第22章-一元二次方程全章导学案

合集下载

人教版数学九年级上册第22章《二次函数》全章导学案

人教版数学九年级上册第22章《二次函数》全章导学案

22.1.4 二次函数y ax2bx c 的图象学习目标:1. 能经过配方把二次函数y ax 2bx c 化成 y a( x h)2 + k 的形式,进而确立张口方向、对称轴和极点坐标。

2.熟记二次函数y ax 2bx c 的极点坐标公式;3.会画二次函数一般式学习要点:掌握二次函数y ax 2bx c 的图象.y ax2bx c 的图象和性质.学习难点:运用二次函数y ax2bx c 的图象和性质解决实质问题 .学习方法:问题式五步教课法 .学习过程一、出示目标二、预习检测1. 抛物线y2;对称轴是直2 x 31的极点坐标是线;当 x =时 y 有最值是;当 x时,y 随x的增大而增大;当x时, y 随x的增大而减小。

2.二次函数分析式 y a(x h)2 +k 中,很简单确立抛物线的极点坐标为,所以这类形式被称作二次函数的极点式。

三、怀疑互动:(1)你能直接出函数y x22 x 2的像的称和点坐?(2)你有法解决( 1)?解:y x22x 2 的点坐是,称是.(3)像我能够把一个一般形式的二次函数用的方法化点式进而直接获得它的像性 .(4)用配方法把以下二次函数化成点式:① y x 22x 2② y 1 x22x 5③2y ax2bx c(5):二次函数的一般形式y ax 2bx c 能够用配方法化成点式:,所以抛物y ax2bx c 的点坐是;称是,(6)用点坐和称公式也能够直接求出抛物的点坐和称,种方法叫做公式法。

用公式法写出以下抛物的张口方向、称及点坐。

① y 2x 23x 4② y2x 2x 2③ yx 24x四、达用描点法画出 y 1 x2 2 x 1的像 .(1)点坐2;(2)列表:点坐填在;(列表一般以称中心,称取.)x⋯⋯y1 x2 2x 1 ⋯2(3)描点,并 :6 y5 4 3 21 x7654321O1 2 312 3 4(4) 察:① 象有最点,即x =,y 有最是;② x,y 随 x 的增大而增大;xy 随x 的增大而减小。

北师大版九年级上《一元二次方程》全章导学案

北师大版九年级上《一元二次方程》全章导学案

认识一元二次方程(1)一,自主探究活动内容:问题一:一块四周镶有宽度相等的花边的地毯如下图,它的长为8m,宽为5m.地毯中央长方形图案的面积为18m2。

根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?问题二:你能找到关于102、112、122、132、142这五个数之间的等式吗?得到等式102+112+122=132+142之后你的猜想是什么?根据猜想继续找五个连续整数,使前三个数的平方和等于后两个数的平方和。

问题三:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m.那么梯子的底端滑动多少米?8二,总结归纳活动内容:归纳一元二次方程的概念:结合上面三个问题得到的三个方程,观察它们的共同点,得到一元二次方程的概念及其各部分的名称。

一元二次方程概念:含有一个未知数并且未知数的最高次数是2的整式方程。

经过整理后,一个一元二次方程可化简为ax2+bx+c=0(a≠0),即它的一般形式:ax2+bx+c=0(a ≠0)。

应从两方面理解一元二次方程的一般形式:(1)若ax2+bx+c=0是一元二次方程,则有a≠0;(2) 若a≠0(b、c可以为零),则ax2+bx+c=0是一元二次方程。

判断一个方程是不是一元二次方程,满足三个条件:①含有一个未知数并且未知数的最高次数是2;②必须是整式方程;③二次项系数不能为零。

简而言之是指经化简后,若符合ax2+bx+c=0(a≠0) ,则为一元二次方程,否则不是。

三,学以致用活动内容:1、把方程(3x +2)2=4(x -3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.2.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.易错易混点1. 下列关于x 的方程:(1) ax 2+bx+c=0 ;(2)532=+aa ;(3)0322=--x x ;(4)0223=+-x x x 中,一元二次方程的个数是( )A. 1个B. 2个C. 3个D. 4个2. 判断方程m 2(x 2+m)+2x=x(x+2m)-1是不是关于x 的一元二次方程。

第22章二次根式(全章学案)

第22章二次根式(全章学案)

22.1二次根式(1)教学案学习目标:1.了解二次根式的意义;2. 会运用二次根式的定义判断二次根式是否有意义,即找出二次根式有意义的条件。

并掌握用简单的一元一次不等式解决二次根式中字母的取值问题;学习重点、难点:重点:(1)二次根式的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.教材分析及学法指导:二次根式是在算术平方根的基础上引申出来的,因而二次根式的学习实质是平方根知识的巩固与延伸,在学习中要注意二者的结合.学习准备:1.复习提问:请思考什么叫平方根、算术平方根?2.说出下列各式的意义,并计算:,,,,3.观察上面几个式子的特点,请总结它们的被开方数的特点。

学习过程:(一)引入新课:我们已遇到的,,这样的式子是我们这节课研究的内容,引出新课:二次根式。

(二)自主学习交流发现1.自学课本第二页前三段内容,并理解记忆二次根式定义。

2.对于请同学们讨论应该注意的问题,小组交流,引起重视。

选二个小组回答自己小组的观点。

3.例1 当a为实数时,下列各式中哪些是二次根式?(同桌交流答案)4.练习. 判断下列各式,那些是二次根式?(学生回答)676-2-x2m5.例2 x是怎样的实数时,式子在实数范围有意义?(生回答)6. 练习1.完成课本第三页练习2。

练习2.当字母取何值时,下列各式为二次根式:(学生独立完成,小组成员展示)(1)(2)(3) (4)练习3.x是怎样的实数时,下列二次根式有意义?(小组选成员黑板展示)(1)(2)(3)(4)7. 反馈总结交流收获:本节课你的收获是————————————还有的疑惑是——————————————当堂检测:1.判断下列各式是否是二次根式2.a是怎样的实数时,下列各式在实数范围内有意义?课后反思:22.1.1二次根式检测(第一课时)◆随堂检测1、下列式子中,是二次根式的是( )A ..x2、已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对3、2=_______; 2=______;2=_______.4=_______. 5、若y =有意义,则x 的取值范围是 . ◆典例分析(1)下列式子,哪些是二次根式,哪些不是二次根式:、1x x>0)1x y+x ≥0,y•≥0).分析;第二,被开方数是正数或0.解:x>0)、x ≥0,y ≥0);不是二次1x1x y +.点评:确定一个式子是不是二次根式关键要记住两点:a ≥0的条件(2)当x分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义. 解:由3x-1≥0,得:x ≥13当x ≥13在实数范围内有意义.◆课下作业●拓展提高1、若二次根式26x -+有意义,化简│x-4│-│7-x │.2、若20092009a b ++-=0,求a 2009+b2009的值.3、已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.4、下列各式中15、3a 、21b -、22a b +、220m +、144-,二次根式的个数是( ).A .4B .3C .2D .15、使式子2(5)x --有意义的未知数x 有( )个. A .0 B .1 C .2 D .无数6、若11x x ---2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .3●体验中考1、(2009年贵州省黔东南州)=-2)3(___________2、(2009年湖南怀化)若()22340a b c ---=,则=+-c b a . 3、(2009年济宁市)已知a 2a -( ) A. a B. a - C. - 1 D. 0 4、(2009年鄂州市)使代数式43--x x 有意义的x 的取值范围是( ) A 、x >3 B 、x ≥3C 、 x >4D 、x ≥3且x ≠4随堂检测:1.A . 二次根式应满足两个条件:第一,有二次根号;第二,被开方数是正数或0.所以选A ,而B 中根指数不是2;C 中被开方数x 也可表示负数,无意义;D 是单项式.2. B. 设正方形的边长是x,则25,0,x x x x =∴=>∴=所以选B ;3.4;13;0.主要应用公式2(0)a a =≥进行计算得出:2=4;2=13;2=0.4. 0. 因为与都是二次根式,所以22222210101110,10x x x x x x -≥-≥--∴-=-=且,因为和互为相反数,,所以=0.5. 3x >-.若y =有意义,不仅要考虑被开方数是非负数,必须考虑分式的分母不为零,则30,x +>3x >- 拓展提高:2603,40,70.474(7)3x x x x x x x x -+≥≤-∴-<->∴---=---=-1.解:由得20092009200920092009020090,20090,20090,20090,2009,2009.(2009)20090.a ab a b a b a b ++=+≥-≥∴+=-=∴=-=∴+=-+=2.解:,50505 5. 4.a a a a a b -≥≥≥≤∴=∴=-3.解:由得,由10-2得,4、B2250,505.B x x x B -≥∴-≥∴=5..解:()),所以只有一个值,选.6..10 1.0 1. 1.0, 1.1(1) 2.C x x x x x x y y x y C -≥≥-≥≤∴=∴+=∴=-∴-=--=解:由得,由1得,所以选.1.-322(4)0,20,30,40;2,3, 4.234 3.a c abc a b c a b c -++-=∴-=-=-=∴===∴-+=-+=2.解:22223..0,0,00,0..D a a a a a D -≥∴≤≥∴=∴=解:由题意知,所以选4..30,40,3 4..D x x x x D -≥-≠∴≥≠解:由题意知且且所以选22.1二次根式(2)教学案学习目标:1≥(0)-(0)a a a a a ≥⎧==⎨<⎩的发现过程,体验归纳、猜想的思想方法。

