(直接打印版)湘教版八年级数学上册期末检测卷有答案
湘教版八年级数学上册期末考试题及答案【A4打印版】
湘教版八年级数学上册期末考试题及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .1 5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A .B .C .D .6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .1257.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A .B .C .D .9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a、b满足(a﹣1)2+2b+=0,则a+b=________.2.若x2+kx+25是一个完全平方式,则k的值是____________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE⊥DF,垂足为点O,△AOD的面积为7,则图中阴影部分的面积为________.5.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=________.6.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快_________s后,四边形ABPQ成为矩形.三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x-+≥(2)111 32x x-+-<2.先化简,再求值:22x4x4x1x1x11x⎛⎫-+-+÷⎪--⎝⎭,其中x满足2x x20+-=.3.已知222111x x xAx x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.4.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD,(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.5.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、A6、C7、C8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、±10.3、2045、26、4三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、112x -;15.3、(1)11x -;(2)14、(1)略;(2)3.5、略.6、(1)120件;(2)150元.。
湘教版八年级数学上册期末测试卷及答案【完整】
湘教版八年级数学上册期末测试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间3.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A .15B .18C .21D .248.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x -=C .800800401.25x x -=D .800800401.25x x -= 9.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于( )A .3米B .6米C .3D .3米二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2x 1-有意义,则x 的取值范围是 ▲ .32|1|0a b -++=,则2020()a b +=_________.4.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.化简:x(4x +3y)-(2x +y)(2x -y)3.解不等式组:3221152x x x x -<⎧⎪++⎨<⎪⎩,并把解集表示在数轴上;4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、B6、D7、A8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1002、x 1≥.3、14、ab5、26、15.三、解答题(本大题共6小题,共72分)1、(1)43x ≤-,数轴表示见解析;(2)12x >,数轴表示见解析. 2、3xy+y 23、31x -<<4、(1)证明略;(2)证明略;(3)10.5、(1)略;(2)4.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
湘教版八年级数学上册期末测试卷含答案
湘教版八年级数学上册期末测试卷含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.化简x 1x -,正确的是( ) A .x - B .x C .﹣x - D .﹣x5.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.2C.2 D.48.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C. D.9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 二、填空题(本大题共6小题,每小题3分,共18分)1x2-x的取值范围是________.2.比较大小:23________13.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 . 三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.解不等式组:12025112xxx⎧+≥⎪⎪⎨+⎪-<--⎪⎩并将解集在数轴上表示.4.如图,点A 、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y,台,其中每台的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、A6、C7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x 2≥2、<3、32或424、()()2a b a b ++.5、406、(10,3)三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、1a b-+,-1 3、﹣4≤x <1,数轴表示见解析.4、(1)略;(2)37°5、略.6、(1) 60x y --; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
湘教版八年级数学上册期末试卷及答案【A4打印版】
