2019年河南省新乡市中考数学一模试卷(解析版)
2019年河南省新乡市卫辉市中考数学一模试卷解析版

2019年河南省新乡市卫辉市中考数学一模试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的.)1.(3分)下列各数中,最大的数是()A.|﹣2|B.﹣C.D.﹣π2.(3分)2018年12月18日中国球员周琦被休斯顿火箭队正式裁员,当日在各大搜索引擎中输入“周琦”,能搜索到与之相关的网页约84000000个,将这个数用科学记数法表示为()A.8.4×105B.8.4×106C.8.4×107D.8.4×1083.(3分)如图所示是正方形的展开图,原正方体相对两个面上的数字之和的最大值是()A.5B.6C.7D.84.(3分)下列计算正确的是()A.a6÷a2=a3B.(﹣3a2)3=﹣27a6C.a2+2a2=3a4D.(a+2b)2=a2+4b25.(3分)某中学为了调查学生备战中考体育的训练情况,特抽查了40名学生进行了模拟测试(满分70分),体育组根据抽测成绩制成如表格:则这批考生模拟成绩的中位数和众数分别是()A.59,59B.59,62C.62,67D.62,626.(3分)如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x,宽为y,则依据题意可得二元一次方程组为()A.B.C.D.7.(3分)已知关于x的一元二次方程mx2﹣2x﹣1=0有实数根,则m的取值范围是()A.m≤1且m≠0B.x≥1C.m≥﹣1D.m≥﹣1且m≠0 8.(3分)在一个不透明的纸箱里有四个除了标记数字不同之外其他完全相同的小球,上面标记数字1,2,3,4,现在从中先后随机抽出两个小球,则两球上数字之和能被3整除的概率为()A.B.C.D.9.(3分)如图所示,菱形ABOC如图所置,其一边OB在x轴上,将菱形ABOC绕点B顺时针旋转75°至FBDE的位置,若BO=2,∠A=120°,则点E的坐标为()A.()B.()C.()D.()10.(3分)如图所示,已知△ABC与△DEF均为等边三角形,且AB=2,DB=1,现△ABC 静止不动,△DEF沿着直线EC以每秒1个单位的速度向右移动设△DEF移动的时间为x,△DEF与△ABC重合的面积为y,则能大致反映y与x函数关系的图象是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算=.12.(3分)如图所示,四边形ABCD为矩形,AE⊥EG,已知∠1=25°,则∠2=13.(3分)不等式组的解集为.14.(3分)在Rt△ABC中,AB=2,AC=4,将△ABC绕点C顺时针旋转,A、B的对应点分别为D、E,当B、C、D三点在同一直线上时旋转停止,此时线段AB扫过的阴影面积为.15.(3分)如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中.17.(9分)为了响应上级教委的“海航招飞”号召,某校从九年级应届男生中抽取视力等生理指标合格的部分学生进行了文化课初检,教务处负责同志将测測试结果分为四个等级:甲、乙、丙、丁,然后将相关数据整理为两幅不完整的统计图,请依据相关信息解答下列问题:(1)本次参加文化课初检的男生人数为;(2)扇形图中m的数值为,把条形统计图补充完整;(3)据统计,全省生理指标过关的九年级男生有2400名左右,若规定文化课等级为“甲”“乙”的可进行文化课二检,请估计进入二检的男生有;(4)本次抽检进入“甲”等的4名男生中九(1)、九(2)班各占2名,若从“甲”等学生中随机抽取两名男生进行调研,请用树形图表示抽到的两名男生恰为九(1)班的概率.18.(9分)如图所示,函数y1=kx+b的图象与函数(x<0)的图象交于A(a﹣2,3)、B(﹣3,a)两点.(1)求函数y1、y2的表达式;(2)过A作AM⊥y轴,过B作BN⊥x轴,试问在线段AB上是否存在点P,使S△P AM =3S△PBN?若存在,请求出P点坐标;若不存在,请说明理由.19.(9分)如图所示,以BC为直径的⊙O中,点A、E为圆周上两点,过点A作AD⊥BC,垂足为D,作AF⊥CE的延长线于点F,垂足为F,连接AC、AO,已知BD=EF,BC =4.(1)求证:∠ACB=∠ACF;(2)当∠AEF=°时,四边形AOCE是菱形;(3)当AC=时,四边形AOCE是正方形.20.