x2f(x1)<1 D.x2f(x1)<x1f(x2)二、填空题(本大题共7小题,第9-12题,每小题6分,第13-15题,每小题6分,共36分.)9.(6分)已知集合A={﹣1,1},B={m|m=x+y,x∈A,y∈A},则用列举法表示集合B=;若集合M={﹣1,1,3},N={a+2,a2+4}满足M∩N={3},则实数a=.10.(6分)函数f(x)=log2(4﹣x2)的定义域为,值域为,不等式f(x)>1的解集为.11.(6分)已知a>0且a≠1,若函数f(x)=,在[﹣2,2]的最大值为2,则f[f(﹣1)]=,a=.12.(6分)已知函数f(x)=()|x﹣1|+a|x+2|.当a=1时,f(x)的单调递减区间为;当a=﹣1时,f(x)的单调递增区间为.13.(4分)若函数(a>0且a≠1)满足对任意的x1,x2当时,f(x2)﹣f(x1)<0,则实数a的取值范围为.14.(4分)如果不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则实数a的取值范围是.15.(6分)已知定义在R上的奇函数f(x)满足f(x+4)=f(x).当x∈(0,2),f(x)=ln(x2﹣x+b).若函数f(x)在区间[﹣2,2]上有5个零点,则实数b的取值范围是.三、解答题(本大题共5小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)。
宁波市镇海中学高三期初考试数学试卷
宁波市镇海中学高三期初考试数学试卷第一部分选择题1.为了使功能实现,以下哪个关于导入数据的说法是正确的? A. 导入数据前需要进一步处理原始数据 B. 导入数据时要求数据必须按照一定的格式C. 导入数据后可以直接开始进行分析D. 导入数据不需要考虑数据的质量2.在数据分析过程中,以下哪个描述是正确的? A. 数据分析只涉及定量数据 B. 数据分析是一个静态的过程 C. 数据分析可以解决所有问题 D. 数据分析是一个动态的过程3.在数据可视化中,以下哪个描述是错误的? A. 数据可视化可以帮助人们更好地理解数据 B. 数据可视化只适用于少量数据 C. 数据可视化可以用图表、图形等形式展示数据 D. 数据可视化需要选择合适的图表类型来呈现数据4.关于机器学习的说法,以下哪个是正确的? A. 机器学习只能用于处理结构化数据 B. 机器学习可以根据数据训练模型 C. 机器学习只能处理有标签的数据 D. 机器学习不需要考虑模型的泛化能力5.在数据分析中,以下哪个步骤是最后一步? A. 数据清洗 B. 数据可视化 C. 数据建模 D. 结果解释第二部分填空题1.在数据挖掘中,____方法是一种常用的无监督学习方法。
2.机器学习中使用的评价指标有精确率、____、F1 分值等。
3.数据分析的首要任务是_____,以确保数据质量。
4.在数据可视化中,直方图可以用来展示数据的____分布。
5.关联规则挖掘是数据挖掘中常用的____任务之一。
第三部分简答题1.数据清洗在数据分析中的作用是什么?列举三个数据清洗的具体方法。
2.什么是过拟合?如何在机器学习中避免过拟合?3.请简要介绍一下主成分分析(PCA)的原理和应用领域。
4.什么是交叉验证?为什么在模型评估中需要使用交叉验证?5.数据可视化在数据分析中起到了什么作用?举例说明一种常用的数据可视化类型。
在本试卷中,共包含选择题、填空题和简答题三个部分,总分100分。
请同学们根据自己的理解和知识完成答题。
2023-2024学年浙江省宁波市镇海中学高一(上)期中数学试卷【答案版】
