2014年春季新版新人教版八年级数学下学期第19章、一次函数单元复习试卷27

合集下载

人教版数学八年级下《第十九章一次函数》单元测试题含答案

 人教版数学八年级下《第十九章一次函数》单元测试题含答案

人教版数学八年级下《第十九章一次函数》单元测试题含答案一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

A.(0,2-)B.(32,0)C.(8,20)D.(12,12)2.变量x,y有如下关系:①x+y=10②y=x5-③y=|x-3④y2=8x.其中y是x的函数的是A.①②②③④B. ①②③C. ①②D. ①3.下列各曲线中不能表示y是x的函数是().A.B.C.D.4.已知一次函数2y x a=+与y x b=-+的图象都经过A(2-,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是A.k>5B.k<5C.k>-5D.k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线3xy=得到53xy+=的图象,那么直线3xy=必须().A.向上平移5个单位B.向下平移5个单位C.向上平移53个单位D.向下平移53个单位8.经过一、二、四象限的函数是A.y=7B.y=-2xC.y=7-2xD.y=-2x-7题号 1 2 3 4 5 6 7 8 9 10 11 12 答案9.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±211. 根据如图的程序,计算当输入3x =时,输出的结果y = .12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(本大题共5个小题,每小题3分,共15分。

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析

人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。

人教新版八年级下册数学《第19章 一次函数》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册数学《第19章 一次函数》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第19章一次函数》单元测试卷(1)一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y25.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.146.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.二、填空题11.若y=(m+1)是正比例函数,则m的值为.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是.13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是.15.函数中,自变量x的取值范围是.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是.19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P的坐标是.20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜元.(2)若通讯费用为60元,则B方案比A方案的通话时间(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜元.(4)若两种方案通讯费用相差10元,则通话时间是分.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.人教新版八年级下册《第19章一次函数》单元测试卷(1)参考答案与试题解析一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.【考点】函数的图象.【分析】找到对于x的一个值,y都有唯一的值与其对应的图象即可.【解答】解:A、B、C、中,对于x的一个值,y都有2个值与其对应,所以y不是x的函数.故选:D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定【考点】一次函数图象与系数的关系.【分析】由题意y=﹣3mx﹣4(m≠0),y随x的增大而增大,可得自变量系数大于0,进而可得出m的范围.【解答】解:∵y=﹣3mx﹣4(m≠0),y随x的增大而增大,∴﹣3m>0,∴m<0.故选:B.3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x【考点】待定系数法求正比例函数解析式.【分析】把点(﹣1,2)代入y=mx,即可求得m的值,则函数的解析式即可求得.【解答】解:把点(﹣1,2)代入y=mx得:﹣m=2,解得:m=﹣2,则函数的解析式是:y=﹣2x.故选:D.4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2【考点】正比例函数的性质.【分析】根据正比例函数图象的性质可知.【解答】解:根据k<0,得y随x的增大而减小.①当x1<x2时,y1>y2,②当x1>x2时,y1<y2.故选:C.5.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.14【考点】动点问题的函数图象.【分析】根据函数的图象知BC=4,AC=3,根据直角三角形的面积的求法即可求得其面积.【解答】解:∵D是斜边AB的中点,∴根据函数的图象知BC=4,AC=3,∵∠ACB=90°,=AC•BC=×3×4=6.∴S△ABC故选:B.6.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【考点】一次函数的图象;根据实际问题列一次函数关系式.【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【解答】解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选:D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大【考点】一次函数的性质.【分析】根据凡是函数图象经过的点比能使解析式左右相等,故A错误;根据k、b的值进行分析可得B错误;根据解析式y=﹣2x+1可得x=﹣,再由x>可得﹣,再解不等式即可得到C正确;根据一次函数的性质可得D错误.【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)+1=5≠1,故图象不经过点(﹣2,1),故此选项错误;B、k=﹣2<0,b=1经过第一、二、四象限,故此选项错误;C、由y=﹣2x+1可得x=﹣,当x>时,y<0,故此选项正确;D、y随x的增大而减小,故此选项错误;故选:C.8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)【考点】两条直线相交或平行问题.【分析】直接联立两个函数解析式组成方程组,再解方程组即可得到两函数图象的交点.【解答】解:联立两个函数解析式得,解得则两个函数图象的交点为(﹣,),故选:B.9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)【考点】轴对称﹣最短路线问题;坐标与图形性质.【分析】先求出点A关于y轴的对称点A′的坐标,再用待定系数法求出直线A′B的解析式,求出直线与y轴的交点即可.【解答】解:∵A(3,4),∴点A关于y轴的对称点A′的坐标为(﹣3,4),设直线A′B的解析式为y=kx+b(k≠0),则,解得,∴直线A′B的解析式为y=﹣x+1,∴P(0,1).故选:B.10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.【考点】函数的图象.【分析】根据题意,第1小时高度上升至2千米,1到1.5小时,高度不变,应为平行于t轴的线段,1.5小时之后1小时到达山顶,时间为2.5小时,高度为3千米.所以图象应是三条线段,结合图象选取即可.【解答】解:根据题意,先用1小时爬了2千米,是经过(0,0)到(1,1)的线段,休息0.5小时,高度不变,是平行于t轴的线段,用3小时爬上山顶,是经过(1.5,1),(2.5,3)的线段.只有D选项符合.故选:D.二、填空题11.若y=(m+1)是正比例函数,则m的值为1.【考点】正比例函数的定义.【分析】根据正比例函数的定义列式求解即可.一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.【解答】解:由题意得,2﹣m2=1且m+1≠0,解得m=±1且m≠﹣1,所以,m=1.故答案为:1.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是(1.5,1)(0.5,﹣1).【考点】一次函数图象上点的坐标特征.【分析】与x轴的距离等于1,那么点的纵坐标为±1,代入一次函数可得其横坐标.【解答】解:和x轴的距离等于1的点的纵坐标为±1,当y=1时,x=1.5;当y=﹣1时,x=0.5,故答案为:(1.5,1)(0.5,﹣1).13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是y=120﹣x.【考点】平行四边形的性质.【分析】由平行四边形的性质可直接求解.【解答】解:∵平行四边形的周长为240,两邻边长为x、y,∴2(x+y)=240,∴y=120﹣x,故答案为:y=120﹣x.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是﹣.【考点】待定系数法求一次函数解析式.【分析】将x+3代入函数解析式可得出对应的y2值,根据题意y2﹣y=﹣2可得出k的值.【解答】解:将x+3代入得:y2=k(x+3)+b,y2﹣y=k(x+3)+b﹣kx﹣b=﹣2,解得:k=﹣.故填﹣.15.函数中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣1≥0,解得:x≥1,故答案为:x≥1.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为﹣3.【考点】正比例函数的定义.【分析】根据一次函数和正比例函数的定义,可得出m的值.【解答】解:∵y=(m﹣3)x+m2﹣9是正比例函数,∴.解得m=﹣3.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是减小2.【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】先待定系数法求函数解析式,根据k的值即可确定变化率以及增减性,即可确定答案.【解答】解:将点P(2,﹣1)与点Q(﹣1,5)代入y=kx+b,得,解得,∴y=﹣2x+3,可知每当x增加1,y的值将减小2,∴当y的值增加4时,x的值减小2.故答案为:减小2.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是(1,1)和(﹣3,﹣1).【考点】一次函数图象上点的坐标特征.【分析】分别代入y=1及y=﹣1求出x的值,进而可得出符合题意的点的坐标.【解答】解:当y=1时,x+=1,解得:x=1,∴点(1,1)符合题意;当y=﹣1时,x+=﹣1,解得:x=﹣3,∴点(﹣3,﹣1)符合题意.故答案为:(1,1)和(﹣3,﹣1).19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P 的坐标是(,1).【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解进行回答.【解答】解:∵方程组的解为,∴一次函数y=2x﹣3与y=﹣x+3的交点P的坐标为(,1).故答案为(,1).20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜20元.(2)若通讯费用为60元,则B方案比A方案的通话时间多(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜12元.(4)若两种方案通讯费用相差10元,则通话时间是145或195分.【考点】函数的图象.【分析】(1)通话时间少于120分,A方案费用30元,B方案费用50元;(2)费用为60元时,对应的时间从图中(绿线)两个交点位置可以比较;(3)【解答】解:(1)通话时间少于120分,A方案费用30元,B方案费用50元,所以A 方案比B方案便宜20元.故答案为:20;(2)从图中绿线可以看出,当通讯费用为60元,那么A方案比B方案的通话时间多.故答案为:多;(3)当x>120,y A=30+(x﹣120)×[(50﹣30)÷(170﹣120)]=0.4x﹣18;当x>200,y B=50+[(70﹣50)÷(250﹣200)](x﹣200)=0.4x﹣30,∴当x≥200时,B方案比A方案便宜12元,故答案为:12;(4)当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故答案为:145或195.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.【考点】待定系数法求一次函数解析式;一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,4)、点B(2,0)代入得,解得,故直线AB的解析式为y=﹣2x+4;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣4.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.【考点】待定系数法求一次函数解析式.【分析】由题意正比例函数y=kx过点A(1,2),代入正比例函数求出k值,从而求出正比例函数的解析式,由题意y=ax+b的图象都经过点A(1,2)、B(4,0),把此两点代入一次函数根据待定系数法求出一次函数的解析式.【解答】解:由正比例函数y=kx的图象过点(1,2),得:k=2,所以正比例函数的表达式为y=2x;由一次函数y=ax+b的图象经过点(1,2)和(4,0)得解得:a=,b=,∴一次函数的表达式为y=x+.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?【考点】一元一次不等式的应用;根据实际问题列一次函数关系式;一元一次方程的应用.【分析】(1)直接根据题意列出函数解析式即可;(2)把y=3000分别代入(1)中所求的函数关系式中求出x的值,比较大小即可;(3)根据“甲厂的费用<乙厂的费用”列出不等式x+1000<2x求解即可.【解答】解:(1)甲厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=x+1000;乙厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=2x;(2)根据题意可知,若找甲厂印刷,设可以印制x份,则:3000=x+1000,解得:x=2000;若找乙厂印刷,设可以印制x份,则:3000=2x,解得:x=1500.所以,甲厂印制的宣传材料多一些;(3)设印刷x份时,在甲厂印刷合算.根据题意可得:x+1000<2x,解得:x>1000.∴当印制数量大于1000份时,在甲厂印刷合算.24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.【考点】一次函数综合题.【分析】(1)根据直线解析式确定出B坐标,设P(x,y),以OA为底,P的纵坐标为高表示出S与y的关系式即可;(2)判断出S与y的函数关系式,并求出y的范围即可;(3)以OA为底,PM为高列出S与x的函数解析式,求出x的范围即可;(4)△QOA是以OA为底的等腰三角形,可得出点Q在OA的中垂线上,求出Q坐标即可.【解答】解:(1)直线y=﹣x+3与y轴的交点为B(0,3),设点P(x,y),∵点P在第一象限,x>0,y>0,∴S=OA•PM=×y×4=2y;(2)S是y的正比例函数,自变量y的取值范围是0<y<3;(3)S=2y=2(﹣x+3)=﹣x+6,S是x的一次函数,自变量的取值范围是0<x<6.(4)∵△QOA是以OA为底的等腰三角形,∴点Q在OA的中垂线上,设Q(x0,y0),则有,解得:,则点Q的坐标为(2,2).。