湘教版八年级数学上册期末试卷及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.若正多边形的内角和是540︒,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒3.设42-的整数部分为a,小数部分为b,则1ab-的值为()A.2-B.2C.212+D.212-4.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为()A.4.5112y xy x-=⎧⎪⎨-=⎪⎩B.4.5112x yy x-=⎧⎪⎨-=⎪⎩C.4.5112x yx y-=⎧⎪⎨-=⎪⎩D.4.5112y xx y-=⎧⎪⎨-=⎪⎩5.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.6.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC =725.其中正确结论的个数是()A.2个B.3个C.4个D.5个7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13010.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 二、填空题(本大题共6小题,每小题3分,共18分)的立方根是________.1.272.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.因式分解:a3﹣2a2b+ab2=________.4.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC 沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于_____5.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为__________.6.已知:如图,OAD≌OBC,且∠O=70°,∠C=25°,则∠AEB=______度.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)2153x x =+ (2)3111x x x =-+-2.化简:x(4x +3y)-(2x +y)(2x -y)3.已知:12x =-,12y =+,求2222x y xy x y +--+的值.4.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k的值.5.如图,将两个全等的直角三角形△ABD 、△ACE 拼在一起(图1).△ABD 不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、B5、B6、D7、D8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、(3,7)或(3,-3)3、a(a﹣b)2.4、40°.5、36、120三、解答题(本大题共6小题,共72分)1、(1)x=1(2)x=22、3xy+y23、4、(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为32或2或﹣12.5、(1)略;(2)MB=MC.理由略;(3)MB=MC还成立,略.6、(1)A型号家用净水器每台进价为1000元,B型号家用净水器每台进价为1800元;(2)则商家购进A型号家用净水器12台,购进B型号家用净水器8台;购进A型号家用净水器13台,购进B型号家用净水器7台;购进A型号家用净水器14台,购进B型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.。
湘教版八年级数学上册期末考试及答案【A4打印版】
湘教版八年级数学上册期末考试及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.若关于x的不等式组721x mx-<⎧⎨-≤⎩的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤73.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.94.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.25.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.6.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A .15B .18C .21D .248.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________.2.比较大小:3133.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为________. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D在第二象限,且ABD与ABC全等,点D的坐标是______.5.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于_____度,若∠A=60°时,∠BOC又等于_____。
湘教版八年级数学上册期末考试题及答案【A4打印版】
湘教版八年级数学上册期末考试题及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是()A.20 B.24 C.40 D.487.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=13x的图象交于点A(m,﹣3),若kx﹣13x>﹣b,则()A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣98.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°9.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.下列选项中,不能判定四边形ABCD是平行四边形的是()A.AD//BC,AB//CD B.AB//CD,AB CDC .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____. 3.因式分解:a 2-9=_____________.4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为___________cm (杯壁厚度不计).6.如图,长为8 cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.三、解答题(本大题共6小题,共72分)1.解方程:(1)11322x x x -=--- (2)311x x x-=-2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、D5、D6、A7、D8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、43、(a+3)(a﹣3)4、255.5、206、2.三、解答题(本大题共6小题,共72分)1、(1)无解;(2)32x=.2、112x-;15.3、(1)12b-≤≤;(2)24、(1)略;(2)45°;(3)略.5、(1)略(2)等腰三角形,理由略6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。
湘教版八年级上册数学期末测试卷及含答案(完美版)A4版打印