第22章-一元二次方程全章导学案

第22章-一元二次方程全章导学案

x22.1 一元二次方程(1)学习目标:1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点:重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.活动1 :完成以下内容。

问题1 要设计一座2m 高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m ,则上部高________,得方程 _____________________________整理得_____________________________ ①问题2 如图,有一块长方形铁皮,长100cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。

如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为________________,宽为____________.得方程_____________________________整理得 _____________________________ ②问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。

根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________设应邀请x 个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。

列方程____________________________ 化简整理得 ____________________________ ③请口答下面问题:(1)方程①②③中未知数的个数各是多少?___________(2)它们最高次数分别是几次?___________方程①②③的共同特点是: 这些方程的两边都是_________,只含有_______未知数(一元),并且未知数的最高次数是_____(二次)的方程.1.一元二次方程:_____________________________________________2. 一元二次方程的一般形式:____________________,一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.其中ax 2是____________,_____是二次项系数;bx 是__________,_____是一次项系数;_____是常数项。

(好)第22章_一元二次方程_全章学案

(好)第22章_一元二次方程_全章学案

第二十二章一元二次方程一、教材内容一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.二、课标要求1、以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念.2、根据化归思想,抓住降次这一策略,掌握配方法,公式法和因式分解法等一元二次方程的基本解法.3、经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用这种重要数学工具的基本能力.三、教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出、分析问题,建立一元二次方程数学模型,并用解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.四、教学重点与难点教学重点:1. 一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3. 利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点:1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.五、课时划分本单元教学时间约需13课时,具体分配如下:22.1 一元二次方程2课时22.2 降次──解一元二次方程5课时22.3 实际问题与一元二次方程3课时教学活动、习题课、小结3课时22.1.1 《一元二次方程(1)》学案学习目标:1、进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;2、正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

第22章一元二次方程全章教案新部编本.doc

第22章一元二次方程全章教案新部编本.doc

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校六年级家长会班主任发言稿尊敬的各位家长:你们好!作为班主任,我首先代表我和所有任课老师,对各位家长的到来表示深深的感谢。

感谢你们在百忙之中来到学校,你们的到来既是对你们子女教育的关心,更是对我们工作的大力支持。

一个孩子的成长,不是光靠学校就能够做到的,而如何进行有效的家校配合是非常必要的。

今天请各位来开这个家长会,目的是:更好地了解自己的孩子最近的学习、心理等各方面的表现,更好地加强学校教师与家长的联系,更好地帮助孩子渡过小学阶段的最后一个关键时期,使孩子顺利迈进中学。

下面作为班主任我先对班级情况做个简单介绍:我们班共有学生60人,其中女生30人,男生28人。

从各方面情况来看,总体还是不错的,班级学习气氛较浓厚,集体荣誉感较强,有些家长对孩子的学习也很重视,每次的家庭作业都检查签名。

这让我感到欣慰。

作为学生的语文教师兼班主任,每一个学生在我的心中都留有深刻的印象。

学生们在前半学期取得了许多优异的成绩,如(樊政道、冯宇凡、杨心怡同学)在学校举行的作业展评中被评为优秀作业,受到学校的表彰奖励;在这次其中考试中,涌现出了一部分成绩优异的同学,总分在100分以上的共12 人,90分以上的28人,80分以上的13人,70分以上的6人,70分以下的1人,总体情况较好。

这些成绩的取得离不开家长对学校和老师工作的支持,在此,表示非常感谢。

在取得成绩的同时也存在一些问题,有少数同学的学习态度极不端正,经常不完成家庭作业,主要是周末的作业,一字不写。

究其原因是思想上懒惰,不想动脑筋。

还有部分同学就是偏科严重,不能实现全面发展。

每次考试这一科考的很好,另外一科就考砸了。

还有些同学基础差、学习不投入,还有个别学生有“破罐子破摔”的心理,谁来把这些孩子扶起来,靠老师的引导,家长的鼓励。

第22章 一元二次方程教案全章

第22章 一元二次方程教案全章

教学时间: 教学课题:22.1 一元二次方程 教学课型:新授课 教学目标1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根4.通过根据实际问题列方程,向学生渗透知识来源于生活.5通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式. 教学重点:一元二次方程的一般形式和一元二次方程的根的概念 教学难点:通过提出问题,建立一元二次方程的数学模型 教学过程 一、复习引入小学学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。