人教版八年级数学下册 第19章 一次函数 单元测试题(有答案)

人教版八年级数学下册 第19章 一次函数 单元测试题(有答案)

人教版八年级数学下册第19章一次函数单元测试题一.选择题(共10小题)1.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.12.在下列四个函数中,是一次函数的是()A.y=x3B.y=3x+1C.D.y=2x2+1 3.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A.B.C.D.4.下列四个图象中,哪个不是y关于x的函数()A.B.C.D.5.已知函数y=,则自变量x的取值范围是()A.x≥﹣1B.x≥﹣1且x≠1C.﹣1<x<1D.x≠16.甲、乙两车在某时间段内速度随时间变化的图象如图所示,下列结论:①乙车前4秒行驶的总路程为48米;②第3秒时,两车行驶的速度相同;③甲在8秒内行驶了256米;④乙车第8秒时的速度为2米/秒.其中正确的是()A.①②③B.①②C.①③④D.①②④7.已知正比例函数y=kx(k≠0)的图象经过二、四象限,则一次函数y=kx﹣k的图象大致是()A.B.C.D.8.在平面直角坐标系中,函数y=kx+b的图象如图所示,则下列判断正确的是()A.k>0B.b<0C.k•b>0D.k•b<09.能表示如图所示的一次函数图象的解析式是()A.y=2x+2B.y=﹣2x﹣2C.y=﹣2x+2D.y=2x﹣210.某复印的收费y(元)与复印页数x(页)的关系如下表:x(页)1002004001000……y(元)4080160400……若某客户复印1200页,则该客户应付复印费()A.3000元B.1200元C.560元D.480元二.填空题(共8小题)11.如图1所示,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P 运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,那么△ABC的面积是.12.已知声音在空气中传播的速度y(m/s)与气温x(℃)之间有这样的关系:y=x+331.当声音的传播速度为343m/s时,则气温为℃.13.已知函数y=3x n﹣1是正比例函数,则n的值为.14.已知点P1(x1,y1),P2(x2,y2)是一次函数y=﹣5x+b图象上的两个点,若x1<x2,则y1 y2(填“>”“<”或“=”).15.把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为.16.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为.17.已知某地的地面气温是20℃,如果每升高1000m气温下降6℃,则气温t(℃)与高度h(m)的函数关系式为.18.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为小时.三.解答题(共8小题)19.已知一次函数y=kx+3的图象经过点(1,4),(3,y1),(5,y2).请你判断y1与y2的大小关系.20.一个长方形的宽为xcm,长为ycm,面积为24cm2.(1)求y与x之间的函数关系式;(2)当x=8时,长方形的长为多少cm.21.如图是甲、乙两人从同一地点出发后,路程随时间变化的图象.(1)在此变化过程中,是自变量;(2)甲的速度乙的速度;(填“大于”、“等于”、或“小于”)(3)甲出发后与乙相遇;(4)甲比乙先走小时;(5)9时甲在乙的(填“前面”、“后面”、“相同位置”);(6)路程为150千米,甲行驶了小时,乙行驶了小时.22.一次函数y=kx+b的图象经过A(1,6),B(﹣3,﹣2)两点.(1)此一次函数的解析式;(2)求△AOB的面积.23.已知y﹣2与x成正比例,且x=2时,y=﹣6.(1)求y与x之间的函数关系式;(2)当y<3时,求x的取值范围.24.学校组织学生到离学校8km的少年科技馆去参观,学生小张因有事没能乘上学校的包车,于是准备在校门口乘出租车去少年科技馆,出租车收费标准如表:里程收费(元)3km以下(含3km)63km以上,每增加1km 1.5另外每次加收1元燃油费.(1)若出租车行驶的里程为xkm(x>3),请用含x的代数式表示车费y元.(2)小张同学身上只有15元,坐出租车到少年科技馆的车费够不够?请说明理由?25.某地长途汽车客运公规定旅客可随携带一定质量的行李,如果超过规定需要购买行李票,行李票费用y元是行李质量xkg的一次函数,如图所示.(1)求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量是多少?26.甲骑电动车从A地到B地,乙骑自行车从B地到A地,两人同时出发,设乙骑自行车的时间为t(h),两人之间的距离为s(km),图中的折线表示s和t之间的关系,根据图象回答下列问题.(1)A、B两地之间的距离为km;(2)求甲出发多长时间与乙相遇?参考答案与试题解析一.选择题(共10小题)1.解:当x=3时,函数y=x﹣2=3﹣2=1,故选:D.2.解:根据一次函数的定义可得,y=3x+1是一次函数,故选:B.3.解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.4.解:A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故是y关于x的函数;B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故是y关于x的函数;C、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故是y关于x的函数;D、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故不是y关于x的函数,故选:D.5.解:由函数y=有意义,得x+1≥0.解得x≥﹣1,故选:A.6.解:①乙车前4秒行驶的总路程为12×4=48米;②第3秒时,两车行驶的速度相同,均为4米/秒;③甲在8秒内行驶的路程小于256米;④乙车第8秒时的速度为(32﹣12)÷2+12=22米/秒.综上所述,正确的是①②.故选:B.7.解:因为正比例函数y=kx(k≠0)的图象经过第二、四象限,所以k<0,所以一次函数y=kx﹣k的图象经过一、二、四象限,故选:C.8.解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.∴kb<0,故选:D.9.解:设该一次函数的解析式为y=kx+b,∵点(﹣1,0)、(0,2)在此一次函数的图象上,∴,解得,即该一次函数解析式为y=2x+2.故选:A.10.解:由表中数据变化关系可知:在y随x变化而变化的过程中,变量y与x的商一定,则y是x 的正比例函数,不妨设y=kx(k≠0),把x=100,y=40代入得,40=100k,解得,k=0.4,∴y=0.4x,当x=1200时,y=0.4×1200=480,故选:D.二.填空题(共8小题)11.解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5,∴AB=5,BC=4,∴△ABC的面积是:×4×5=10.故答案为:10.12.解:当y=343时,即:343=x+331.解得:x=20,故答案为:20.13.解:∵函数y=3x n﹣1是正比例函数,∴n﹣1=1,则n=2.故答案是:2.14.解:∵k=﹣5<0,∴y值随x值增大而减小.又∵点P1(x1,y1),P2(x2,y2)是一次函数y=﹣5x+b图象上的两个点,且x1<x2,∴y1>y2.故答案为:>.15.解:把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为y=﹣x﹣1+2,即y=﹣x+1.故答案为:y=﹣x+1.16.解:由图象可以看出,在交点的左右侧,相同的x值,l2的函数值较大,∴不等式k1x+b≤k2x的解集为x≥﹣1,故答案为:x≥﹣1.17.解:∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温t(℃)与高度h(m)的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.18.解:沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=(小时).故答案为:三.解答题(共8小题)19.解:将(1,4)代入y=kx+3,得:4=k+3,解得:k=1,∴一次函数的解析式为y=x+3.当x=3时,y1=x+3=6,当x=5时,y2=x+3=8.∵6<8,∴y1<y2.20.解:(1)由题意可知:y=;(2)当x=8时,y==321.解:(1)函数图象反映路程随时间变化的图象,则t是自变量,s为因变量;(2)甲的速度=千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)甲比乙先走3小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面;(6)路程为150千米,甲行驶了9时,乙行驶的时间为:150÷(100÷3)=4.5(小时).