湘教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列各式一定成立的是()A. B. C.D.2、下列命题的逆命题是真命题的是()A.如果两个角都是,那么这两个角相等B.线段垂直平分线上的点到这条线段两端点的距离相等C.等边三角形是锐角三角形D.成中心对称的两个图形全等3、如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A.x≤10B.x≥10C.x<10D.x>104、如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线(x>0)上,则图中=()A. B. C. D.45、如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°6、如图,函数和的图象相交于点,则不等式的解集为( )A. B. C. D.7、下列等式:①,②,③,④,⑤,⑥;正确的有()A.2个B.3个C.4个D.5个8、在三角形中,,并且为偶数,则()A. B. C. D.9、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定10、已知不等式4x-a≤0的正整数解是1,2,则a的取值范围是()A.8<a<12B.8≤a<12C.8<a≤12D.8≤a≤1211、三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点12、如图,在△ABC 和△DEF 中,AC=DF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠DB.BE=CFC.∠ACB=∠DFE=90°D.∠B=∠DEF13、如图所示,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则A等于()A.25B.30C.45D.6014、设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>215、若x>y,则下列式子错误的是()A.x﹣3>y﹣3B.3﹣x>3﹣yC.x+3>y+2D.二、填空题(共10题,共计30分)16、如图,在△ABC中,D为AB上一点,AD=CD=BC,若∠ACD=40°,则∠B=________°.17、如图,在平面内,两条直线l1, l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1, l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(1,1)的点共有________个.18、方程的解是________.19、不等式﹣x﹣1>0的解集为________.20、若等腰三角形一腰上的中线把这个三角形的周长分成为12cm和21cm两部分,则这个等腰三角形的底边长为________.21、已知一个三角形的两边长为3和8,第三边长是偶数,则周长为________.22、如果 x3= 9,那么 x=________.23、①9平方根是________;②________;③若,则a的取值范围是________.24、直角三角形斜边上的中线和高分别是5和6,则面积为________.25、若关于的一元一次不等式组的解是,则的取值范围是________.三、解答题(共5题,共计25分)26、计算:.27、如图,为⊙的直径,过点的切线交的延长线于点,,垂足为.求证:平分.28、(1)计算:2(-)+.(2)先化简,再求值:(a﹣1+)÷(a2+1),其中a=-1.29、已用2a﹣1的立方根是3,3a+b﹣1的算术平方根是9,求a+2b﹣6的平方根.30、已知:如图,∠1=∠2,∠C=∠D,AD=EC,△ABD≌△EBC吗?为什么?参考答案一、单选题(共15题,共计45分)1、B2、B3、A4、D5、D6、A7、C8、C9、B10、B11、A12、D13、B14、B15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
湘教版八年级数学上册期末考试卷(可打印)
湘教版八年级数学上册期末考试卷(可打印) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=--- 4.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .25.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S2+S3=10,则S2的值为()A.113B.103C.3 D.838.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.如果不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,那么m 的取值范围是________. 4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.(1)已知x 35y 352x 2-5xy +2y 2的值.(2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y=22-.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,已知一次函数y kx b =+ 的图象经过A (-2,-1), B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式(2)△AOB 的面积5.如图,△ABC 中,AB=AC ,AD ⊥BC ,CE ⊥AB ,AE=CE .求证:(1)△AEF ≌△CEB ;(2)AF=2CD .6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、B6、B7、B8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、22()1y x =-+3、3m ≤.4、255.5、26、15.三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x =2、(1)42,(2)13+-3、(1)102b -≤≤;(2)24、(1)4533y x =+;(2)525、(1)略;(2)略.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
湘教版八年级数学上册期末考试卷及答案【可打印】
湘教版八年级数学上册期末考试卷及答案【可打印】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是()A.±2 B.2 C.﹣2 D.162.已知点A(1,-3)关于x轴的对称点A'在反比例函数ky=x的图像上,则实数k的值为()A.3 B.13C.-3 D.1-33.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.若45+a =5b(b为整数),则a的值可以是()A.15B.27 C.24 D.206.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l 1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°7.下列说法中错误的是()A.12是0.25的一个平方根B.正数a的两个平方根的和为0C.916的平方根是34D.当0x≠时,2x-没有平方根8.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E∠=,90C∠=,45A∠=,30D∠=,则12∠+∠等于()A.150B.180C.210D.2709.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13010.