(9分)夏季多雨,在山坡CD处出现了滑坡,为了测量山体滑坡的坡面长度CD,探测队在距离坡底C点米处的E点用热气球进行数据监测,当热气球垂直升腾到B点时观察滑坡的终端C点,俯视角为60°,当热气球继续垂直升腾90米到达A点,此时探测到滑坡的始端D点,俯视角为45°,若滑坡的山体坡角∠DCH为30°,求山体滑坡的坡面长度CD的长.(计算保留根号)21.(10分)小王从同事小李手中接收一批生产任务,派单方要求必须在15天内完成,届时承以每件60元的价格全部回收,小王在接受任务之后,其生产的任务y(件)与生产的天数x(天)关系如图1所示,其中在生产6天之后,每天的生产数量达到了30件.(1)求y与x之间的函数表达式;(2)设第x天生产的产品成本为m元/件,m与x的函数图象如图2所示,若小王第x 天的利润为W元,求W与x的关系式,并求出第几天后小王的利润可达到最大值,最大值为多少?22.(10分)如图所示,在Rt△ABC中,∠ABC=90°,BF为斜边上的高,在射线AB上有点D,连接DF,作∠DFE=90°,FE交射线BC于点E.【问题发现】如图1所示,如果AB=CB,则DF与EF的数量关系为DF EF(选填>,<,=)【类比探究】如图2所示,如果改变Rt△ABC中两直角边的比例,使得AB=2BC,则DF与EF还存在①中的关系吗?【拓展延伸】如图3所示,在Rt△ABC中,如果已知BC=,AB=3,EF=,试求BD的长.23.(11分)如图所示,菱形ABCD位于平面直角坐标系中,抛物线y=ax2+bx+c经过菱形的三个顶点A、B、C,已知A(﹣3,0)、B(0,﹣4).(1)求抛物线解析式;(2)线段BD上有一动点E,过点E作y轴的平行线,交BC于点F,若S△BOD=4S△EBF,求点E的坐标;(3)抛物线的对称轴上是否存在点P,使△BPD是以BD为斜边的直角三角形?如果存在,求出点P的坐标;如果不存在,说明理由.2019年河南省新乡市卫辉市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的.)1.【解答】解:∵|﹣2|=2,2>﹣>﹣>﹣π,∴最大的数是:|﹣2|.故选:A.2.【解答】解:84000000个,将这个数用科学记数法表示为8.4×107.故选:C.3.【解答】解:由正方体的展开可知:2与4是对面,3与5是对面,1和6是对面;∴两个对面的数字和最大为8;故选:D.4.【解答】解:A、a6÷a2=a4,故此选项错误;B、(﹣3a2)3=﹣27a6,故此选项正确;C、a2+2a2=3a2,故此选项错误;D、(a+2b)2=a2+4ab+4b2,故此选项错误;故选:B.5.【解答】解:67分15人,众数为67分;数据从小到大依次排列,第20、21个数据均为62分,中位数为62分;故选:C.6.【解答】解:设每一个小长方形的长为x,宽为y,依题意,得:.故选:A.7.【解答】解:∵关于x的一元二次方程mx2+2x﹣1=0有两实数根,∴,解得:m≥﹣1且m≠0.故选:D.8.【解答】解:画树状图为:共有12种等可能的结果数,其中两球上数字之和能被3整除的结果数为4,两球上数字之和能被3整除的概率==.故选:B.9.【解答】解:过C作CG⊥OB于G,过E作EH⊥OB于H,在菱形ABOC中,∵∠A=120°,AC∥BO,∴∠ABO=60°,∴∠CBO=30°,∵BO=CO=2,∠COG=60°,在Rt△COG中,OG=OC•cos60°=1,∴BG=1+2=3,在Rt△BCG中,BC==2,∵∠HBE=75°﹣30°=45°,在Rt△BHE中,BH=HE=BE•sin45°=2×=,∴OH=﹣2,∴点E的坐标为(﹣2,﹣).故选:A.10.【解答】解:由题意知:在△DEF移动的过程中,重叠部分总为等腰三角形.当0<x≤1时,此时重合部分的边长为x,则y=;当1<x≤2时,此时重合部分的边长为1,则y=;当2<x≤3时,此时重合部分的边长为x,则y=.由以上分析可知,这个分段函数的图象左边为抛物线的一部分且开口向上,中间为一条线段,右边为抛物线的一部分且开口向下.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=﹣1=﹣.故答案为:﹣.12.