故答案为:(1)t;(2)小于;(3)6时;(4)3;(5)后面;(6)9;4.5.22.解:(1)把A(1,6),B(﹣3,﹣2)代入y=kx+b得到,解得,所以直线AB的解析式为y=2x+4;(2)直线AB与y轴的交点坐标为(0,4),所以△AOB的面积=×4×3+×4×1=8.23.解:(1)根据题意设y﹣2=kx,把x=2,y=﹣6代入可得:﹣6﹣2=2k,解得:k=﹣4,∴y=﹣4x+2,(2)当y<3时,则﹣4x+2<3,解得x>﹣.24.解(1)y=6+1.5(x﹣3)+1=1.5x+1.5;(2)够;理由:当x=8,y=1.5×8+2.5=14.5(元),因为小张同学身上只有15元,需付14.5元,所以够支付乘出租车到少年科技馆.25.解:(1)由图可知,函数图象经过点(60,6),(80,10),所以,,解得;所以解析式为:y=0.2x﹣6;(2)令y=0,则0.2x﹣6=0,解得x=30,所以,旅客最多可免费携带行李的质量为30kg.26.解:(1)由图象可得,A、B两地之间的距离为30km,故答案为:30;(2)由图象可得,甲的速度为30÷1=30(km/h),乙的速度为:30÷3=10(km/h),设甲出发ah时与乙相遇,30a+10a=30,解得,a=,答:甲出发h时与乙相遇.。

人教版数学八年级下册第19章一次函数单元测试卷4份含答案

人教版数学八年级下册第19章一次函数单元测试卷4份含答案

人教版数学八年级下册第19章一次函数单元测试卷4份第19章单元测试(1)一、填空题1.若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,函数y随x的增大而____________.2.若函数y=(m-1)x|m|-2-1是关于x的一次函数,且y随x的增大而减小,则m=_______.3.一次函数y=(m+4)x-5+2m,当m__________时,y随x增大而增大;当m_______时,图象经过原点;当m__________时,图象不经过第一象限.4.一次函数y=2x-3的图象可以看作是函数y=2x的图象向__________平移________个单位长度得到的,它的图象经过_______________象限.5.已知一次函数y=kx-1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第______________象限.6.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x 的关系式.7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.8.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小.(2)图象经过点(1,-3)9.已知一次函数y=kx+b的图象经过点P(2,-1)与点Q(-1,5),则当y 的值增加1时,x的值将_______________________.10.已知直线y=kx+b经过点(252,0)且与坐标轴所围成的三角形的面积是254,则该直线的解析式为_____________________________________.二、选择题11.一次函数y=2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.已知一次函数y=(-1-m 2)x+3(m 为实数),则y 随x 的增大而 ( )A .增大B .减小C .与m 有关D .无法确定13.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A .P (2,0)B .P (-2,0)C .P (0,2)D .P (0,-2)14.无论实数m 取什么值,直线y=x+21m 与y=-x+5的交点都不能在( )A .第一象限B .第二象限C .第三象限D .第四象限15.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( ) A .m>0 B . m<0 C .m>1 D .m<1 16.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 ( ) A .6或-6 B .6 C .-6 D .6和3 17.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )18.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( )A .4B .-2C .12D . 1219.某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .31020.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点.设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是 ( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )A .1个B .2个C .3个D .4个三、解答题22.已知一次函数y=(2m+4)x+(3-n).⑴当m 、n 是什么数时,y 随x 的增大而增大? ⑵当m 、n 是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m 、n 的取值范围.23.已知一次函数y=(3m-7)x+m-1的图象与y轴交点在x轴的上方,且y随x 的增大而减小,求整数m的值.24.作出函数y=1x42的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.25.已知直线y=3x+1和x、y轴分别交于点A、B两点,以线段AB为边在第一象限内作一个等边三角形ABC,第一象限内有一点P(m,0.5),且S△ABP =S△ABC,求m值.26.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的函数关系1式;(2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的函数关2系式;(3)小彬选取哪种租碟方式更合算?27.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:①求出y与x的函数关系式.(纯利润=总收入-总支出)②当y=106000时,求该厂在这个月中生产产品的件数.28.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?答案一、1.47y x =-+ 减小 2.-3 3.4m >- 52m =4m <- 4.下,三,一、三、四象限 5.一、三 6. 1.86y x =- 7.36 8.3y x =-等9.减小1210.22112525y x y x =-=-+或二、11.D 12.B 13.A 14.C 15.D 16.B 17.A 18.D 19.C 20.A 21.A三、22.(1)2m >- n 为任何实数 (2)23m n ≠-⎧⎨=⎩ (3)23m n >-⎧⎨<⎩23.71,23m m m <<∴=又为整数,24.(1)由图像可知,当8,0x y >>时 (2)当912,32x y -≤≤-≤≤-时25.S △ABP m ==26.(1)1(0)y x x =≥ (2)20.412(0)y x x =+≥1212123,0.412,20,0.412,20,0.412,20y y x x x y y x x x y y x x x <<+<==+=>>+>()令则 令则 令则,所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算 27.(1)198000y x =- (2)6000x =(件)28.(1)20(10.7)1060(10.7)(0.70.2)(60)10y x x =-+⨯----⨯ 480(60100)x x x =+≤≤且为整数10100580(2)k y x x y =>==∴∴最大值随增大而增大当时(元),第19章单元测试(2)一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=mx m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数; 当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.二、选择题:12.下列函数中自变量x 的取值范围是x ≥5的函数是 ( )A .y =B .y =C .yD .y = 13.下列函数中自变量取值范围选取错误..的是( )A .2y x x =中取全体实数B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。