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6二、填空题(本大题共6小题,每小题3分,共18分)1.已知a、b满足(a﹣1)2+2b+=0,则a+b=________.2.因式分解:2218x-=__________.3.若214x xx++=,则2211xx++= ________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.三、解答题(本大题共6小题,共72分)1.解下列分式方程(1)42122x xx x++=--(2)()()21112xx x x=+++-2.先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=12.3.已知关于x的方程x2-(m+2)x+(2m-1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、B5、D6、C7、C8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、2(x +3)(x ﹣3).3、84、10.5、x ≤1.6、8三、解答题(本大题共6小题,共72分)1、(1)3x =;(2)0x =.2、4ab ,﹣4.3、(1)略;(2)4或4+.4、略.5、略6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。
湘教版八年级数学上册期末考试及答案【A4打印版】
湘教版八年级数学上册期末考试及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-32.若关于x的方程3m(x+1)+5=m(3x-1)-5x的解是负数,则m的取值范围是()A.m>-54B.m<-54C.m>54D.m<543.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C,R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量4.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.25.代数式131xx-+-中x的取值范围在数轴上表示为()A.B.C.D.6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20 B.24 C.40 D.487.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°9.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.19二、填空题(本大题共6小题,每小题3分,共18分)1.若代数式1x-在实数范围内有意义,则x的取值范围是_______.2.计算:16=_______.3.在数轴上表示实数a的点如图所示,化简2(5)a-+|a-2|的结果为____________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________。
湘教版八年级数学上册期末测试卷(可打印)
湘教版八年级数学上册期末测试卷(可打印) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .152 2.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠33.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D .4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩ 6.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .37.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 9.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .2510.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A .45°B .60°C .75°D .85°二、填空题(本大题共6小题,每小题3分,共18分)116________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.分解因式6xy 2-9x 2y -y 3 = _____________.4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =________.6.如图,∠AOB=60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为________。
湘教版八年级数学上册期末考试及答案【可打印】
湘教版八年级数学上册期末考试及答案【可打印】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是()A.﹣3 B.3 C.-13D.132.若12xyx-=有意义,则x的取值范围是()A.1x2≤且x0≠B.1x2≠C.1x2≤D.x0≠3.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A.0个B.1个C.2个D.3个5.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.6.若关于x的不等式组255332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围()A.1162a-<-B.116a2-<<-C.1162a-<-D.1162a--7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .69.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.21a +8a =__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为______。
(完整word版)湘教版八年级数学上册期末考试卷及答案
A BCDEFB八年级上期末数学教学目标检测试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算2的结果是( )A . 2B .2±C . 4D . 4± 2. 分式22+-xx 有意义,则x 的取值范围为( ) A . 2x ≠±B .2x =C .2x ≠-D . 2x ≠3、已知()22x -+,求y x的值( )A 、-1 B 、-2 C 、1 D 、24. 若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形的一个内角的度数是( ) A . 20︒ B . 40︒ C . 90︒ D . 120︒ 5.在数032-,|-2|中最小的是( )A .0 B C 32-D .|-2| ( ) 6.如图,AB AC =,要说明ADC AEB ∆≅∆,需添加的条件不.可.能.是 A .B C ∠=∠B .AD AE =C .ADC AEB ∠=∠D .DC BE =7. 已知2111=-b a ,则b a ab-的值是( ) A .21 B .-21C .2D .-2 8. 