2023-2024学年浙江省宁波市镇海中学高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x ∈Z |﹣7<2x ﹣3<4},B ={﹣1,3,5},则A ∩B =( ) A .{﹣1}B .{﹣1,3}C .{3,5}D .{﹣1,3,5}2.设a =30.5,b =(13)−0.4,c =log 0.30.4,则( ) A .a >b >c B .c >a >bC .a >c >bD .b >a >c3.函数f(x)=2x 32x −2−x 的图象大致为( ) A . B .C .D .4.已知a ,b 为正实数,且满足1a+2b+1a+3=12,则a +b 的最小值为( ) A .12B .1C .52D .25.已知函数f(x)=log 12(x 2+ax −2a)在[1,+∞)上单调递减,则实数a 的取值范围是( )A .(﹣∞,1)B .[﹣2,+∞)C .[﹣2,1)D .(﹣∞,﹣2]6.已知x ,y ∈R ,则“x +|x ﹣1|<y +|y ﹣1|”是“x <y ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.函数f(x)=x −√x 2−4x +3的值域为( ) A .(﹣∞,3]B .[1,3]C .(﹣∞,1]∪[3,+∞)D .(﹣∞,1]∪(2,3]8.已知f (x )=﹣x 2+2|x |+1,若方程[f (x )]2+mf (x )+n =0(m ,n ∈R )恰好有三个互不相等的实根,则实数m 的取值范围为( ) A .m <﹣3B .m ≤﹣2C .m <﹣3或m >﹣2D .m =﹣2或m <﹣3二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得4分,有选错的得0分,部分选对的得2分。
镇海中学第一学期期中考试高一年级数学试卷(2020新教材)
——教学资料参考参考范本——镇海中学第一学期期中考试高一年级数学试卷(2020新教材)______年______月______日____________________部门第Ⅰ卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合,,,则等于( )}{,,,,,U =123456}{,,S =145}{,,T =234()U S C T IA .B .C .D .}{,,,1456}{,15}{4}{,,,,123452.函数的值域为( )3xy =A .B .C .D .(0,)+∞[1,)+∞(0,1](0,3]3.已知是偶函数,且,则( )()()g x f x x =+(3)1f =(3)f -=A .5B .6C .7D .84.若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则这个扇形的面积为( )A .B .C .D .2cos225.下列四个函数中,以为最小正周期,且在区间上单调递减函数的是( )π(,)2ππA .B .C .D .sin 2y x =2cos y x=cos2xy =tan()y x =- 6.设函数,若,则实数的取值范围是( )()22,2,2xx f x x x ⎧<⎪=⎨≥⎪⎩()1(21)f a f a +≥-aA .B .C .D .(],1-∞(],2-∞[]2,6[)2,+∞7.函数的图象是( )()1ln ||x x f x e e -=-A B C D8.下列选项正确的是( )A .B .22(2)a a a >>其中log 3log 3(01)a b a b ><<<其中C .D . 0.50.5eπ-->200720082008200921212121++<++9.为了得到函数的图像,只需把函数的图像( )cos(2)3y x π=-A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位10.用表示非空集合中元素的个数,定义,若,,且,设实数的所有可能取值构成集合,则( )A .4B .3C .2D .1第Ⅱ卷(非选择题 共110分)二、 填空题: 本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.计算:,.31log 53______+=12ln 6.25_______e +=12.若函数的图象过点,则 ;函数的定义域为__ .23()log ()f x x ax =-+(1,2)a =()f x 13.已知函数,,则的单调递增区间为______,值域为_________. ()223x f x x +=[]12x ∈,()f x14.