从这节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念. 二、探究新知 (一)探究课本问题2 分析:1.参赛的每两个队之间都要比赛一场是什么意思?2.全部比赛场数是多少?若设应邀请x 个队参赛,如何用含x 的代数式表示全部比赛场数? 整理所列方程后观察:1.方程中未知数的个数和次数各是多少?2.下列方程中和上题的方程有共同特点的方程有哪些?4x+3=0;0422=-+x x ;042=-+y x ;0350752=+-x x ;0621=-+x x(二)概念归纳: 1.一元二次方程定义:首先它是整式方程,然后未知数的个数是1,最高次数是2. 2.一元二次方程的一般形式: ①为什么规定a ≠0?②方程左边各项之间的运算关系是什么?关于x 的一元二次方程()002≠=--a c bx ax 的各项分别是什么?各项系数是什么?3.特殊形式:()002≠=+a bx ax ;()002≠=+a c ax ;()002≠=a ax (三)课本例题类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号. (四)一元二次方程的根的概念1.类比一元一次方程的根的概念获得一元二次方程的根的概念2.下面哪些数是方程x 2+5x+6=0的根?-4,-3,-2,-1,0,1,2,3,4. 3.你能用以前所学的知识求出下列方程的根吗?(1)x 2-64=0(2)x 2+1=0 (3)x 2-3x=0 (4)0122=++x x 4.思考:一元一次方程一定有一个根,一元二次方程呢?5.排球邀请赛问题中,所列方程562=-x x 的根是8和-7,但是答案只能有一个,应该是哪个? 归纳:①一元二次方程的根的情况 ②一元二次方程的解要满足实际问题 三、课堂训练 1.课本练习 2补充:1).在下列方程中①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0,一元二次方程的个数是( )A .1个B .2个C .3个D .4个2).关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 范围________. 3).已知方程5x 2+mx-6=0的一个根是x=3,则m 的值为________ 4).关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗? 四、小结归纳1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数.2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根. 五、作业设计 必做:P28:1-7 选做:.P29:8、9教学时间:教学课题:22.2.1配方法(1) 教学课型:新授课教学目标1.理解一元二次方程“降次”的转化思想.2.根据平方根的意义解形如x2=p(p≥0)的一元二次方程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方程.3.把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.4.通过根据实际问题列方程,向学生渗透知识来源于生活.5.通过观察,思考,对比获得一元二次方程的解法-----直接开平方法,配方法教学重点:1.运用开平方法解形如(mx+n)2=p(p≥0)的方程;领会降次──转化的数学思想.2用配方法解二次项是1,一次项系数是偶数的一元二次方程教学难点:降次思想,配方法教学过程一、复习引入已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法.二、探究新知(一)探究课本问题11.用列方程方法解题的等量关系是什么?2.解方程的依据是什么?3.方程的解是什么?问题的答案是什么?4.该方程的结构是怎样的?归纳:可根据数的开方的知识解形如x2=p(p≥0)的一元二次方程,方程有两个根,但是不一定都是实际问题的解.(二)解决课本思考1如何理解降次?2本题中的一元二次方程是通过什么方法降次的?3能化为(x+m)2=n(n≥0)的形式的方程需要具备什么特点?归纳:1运用平方根知识将形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可;2左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为(x+m)2=n(n≥0).(三)探究课本问题21.根据题意列方程并整理成一般形式.2.将方程x2+6x-16=0和x2+6x+9=2对比,怎样将方程x2+6x-16=0化为像x2+6x+9=2一样,左边是含有未知数的完全平方式,右边是非负常数的方程?①完成填空:x2+6x+ =(x+ )2②方程移项之后,两边应加什么数,可将左边配成完全平方式?归纳:用配方法解二次项系数是1且一次项系数是偶数的一元二次方程的一般步骤及注意事项:先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形式,右边完成有理数加法运算,到此,方程变形为(x+m)2=n(n≥0)的形式.三、课堂训练课本练习: P31页练习,P34页练习1,2(1)四、小结归纳1.根据平方根的意义,用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程.2.用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,特别地,移项后方程两边同加一次项系数的一半的平方.3.在用方程解决实际问题时,方程的根一定全实际是问题的解,但是实际问题的解一定是方程的根.五、作业设计必做:P42:1、2、3(1)(2)选做:下面补充作业补充作业:1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-24.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-116.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?教学时间: 教学课题:22.2.1配方法(2) 教学课型:新授课 教学目标:1.进一步理解配方法和配方的目的.2.掌握运用配方法解一元二次方程的步骤.3.会利用配方法熟练灵活地解二次项系数不是1的一元二次方程.4.通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识 教学重点:用配方法解一元二次方程 教学难点:用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是1的类型 教学过程 一、复习引入我们在上节课,已经学习了用直接开平方法解形如x 2=p (p≥0)或(mx+n )2=p (p≥0)的一元二次方程,以及用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二次方程. 二、探究新知 1.填空: ①()22________8+=++x x x②()22________-=+-x x x③()22____4___+=++x x ④()22____49___-=+-x x 2.填空: ①a x x++82是完全平方式,a=②92++mx x是完全平方式,m =3.解下列方程:①x 2-8x+7=0 ②2x 2+8x-2=0 ③2x 2+1=3x ④3x 2-6x+4=0 分析:(1)解方程①,复习用配方法解二次项系数为1的一元二次方程步骤;(2)对比○1的解法得到方程○2的解法,总结出用配方法解二次项系数不为1的一元二次方程的一般步骤: ①.把常数项移到方程右边;②.方程两边同除以二次项系数,化二次项系数为1; ③.方程两边都加上一次项系数一半的平方; ④.原方程变形为(x+m )2=n 的形式;⑤.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.(3)运用总结的配方法步骤解方程○3,先观察将其变形,即将一次项移到方程的左边,常数项移到方程的右边;解方程○4配方后右边是负数,确定原方程无解. (4) 不写出完整的解方程过程,到哪一步就可以确定方程的解得情况? 三、课堂训练1.方程()的形式,正确的是化为b a x x x =+=+-2202344( )A.()4532=-x B.()4532-=-x C.41232=⎪⎪⎭⎫ ⎝⎛-x D.3232=⎪⎪⎭⎫⎝⎛-x 2.配方法解方程2x 2-43x-2=0应把它先变形为( ). A .(x-13)2=89 B .(x-23)2=0 C .(x-13)2=89 D .(x-13)2=1093.下列方程中,一定有实数解的是( ).A .x 2+1=0B .(2x+1)2=0C .(2x+1)2+3=0D .(12x-a )2=a4.解决课本练习2(2)到(6)5.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ). A .1 B .2 C .-1 D .-26. a ,b ,c 是ABC ∆的三条边①当bc c ab a 2222+=+时,试判断ABC ∆的形状. ②证明02222<-+-ac c b a四、小结归纳:用配方法解一元二次方程的步骤 1.把原方程化为()002≠=++a c bx ax 的形式, 2.把常数项移到方程右边;3.方程两边同除以二次项系数,化二次项系数为1;4.方程两边都加上一次项系数一半的平方;5.原方程变形为(x+m )2=n 的形式;6.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.不写出完整的解方程过程,原方程变形为(x+m )2=n 的形式后,若n 为0,原方程有两个相等的实数根;若n 为正数,原方程有两个不相等的实数根;若n 为负数,则原方程无实数根. 五、作业设计必做:P42:3(3)(4) 选做:P43:8、9教学时间: 教学课题:22.2.2公式法 教学课型:新授课 教学目标1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.4.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.;5.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单. 教学重点:求根公式的推导,公式的正确使用 教学难点:求根公式的推导 教学过程 一、复习引入我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程()002≠=++a c bx ax二、探究新知活动1.学生观察下面两个方程思考它们有何异同?①6x 2-7x+1=0 ②()002≠=++a c bx ax 活动2.按配方法一般步骤同时对两个方程求解: 1.移项得到6x 2-7x=-1,c bx ax -=+22.二次项系数化为1得到ac x a b x x x -=+-=-22,6167 3.配方得到 x 2-76x+(712)2=-16+(712)2 x 2+b a x+(2b a )2=-c a+(2ba )24.写成(x+m )2=n 形式得到(x-712)2=25144,(x+2b a)2=2244b ac a - 5.直接开平方得到x-712=±512,注意:(x+2ba)2=2244b ac a -是否可以直接开平方? 活动3.对(x+2b a)2=2244b ac a -观察,分析,在0≠a 时对2244b ac a -的值与0的关系进行讨论活动4.归纳出一元二次方程的根的判别式和求根公式,公式法. 活动5.初步使用公式解方程6x 2-7x+1=0.活动6.总结使用公式法的一般步骤:①把方程整理成一般形式,确定a,b,c 的值,注意符号②求出ac b 42-的值,方程()002≠=++a c bx ax ,当Δ>0时,有两个不等实根;Δ=0时有两个相等实根;Δ<0时无实根.③在ac b 42-≥0的前提下把a ,b ,c 的值带入公式.三、课堂训练1.利用一元二次方程的根的判别式判断下列方程的根的情况 (1)2x 2-4x-1=0 (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=02.课本例2 四、小结归纳1.用根的判别式判断一个一元二次方程是否有实数根2.用求根公式求一元二次方程的根3. 一元二次方程求根公式适用于任意一个一元二次方程. 五、作业设计 必做:P42:4、5 选做:P43:11、12某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A 元收费.