人教版八年级数学下册 第19章 一次函数 单元测试(含答案)

人教版八年级数学下册 第19章 一次函数 单元测试(含答案)

第19章一次函数一、选择题1.已知一次函数y=kx+b,函数值y随自变置x的增大而减小,且kb<0,则函数y=kx+b的图象大致是()A. B. C. D.2.直线y=x﹣1的图象经过第()象限.A. 一、二、三B. 一、二、四C. 二、三、四D. 一、三、四3.有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满清水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量为h(米)随时间t(小时)变化的大致图象是()A. B. C. D.4.一次函数y=x﹣2的图象经过点()A. (﹣2,0)B. (0,0)C. (0,2)D. (0,﹣2)5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校. 图中描述了他上学的情景,下列说法中错误的是().A. 修车时间为15分钟B. 学校离家的距离为2000米C. 到达学校时共用时间20分钟D. 自行车发生故障时离家距离为1000米6.已知函数,则使y=k成立的x值恰好有三个,则k的值为()A. 0B. 1C. 2D. 37.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A. (0,1)B. (-1,0)C. (0,-1)D. (1,0)8.2016年的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为()A. 23B. 24C. 25D. 269.如果一个正比例函数的图象经过点A(3,-1),那么这个正比例函数的解析式为()A. y=3xB. y=-3xC. y=xD. y=-x10.下列直线,其中直线上每个点的坐标都是二元一次方程2x﹣y=2的解的是()A. B.C. D.11.一次函数的图象交x轴于(2,0),交y轴于(0,3),当函数值大于0时,x的取值范围是()A. x>2B. x<2C. x>3D. x<312.已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-x+b上,则y1,y2,y3的值的大小关系是().A. y1>y2>y3B. y1<y2<y3C. y3>y1>y2D. y3>y1>y2二、填空题13.将直线y=2x向下平移2个单位,所得直线的函数表达式是________.14.某超市,苹果的标价为3元/千克,设购买这种苹果xkg,付费y元,在这个过程中常量是________变量是________,请写出y与x的函数表达式________ .15.如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程s(km )随时间t(min)变化的函数图象,则每分钟乙比甲多行驶的路程为________千米.16.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是________.17.一条直线与已知直线y=﹣3x+1平行,这条直线可以为________.18. 函数y=的自变量x的取值范围是________ .19.在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,连接OD.当∠DOA=∠OBA时,直线CD的解析式为________20.如图,已知函数y1=kx-1和y2=x-b的图象交于点P(-2,-5),则根据图象可得不等式kx-1>x-b的解集是________.21.将直线y=2x﹣4向上平移5个单位后,所得直线的表达式是________.那么将直线y=2x﹣4沿x轴向右平移3个单位得到的直线方程是________.三、解答题22.求出下列函数中自变量x的取值范围.①y=②y=.23.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?24.我国是一个严重缺水的国家,我们都应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.5毫升.小燕子同学在洗手时,没有拧紧水龙头,当小燕子离开x(时)后水龙头滴了y(毫升)水.在这段文字中涉及的量中,哪些是常量,哪些是变量?25.如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AB∥x轴,点A的坐标为(5,3),己知直线l:y= x﹣2(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.26.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.参考答案一、选择题A D C D A D DB DC B A二、填空题13.y=2x﹣214.3;x、y;y=3x15.0.516.时间17.y=﹣3x+5(答案不唯一)18.x≥719.y=﹣x+420.x>-221.y=2x+1;y=2x﹣7三、解答题22.解:(1)由y=有意义,得x﹣2≠0,解得x≠2;(2)由y=有意义,得x+2≥0,解得x≥﹣2.23.解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.24.解:由题意得,常量为数值始终不变的量,有:2,0.5;变量为数值发生变化的量,有:x ,y25.(1)解:设平移后的直线方程为y= x+b,把点A的坐标为(5,3)代入,得3= ×5+b,解得b= .则平移后的直线方程为:y= x+ .则﹣2+m= ,解得m=(2)解:∵正方形ABCD的边长为2,且点A的坐标为(5,3),∴B(3,3).把x=3代入y= x+ ,得y= ×3+ =2,即E(3,2).∴BE=3﹣2=1,∴△ABE的面积= ×2×1=1.26.(1)解:当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30=30x+3760 (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴y=(2)解:第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1=W2时,即485760﹣a=475200,解得:a=10560当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.当a=10560时,方案一与方案二一样.。

人教版八年级数学下册 第19章《一次函数》 单元综合测试卷(含答案)

人教版八年级数学下册 第19章《一次函数》 单元综合测试卷(含答案)
20.解:(1)7 (2)设当 x>2 时,y 与 x 之间的函数解析式为 y=kx+b,分别代入点(2,7),(4,10)的坐标,得 2k+b=7,
4k+b=10, 7/8
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
解得k=32, b=4.
∴y 与 x 之间的函数解析式为 y=32x+4(x>2). (3)∵18>2,
20.(10 分) 某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问 题: (1)该地出租车的起步价是________元; (2)当 x>2 时,求 y 与 x 之间的函数解析式; (3)若某乘客有一次乘出租车的里程为 18 km,则这位乘客需付出租车车费多少元?
D.x≥-1 且 x≠2
2.如果函数 y=kx+b(k,b 是常数)的图象不经过第二象限,那么 k,b 应满足的条件是( )
A.k≥0 且 b≤0 B.k>0 且 b≤0
C.k≥0 且 b<0 D.k>0 且 b<0
3.已知一次函数 y=(a+1)x+b 的图象如图所示,那么 a,b 的取值范围分别是( )
5/8
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
21.(10 分) 为加快“智慧校园”建设,某市准备为试点学校采购一批 A,B 两种型号的一体机.经过 市场调查发现,今年每套 B 型一体机的价格比每套 A 型一体机的价格多 0.6 万元,且用 960 万元恰 好能购买 500 套 A 型一体机和 200 套 B 型一体机. (1)求今年每套 A 型、B 型一体机的价格各是多少万元? (2)该市明年计划采购 A 型、B 型一体机共 1 100 套,考虑物价因素,预计明年每套 A 型一体机的价 格比今年上涨 25%,每套 B 型一体机的价格不变,若购买 B 型一体机的总费用不低于购买 A 型一体 机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?