已知函数的图象如图所示,则________; _______.()sin()(0,,)2f x A x x R πωϕωϕ=+><∈ω=ϕ=15.已知定义在上的奇函数满足.R ()f x (1)(1)f x f x -=+若当时,,则直线与函数01x <≤()lg f x x =12y =-()f x的图象在内的交点的横坐标之和为_________. [1,6]- 16.已知函数若存在,,使得成立,则实数a 的取值范围是________.2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩12,x x R ∈12x x ≠12()()f x f x = 17.已知函数的图象过点,且对任意的都有不等式成立,若函数恰有三个不同的零点,则实数的取值范围是_________________.2()(0)f x ax bx c a =++≠(1,0)R x ∈23()231x f x x x --≤≤+-2()()()g x f x f x mx m =---m三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分14分)已知全集,集合,集合.U R={}22|(23)30A x x a x a a =-+++≤{}2|450B x x x =--≥(Ⅰ)若,求和;3a =-A B I ()U A B U ð (Ⅱ)若,求实数的取值范围.A B ≠∅I a19.(本小题满分15分)已知,且.712sin()cos()2225ππαα---+=04πα<<(Ⅰ)求的值;tan α(Ⅱ)求的值.3sin sin 3cos ααα-20.(本小题满分15分)某同学用“五点法”画函数在某一周期内的图象时,列表并填入部分数据,如下表:()sin()(0,0,||)2f x A x A πωϕωϕ=+>><x ωϕ+2ππ32π2πx2π132π ()f x44-(Ⅰ)求()f x 的解析式;(Ⅱ)求函数的单调递增区间和对称中心.()f x21.(本小题满分15分)已知函数.2()2f x x x c =-+(Ⅰ)若方程在上有两个不等的实根,求实数c 的取值范围;()1f x x=-(],1-∞(Ⅱ)当时,是否存在实数c,使得函数在区间上的值域恰为?若存在,求出c 的取值范围;若不存在,请说明理由.2a b +≤2()2f x x x c =-+[,]a b [,]a b22.(本小题满分15分)设函数是定义域为的奇函数.()(1),(0,1)x x f x a k a a a -=-->≠R(Ⅰ)若,试求使不等式在定义域上有解的的取值范围;(1)0f >2()(21)0f x tx f x +++<t(Ⅱ)若,且在上的最小值为,求的值.3(1)2f =22()2()x xg x a a mf x -=+-[1,)+∞2-m。
2016年 浙江省 高一上数学 期中测试卷1
2016年 浙江省 高一上数学 期中测试卷1考生须知:全卷分试卷和答卷.试卷共4页,有3大题,24小题,满分100分,考试时间120分.不得使用计算器.第 Ⅰ 卷一、选择题(本大题有12小题,每小题3分,共36分,请从A ,B ,C ,D 四个选项中,选出一个符合题意的正确选项,填入答题卷,不选,多选,错选均得零分.) 1.已知集合}13|{≤=x x A ,3=a ,那么下列关系正确的是( )(A )A a ⊆ (B )A a ∈ (C )A a ∉ (D )A a ∈}{ 2.函数31)(-=x x f 的定义域是 ( )(A ))3,(-∞ (B )),3(∞+ (C ) )3,(-∞),3(∞+ (D ) )3,(-∞),3(∞+ 3.函数x y =的图像是( )4. 函数()(0)f x kx b k =+>,若[0,1],x ∈ [1,1]y ∈-,则函数()y f x =的解析式是 ()(A )21y x =- (B )1(1)2y x =-(C )21y x =-或21y x =-+ (D )21y x =--5.3.0222,3.0lg ,3.0这三个数的大小顺序是 ( ) (A)3.0lg 23.023.02<<(B)3.02223.0lg 3.0<< (C )3.02223.03.0lg <<(D)23.023.023.0lg <<(A ) (B ) (C ) (D )6.