(1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示) (2)下表是这户居民3月、4月的用电情况和交费情况根据上表数据,求电厂规定的A 值为多少?教学时间: 教学课题:22.2.3因式分解法 教学课型:新授课 教学目标1.了解因式分解法的概念.2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.3.经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.4.体验解决问题方法的多样性,灵活选择解方程的方法.教学重点:会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,从而降次解方程 教学难点:将整理成一般形式的方程左边因式分解 教学过程 一、复习引入我们学习了用配方法和公式法解一元二次方程,这节课我们来学习一种新的方法. 二、探究新知 1.因式分解x 2-5x ;; 2x(x-3)-5(x-3); 25y 2-16; x 2+12x+36;4x 2+4x+1 2.若ab=0,则可以得到什么结论? 3.试求下列方程的根 :x(x-5)=0; (x-1)(x+1)=0;(2x-1)(2x+1)=0;(x+1)2 =0; (2x-3)2=0.分析:解左边是两个一次式的积,右边是0的一元二次方程,初步体会因式分解法解方程实现降次的方法特点,只要令每个因式分别为0,得到两个一元一次方程,解这两个一元一次方程,它们的解就都是原方程的解. 4. 试求下列方程的根①、4x 2-11x =0 x(x-2)+ (x-2)=0 (x-2)2 -(2x-4)=0 ②、25y 2-16=0 (3x+1)2 -(2x-1)2 =0 (2x-1)2 =(2-x)2 ③、x 2+10x+25=0 9x 2-24x+16=0; ④、5x 2-2x-41= x 2-2x+432x 2+12x+18=0; 分析:观察①②③三组方程的结构特点,在方程右边为0的前提下,对左边灵活选用合适的方法因式分解,并体会整体思想.总结用因式分解法解一元二次方程的一般步骤:首先使方程右边为0,其次将方程的左边分解成两个一次因式的积,再令两个一次因式分别为0,从而实现降次,得到两个一元一次方程,最后解这两个一元一次方程,它们的解就都能是原方程的解.这种解法叫做因式分解法. ④中的方程结构较复杂,需要先整理.5.选用合适方法解方程x2+x+41=0 x2+x-2=0 (x-2)2 =2-x 2x2-3=0.分析:四个方程最适合的解法依次是:利用完全平方公式,求根公式法,提公因式法,直接开平方法或利用平方差公式.归纳:配方法要先配方,再降次;公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程. 解一元二次方程的基本思路:化二元为一元,即降次.三、课堂训练1.完成课本练习2.补充练习:①已知(x+y)2 –x-y=0,求x+y的值.②下面一元二次方程解法中,正确的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x 两边同除以x,得x=1③今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为150m2的长方形养鸡场.为了节约材料,鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少?(其中a≥20m)四、小结归纳本节课应掌握:1.用因式分解法解一元二次方程2.归纳一元二次方程三种解法,比较它们的异同,能根据方程特点选择合适的方法解方程五、作业设计必做:P43:6、10选做:P43:13、14教学时间:教学课题:22.2.4一元二次方程的根与系数关系教学课型:新授课教学目标:1.熟练掌握一元二次方程的根与系数关系.2.灵活运用一元二次方程的根与系数关系解决实际问题.3.提高学生综合运用基础知识分析解决较复杂问题的能力.4.学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明教学重点:一元二次方程的根与系数关系教学难点:对根与系数关系的理解和推导教学过程一、复习引入一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?二、探究新知1.课本思考分析:将(x- x1)(x-x2)=0化为一般形式x2-( x1 +x2)x+ x1 x2=0与x2+px+ q=0对比,易知p=-( x1 +x2),q= x1 x2. 即二次项系数是1的一元二次方程如果有实数根,则一次项系数等于两根和的相反数,常数项等于两根之积.2.跟踪练习求下列方程的两根x1、x2. 的和与积.x2+3x+2=0;x2+2x-3=0; x2-6x+5=0; x2-6x-15=03. 方程2x2-3x+1=0的两根的和、积与系数之间有类似的关系吗?分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?4.一般的一元二次方程ax2+bx+c=0(a≠0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x2和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比. 求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系.5.跟踪练习求下列方程的两根x1、x2. 的和与积.①3x2+7x+2=0;3x2+7x-2=0; 3x2-7x+2=0;3x2-7x-2=0;②5x-1=4x2;5x2-1=4x2+x6.拓展练习①已知一元二次方程2x 2+bx+c=0的两个根是-1,3,则b= ,c= .②已知关于x 的方程x 2+kx-2=0的一个根是1,则另一个根是 ,k 的值是 .③若关于x 的一元二次方程x 2+px+q=0的两个根互为相反数,则p= ; 若两个根互为倒数,则q= . 分析:方程中含有一个字母系数时利用方程一根的值可求得另一根和这个字母系数;方程中含有两个字母系数时利用方程的两根的值可求得这两个字母系数.二次项系数是1时,若方程的两根互为相反数或互为倒数,利用根与系数的关系可求得方程的一次项系数和常数项.④两个根均为负数的一元二次方程是( )A.4x 2+21x+5=0B.6x 2-13x-5=0C.7x 2-12x+5=0D.2x 2+15x-8=0⑤.两根异号,且正根的绝对值较大的方程是( )A.4x 2-3=0B.-3x 2+5x-4=0C.0.5x 2-4x-3=0D.2x 2+53x-6=0⑥.若关于x 的一元二次方程2x 2-3x+m=0,当m 时方程有两个正根;当m 时方程有两个负根;当m 时方程有一个正根一个负根,且正根的绝对值较大.三、课堂训练1.完成课本练习2.补充练习:x 1 ,x 2是方程3x 2-2x-4=0的两根,利用根与系数的关系求下列各式的值:①2111x x +; ②221212x x x x + ③2221x x +; ④()221x x -;⑤2112x x x x + 四、小结归纳本节课应掌握:1. 韦达定理二次项系数不是1的方程根与系数的关系2. 运用韦达定理时,注意隐含条件:二次项系数不为0,△≥0;3.韦达定理的应用常见题型:①不解方程,判断两个数是否是某一个一元二次方程的两根;②已知方程和方程的一根,求另一个根和字母系数的值;③由给出的两根满足的条件,确定字母系数的值;④判断两个根的符号;○5不解方程求含有方程的两根的式子的值. 五、作业设 计必做:P43:7选做:补充作业:已知一元二次方程x 2+3x+1=0的两个根是βα、,求αββα+的值.教学时间:教学课题:22.3实际问题与一元二次方程(1)教学课型:新授课教学目标:1.使学生会列出一元二次方程解应用题,初步掌握利用一元二次方程解决生活中的实际问题.2.培养学生的阅读能力.3.通过根据实际问题列方程,向学生渗透知识来源于生活.4.通过观察,思考,交流,进一步提高逻辑思维和分析问题解决问题能力.5.经历观察,归纳列一元二次方程的一般步骤教学重点:建立数学模型,找等量关系,列方程教学难点:找等量关系,列方程教学过程一、复习引入同一元一次方程,二元一次方程(组)等一样,一元二次方程和实际问题,也有紧密的联系,本节课就来讨论如何利用一元二次方程来解决实际问题.二、探究新知●探究课本30页问题1分析:设正方体的棱长是xdm,则一个正方体的表面积是多少?10个呢?等量关系是什么?●探究课本38页问题分析:设物体经过xs落回地面,这时它离地面的高度是多少?●某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税为利息的20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推●课本46页探究2分析:设甲种药品的成本年平均下降率为x,则一年后甲种药品成本是多少?两年后甲种药品成本是多少?相关的等量关系是什么?类似的乙甲种药品成本的年平均下降率是多少?相关的等量关系是什么?方程的解都是该问题的解吗?如果不是,如何选择?为什么?如何回答课本46页思考?归纳:通过解决以上问题,列一元二次方程解实际问题的基本步骤是什么?与以前学过的列方程解实际问题的步骤有何异同?●某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?分析:设平均增长率是x ,则二月份生产电视机的台数是多少?三月份生产电视机的台数是多少?第一季度生产电视机的总台数还可以怎样表示?等量关系是什么?归纳:以上这几道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.三、课堂训练补充练习:①.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( ).A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元②.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ ③. 2009年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ).A .100(1+x )2=250B .100(1+x )+100(1+x )2=250C .100(1-x )2=250D .100(1+x )2四、小结归纳1.列一元二次方程解应用题的一般步骤2.利用一元二次方程解决实际生活中的百分率问题五、作业设计必做:P48:1、2、3选做:P49:9补充作业:上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?教学时间:教学课题:22.3实际问题与一元二次方程(2)教学课型:新授课教学目标:1.能根据○1以流感为问题背景,按一定传播速度逐步传播的问题;○2以封面设计为问题背景,边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.4.通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程教学重点:建立数学模型,找等量关系,列方程教学难点;找等量关系,列方程教学过程:一、复习引入通过上节课的学习,谈谈列一元二次方程解决实际问题的一般步骤及应注意的问题.二、探究新知●课本45页探究1分析:①设每轮传染中平均一个人传染x了个人.这里的一轮指一个传染周期.②第一轮的传染源有几个人?第一轮后有几个人被传染了流感?包括传染源在内,共有几个人患着流感?③第二轮的传染源有几个人?第二轮后有几个人被传染了流感?包括第二轮的传染源在内,共有几个人患着流感?④本题用来列方程的相等关系是什么?列出方程.拓展:课本思考.四轮呢?归纳:本题一流感为问题背景,讨论按一定传播速度逐步传播的问题,,特别需要注意的是,在第二轮传染中,在实际生活中,类似原型很多,比如细胞分裂,信息传播,传染病扩散,害虫繁殖等,一般就考虑两轮传播,这些问题有通性,在解题时有规律可循.●课本47页探究3分析:①正中央的长方形与整个封面的长宽比例相同,是什么含义?②上下边衬与左右边衬的宽度相等吗?如果不相等,应该有什么关系?③若设正中央的长方形的长和宽分别为9a㎝,7a㎝,尝试表示边衬的长度,并探究上下边衬与左右边衬的宽度的数量关系?④“应如何设计四周边衬的宽度?”是要求四周边衬的宽度,除了根据上下边衬与左右边衬的宽度比为,设上下边衬宽为与左右边衬宽为.还可以根据正中央的长方形长与宽的比为9:7,设正中央的长方形的长为。