人教版本初中八年级下《第十九章一次函数》单元复习测试卷试题含答案

人教版本初中八年级下《第十九章一次函数》单元复习测试卷试题含答案

第十九章一次函数一、选择题(每题4分,共24分)1.以下函数中,是一次函数的有()①y=1x;②y=3x+1;③y=4;④y=kx-2.2xA.1个B.2个C.3个D.4个2.已知函数y=kx+b,此中常数 k>0,b<0,那么这个函数的图象不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限3.关于函数y=-2x+1,以下结论正确的选项是(A.它的图象必经过点(-1,2)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大4.正比率函数y=kx(k≠0)的图象过第二、四象限),则一次函数y=x+k的图象大概是()图3-G-15.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则以下图象中,能正确反应面积S与x之间的函数关系的图象是()图3-G-2图3-G-36.明君社区有一块空地需要绿化,某绿化组肩负了此项任务,绿化组工作一段时间后,提升了工作效率.该绿化组达成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图3-G-3所示,则该绿化组提升工作效率前每小时达成的绿化面积是() A.300m2B.150m2C.330m2D.450m2二、填空题(每题5分,共30分)7.已知函数y=(k-1)x+k2-1.当k________时,它是一次函数;当k=________时,它(1)(2)(3)是正比率函数.(4)8.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,(5)若x1<x2,则y1________y2(填“>”“或<“”=”).(6)9.如图3-G-4,一个正比率函数图象与一次函数y=-x+1的图象订交于点P,则这(7)个正比率函数的分析式是________.(8)10.若将直线y=3x+2沿y轴向下平移5个单位长度,则平移后直线与y轴的交点坐标(9)为________.(10)11.已知一次函数y=kx+b(k≠0)经过(2,-1),(-3,4)两点,则其图象不经过第________(11)象限.(12)(13)(14)(15)(16)图3-G-4(17)(18)(19)(20)(21)(22)图3-G-5(23)12.一辆汽车由A地开往B地,它距离B地的行程s(km)与行驶时间t(h)之间的关系如(24)图3-G-5所示,假如汽车向来迅速行驶,那么能够提早________小时抵达B地.(25)三、解答题(共46分)(26)13.(8分)已知一次函数y=mx-3m2+12,请按要求解答问题:(27)m为什么值时,函数图象过原点,且y随x的增大而减小?(28)若函数图象平行于直线y=-x,求一次函数的分析式;(29)若点(0,-15)在函数图象上,求m的值.14.(6分)将长为30cm、宽为10cm的长方形白纸按图 3-G-6所示的方法黏合起来,黏合部分的宽为3cm.设x张白纸黏合后的总长度为ycm,写出y与x之间的函数分析式(不要求写自变量的取值范围),并求出当x=20时y的值.图3-G-615.(10分)直线y=2x-2与x轴交于点A,与y轴交于点B.求点A,B的坐标;点C在x轴上,且S△ABC=3S△AOB,直接写出点C的坐标.(1)图3-G-7(2)(3)(4)(5)(6)(7)(8)16.(10分)小丽的家和学校在一条笔挺的马路旁,某天小丽沿着这条马路去上学,她先(9)从家步行到公交站台甲,再搭车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行(10)的速度不变),图3-G-8中的折线ABCDE表示小丽和学校之间的距离y(米)与她离家的时(11)间x(分)之间的函数关系.(12)求小丽步行的速度及学校与公交站台乙之间的距离;(13)当8≤x≤15时,求y与x之间的函数分析式.图3-G-817.(12分)已知两直线l1:y=k1x+b1,l2:y=k2x+b2,若l1⊥l2,则有k1·k2=-1.应用:已知直线y=2x+1与直线y=kx-1垂直,求k的值;1(2)已知直线经过点A(2,3),且与直线y=-3x+3垂直,求该直线所对应的函数分析式.详解详析1.B [分析]①②属于一次函数;③自变量x在分母上,故不是一次函数;④当时,就不是一次函数,故一共有2个一次函数.2.B[分析]∵函数y=kx+b中k>0,b<0,∴函数图象经过第一、三、四象限k=0,不经过第二象限.3.C [分析]A项,令y=-2x+1中的x=-1,则y=3,∴一次函数的图象可是点(-1,2),即A项不正确;项,∵k=-2<0,b=1>0,∴一次函数的图象经过第一、二、四象限,即B项不正确;项,∵k=-2<0,∴一次函数中的y随x的增大而减小.∵令y=-2x+1中的x=1,则y=-1,∴当x>1时,y<0建立,即C项正确;.∵k=-2<0,∴一次函数中y随x的增大而减小,即D项不正确.应选C.4.B[分析]由于正比率函数y=kx的图象过第二、四象限,所以k<0,所以一次函数y=x+k中y随x的增大而增大,且其图象与y轴负半轴订交,即函数图象位于第一、三、四象限.应选B.5.C[分析]∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).16.B [分析]如图,设直线AB的分析式为y=kx+b,故直线AB的分析式为y=450x-600,当x=2时,y=450×2-600=300,300÷2=2150(m).150m2.即该绿化组提升工作效率前每小时达成的绿化面积是7.≠1-18.<[分析]一次函数y=2x+1中y随x的增大而增大,所以若x1<x2,则y1<y2.9.y=-2x[分析]∵正比率函数图象与一次函数y=-x+1的图象订交于点P,点P 的纵坐标为2,∴2=-x+1,解得x=-1,∴点P的坐标为(-1,2),∴设正比率函数的解析式为y=kx,∴2=-k,解得k=-2,∴正比率函数的分析式为y=-2x.10.(0,-3) [分析]将直线y=3x+2沿y轴向下平移5个单位长度可得y=3x+2-5,即y=3x-3,∴平移后直线与y轴的交点坐标为(0,-3).11.三12.2[分析]320-160=160(千米),160÷2=80(千米/时),320÷80=4(时),6-4=2(时).13.解:(1)∵一次函数y=mx-3m2+12,函数图象过原点,且y随x的增大而减小,解得m=-2,即当m=-2时,函数图象过原点,且y随x的增大而减小.(2)∵一次函数y=mx-3m2+12,函数图象平行于直线y=-x,∴m=-1,22∴∴-3m+12=-3×(-1)+12=9,∴∵一次函数y=mx-3m2+12,点(0,-15)在该函数图象上,∴m×0-3m2+12=-15,解得m=±3,∴即m的值是±3.∴14.解:由题意,得y=27x+3.当x=20时,y=27×20+3=543.∴15.解:(1)令y=2x-2中y=0,则2x-2=0,解得x=1,∴A(1,0).令y=2x-2中∴x=0,则y=-2,∴B(0,-2).∴依据题意画出图形,如下图.∴∴∴∴∴∴设点C的坐标为(m,0),∴S△ABC=3S△AOB,∴|m-1|=3,解得m=4或m=-2,即点C的坐标为(4,0)或(-2,0).16.解:(1)(3900-3650)÷5=250÷5=50(米/分),即小丽步行的速度为(18-15)×50=150(米).即学校与公交站台乙之间的距离为150米.(2)设50米/分.过C,D两点的直线的函数分析式为y=kx+b.∵C(8,3650),D(15,150),∴当8≤x≤15时,y=-500x+7650.1 17.解:(1)∵直线y=2x+1与直线y=kx-1垂直,∴2k=-1,解得k=-2.1(2)∵过点A的直线与直线y=-3x+3垂直,∴可设过点A的直线所对应的函数分析式为y=3x+b.把点A的坐标(2,3)代入,得3=3×2+b,解得b=-3,∴该直线所对应的函数分析式为y=3x-3.。