若2log 3()f x x =,则(2)f = ( )(A )3 (B )3- (C )31 (D )31-7.函数x a y =在[0,1]上最大值与最小值的和为3,则a =( )(A )2 (B )21(C )4 (D )418.已知)(x f 是区间(-∝,+∝)上的偶函数,且是[0,+∝)上的减函数,则 ( ) (A))5()3(-<-f f (B))5()3(->-f f (C))5()3(f f <- (D))5()3(-=-f f9. 函数1()4x f x a -=+(0a >,且1a ≠)的图像过一个定点,则这个定点坐标是 ( ) (A )(5,1) (B )(1,5) (C )(1,4) (D )(4,1)10. 若13log <a ,则a 取值范围是 ( ) (A )3>a (B )31<<a (C )10<<a (D )3>a 或10<<a 11.若增函数b ax x f +=)(与x 轴交点是)0,2(,则不等式02>-ax bx 的解集是 ( )(A )),0()21,(+∞--∞ (B ))21,0( (C ))0,21(- (D )),21()0,(+∞-∞12.若]21,0(∈x 时,恒有x a x log 4<,则a 的取值范围是 ( )(A ))22,0( (B ))1,22( (C ))2,1( (D ))2,2 第 Ⅱ 卷二、填空题(本大题有6小题,每小题3分,共18分,请将答案写在答题卷上) 13.函数)(x f 为(-∝,+∝)上的奇函数,则)0(f =_______________.14.计算2327()8= .15.已知函数⎩⎨⎧<->+=0)1(01()(x x x x x x x f ,,).则=-))1((f f _____________.16.函数f (x )=222+-ax x 在(-∞,6)内递减,则a 的取值范围为 .17.已知非空集合}|{22a x R x A <∈=,}31|{<<=x x B ,若}21|{<<=x x B A ,则实数a 的值为____________ .18.已知)(x f 在定义域),0(+∞是单调函数,当),0(+∞∈x 时,都有2]1)([=-x x f f ,则)51(f 的值是___________.三、解答题(本大题有6小题,共46分,请将解答过程写在答题卷上) 19.(本题6分)已知全集R U =,集合}31|{≤≤-=x x A ,}4|{2<=x x B , (1)求A B ; (2)求集合C A U20. (本题6分)计算: 2110025lg 41lg -÷⎪⎭⎫⎝⎛-21.(本题8分)已知函数xx x f 1)(-=, (1)判断函数)(x f 的奇偶性;(2)证明:)(x f 在),0(+∞上为单调增函数;22.(本题8分)已知函数2)1(log )(2-+=x x f .(1)若()0f x >,求x 的取值范围. (2)若]3,1(-∈x ,求)(x f 的值域.23.(本题8分)已知函数222)(a ax x x f --=)(R x ∈.(Ⅰ)关于x 的不等式0)(<x f 的解集为A ,且]2,1[-⊇A ,求a 的取值范围;(Ⅱ)是否存在实数a ,使得当R x ∈时,⎩⎨⎧=-=-0)(|)(|0)(|)(|x f x f x f x f 成立.若存在给出证明,若不存在说明理由.24.(本题10分)已知函数t t t bx x x f +=2)(。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年浙江省宁波市镇海中学高一(上)期中数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)函数f(x)=+lg(3x+1)的定义域是()A.(﹣,+∞)B.(﹣,1)C.(﹣,)D.(﹣∞,﹣)2.