如图,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A . △ABC 三条角平分线的交点B . △ABC 三边的中垂线的交点 C . △ABC 的三条中线的交点D . △ABC 三条高所在直线的交点 9. 某市出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).小王乘出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ) A.5千米B.7千米C.8千米D.15千米10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:5104212021)101(0122=++=⨯+⨯+⨯=;32102(1011)12021212802111=⨯+⨯+⨯+⨯=+++=.按此方式,将二进制(1001)2换算成十进制数和将十进制数13转化为二进制的结果分别为 ( )A.9,2(1101) B.9,2(1110) C.17,2(1101) D.17,2(1110) 二、 填空题: 本大题共8小题,每题3分,共24分. 请把答案填在题中横线上. 11、(-0.7)²的平方根是 .若2)(11y x x x +=-+-,则x-y= .12. 等腰三角形的对称轴有 条.等边三角形的对称轴有 条 13.命题“全等三角形的面积相等”的逆命题是 .14. 以13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可画出三角形的个数是 15. 如图所示,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有 16. 某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,11255k k k k x x T T ---⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,()T a 表示非负实数a 的整数部分,例如(2.6)2T =,(0.2)0T =.按此方案,第6棵树种植点6x 为 ;第2011棵树种植点2011x 为 .17,若分式32122---b b b 的值为0,则b 的值为(3x-1)²=(-3)² 则x=18.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB •的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,则线段MN 的长是___________.三、计算题: 本大题共18分.计算应有演算步骤. 19.计算:(每小题4分,共8分)(1) (212()2+-20.先化简,再求值 (本小题满分5分)①21x x -(xx 1--2),其中2x = ②.25624322+-+-÷+-a a a a a 选一个恰当的数求值。
湘教版八年级数学上册期末测试卷及答案【A4打印版】
湘教版八年级数学上册期末测试卷及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若二次根式51x -有意义,则x 的取值范围是( )A .x >15B .x ≥15C .x ≤15D .x ≤52.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小 3.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a -- C .2a - D .-2a -4.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .6.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.下列图形中,是轴对称图形的是()A.B. C.D.8.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C. D.9.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩10.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B.C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是__________. 3.在数轴上表示实数a 的点如图所示,化简2(5)a -+|a -2|的结果为____________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB=4,则AC 的长是________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简2728333x x x x x -⎛⎫+-÷ ⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a-b+c 的平方根.4.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.5.如图,将两个全等的直角三角形△ABD 、△ACE 拼在一起(图1).△ABD 不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、D6、B7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、a>﹣13、3.4、85、50°6、3三、解答题(本大题共6小题,共72分)1、4x=2、42xx+;1x=时,原式52=(或当2x=时,原式32=.)3、3a-b+c的平方根是±4.4、(1)k=-1,b=4;(2)点D的坐标为(0,-4).5、(1)略;(2)MB=MC.理由略;(3)MB=MC还成立,略.6、(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末检测卷一、选择题(每小题3分,共30分) 1.下列实数中,无理数是( )A .-1 B.12C .5 D. 32.计算(-2)-3的结果为( )A .-5B .6C .-8D .-183.已知下列命题,假命题是( ) A .绝对值最小的实数是0B .若a ≥b ,则ac 2≥bc 2C .如果一个数的立方根等于这个数本身,那么这个数是0或±1D .有两边和其中一边的对角分别相等的两个三角形全等 4.不等式2x ≥x -1的解集在数轴上表示正确的是( ) A. B.C.D. 5.一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是( )A .4个B .5个C .6个D .7个6.一个等腰三角形的两边长分别为1,5,则这个三角形的周长为( ) A .2+ 5 B .25+1C .2+5或25+1D .以上都不对7.化简13-2-12的结果是( )A.3+ 2B.3- 2C.2- 3 D .33+ 28.如图,△ABC 和△DEF 中,AB =DE ,∠B =∠DEF ,添加下列哪一个条件仍无法证明△ABC ≌△DEF ( )A .AC ∥DFB .∠A =∠DC .AC =DFD .∠ACB =∠F第8题图 第10题图9.某工程需要在规定日期内完成,如果甲工程队单独做,恰好如期完成,如果乙工程队单独做,则超过规定日期3天,现在甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为x 天,下面所列方程中错误的是( )A.2x +x x +3=1B.2x =3x +3C.⎝ ⎛⎭⎪⎫1x +1x +3×2+x -2x +3=1 D.1x +x x +3=110.