八年级数学下册第19章一次函数单元综合测试卷新人教版

八年级数学下册第19章一次函数单元综合测试卷新人教版

八年级数学下册:(一次函数)单元检测卷班级 姓名 得分一、选择题(共30分,每小题3分)1.下列曲线中,表示y 不是x 的函数是( )2.函数y=25x中自变量x 的取值范围( )A.x ≤52 B.x ≥52 C.x >52 D.x <523.圆的周长公式C=2πR 下列说法错误的是( )A. C 、π、R 是变量,2是常量B. C 、R 是变量,2π是常量C. R 是自变量,C 是R 的函数D. 当自变量R = 2 时,函数值C =4π 4.下列函数(1)y =πx (2)y =2x -1(3)y = 1x(4)y =2-1-3x (5)y =x 2-1中, 是一次函数的有( )A. 4个B. 3个C. 2个D. 1个5. 已知正比例函数y=kx (k ≠0)的图象经过点(1,-2),则这个正比例函数的解析式( ) A. y=2x B .y=-2x C .y =12x D .y =−12x 6. 一次函数y=(2m +2)x +m 中,y 随x 的增大而减小, )A .1m >-B . 1m <-C .1m =-D .1m <7.如图,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误..的是( ) A .第3分时汽车的速度是40千米/时 B .第12分时汽车的速度是0千米/时C .从第3分到第6分,汽车行驶了120千米D .从第9分到第12分,汽车的速度从60千米/时减少到0千米/时 8.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y=-3x +b 上,则y 1,y 2,y 3的值的大小关系是( ) A .y 1>y 2>y 3 B .y 1<y 2<y 3 C .y 3>y 1>y 2 D .y 3<y 1<y 29.下列函数中,其图象同时满足两个条件①у随着χ的增大而增大;②与ỵ轴的正半轴相交,则它的解析式为( )A. у=-2χ-1B.у=-2χ+1C.у=2χ-1D.у=2χ+ 110. 如图,直线y=kx+b 交坐标轴于A (-2,0),B (0,3)两点,则不等式kx+b >0的解集是( ) A .x >3 B .-2<x <3 C .x <-2 D .x >-211.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化 规律如图所示(图中OABC 为一折线),则这个容器的形状为( ).12.已知y -2与x 成正比例,且x =2时,y =4,若点(m ,2m +7),在这个函数的图象上,则m 的值是( ) A .-2 B .2 C .-5 D .13. 一条直线y=kx+b ,其中k+b=﹣5、kb=6,那么该直线经过( ) A .第二、四象限 B .第一、二、三象限 C .第一、三象限 D .第二、三、四象限14.已知点(-4,y 1),(2,y 2)都在直线y =-12 x +2上,则y 1和y 2大小关系是( ) A. y 1>y 2 B. y 1=y 2 C. y 1<y 2 D. 不能比较15.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n (厘米)与燃烧时间t (时)的函数关系的图象是( )A B C D二、填空题(共30分,每小题3分)1、电影票为10元/张,售出电影票x 张,票房收入为y 元,用含x 的式子表示y 为: . 2.已知:2x-3y=1,若把y 看成x 的函数,则可以表示为3.函数 的自变量x 的取值范围是4.已知函数y=(m-1)x+m 2-1是正比例函数,则m =_____________.5.一次函数y b kx +=,若0,0<>b k ,那么它的图象过第________象限。

人教版八年级数学下《第十九章一次函数》单元练习含答案

 人教版八年级数学下《第十九章一次函数》单元练习含答案

人教版八年级数学下《第十九章一次函数》单元练习含答案一、选择题(每小题3分,共30分)1.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-122.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<33.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-14.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-3 5.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )6.若直线y =-x +a 与直线y =x +b 的交点坐标为(2,8),则a -b 的值为( ) A .2 B .4 C .6 D .87.若一次函数y =ax +b 的图象经过第一、二、四象限,则下列不等式一定成立的是( ) A .a +b <0 B .a -b >0 C .ab >0 D.ba<08.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )9.如图是某复印店复印收费y (元)与复印面数(8开纸)x (面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( )A .0.4元B .0.45元C .约0.47元D .0.5元第9题图 第10题图10.如图,直线y =23x +4与x 轴、y 轴分别交于A 点和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,当PC +PD 最小时,点P 的坐标为( )A .(-3,0)B .(-6,0) C.⎝⎛⎭⎫-32,0 D.⎝⎛⎭⎫-52,0 二、填空题(每小题3分,共24分)11.直线y =2x +1经过点(0,a ),则a =________.12.直线l 过点M (-2,0),该直线的解析式可以写为______________(只写出一个即可). 13.直线y =x +4与x 轴、y 轴所围成的三角形的面积为________.14.一次函数y =(m -1)x +m 2的图象过点(0,4),且y 随x 的增大而增大,则m =________. 15.直线y =2x -1沿y 轴平移3个单位长度,则平移后直线与y 轴的交点坐标为______________.16.如图,已知直线l 1:y =-2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (-2,0),则k 的取值范围是__________.第16题图 第17题图 第18题图17.甲、乙两动点分别从线段AB 的两端点同时出发,甲从点A 出发,向终点B 运动,乙从点B 出发,向终点A 运动.已知线段AB 长为90cm ,甲的速度为2.5cm/s.设运动时间为x (s),甲、乙两点之间的距离为y (cm),y 与x 的函数图象如图所示,则图中线段DE 所表示的函数关系式为____________________(并写出自变量的取值范围).18.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2018的纵坐标是________.三、解答题(共66分)19.(8分)已知y与x+1成正比例关系,当x=2时,y=1.求:当x=-3时,y的值.20.(9分)已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出该函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.21.(8分)已知一次函数y=kx+b的图象经过点A(0,-2),B(3,4),C(5,m).求:(1)这个一次函数的解析式;(2)m的值.22.(9分)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数解析式;(2)求旅客最多可免费携带行李的质量.23.(10分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.24.(10分)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数解析式;(2)请你帮助小明计算并选择哪个出游方案合算.25.(12分)小慧根据学习函数的经验,对函数y=|x-1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x-1|的自变量x的取值范围是____________;(2)列表,找出y与x的几组对应值.x …-10123…y … b 1012…其中,b=(3)在如图所示的平面直角坐标系xOy中,描出上表中以各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:____________________.答案CDACB BDDC11.1 12.y =x +2(答案不唯一) 13.8 14.2 15.(0,2)或(0,-4) 16.0<k <2 17.y =4.5x -90(20≤x ≤36) 18.2201719.解:∵y 与x +1成正比例关系,∴设y =k (x +1),(1分)将x =2,y =1代入得1=3k ,解得k =13,∴函数解析式为y =13(x +1)=13x +13.(5分)当x =-3时,y =-3×13+13=-23.(8分) 20.解:(1)当x =0时,y =4,当y =0时,x =-2,则该函数的图象如图所示.(3分)(2)由(1)可知点A 的坐标为(-2,0),点B 的坐标为(0,4).(5分) (3)∵OA =2,OB =4,∴S △AOB =12OA ·OB =12×2×4=4.(7分)(4)x <-2.(9分)21.解:(1)∵一次函数y =kx +b 的图象经过点A (0,-2),B (3,4),∴⎩⎪⎨⎪⎧b =-2,3k +b =4,(2分)解得⎩⎪⎨⎪⎧k =2,b =-2,∴这个一次函数的解析式为y =2x -2.(4分)(2)把C (5,m )代入y =2x -2,得m =2×5-2=8.(8分)22.解:(1)设y 与x 的函数解析式为y =kx +b .(1分)将(20,2),(50,8)代入y =kx +b中,得⎩⎪⎨⎪⎧20k +b =2,50k +b =8,(3分)解得⎩⎪⎨⎪⎧k =15,b =-2,∴当行李的质量x 超过规定时,y 与x 之间的函数解析式为y =15x -2.(5分)(2)当y =0时,15x -2=0,(7分)解得x =10.答:旅客最多可免费携带行李10kg.(9分)23.解:(1)∵点P (1,b )在直线l 1:y =2x +1上,∴b =2×1+1=3.(2分)∵点P (1,3)在直线l 2:y =mx +4上,∴3=m +4,∴m =-1.(4分)(2)当x =a 时,y C =2a +1.当x =a 时,y D =4-a .(6分)∵CD =2,∴|2a +1-(4-a )|=2,(8分)解得a =13或53.(10分)24.解:(1)设y 1=k 1x +80,把点(1,95)代入,可得95=k 1+80,解得k 1=15,∴y 1=15x +80(x ≥0).(2分)设y 2=k 2x ,把(1,30)代入,可得k 2=30,∴y 2=30x (x ≥0).(4分)(2)当y 1=y 2时,15x +80=30x ,解得x =163;当y 1>y 2时,15x +80>30x ,解得x <163;当y 1<y 2时,15x +80<30x ,解得x >163.(7分)∴当租车时间为163小时,选择甲、乙公司一样合算;当租车时间小于163小时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.(10分)25.解:(1)任意实数(3分) (2)2(6分)(3)如图所示.(9分)(4)函数的最小值为0(答案不唯一)(12分)。