(5分)已知点(α,﹣1)在函数y=log2x的图象上,则函数y=xα的定义域为()A.{x|x≥0}B.{x|x>0}C.{x|x∈R,x≠0}D.R3.(5分)函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)4.(5分)若集合A={0,2,x},B={x2},A∪B=A,则满足条件的实数x有()A.4个 B.3个 C.2个 D.1个5.(5分)设<<<1,那么()A.a a<a b<b a B.a a<b a<a b C.a b<a a<b a D.a b<b a<a a6.(5分)已知定义在R上的奇函数f(x)=的图象如图所示,则a,b,c 的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.a>c>b7.(5分)已知,若[x]是不超过x的最大整数,则函数y=[f(x)]﹣[f(﹣x)]的值域为()A.[﹣1,0]B.{﹣1,1}C.{﹣1,0,1}D.[﹣1,1]8.(5分)设函数f(x)=e|lnx|(e为自然对数的底数).若x1≠x2且f(x1)=f(x2),则下列结论一定不成立的是()A.x2f(x1)>1 B.x2f(x1)=1 C.x2f(x1)<1 D.x2f(x1)<x1f(x2)二、填空题(本大题共7小题,第9-12题,每小题6分,第13-15题,每小题6分,共36分.)9.(6分)已知集合A={﹣1,1},B={m|m=x+y,x∈A,y∈A},则用列举法表示集合B=;若集合M={﹣1,1,3},N={a+2,a2+4}满足M∩N={3},则实数a=.10.(6分)函数f(x)=log2(4﹣x2)的定义域为,值域为,不等式f(x)>1的解集为.11.(6分)已知a>0且a≠1,若函数f(x)=,在[﹣2,2]的最大值为2,则f[f(﹣1)]=,a=.12.(6分)已知函数f(x)=()|x﹣1|+a|x+2|.当a=1时,f(x)的单调递减区间为;当a=﹣1时,f(x)的单调递增区间为.13.(4分)若函数(a>0且a≠1)满足对任意的x1,x2当时,f(x2)﹣f(x1)<0,则实数a的取值范围为.14.(4分)如果不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则实数a的取值范围是.15.(6分)已知定义在R上的奇函数f(x)满足f(x+4)=f(x).当x∈(0,2),f(x)=ln(x2﹣x+b).若函数f(x)在区间[﹣2,2]上有5个零点,则实数b的取值范围是.三、解答题(本大题共5小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)16.(14分)(1)已知x=27,y=64,化简并计算:;(2)计算:2log32﹣log3.17.(14分)A={x|x2﹣2x﹣8<0},B={x|x2+2x﹣3>0},C={x|x2﹣3ax+2a2<0},(1)求A∩B.(2)试求实数a的取值范围,使C⊆(A∩B).18.(14分)已知函数f(x)=4x2﹣4ax+a2﹣2a+2.(1)若函数f(x)在区间[0,2]上的最大值记为g(a),求g(a)的解析式;(2)若函数f(x)在区间[0,2]上的最小值为3,求实数a的值.19.(14分)已知定义域为R的函数f(x)=是奇函数.(1)求实数a,b的值;(2)判断函数f(x)的单调性,并说明理由;(3)若对任意的t∈(1,4),不等式恒成立,求实数k的取值范围.20.(16分)已知函数f(x)=x2+(x﹣1)|x﹣a|.(1)若a=﹣1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)若a<1且不等式f(x)≥2x﹣3对一切实数x∈R恒成立,求a的取值范围.2015-2016学年浙江省宁波市镇海中学高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)函数f(x)=+lg(3x+1)的定义域是()A.(﹣,+∞)B.(﹣,1)C.(﹣,)D.(﹣∞,﹣)【解答】解:要使函数有意义需,解得﹣<x<1.