数学:第22章一元二次方程全章导学案

数学:第22章一元二次方程全章导学案

22.1 一元二次方程导学案学习目标:1. 能把实际问题转化为数学模型(一元二次方程);在这个过程中,体会到方程是刻画现实世界数量关系的工具2. 知道一元二次方程的概念,掌握一元二次方程的一般形式,能说出二次项系数、一次项系数及常数项学习过程:一、复习:列方程解应用题有哪些步骤?问题1 绿苑小区在规划设计时,准备在两棟楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?(设宽为x米,列方程)问题2 学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册,求这两年的年平均增长率。

(设平均增长率为x,列方程不用求解)问题3 有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒。

如果要制作无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形呢?根据题意,列出方程(不必求解)二、探索新知:将上述三个方程展开并按x的降幂排列,观察是一元一次方程吗?它们有何共同点?①_________________ ②______________________ ③______________________满足上述3个条件的方程,就是一元二次方程一元二次方程的一般形式:任何一个一元二次方程都能够化为一般形式:_______________________(a、b、c是已知数,a≠0)注意:①ax2叫做_______________,其中a叫做_______________bx叫做_______________,其中b叫做_______________c叫做_______________②为什么要a≠0?若a﹦0且b≠0,则它是__________________说明:一元二次方程的一般形式ax2+b x+c≒0(a≠0)具有两个特征:② 方程的右边为0;②左边的二次项系数、一次项系数和常数项都要包括它前面的符号。

九年级上册数学华东师大版导学案 22.3 第1课时 利用一元二次方程解决几何问题

九年级上册数学华东师大版导学案  22.3  第1课时  利用一元二次方程解决几何问题

第22章一元二次方程22.3 实践与探索第1课时利用一元二次方程解决几何问题学习目标:1.学会用一元二次方程解决几何图形的实际问题(重点);2.从实际结合问题中抽象出数学模型(难点).自主学习一、新知预习【问题】如图,要为一幅长30cm、宽20cm的照片配一个镜框,要求镜框四边的宽度x相等,且镜框所占面积为照片面积的925,镜框的宽度应该多少厘米?解:设镜框的宽度为xcm,根据题意,得(___________)(____________)-30×20=30×20×9 25.整理,得_________________.解这个方程,得x1= ,x2= .(不合题意,舍去)答:镜框的宽度为_______cm.合作探究一、探究过程探究点:列一元二次方程解几何图形问题【问题1】如图,用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成底面积为1500cm2的没有盖的长方体盒子.求截去的小正方形的边长.解:设截去的小正方形的边长x cm.则长和宽分别为(____________)cm、(____________)cm.根据题意,得_______________________.整理,得:__________________.解这个方程,得x1= ____ ,x2= ___ .当x1=______时,60-2x=-30<0,_____题意,舍去.当x2=______时, 60-2x=30,长为______cm,宽为______cm._____题意.答:截取的小正方形的边长是15 cm.【归纳总结】利用一元二次方程解决几何问题的一般步骤:①审清题意,依据几何图形的性质或数量关系找到等量关系;②设合适的未知数,并依据等量关系列出一元二次方程;③解方程;④检验解的合理性.【问题2】如图1,在宽为20米,长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540平方米,求道路的宽.思路提示:通过平移将小路平移到如图2所示的位置,再设未知数,列一元二次方程求解.【归纳总结】把分散的图形拼接成一个完整的、规则的图形是解决图形问题中的常用方法,也是较为简便有效的方法.【针对训练】1.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A.x2+130x-1400=0B.x2+65x-350=0C.x2-130x-1400=0D.x2-65x-350=02.如图,有一矩形空地ABCD,一边靠墙,这堵墙的长为30m,另三边由一段总长度为35m 的铁丝网围成.已知矩形空地的面积是125m2,求矩形空地的长BC和宽AB.二、课堂小结一元二次方程的应用内容运用策略面积问题②等积变形;②把不规图形转换为规则图形,通常用到______进行转化.熟记常见几何图形的面积公式当堂检测1.一个矩形的周长为28cm,若它的面积为40cm2,则这个矩形的长为_______cm,宽为_______cm.2.如图,一块镶有宽度相等的花边的长方形十字绣,它的长为120cm,宽为80cm.若十字绣中央长方形的面积是6000cm2,则花边的宽为_____.3.如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1.若使得彩条所占面积是图案面积的1975,则竖彩条的宽度为( )A .1cmB .2cm C.19cm D.1cm或19cm4.如图,张大叔从市场上买回一块矩形铁皮,他将此铁皮的四个角各剪去一个边长为1m的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2m.现已知购买这种铁皮每平方米需20元钱,问张大叔购买这张矩形铁皮共花了多少元钱?参考答案自主学习一、新知预习30+2x 20+2x x2+25x-54=0 2 -27 2合作探究一、探究过程探究点:【问题1】80-2x 60-2x (80-2x)(60-2x)=1500 x2-70x+825=0 55不符合15 50 30 符合【问题2】解:设道路的宽是x米,由题意,得(32-x)(20-x)=540,解得x1=48(舍)x2=2.答:道路的宽是2米.【针对训练】二、课堂小结分割拼接当堂检测1.10 42.10 cm3.A4.解:设长方体箱子的宽为x m,则长为(x+2)m,根据题意得x(x+2)×1=15,解之得x1=-5,x2=3.因为宽为正数,所以x=3,即宽为3m,长为5m.则原来长方形铁皮的宽为5m,长为7m.费用为5×7×20=700(元).答:张大叔购买这张矩形铁皮共花了700元钱.。

第22章 二次函数全章导学案

第22章 二次函数全章导学案

课题22.1 二次函数(1)导学目标知识点:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、理解二次函数的概念,掌握二次函数的一般形式;3、通过解决实际问题的过程总结建立数学模型的方法,培养与他人交流的意识和提取合理见解的能力。

课时:1课时导学方法:实验、整理、分析、归纳法导学过程:一、课前导学1、填表一次函数正比例函数反比例函数表达式图形形状2、探究(1).正方体六个面是全等的正方形,设正方形棱长为x ,表面积为y ,则y 关于x 的关系式为是什么?①(2).多边形的对角线数 d 与边数n 有什么关系?②n边形有个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可作条对角线。

因此,n边形的对角线总数d = 。

(3).某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y 与x 之间的关系应怎样表示?这种产品的原产量是20件,一年后的产量是 件,再经过一年后的产量是 件,即两年后的产量为 。

③二、合作探究探究:函数①②③有什么共同特点?你能举例说明吗?一般地,形如 的函数,叫做二次函数其中,是自变量,a 为 , b 为 ,c 为 , 做一做:1、下列函数中,哪些是二次函数?分别说出二次函数的二次项系数、一次项系数和常数项。

(1)(2)(3)(4))1(x x y -=(5))1)(1()1(2-+--=x x x y (6) 23712y x x =+--2、函数2y ax bx c =++,当a 、b 、c 满足什么条件时,(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?三、展示点评 四、课堂检测学习知识最好的途径就是自我发现1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1; (5)y=x 2-x(1+x); (6)y=x -2+x.2.写出下列各函数关系,并判断它们是什么类型的函数(1)、长方形的长是宽的2倍,写出长方形的周长C 与宽a 之间的函数关系 , 是 的 函数。

22.1一元二次方程数学教案

22.1一元二次方程数学教案

22.1一元二次方程数学教案
教案名称:《一元二次方程》
一、教学目标:
1. 知识与技能:理解并掌握一元二次方程的概念,能够解基本的一元二次方程;学会使用因式分解法、公式法等方法解决相关问题。

2. 过程与方法:通过观察、思考、讨论、合作等方式,提高学生分析问题、解决问题的能力。

3. 情感态度价值观:培养学生的数学思维,激发学生对数学的兴趣,增强学生的学习自信心。

二、教学重难点:
重点:理解和掌握一元二次方程的概念,学会使用因式分解法、公式法解一元二次方程。

难点:理解和运用一元二次方程的解法,解决实际问题。

三、教学过程:
1. 导入新课:通过生活实例或者历史故事引出一元二次方程的概念,激发学生的学习兴趣。

2. 新知探究:首先介绍一元二次方程的概念,然后引导学生学习如何用因式分解法解一元二次方程,再进一步介绍公式法,并举例说明。

在这个过程中,鼓励学生主动参与,提出自己的见解和疑问。

3. 实践应用:设计一些练习题让学生独立完成,以此来检验他们对新知识的理解和掌握程度。

同时,还可以设置一些实际问题,让学生利用所学知识去解决,以提升他们的应用能力。

4. 总结归纳:带领学生回顾本节课的主要内容,强调重要知识点,解答学生在课堂上提出的疑问。

5. 布置作业:布置适量的习题,让学生在课后巩固和复习所学知识。

四、教学评价:
通过课堂观察、小组讨论、练习反馈等方式,评价学生对一元二次方程的理解和掌握程度,以及他们的问题解决能力。

五、教学反思:
在课程结束后,教师需要反思本次教学的效果,包括教学设计是否合理,教学方法是否有效,学生的学习效果如何等等,以便于下次改进教学。

一元二次方程全章导学案(不分版本,通用)

一元二次方程全章导学案(不分版本,通用)