2014年春季新版新人教版八年级数学下学期第19章、一次函数单元复习试卷4

2014年春季新版新人教版八年级数学下学期第19章、一次函数单元复习试卷4

第十九章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ... D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________. 16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?(3)当y=12时,•x的值是多少?23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

新人教版八年级下第19章《一次函数》单元测试题及答案(1)

新人教版八年级下第19章《一次函数》单元测试题及答案(1)

新人教版八年级下第19章《一次函数》单元测试题及答案 一.选择题(每小题3分,共30分)1.函数y=21-x 中,自变量x 的取值范围是( )A.x >2B.x <2C.x ≠2D.x ≠-2 2.关于函数y=-2x+1,下列结论正确的是( )A.图形必经过点(-2,1)B.图形经过第一、二、三象限C.当x >21时,y <0 D.y 随x 的增大而增大 3.如图,一次函数y=kx+b(k ≠0) 的图象经过A,B 两点,则关于x 的不等式kx+b <0的解集是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤14.直线y=-2x+m 与直线y=2x-1的焦点在第四象限,则 m 的取值范围是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤1 5.若一次函数y=(1-2m)x+m 的图象经过点A(x 1, y 1)和点B(x 2,y2),当x 1<x 2时,y 1<y2,且与y 轴相交于正半轴,则 m 的取值范围是( )A.m >0B.m <21C.0<m <21D. .m >216.若函数y= 则当函数值y=8时,自变量x 的值是( ) A. 6±B.4C. 6±或4 D.4或-67.一艘轮船在同一航线上往返于甲、乙两地 ,已知轮船在静水中的速度为15㎞/h,水流速度为5 ㎞/h,轮船先从甲地顺水航行到乙地在乙地停留一段时间后,又从乙地逆水航行返回甲地,设轮船从甲地出发所用时间为 t(h),航行的路程s(㎞),则s 与t 的函数图象大致是( )8.一次函数y=kx+b 的图象如图所示,当x <1时,y 的取值范围是( )A.-2<y <0B. -4<y <0C. y <-2D. y <-4C9.将直线y=-2x 向右平移2个单位所得直线的解析式为( )A.y=-2x+2B.y=-2(x+2)C.y=-2x-2D.y=-2(x-2)10.如图,小亮在操场上玩,一段时间内沿M →A →B →M 的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与x 之间关系的函数图象是( )二. 填空题(每小题3分,共24分)11.将直线y=-2x+3向下平移2个单位得到的直线为 。

人教新版八年级数学下学期 第19章 一次函数 单元复习卷 含答案

人教新版八年级数学下学期 第19章 一次函数 单元复习卷  含答案

第19章一次函数一.选择题(共13小题)1.下列的曲线中,表示y是x的函数的有()A.1个B.2个C.3个D.4个2.在同一平面直角坐标系中,正比例函数y=kx与一次函数y=﹣kx﹣k(k≠0)的大致图象是()A.B.C.D.3.对于正比例函数y=﹣2x,当自变量x的值增加1时,函数y的值增加()A.B.C.2D.﹣24.一次函数y=﹣6x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.已知y关于x成正比例,且当x=2时,y=﹣6,则当x=1时,y的值为()A.3B.﹣3C.12D.﹣126.在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.C,π,r D.C,2π,r7.长方形的周长为8cm,其中一边为xcm(x>0),面积为ycm2.那么y与x的关系是()A.y=x2B.y=4﹣x2C.y=x(4﹣x)D.y=2(4﹣x)8.若函数的解析式为y=,则当x=2时对应的函数值是()A.4B.3C.2D.09.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱10.下面关于函数的三种表示方法叙述错误的是()A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用公式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示11.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.12.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A、B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④13.将直线y=2x+1向下平移n个单位长度得到新直线y=2x﹣1,则n的值为()A.﹣2B.﹣1C.1D.2二.填空题(共6小题)14.函数y=+的自变量x的取值范围是.15.当m=时,函数y=3+(m﹣2)x m+3是一次函数.16.一次函数y=(a﹣2)x+1的图象不经过第三象限,化简=.17.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=.18.一蜡烛高20厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是h=(0≤t≤5).19.如图,A是正比例函数y=x图象上的点,且在第一象限,过点A作AB⊥y轴于点B,以AB为斜边向上作等腰直角三角形ABC,若AB=2,则点C的坐标为.三.解答题(共3小题)20.一次函数y=kx+b的图象经过A(3,2),B(1,6)两点.(1)求k,b的值;(2)判断点P(﹣1,10)是否在该函数的图象上.21.直线y=﹣x+b分别与x轴、y轴交于A、B两点,点A的坐标为(4,0).(1)求点B的坐标;(2)直线y=kx平分△ABO的面积,求k的值;(3)将△ABO沿过A点直线对折,使得边AB正好落在x轴上,折痕交y轴于点C,设B点的对称点为D,求C点的坐标;(4)若点P是x轴上一动点,当△ABP是等腰三角形,直接写出所有点P的坐标.22.已知动点P以每秒2cm的速度沿如图甲所示的边框按从B﹣C﹣D﹣E﹣F﹣A的路径移动,相应的△ABP的面积S与关于时间t的图象如图乙所示,若AB=6cm,求:(1)BC长为多少cm?(2)图乙中a为多少cm2?(3)图甲的面积为多少cm2?(4)图乙中b为多少s?参考答案一.选择题(共13小题)1.C.2.C.3.D.4.C.5.B.6.B.7.C.8.A.9.D.10.D.11.D.12.C.13.D.二.填空题(共6小题)14.x≤3且x≠2.15.﹣216.5﹣2a17.﹣1.18.h=20﹣4t.19.(1,4).三.解答题(共3小题)20.解:(1)把A(3,2),B(1,6)代入y=kx+b,得:,解得:,故所求k=﹣2,b=8;(2)∵y=﹣2x+8,∴当x=﹣1时,y=﹣2×(﹣1)+8=10,∴P(﹣1,10)在y=﹣2x+8的图象上.21.解:(1)∵点A(4,0)在直线y=﹣x+b上,∴0=﹣×4+b,∴b=3,∴直线AB的解析式为y=﹣x+3.当x=0时,y=﹣x+3=3,∴点B的坐标为(0,3).(2)∵点A的坐标为(4,0),点B的坐标为(0,3),∴线段AB中点的坐标为(2,).∵直线y=kx平分△ABO的面积,∴点(2,)在直线y=kx上,∴=2k,∴k=.(3)在Rt△AOB中,AO=4,BO=3,∴AB==5.由折叠的性质,可知:AD=AB=5,∴点D的坐标为(9,0)或(﹣1,0).设线段BD的中点为E,如图1所示.①当点D的坐标为(9,0)时,点E的坐标为(,).设折痕所在的直线的解析式为y=mx+n(m≠0),将A(4,0),E(,)代入y=mx+n,得:,解得:,∴折痕所在的直线的解析式为y=3x﹣12.当x=0时,y=3x﹣12=﹣12,∴点C的坐标为(0,﹣12);②当点D的坐标为(﹣1,0)时,点E的坐标为(﹣,).同理,可得出折痕所在直线的解析式为y=﹣x+,当x=0时,y=﹣x+=,∴点C的坐标为(0,).综上所述:C点的坐标为(0,﹣12)或(0,).(4)设点P的坐标为(x,0).分三种情况考虑,如图2所示.①当AP=AB时,x﹣4=5或4﹣x=5,解得:x=9或﹣1,∴点P1的坐标为(9,0),点P2的坐标为(﹣1,0);②当BA=BP时,OP=OA,即0﹣x=4﹣0,解得:x=﹣4,∴点P3的坐标为(﹣4,0);③当P A=PB时,32+x2=(4﹣x)2,解得:x=,∴点P4的坐标为(,0).综上所述:点P的坐标为(9,0),(﹣1,0),(﹣4,0)或(,0).22.解:(1)由图象可得,点P从点B到点C运动的时间是4s,运动的速度是每秒2cm,故BC的长度是:4×2=8cm,即BC长是8cm;(2)∵BC=8cm,AB=6cm,∴S=,即图乙中a的值为24cm2;(3)由图可知,BC=4×2=8cm,CD=(6﹣4)×2=4cm,DE=(9﹣6)×2=6cm,AB=6cm,∴AF=BC+DE=14cm,∴图甲的面积是:AB•AF﹣CD•DE=6×14﹣4×6=84﹣24=60cm2;(4)由题意可得,b==s,即b的值是17s.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九章 一次函数综合复习测试一、相信你的选择(每小题3分,共24分) 1、函数y =中自变量x 的取值范围是 ( ) A 、2-≥x B 、1≠x C 、2->x D 、2-≥x 且1≠x 2、不能表示y 是x 函数的图像的是 ( )A .B .C .D .3、一次函数34y x =-的图像不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、如图1,直线l 1和l 2的交点坐标为( )A 、(3,-1)B 、(1,3)C 、(-1,3)D 、(-3,-1)图3 5、一次函数y =kx +b (k ,b 是常数,k ≠0)的图像如图2所示,则不等式kx +b >0的解集是( ) A 、x >-2 B 、x >0 C 、x <-2 D 、x <0 6.二元一次方程的图像如图3所示,则这个二元一次方程为( )A 、33=-y x ;B 、33=+y x ;C 、13=-y x ;D 、13=+y x7、一次函数y=kx+b 的图像经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A 、y=-2x+3 B 、y=-3x+2 C 、y=3x-2 D 、y=12x-3 8、在直角坐标系中,若直线y=2x-4与直线y= -3x+b 相交于x 轴上,则直线y= -3x+b 不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限二、画龙点睛(每小题3分,共24分) 1、某市地面气温是10ºC ,如果每升高1km,气温下降3ºC ,则气温y(ºC )与高度h(km)之间的函数关系式为 。