故选:B.2.(5分)已知点(α,﹣1)在函数y=log2x的图象上,则函数y=xα的定义域为()A.{x|x≥0}B.{x|x>0}C.{x|x∈R,x≠0}D.R【解答】解:∵点(α,﹣1)在函数y=log2x的图象上,∴log2α=﹣1,即.∴y=xα=.函数的定义域为[0,+∞).故选:A.3.(5分)函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)【解答】解:因为f(0)=﹣1<0,f(1)=e﹣1>0,所以零点在区间(0,1)上,故选:C.4.(5分)若集合A={0,2,x},B={x2},A∪B=A,则满足条件的实数x有()A.4个 B.3个 C.2个 D.1个【解答】解:∵A={0,2,x},B={x2},A∪B=A,∴B⊆A,即x2=0或x2=2或x2=x,解得:x=0或x=1或x=或x=﹣,当x=0时,A={0,2},不合题意,舍去;其他解符合题意,则满足条件的实数x有3个.故选:B.5.(5分)设<<<1,那么()A.a a<a b<b a B.a a<b a<a b C.a b<a a<b a D.a b<b a<a a【解答】解:∵<<<1且y=()x在R上是减函数.∴0<a<b<1∴指数函数y=a x在R上是减函数∴a b<a a∴幂函数y=x a在R上是增函数∴a a<b a∴a b<a a<b a故选:C.6.(5分)已知定义在R上的奇函数f(x)=的图象如图所示,则a,b,c 的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.a>c>b【解答】解:∵函数过原点,∴f(0)==0,∴b=0,由图象知函数的定义域为R,则c>0,又f(1)=1,即f(1)=,则a=1+c>c,∴a>c>b,故选:D.7.(5分)已知,若[x]是不超过x的最大整数,则函数y=[f(x)]﹣[f(﹣x)]的值域为()A.[﹣1,0]B.{﹣1,1}C.{﹣1,0,1}D.[﹣1,1]【解答】解:,;2x>0;∴;∴,;∴①时,;;即;∴[f(x)]=﹣1,[f(﹣x)]=0;∴[f(x)]﹣[f(﹣x)]=﹣1;②f(x)=0时,;∴f(﹣x)=0;∴[f(x)]=0,[f(﹣x)]=0;∴[f(x)]﹣[f(﹣x)]=0;③时,;∴;即;∴[f(x)]=0,[f(﹣x)]=﹣1;∴[f(x)]﹣[f(﹣x)]=0﹣(﹣1)=1;∴综上得,函数y=[f(x)]﹣[f(﹣x)]的值域为{﹣1,0,1}.故选:C.8.(5分)设函数f(x)=e|lnx|(e为自然对数的底数).若x1≠x2且f(x1)=f(x2),则下列结论一定不成立的是()A.x2f(x1)>1 B.x2f(x1)=1 C.x2f(x1)<1 D.x2f(x1)<x1f(x2)【解答】解:f(x)=,作出y=f(x)的图象,若0<x1<1<x2,则f(x1)=>1,f(x2)=x2>1,则x2f(x1)>1,则A可能成立;若0<x2<1<x1,则f(x2)=>1,f(x1)=x1>1,则x2f(x1)=x2x1=1,则B可能成立;对于D.若0<x1<1<x2,则x2f(x1)>1,x1f(x2)=1,则D不成立;若0<x2<1<x1,则x2f(x1)=1,x1f(x2)>1,则D成立.故有C一定不成立.故选:C.二、填空题(本大题共7小题,第9-12题,每小题6分,第13-15题,每小题6分,共36分.)9.(6分)已知集合A={﹣1,1},B={m|m=x+y,x∈A,y∈A},则用列举法表示集合B={0} ;若集合M={﹣1,1,3},N={a+2,a2+4}满足M∩N={3},则实数a=1.【解答】解:∵A={﹣1,1},B={m|m=x+y,x∈A,y∈A},∴B={0,﹣2,2};∵集合M={﹣1,1,3},N={a+2,a2+4},且M∩N={3},∴a+2=3或a2+4=3(无解,舍去),解得:a=1,故答案为:{0};110.(6分)函数f(x)=log2(4﹣x2)的定义域为(﹣2,2),值域为(﹣∞,2] ,不等式f(x)>1的解集为.