1 反思:【学习目标】1、体会方程是刻画现实世界中数量关系的一个有效数学模型;2、理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项. 【学习重点】由实际问题列出一元二次方程和一元二次方程的概念. 【学习过程】【活动一】知识链接(5分钟)(1) 多项式2321x y x --是 次 项式,其中最高次项是 ,二次项系数为 ,一次项系数为 ,常数项为 .(2) 叫方程,我们学过的方程类型有 . 【活动二】自主交流 探究新知(25分钟)1.自学教材P17——19,回答以下问题.(1)一元二次方程的定义:只含有 个求知数(一元),并且求知数的最高次数是 (二次)的 方程,叫做一元二次方程. (2)一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: (a ≠0),这种形式叫做一元二次方程的一般形式.其中 是二次项, 是二次项系数, 是一次项, 是一次项系数, 是常数项.【注意】①方程20ax bx c ++=只有当a ≠0时才叫一元二次方程,如果a=0,b ≠0时就是 方程了.所以在一般形式中,必须包含a ≠0这个条件.②二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.2. 一元二次方程的解:一元二次方程的解也叫做一元二次方程的_____,即使一元二次方程等号左右两边值相等的_______________的值. 【活动三】课内小结 (学生归纳总结) (3分钟)【活动四】快乐达标(学生先独立完成5分钟,后组内互查2分钟.)1.下列方程是一元二次方程的是有 :(1)3239x x +=,(2)(1)(1)0x x +-=,(3)220y =,(4)01122=-+xx ,(5)232m =, (6)05322=-+y x .2.把方程()()11212=+-y y 化为一般形式为: ;其二次项系数是 ;一次项系数是 ;常数项是 .3.若033)3(2=++--nx x m n 是关于x 的一元二次方程,则m= ,n= .4.下面哪些数是方程260x x --=的根? -4, -3, -2, -1, 0, 1, 2, 3, 4.5. 已知m 是方程260x x --=的一个根,则代数式2m m -=________.6.已知:关于x 的方程()()021122=-++-x k x k . (1)当k 取何值时,此方程为一元一次方程. (2)当k 取何值时,此方程为一元二次方程.【活动五】拓展延伸(独立完成3分钟,班级展示2分钟)1.当a______时,关于x 的方程22()(1)a x x x +=-+是一元二次方程.2.若关于x 的方程27(3)(5)50m m x m x -++-+=是一元二次方程,试求m 的值,•并指出这个方程的各项系数.3.关于x 的方程21()36m m m x x +-+=可能是一元二次方程吗?为什么?2 反思:§22.2.1《一元二次方程的解法——直接开平方法》导学案【学习目标】1、理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2、提出问题,列出缺一次项的一元二次方程ax 2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a (ex+f )2+c=0型的一元二次方程. 【学习重点】运用开平方法解形如(x+m )2=n (n ≥0)的方程;领会降次──转化的数学思想. 【学习过程】【活动一】知识链接(5分钟) 1.我们知道x 2=25,根据平方根的意义,直接开平方得x= ,如果x 换元为2x-1,即2(21)5x -=,也用直接开平方的方法可以这样求解. 2.(1) 解:由方程 2(21)5x -=,得21x -=_______即 21x -=____,21x -=_____∴ 1x =_______, 2x =_____(2) 解:由方程 2692x x ++=,得(_________)2=2∴ ______________=_______ 即 ____________, ____________ ∴ 1x =_______, 2x =_____ 【活动二】自主交流 探究新知(15分钟) 仿照知识链接中的方法解下列方程:(1) 28x = (2) 22(1)4x -=(3) 2694x x++=(4)2490m -= (5)291241x x ++=【活动三】课内小结 (学生归纳总结) (3分钟)1、形如2x p =(0)p ≥或2()mx n p +=(0)p ≥的一元二次方程可利用平方根的定义用开平方的方法直接求解,这种解方程的方法叫做直接开平方法.2、如果方程能化成2x p =或2()mx n p +=(0)p ≥的形式,那么可得x =mx n +=【活动四】快乐达标(学生先独立完成5分钟,后组内互查2分钟.) 1.若224()x x p x q-+=+,那么p 、q 的值分别是( ).A .p=4,q=2B .p=4,q=-2C .p=-4,q=2D .p=-4,q=-2 2.方程2390x +=的根为( ).A .3 B .-3 C .±3 D .无实数根 3.解方程:(1)28160x -=(2)22(3)72x -=【活动五】拓展延伸(独立完成8分钟,班级展示2分钟) 1.如果a 、b 21236b b -+=0,求ab 的值.2.用直接开平方法解方程:22(1)180x --=3.解关于x 的方程2()(0)x m n n +=≥.4. 已知关于x 的一元二次方程043)2(22=-++-m x x m 有一个解是0,求m 的值.3 反思:§22.2.2《一元二次方程的解法——因式分解法》导学案【学习目标】1.正确理解因式分解法的实质.2.熟练掌握运用因式分解法解一元二次方程. 【学习重点】用因式分解法解一元二次方程. 【学习过程】【活动一】知识链接(5分钟)1.分解因式:(1)2832x - (2)244x x -+ (3)228x x --2.填空:填上适当的数,使下列等式成立:(1) 25____(____x x x ++=+2) (2) 21____(____2x x x ++=+2) (3) 2____(____x x +=-2) (4) 2____(____bx x x a++=+2) 【活动二】自主交流 探究新知(20分钟)仿照知识链接中的方法解下列方程:(1)2410x -= (2)22150x x --=【活动三】课内小结 (学生归纳总结) (3分钟)总结因式分解的步骤: ①通过___________把一元二次方程右边化为0; ②将方程左边分解为两个一次因式的______;③令每个因式分别为______,得到两个一元一次方程; ④解 ,它们的解就是原方程的解。

第22章一元二次方程全章教案.doc

第22章一元二次方程全章教案.doc

六年级家长会班主任发言稿尊敬的各位家长:你们好!作为班主任,我首先代表我和所有任课老师,对各位家长的到来表示深深的感谢。

感谢你们在百忙之中来到学校,你们的到来既是对你们子女教育的关心,更是对我们工作的大力支持。

一个孩子的成长,不是光靠学校就能够做到的,而如何进行有效的家校配合是非常必要的。

今天请各位来开这个家长会,目的是:更好地了解自己的孩子最近的学习、心理等各方面的表现,更好地加强学校教师与家长的联系,更好地帮助孩子渡过小学阶段的最后一个关键时期,使孩子顺利迈进中学。

下面作为班主任我先对班级情况做个简单介绍:我们班共有学生60人,其中女生30人,男生28人。

从各方面情况来看,总体还是不错的,班级学习气氛较浓厚,集体荣誉感较强,有些家长对孩子的学习也很重视,每次的家庭作业都检查签名。

这让我感到欣慰。

作为学生的语文教师兼班主任,每一个学生在我的心中都留有深刻的印象。

学生们在前半学期取得了许多优异的成绩,如(樊政道、冯宇凡、杨心怡同学)在学校举行的作业展评中被评为优秀作业,受到学校的表彰奖励;在这次其中考试中,涌现出了一部分成绩优异的同学,总分在100分以上的共12 人,90分以上的28人,80分以上的13人,70分以上的6人,70分以下的1人,总体情况较好。