2、若函数28(3)m y m x -=-是正比例函数,则常数m 的值是 。

3、直线y=2x+b 经过点(1,3),则b= _________4、根据图4中的程序,当输入数值x 为-2时,输出数值y 为 。

5、如图5,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .6、已知正比例函数y =kx (k ≠0)的图像经过原点、第二象限与第四象限,请写出符合上述条件的k 的一个值:______. 7.已知直线12l l 、的解析式分别为12(0)y ax b y mx n m a =+=+<<,,根 据图6中的图像填空:(1)方程组y ax b y mx n =+⎧⎨=+⎩,的解为 ;(2)当12x -≤≤时,2y 的范围是 ;.(3)当133y -≤≤时,自变量x 的取值范围是 .8、要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短?小聪根据实际情况,以街道旁为x 轴,建立了如图7所示的平面直角坐标系,测得A 点的坐标为(0,3),B 点的坐标为(6,5),则从A 、B 两点到奶站距离之和的最小值是______. 三、挑战技能(本大题共38分)1、(12分)已知y+2与x 成正比例,且x=-2时,y=0. (1)求y 与x 之间的函数关系式;(2)画出函数的图像;(3)观察图像,当x 取何值时,y≥0?(4)若点(m ,6)在该函数的图像上,求m 的值。

xl 6图2、已知△ABC ,∠BAC=90°,AB=AC=4,BD 是AC 边上的中线,分别以AC 、AB 所在直线为x 轴,y 轴建立直角坐标系(如图8) (1)求直线BD 的函数关系式。

(2)直线BD 上是否存在点M ,使AM=AC ,若存在,求点M 的坐标,若不存在,说明理由。

3、如图9,已知直线l 1经过点A (-1,0)与点B (2,3),另一条直线l 2经过点B 且与x 轴交于点P (m ,0)。

(1)求直线l 1的解析式。

(2)若△APB 的面积为3,求m 的值。

4、(12分)如图10,直线l 1的解析表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A \B ,直线l 1,l 2交于点C . (1)求点D 的坐标; (2)求直线l 2的解析表达式; (3)求△ADC 的面积;(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC的面积相等,请直接写出点P 的坐标.xx四、拓广探索(本大题共26分) 1、(12分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离为(km)y ,图11中的折线表示y 与x 之间的函数关系.根据图像进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图像理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?2、(14分)如图12,直线6y kx =+与x 轴y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。

(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。

图11y参考答案一、1、C2、B3、B4、C5、A6、A7、B8、A 二、1、y=10-3h2、-33、14、65、y=2x+16、答案不惟一,如-27、(1)2,3;x y =⎧⎨=⎩(2)203y ≤≤;(3)02x ≤≤8、(-9,0)三、 1、解:(1)设y+2=kx (k 是常数,且k≠0) 当x=-2时,y=0.所以0+2=k·(-2),解得k =-1. 所以函数关系式为y+2=-x ,即y=-x-2; (2)图略;(3)由函数图像可知,当x≤-2时,y≥0;(4)因为点(m ,6)在该函数的图像上,所以6=-m-2,解得m =-8. 2、解:(1)由题意可知,点B 的坐标为(0,4),点D 的坐标为(2,0), 设直线BD 的函数关系式为y=kx+b ,根据题意列方程得420b k b =⎧⎨+=⎩,。

解得42b k =⎧⎨=-⎩,。

所以直线BD 的函数关系式为y=-2x+4;(2)假设存在点M ,令点M 的坐标为(a ,-2a+4),由AM=AC 可知AM2=AC2, 即a2+(-2a+4)2=16。

解得a1=0,a2=516。

所以在直线BD 上存在两点M1(0,4),M2(516,512),使AM=AC 成立。

3、解:(1)设直线l1的解析式为y=kx+b , 由题意得023k b k b -+=⎧⎨+=⎩,。

解得11k b =⎧⎨=⎩,。

所以直线l1的解析式y=x+1;(2)当点P 在点A 的右侧时,AP=m-(-1)=m+1,此时有S △APB=21×(m+1)3=3。

解得m=1,此时点P 的坐标为(1,0); 当点P 在A 左侧时,AP=-1-m ,此时有S △APB=21×(-1-m )×3=3。

解得m=-3,此时点P 的坐标为(-3,0)。

综上所述m 的值为1或-34、解:(1)点D 的坐标为(1,0);(2)设直线2l 的解析表达式为y kx b =+, 由图像知:4x =时0y =;3x =时32y =-。

根据题意列方程得4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,解得326.k b ⎧=⎪∴⎨⎪=-⎩,所以直线2l 的解析表达式为362y x =-; (3)由3336.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,所以点C 的坐标为(2,-3)。

193322ADC S ∴=⨯⨯-=△;(4)点P 的坐标为(6,3).四、1、解:(1)900;(2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇.; (3)由图像可知,慢车12h 行驶的路程为900km ,所以慢车的速度为90075(km /h)12=;当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4=,所以快车的速度为150km/h ; (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)⨯=,所以点C 的坐标为(6450),. 设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得044506.k b k b =+⎧⎨=+⎩,解得225900.k b =⎧⎨=-⎩,所以线段BC 所表示的y 与x 之间的函数关系式为225900y x =-.自变量x 的取值范围是46x ≤≤;(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =.此时慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . 2、解:(1)有图可知点F 的坐标为(0,6),点E 的坐标为(-8,0),所以列方程组可得函数表达式为3+64y x =,所以34k =;(2)由(1)可知点P 的坐标为(x ,3+64x ),所以1396618244S x x =⋅+⋅=+(),自变量x 的取值范围为80x -<<;(3)由题意得92718=44x +,解得x=-5. 所以当P 点的坐标为(-5,94)时,△OPA 的面积为274.。

相关文档
最新文档