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF .给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AC =3BF .其中正确的结论共有( )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分)11.用科学记数法表示的数-3.6×10-4写成小数是________.12.16的平方根为________.13.不等式组⎩⎪⎨⎪⎧3x -5<2x ,x -12≤2x +1的解集是__________.14.如图,△ABC 中,BC 的垂直平分线交AB ,BC 于E ,D ,CD =5,△BCE 的周长为22,则BE =________.第14题图 第16题图15.已知x m =6,x n =3,则x 2m -n的值为________.16.如图,已知△ABC ≌△AFE ,若∠ACB =65°,则∠EAC =________. 17.若y =x -4+4-x2-2,则(x +y )y=________.18.已知关于x 的分式方程mx -1+31-x=1的解是非负数,则m 的取值范围为______________. 三、解答题(共66分) 19.(12分)计算或化简:(1)⎝ ⎛⎭⎪⎫12-1-(3-2)0+|3-1|;(2)2x -4x 2-1÷x -2x 2+2x +1-2x x -1;(3)(π-3)0+⎝ ⎛⎭⎪⎫14-1-||32-6+(-1)2017-18.20.(6分)解不等式组⎩⎪⎨⎪⎧2(x +2)>3x ,3x -12≥-2,并将它的解集在数轴上表示出.21.(6分)如图,在△BCD 中,BC =4,BD =5.(1)求CD 的取值范围;(2)若AE ∥BD ,∠A =55°,∠BDE =125°,求∠C 的度数.22.(7分)如图,在Rt △ABC 中,∠B =90°.分别以A ,C 为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,连接MN ,与AC ,BC 分别交于点D ,E ,连接AE .则:(1)∠ADE =________°; (2)AE ________EC (填“=”“>”或“<”); (3)若AB =3,BC =4,求△ABE 的周长.23.(7分)先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0.24.(8分)如图所示,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:DE =DF .25.(10分)为支援灾区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品共1000件.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同.(1)求A ,B 两种学习用品的单价各是多少元;(2)若购买这批学习用品的费用不超过28000元,则最多购买B 型学习用品多少件?26.(10分)如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F .(1)求证:BF =AC ;(2)求证:CE =12BF .参考答案与解析1.D 2.D 3.D 4.A 5.C 6.B 7.C 8.C 9.D10.A 解析:∵BF ∥AC ,∴∠C =∠CBF .∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∴AB =AC .∵AD 是△ABC 的角平分线,∴BD =CD ,AD ⊥BC ,故②③正确;在△CDE 与△BDF 中,⎩⎪⎨⎪⎧∠C =∠DBF ,CD =BD ,∠EDC =∠FDB ,∴△CDE ≌△BDF (ASA),∴DE =DF ,CE =BF ,故①正确;∵AE =2BF ,∴AC =3BF ,故④正确.故选A.11.-0.00036 12.±2 13.-1≤x <5 14.615.12 16.50° 17.1418.m ≥2且m ≠319.解:(1)原式= 3.(4分)(2)原式=2(x -2)(x +1)(x -1)·(x +1)2x -2-2x x -1=2x -1.(8分)(3)原式=1+4-|42-6|-1-32=5-(6-42)-1-32=5-6+42-1-32=2-2.(12分)20.解:⎩⎪⎨⎪⎧2(x +2)>3x ①,3x -12≥-2②.解不等式①,得x <4.解不等式②,得x ≥-1.∴-1≤x <4.(3分)∴原不等式组的解集在数轴上表示如下.(5分)∴不等式组的解集为-1≤x <4.(6分)21.解:(1)∵在△BCD 中,BC =4,BD =5,∴1<CD <9.(3分) (2)∵AE ∥BD ,∠BDE =125°,∴∠AEC =180°-∠BDE =55°.又∵∠A =55°,∴∠C =180°-∠A -∠AEC =70°.(6分)22.解:(1)90(2分) (2)=(4分)(3)∵MN 是AC 的垂直平分线,∴AE =EC .∴C △ABE =AB +AE +BE =AB +EC +BE =AB +BC =7.(7分)23.解:原式=a 2-b 2+a (b -a )(a -b )2·a (a -b )b 2=b (a -b )(a -b )2·a (a -b )b 2=ab .(3分)∵a +1+|b -3|=0,∴a =-1,b =3,(5分)∴原式=-33.(7分) 24.证明:连接AD .(1分)在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD (SSS),(3分)∴∠DBA =∠DCA ,∴∠DBE =∠DCF .∵DE ⊥AE ,DF ⊥AF ,∴∠E=∠F =90°.(5分)在△DEB 和△DFC 中,⎩⎪⎨⎪⎧∠DBE =∠DCF ,∠E =∠F ,DB =DC ,∴△DEB ≌△DFC (AAS),(7分)∴DE =DF .(8分)25.解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得180x +10=120x ,(2分)解得x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.(4分)答:A 型学习用品的单价为20元,B 型学习用品的单价为30元.(5分)(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000-y )件,(6分)由题意得20(1000-y )+30y ≤28000,解得y ≤800.(9分)答:最多购买B 型学习用品800件.(10分)26.证明:(1)∵CD ⊥AB ,∠ABC =45°,∴△BCD 是等腰直角三角形,∴BD =CD .∵CD ⊥AB ,BE ⊥AC ,∴∠BDF =∠CDA =∠FEC =90°,∴∠DBF =90°-∠BFD ,∠DCA =90°-∠EFC ,且∠BFD =∠EFC ,∴∠DBF =∠DCA .(3分)在△DFB 和△DAC 中,⎩⎪⎨⎪⎧∠DBF =∠DCA ,BD =CD ,∠BDF =∠CDA ,∴△DFB ≌△DAC (ASA),∴BF =AC .(5分)(2)∵BE 平分∠ABC ,∴∠ABE =∠CBE .∵BE ⊥AC ,∴∠BEA =∠BEC =90°.在△BEA 和△BEC 中,⎩⎪⎨⎪⎧∠ABE =∠CBE ,BE =BE ,∠BEA =∠BEC ,∴△BEA ≌△BEC (ASA).(8分)∴CE =AE =12AC .又由(1)知BF =AC ,∴CE =12AC =12BF .(10分)。