这些成绩的取得离不开家长对学校和老师工作的支持,在此,表示非常感谢。

在取得成绩的同时也存在一些问题,有少数同学的学习态度极不端正,经常不完成家庭作业,主要是周末的作业,一字不写。

究其原因是思想上懒惰,不想动脑筋。

还有部分同学就是偏科严重,不能实现全面发展。

每次考试这一科考的很好,另外一科就考砸了。

还有些同学基础差、学习不投入,还有个别学生有“破罐子破摔”的心理,谁来把这些孩子扶起来,靠老师的引导,家长的鼓励。

在这最后一个学年里,需要家长花更多时间监管。

还有些同学在学习上没有表现出很强烈的进取心,得过且过,成绩也就平平了。

在与他人相处方面,班里一两个同学表现得很是尖锐,在班上总是和同学们闹一些矛盾,产生思想问题,影响了学习,这些都要引起我们的重视。

人教版九年级上册数学 第22章 二次函数 全章复习 教案

人教版九年级上册数学 第22章 二次函数 全章复习 教案

第22章二次函数全章复习教案【学习目标】 1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义; 2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质; 3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题; 4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④, 其中;⑤.(以上式子a≠0) 几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标(轴)(0,0)(轴)(0,)(,0)(,)当时开口向上当时开口向下()2.抛物线的三要素: 开口方向、对称轴、顶点. (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用: (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,): ①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.)20()y ax bx c a =++≠,,a b c (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a≠0).(由此得根与系数的关系:).要点诠释:求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根; (2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题2yax bx c =++利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系; (2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式; (4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式例题1. 已知抛物线的顶点是(3,-2),且在x 轴上截得的线段长为6,求抛物线的解析式.【思路点拨】已知抛物线的顶点是(3,-2),可设抛物线解析式为顶点式,即,也就是,再由在x 轴上截得的线段长为6建立方程求出a .也可根据抛物线的对称轴是直线x =3,在x 轴上截得的线段长为6,则与x 轴的交点为(0,0)和(6,0),因此可设y =a(x-0)·(x-6).【答案与解析】解法一:∵ 抛物线的顶点是(3,-2),且与x 轴有交点,∴ 设解析式为y =a(x-3)2-2(a >0),即,设抛物线与x 轴两交点分别为(x 1,0),(x 2,0).则,解得.∴ 抛物线的解析式为,即. 解法二:∵ 抛物线的顶点为(3,-2), ∴ 设抛物线解析式为.∵ 对称轴为直线x =3,在x 轴上截得的线段长为6,∴ 抛物线与x 轴的交点为(0,0),(6,0). 把(0,0)代入关系式,得0=a(0-3)2-2,解得,∴ 抛物线的解析式为, 即.解法三:求出抛物线与x 轴的两个交点的坐标(0,0),(6,0)设抛物线解析式为y =a(x-0)(x-6),2(3)2y a x =--2692y ax ax a =-+-2692y ax ax a =-+-12||6x x -==29a =22(3)29y x =--22493y x x =-2(3)2y a x =--29a =22(3)29y x =--22493y x x =-把(3,-2)代入得,解得.∴ 抛物线的解析式为,即.举一反三【变式】已知抛物线(m 是常数). (1)求抛物线的顶点坐标; (2)若,且抛物线与轴交于整数点,求此抛物线的解析式.【答案】(1)依题意,得,∴,∴抛物线的顶点坐标为.(2)∵抛物线与轴交于整数点,∴的根是整数.∴.∵,∴是完全平方数.∵, ∴,∴取1,4,9,.当时,;当时,;当时,. ∴的值为2或或.∴抛物线的解析式为或或.类型二、根据二次函数图象及性质判断代数式的符号例题2. 如图,二次函数y=ax 2+bx +c=0(a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c=0(a ≠0)有一个根为﹣其中正确的结论个数有( )3(36)2a ⨯⨯-=-29a =2(6)9y x x =-22493y x x =-2442y mx mx m =-+-155m <<x 0≠m 2242=--=-=mm a b x m m m m a b ac y 442444422)()(---=-=241681622-=--=m m m m )2,2(-x 02442=-+-m mx mx 2x ==±0m >2x =2m155m <<22105m <<2m2x ==±21m =2=m 24m =21=m 29m =29m =m 21296822+-=x x y x x y 2212-=22810999y x x =--A .1个B .2个C .3个D .4个【思路点拨】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x=3时,y <0,可判断②;由OA=OC ,且OA <1,可判断③;把﹣代入方程整理可得ac 2﹣bc +c=0,结合③可判断④;从而可得出答案.【答案】C ;【解析】解:由图象开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x=2,所以﹣>0,所以b >0,∴abc >0,故①正确;由图象可知当x=3时,y >0,∴9a +3b +c >,故②错误;由图象可知OA <1,∵OA=OC ,∴OC <1,即﹣c <1,∴c >﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac ﹣b +1=0,两边同时乘c 可得ac 2﹣bc +c=0,即方程有一个根为x=﹣c ,由②可知﹣c=OA ,而当x=OA 是方程的根,∴x=﹣c 是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C .类型三、数形结合例题3. 已知平面直角坐标系xOy(如图所示),一次函数的图象与y 轴交于点A ,点M 在正比例函数的图象上,且MO =MA ,二次函数的图象经过点A 、M.334y x =+32y x =2y x bx c =++(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数的图象上,且四边形ABCD 是菱形,求点C 的坐标.【答案与解析】(1)一次函数,当x =0时,y =3,所以点A 的坐标为(0,3),又∵ MO =MA ,∴ M 在OA 的中垂线上,即M的纵坐标为,又M 在上,当时,x =1,∴ 点M 的坐标为.如图所示,.(2)将点A(0,3),代入中,得 ∴即这个二次函数的解析式为:.(3)如图所示,设B(0,m)(m <3),,.334y x =+334y x =+3232y x =32y =31,2⎛⎫⎪⎝⎭AM ==31,2M ⎛⎫ ⎪⎝⎭2y x bx c =++3,31.2c b c =⎧⎪⎨++=⎪⎩5,23.b c ⎧=-⎪⎨⎪=⎩2532y x x =-+25(,3)2C n n n -+3,34D n n ⎛⎫+ ⎪⎝⎭则|AB|=3-m ,,.因为四边形ABCD 是菱形,所以.所以 解得(舍去)将n =2代入,得,所以点C 的坐标为(2,2).类型四、函数与方程例题4.某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x ≧60)元,销售量为y 套.(1)求出y 与x 的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少? 【答案与解析】解:(1)销售单价为x 元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x ≥60);(2)根据题意可得,x (﹣4x+480)=14000,解得x 1=70,x 2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元; (3)设一个月内获得的利润为w 元,根据题意得:w=(x ﹣40)(﹣4x+480)=﹣4x2+640x ﹣19200 =﹣4(x ﹣80)2+6400.当x=80时,w 的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.举一反三:【变式1】抛物线与直线只有一个公共点,则b=________.213||4D C DC y y n n =-=-5||4AD n =||||||AB DC AD ==2133,453.4m n n m n ⎧-=-⎪⎪⎨⎪-=⎪⎩113,0;m n =⎧⎨=⎩221,22.m n ⎧=⎪⎨⎪=⎩2532y x x =-+2C y =【答案】由题意得 把②代入①得. ∵抛物线与直线只有一个公共点, ∴方程必有两个相等的实数根, ∴,∴.【变式2】二次函数的图象如图所示,根据图象解答下列问题: (1)写出方程的两个根; (2)写出不等式的解集; (3)写出y随x的增大而减小的自变量x的取值范围; (4)若方程有两个不相等的实数根,求k的取值范围.【答案】(1) (2). (3). (4)方法1:方程的解, 即为方程组中x的解也就是抛物线与直线的交点的横坐标,由图象可看出, 当时,直线与抛物线有两个交点,∴. 方法2:∵二次函数的图象过(1,0),(3,0),(2,2)三点, ∴ ∴ ∴ ,即, ∴. ∵ 方程有两个不相等的实数根,∴,∴.类型五、分类讨论例题5.若函数,则当函数值y =8时,自变量x 的值是( ).A .B .4C .或4D .4或【思路点拨】此题函数是以分段函数的形式给出的,当y =8时,求x 的值时,注意分类讨论.【答案】D ;【解析】由题意知,当时,,∴ .(舍去).当2x =8时,x =4.综合上知,选D .类型六、与二次函数有关的动点问题例题6.在平面直角坐标系xOy 中,二次函数y=mx 2-(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若∠ABO=45°,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (p ,q )为二次函数图象上的一个动点,当-3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.22(2)2(2)x x y x x ⎧+≤=⎨>⎩228x +=x =2>x =x =【思路点拨】(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B,A点坐标,进而求出直线AB的解析式,再利用平移规律得出答案;(3)根据当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,即可得出m的取值范围.【答案与解析】(3)由(2)得二次函数的解析式为:y=mx2-(m+1)x+1∵M(p,q)为二次函数图象上的一个动点,∴q=mp2-(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,-q).∴M′点在二次函数y=-m2+(m+1)x-1上.∵当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,≤m<0.。

第22章一元二次方程全章导学案

第22章一元二次方程全章导学案

22.1一元二次方程(1)学习目标:1.通过设置问题,建立数学模型,模仿一元一次方程的概念给一元二次方程下定义;2.一元二次方程的一般形式及其有关概念;3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式;4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。

学习重点:一元二次方程的概念及其一般形式和用一元二次方程的有关概念解决问题学习难点:建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。

一.学前准备:1.____________________________________________叫方程;_____________________________________________叫一元一次方程。

2.我们知道了利用一元一次方程可以解决生活中的一些实际问题,利用一元一次方程解决实际问题的步骤是:二.探究活动(一)独立思考·解决问题cm的长方形铁片,师它的长比宽多5cm,这块铁皮该怎么剪呢?如1.剪一块面积为1502果铁皮的宽为x(cm),那么铁皮的长为_________cm.根据题意,可得方程是:______________________2.6,求这两个数。