【解答】解:依题意得:4﹣x2>0,解得﹣2<x<2,所以该函数的定义域为:(﹣2,2).∵4﹣x2>0,=4,∴(4﹣x2)最大值∴在(﹣2,2)上,该函数的值域为:(﹣∞,2].由f(x)>1得到:log2(4﹣x2)>1,则4﹣x2>2,解得﹣<x<.故不等式f(x)>1的解集为.故答案是:(﹣2,2);(﹣∞,2];.11.(6分)已知a>0且a≠1,若函数f(x)=,在[﹣2,2]的最大值为2,则f[f(﹣1)]=0,a=.【解答】解:当a>1时,y=a x+1在[﹣2,1)递增,无最大值,y=log2x在[1,2]上递增,则最大值为log22=1,与题意不符,则舍去;当0<a<1时,y=a x+1在[﹣2,1)上递减,则最大值为a﹣1=2,即a=,f(﹣1)=()0=1,f[f(﹣1)]=f(1)=log21=0,故答案为:0,.12.(6分)已知函数f(x)=()|x﹣1|+a|x+2|.当a=1时,f(x)的单调递减区间为[1,+∞);当a=﹣1时,f(x)的单调递增区间为[﹣2,1] .【解答】解:(1)∵f(x)=()|x﹣1|+a|x+2|.∴当a=1时,f(x)=()|x﹣1|+|x+2|,令u(x)=|x﹣1|+|x+2|=,∴u(x)在[1,+∞)单调递增,根据复合函数的单调性可判断:f(x)的单调递减区间为[1,+∞),(2)当a=﹣1时,f(x)=()|x﹣1|﹣|x+2|令u(x)=|x﹣1|﹣|x+2|=,u(x)在[﹣2,1]单调递减,∴根据复合函数的单调性可判断:f(x)的单调递增区间为[﹣2,1],故答案为:[1,+∞),[﹣2,1],13.(4分)若函数(a>0且a≠1)满足对任意的x1,x2当时,f(x2)﹣f(x1)<0,则实数a的取值范围为.【解答】解:∵y=x2﹣ax+5=(x﹣)2+5﹣在对称轴左边递减,∴当x1<x2≤时,y1>y2∵对任意的x1,x2当时,f(x2)﹣f(x1)<0,即f(x1)>f(x2)故应有a>1又因为y=x2﹣ax+5在真数位置上所以须有5﹣>0∴<a<2综上得故答案为:14.(4分)如果不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则实数a的取值范围是(﹣∞,5] .【解答】解:不等式x2<|x﹣1|+a等价为x2﹣a<|x﹣1|,设f(x)=x2﹣|x﹣1|﹣a,则f(x)=,若不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则等价为,即,即,解得a≤5,故答案为:(﹣∞,5]15.(6分)已知定义在R上的奇函数f(x)满足f(x+4)=f(x).当x∈(0,2),f(x)=ln(x2﹣x+b).若函数f(x)在区间[﹣2,2]上有5个零点,则实数b的取值范围是(,1]∪{} .【解答】解:∵f(x+4)=f(x),且f(x)奇函数,∴令x=﹣2代入上式得,f(2)=f(﹣2)=﹣f(2),所以,f(2)=0且f(﹣2)=0,所以,f(x)在区间[﹣2,2]上有零点x=﹣2,x=0,x=2,要使函数f(x)在区间[﹣2,2]上有5个零点,则f(x)在区间(0,2)内必有唯一零点,即方程x2﹣x+b=1在(0,2)内有唯一实数根,分离参数b得,b=﹣x2+x+1=﹣(x﹣)2+,x∈(0,2),结合函数g(x)=﹣(x﹣)2+的图象,如右图(实线)要使g(x)=b只有一个实数根,则b∈(g(2),g(1)]=(﹣1,1],另外,当b=g()=(过顶点),也符合题意,又因为,当x∈(0,2)时,真数x2﹣x+b=(x﹣)2+b﹣≥b﹣>0,所以,b>,故实数b的取值范围为:(,1]∪{}.三、解答题(本大题共5小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)16.(14分)(1)已知x=27,y=64,化简并计算:;(2)计算:2log32﹣log3.【解答】解:(1)已知x=27,y=64,=24=24×=12.(2)2log32﹣log3=2log32﹣5log32+2+3log32﹣9=﹣7.17.