设其中较小的一个数位x,请列出满足题意的方程__________________.cm,求它的边长?3.正方形的面积是22_______________________________________________.3.矩形花圃一面靠墙,另外三面所围得栅栏的总长度是19m,如果花圃的面积是242m,求花圃的长和宽。

__________________________________________________________.(二)师生探究·合作交流议一议:1.上面的方程有哪些共同的特点呢?你知道什么是一元二次方程了吗?2.结合上面的方程的特点你能够用一个式子表示一元二次方程的一般形式吗?3.20(0)ax bx c a ++= ≠其中______叫做二次项,a 叫做______,bx 叫做_______,b叫做_______.c 是常数项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x22.1 一元二次方程(1)学习目标:1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点:重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.活动1 :完成以下内容。

问题1 要设计一座2m 高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m ,则上部高________,得方程 _____________________________整理得_____________________________ ①问题2 如图,有一块长方形铁皮,长100cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。

如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为________________,宽为____________.得方程_____________________________整理得 _____________________________ ②问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。

根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________设应邀请x 个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。

列方程____________________________ 化简整理得 ____________________________ ③请口答下面问题:(1)方程①②③中未知数的个数各是多少?___________(2)它们最高次数分别是几次?___________方程①②③的共同特点是: 这些方程的两边都是_________,只含有_______未知数(一元),并且未知数的最高次数是_____(二次)的方程.1.一元二次方程:_____________________________________________2. 一元二次方程的一般形式:____________________,一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.其中ax 2是____________,_____是二次项系数;bx 是__________,_____是一次项系数;_____是常数项。

(注意:二次项系数、一次项系数、常数项都要包含它前面的符号。

二次项系数0a 是一个重要条件,不能漏掉。

)3.例 将方程(8-2x )(5-2x )=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.活动2 知识运用 课堂训练例1:判断下列方程是否为一元二次方程:1. 将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、及常数项:⑴ 5x 2-1=4x ⑵ 4x 2=81⑶ 4x(x+2)=25 ⑷ (3x-2)(x+1)=8x-32.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:⑴4个完全相同的正方形的面积之和是25,求正方形的边长x;⑵一个长方形的长比宽多2,面积是100,求长方形的长x ;3.求证:关于x 的方程(m 2-8m+17)x 2+2mx+1=0,不论m 取何值,该方程都是一元二次方程.活动3 归纳内化一元二次方程: 1. 概念_________________________________________________________________2.一般形式 _____________________.活动4:课堂检测1.在下列方程中,一元二次方程有_____________.①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x =0 2. 方程2x 2=3(x-6)化为一般式后二次项系数、•一次项系数和常数项分别是( ).A .2,3,-6B .2,-3,18C .2,-3,6D .2,3,63.px 2-3x+p 2-q=0是关于x 的一元二次方程,则( ).A .p=1B .p>0C .p ≠0D .p 为任意实数4.方程3x 2-3=2x+1的二次项系数为_______,一次项系数为 ______,常数项为_________.活动5:拓展延伸1、要使02)1()1(1=+-+++x k x k k 是一元二次方程,则k=_______.2、已知关于x 的一元二次方程043)2(22=-++-m x x m 有一个解是0,求m 的值。

3.当a______时,关于x 的方程a (x 2+x )2-(x+1)是一元二次方程.4.若关于x 的方程(m+3)27m x-+(m-5)x+5=0是一元二次方程,试求m 的值,•并计算这个方程的各项系数之和.22222(1)10(3)23x 10x x (5)(3)(3)x x -==+=-22 x (2)2(x -1)=3y 12 x-- (4)-=0 (6)9x =5-4x22.1 一元二次方程(2)学习目标:1.了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体实际问题.2.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重点、难点重点:判定一个数是否是方程的根;难点:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.活动1: 完成下列问题1:知识准备一元二次方程的一般形式:____________________________2:探究问题: 一个面积为120m 2的矩形苗圃,它的长比宽多2m ,•苗圃的长和宽各是多少?分析:设苗圃的宽为xm ,则长为_______m .根据题意,得___________________.整理,得________________________.1)下面哪些数是上述方程的根?0,1,2,3,4, 5, 6, 7, 8, 9, 102)一元二次方程的解也叫做一元二次方程的_____,即使一元二次方程等号左右两边相等的_______________的值。

3)将x=-12代入上面的方程,x=-12是此方程的根吗?4)虽然上面的方程有两个根( 和 )但是苗圃的宽只有一个答案,即宽为 .因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.练习:1.你能得出下列方程的根吗?(1) x 2 -36 = 0 (2) 4x 2-9 = 02.下面哪些数是方程x 2+x-12=0的根?-4, -3, -2, -1, 0, 1, 2, 3, 4。

活动2:知识运用 课堂训练例1.下面哪些数是方程x 2-x-6=0的根?-4, -3, -2, -1, 0, 1, 2, 3, 4。

例2.你能用以前所学的知识求出下列方程的根吗?(1) 2250x -= (2) 231x = (3) 29160x -=随堂训练1.写出下列方程的根(1)9x 2 = 1 (2)25x 2-4 = 0 (3)4x 2= 22. 下列各未知数的值是方程2320x x +-=的解的是( ) A.x=1 B.x=-1 C.x=2 D. x=-23.根据表格确定方程287.5x x -+=0的解的范围____________4.已知方程2390x x m -+=的一个根是1,则m 的值是______5.试写出方程x 2-x=0的根,你能写出几个?活动3:归纳内化1.使一元二次方程成立的____________的值,叫做一元二次方程的解,也叫做一元二次方程的________。

2.由实际问题列出方程并得出解后,还要考虑这些解______________活动4:课堂检测1.如果x 2-81=0,那么x 2-81=0的两个根分别是x 1=________,x 2=__________.2.已知方程5x 2+mx-6=0的一个根是x=3,则m 的值为________.3. 若关于X 的一元二次方程22(1)10a x x a -++-=的一个根是0,a 的值是__________ 活动5:拓展延伸1. 若222x x -=,则2243x x -+=_____________。

已知m 是方程260x x --=的一个根,则代数式2m m -=________。

2. 如果x=1是方程ax 2+bx+3=0的一个根,求(a-b )2+4ab 的值.3.把22(1)2x x x x -=++化成一般形式是______________,二次项是____一次项系数是_______ 4.已知x=-1是方程ax 2+bx+c=0的根(b ≠0( ). A .1 B .-1 C .0 D .2*5. 请用以前所学的知识求出下列方程的根。

⑴ 9(x-2) 2=1 ⑵x 2+2x+1=0 ⑶x 2-6x+9=06.如果2是方程x 2-c=0的一个根,那么常数c 是几?你能得出这个方程的其他根吗?7. 若x=1是关于x 的一元二次方程a x 2+bx+c=0(a ≠0)的一个根,求代数式2009(a+b+c)的值22.2.1 直接开平方法解一元二次方程学习目标1、理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2、提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.活动1、完成以下问题一桶某种油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部表面,你能算出盒子的棱长吗?我们知道x2=25,根据平方根的意义,直接开平方得x=±5,如果x换元为2t+1,即(2t+1)2=4,能否也用直接开平方的方法求解呢?试算:用直接开平方法解下列方程:(1)x2=4 (2)(2x-1)2=9 (3)x2+6x+9=4(4)4m2-9=0 (5)x2+4x+4=1 (6)3(x-1)2-9=39解一元二次方程的实质是: 把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”.归纳:如果方程能化成的形式,那么可得活动2 知识运用课堂训练例1用直接开平方法解下列方程:(1)(3x+1)2=7 (2)y2+2y+1=24 (3)9n2-24n+16=11练习:(1)2x2-8=0 (2)9x2-5=3 (3)(x+6)2-9=0(4)3(x-1)2-6=0 (5)x2-4x+4=5 (6)9x2+6x+1=4(7)36x2-1=0 (8)4x2=81 (9)(x+5)2=25活动3 课堂检测一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-22.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根3.若8x2-16=0,则x的值是_________.4.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.5.如果a、b2-12b+36=0,那么ab的值是_______.6.用直接开平方法解下列方程:(1)x2=169 (2)45-x2=0 (3)2x2-3=0 (4)3x2-163=0(5)(2-x)2-81=0 (6)2(x+3)2-18=0 (7)x2+4x+4=3(8)x2+2x+1=4 (9)x2+x+14=0 (10)x2-6x+9=222.2.3配方法解一元二次方程(1)学习目标1、理解间接即通过变形运用开平方法解方程,并能熟练应用它解决一些具体问题.2、通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法。

相关文档
最新文档