(14分)A={x|x2﹣2x﹣8<0},B={x|x2+2x﹣3>0},C={x|x2﹣3ax+2a2<0},(1)求A∩B.(2)试求实数a的取值范围,使C⊆(A∩B).【解答】解:(1)依题意得:A={x|x2﹣2x﹣8<0}={x|﹣2<x<4},B={x|x2+2x ﹣3>0}={x|x>1或x<﹣3},∴A∩B={x|1<x<4};(2)分三种情况考虑:①当a=0时,C=∅,符合C⊆(A∩B);②当a>0时,C={x|a<x<2a},要使C⊆(A∩B),则有,解得:1≤a≤2;③当a<0时,C={x|2a<x<a},显然a<0,C不为A∩B的子集,不合题意,舍去,综上,a的范围是1≤a≤2或a=0.18.(14分)已知函数f(x)=4x2﹣4ax+a2﹣2a+2.(1)若函数f(x)在区间[0,2]上的最大值记为g(a),求g(a)的解析式;(2)若函数f(x)在区间[0,2]上的最小值为3,求实数a的值.【解答】解:(1)f(x)=4x2﹣4ax+a2﹣2a+2=+2﹣2a.①当0时,函数f(x)在区间[0,2]上单调递增,∴g(a)=f(2)=a2﹣10a+18;②当时,函数f(x)在区间[0,2]上单调递减,∴g(a)=f(0)=a2﹣2a+2;③当时,函数f(x)在区间[0,a)上单调递减,在区间上单调递增,∴g(a)=max{f(0),f(2)}.∴g(a)=.(2)由(1)可得:①当0时,函数f(x)在区间[0,2]上单调递增,∴当x=0时,函数f(x)取得最小值,f(0)=a2﹣2a+2=3,解得a=1﹣;②当时,函数f(x)在区间[0,2]上单调递减,∴当x=2时,函数f(x)取得最小值,f(2)=a2﹣10a+18=3,解得a=5+;③当时,函数f(x)在区间[0,a)上单调递减,在区间上单调递增,∴当x=时,函数f(x)取得最小值,f()=2﹣2a=3,解得a=﹣,舍去.综上可得a=1﹣;或5+.19.(14分)已知定义域为R的函数f(x)=是奇函数.(1)求实数a,b的值;(2)判断函数f(x)的单调性,并说明理由;(3)若对任意的t∈(1,4),不等式恒成立,求实数k的取值范围.【解答】解:(1)f(x)是定义在R上的奇函数;∴f(0)=0,且f(﹣1)=﹣f(1);∴;解得b=1,a=2;即;(2)f(x)在R上单调递减.=;设x1,x2∈R,且x1<x2,则:=;∵x1<x2;∴;∴;又;∴f(x1)>f(x2);∴f(x)在R上单调递减.(3)若对任意的t∈(1,4),不等式恒成立,即f(t)>﹣f(4﹣k),∵函数f(x)是奇函数,∴f(t)>﹣f(4﹣k)=f(k﹣4),∵函数f(x)为减函数,∴t<k﹣4,即k>4+t,则k>=+,∵t∈(1,4),∴∈(1,2),设x=,则x∈(1,2),则g(x)=x+在(1,2)上为减函数,则g(2)<g(x)<g(1),即4<g(x)<5,即k≥5.20.(16分)已知函数f(x)=x2+(x﹣1)|x﹣a|.(1)若a=﹣1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)若a<1且不等式f(x)≥2x﹣3对一切实数x∈R恒成立,求a的取值范围.【解答】解:(1)当a=﹣1时,f(x)=x2+(x﹣1)|x+1|,故有,当x≥﹣1时,由f(x)=1,有2x2﹣1=1,解得x=1或x=﹣1.当x<﹣1时,f(x)=1恒成立.∴方程的解集为{x|x≤﹣1或x=1};(2),若f(x)在R上单调递增,则有,解得.∴当时,f(x)在R上单调递增;(3)设g(x)=f(x)﹣(2x﹣3),则,不等式f(x)≥2x﹣3对一切实数x∈R恒成立,等价于不等式g(x)≥0对一切实数x∈R恒成立.∵a<1,∴当x∈(﹣∞,a)时,g(x)单调递减,其值域为(a2﹣2a+3,+∞),由于a2﹣2a+3=(a﹣1)2+2≥2,∴g(x)≥0成立.当x∈[a,+∞)时,由a<1,知,g(x)在x=处取得最小值,令,解得﹣3≤a≤5,又a<1,∴﹣3≤a<1.综上,a∈[﹣3,1).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。