【解答】解:∵四边形ABCD是矩形∴AD∥BC∴∠DFE=∠2∵∠DFE=∠1+∠E=115°∴∠2=115°故答案为:115°13.【解答】解:,由①得,x≤,由②得,x>﹣,所以,不等式组的解集﹣<x≤.故答案为:﹣<x≤.14.【解答】解:∵在Rt△ABC中,AB=2,AC=4,∴sin∠ACB=,BC==2,∴∠ACB=30°,∴∠DCE=∠ACB=30°,∴∠ACD=∠BCE=150°,∴S阴影=﹣=,故答案为:.15.【解答】解:按两种情况分析:①点F在线段BC上,如图所示,由折叠性质可知∠A=∠DFE=60°∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C ∴△BDF∽△CFE∴∵AB=4,BF:FC=1:3∴BF=1,CF=3设AE=x,则EF=AE=x,CE=4﹣x∴解得BD=,DF=∵BD+DF=AD+BD=4∴解得x=,经检验当x=时,4﹣x≠0∴x=是原方程的解②当点F在线段CB的延长线上时,如图所示,同理可知△BDF∽△CFE∴∵AB=4,BF:FC=1:3,可得BF=2,CF=6设AE=a,可知AE=EF=a,CE=a﹣4∴解得BD=,DF=∵BD+DF=BD+AD=4∴解得a=14经检验当a=14时,a﹣4≠0∴a=14是原方程的解,综上可得线段AE的长为或14故答案为或14三、解答题(本大题共8个小题,满分75分)16.【解答】解:===a+1,当时,原式=﹣1+1=.17.【解答】解:(1)14÷35%=40,所以本次参加文化课初检的男生人数为40人;(2)甲等级的百分比=×100%=10%,所以m°=360°×10%=36°,即m的值为36;丙等级的人数为40×25%=10(人),补全条形统计图:(3)2400×=1080,所以估计进入二检的男生有1080人;故答案为40人;36;1080人;(4)画树状图为:(用A、B表示九(1)的两名学生;用a、b表示九(2)的两名学生)共有12种等可能的结果数,其中抽到的两名男生恰为九(1)班的结果数为2,所以抽到的两名男生恰为九(1)班的概率==.18.【解答】解:(1)∵A、B两点在函数(x<0)的图象上,∴3(a﹣2)=﹣3a=m,∴a=1,m=﹣3,∴A(﹣1,3),B(﹣3,1),∵函数y1=kx+b的图象过A、B点,∴,解得k=1,b=4∴y1=x+4,y2=﹣;(2)由(1)知A(﹣1,3),B(﹣3,1),∴AM=BN=1,∵P点在线段AB上,∴设P点坐标为(x,x+4),其中﹣1≤x≤﹣3,则P到AM的距离为h A=3﹣(x+4)=﹣x﹣1,P到BN的距离为h B=3+x,∴S△PBN=BN•h B=×1×(3+x)=(x+3),S△P AM=AM•h A=×1×(﹣x﹣1)=﹣(x+1),∵S△P AM=3S△PBN,∴﹣(x+1)=(x+3),解得x=﹣,且﹣1≤x≤﹣3,符合条件,∴P(﹣,),综上可知存在满足条件的点P,其坐标为(﹣,).19.【解答】(1)证明:∵∠ABC+∠AEC=∠AEC+∠AEF=180°,∴∠ABC=∠AEF,在△ABD和△AEF中,,∴△ABD≌△AEF(ASA)∴AB=AE,∴∠ACB=∠ACF;(2)60,如图所示,连接OE,∵四边形AOCE是菱形,∴OA=OC=CE=AE,∵OC=CE=OE,∴△ECO是等边三角形,∴∠OCE=60°,∴AE∥BC,∴∠AEF=∠OCE=60°.故答案为:60;(3)2,∵BC=4,∴OC==2,∵四边形AOCE是正方形,∴∠AOC=90°,∴.故答案为:2.20.【解答】解:作DG⊥AE于G,DF⊥EH于F,则四边形GEFD为矩形,∴GE=DF,GD=EF,设DF=a米,则GE=a,在Rt△DCF中,∠DCF=30°,∴CD=2DF=2a,CF=a,∴EF=EC+CF=120+a,∵AM∥GD,∴∠ADG=∠MAD=45°,∴AG=DE=EF=120+a,∵BN∥EF,∴∠BCE=∠NBC=60°,在Rt△BEC中,tan∠BCE=,BE=EC•tan60°=120×=360,AG=AB+BE﹣GE=450﹣a,∴450﹣a=120+a,解得,a=285﹣405,∴CD=2a=570﹣810,答:山体滑坡的坡面长度CD的长为(570﹣810)米.21.【解答】解:(1)①当1≤x≤6时,设函数的表达式为:y=kx+b,由题意得:,解得:,y1=20x+90(1≤x≤6);②当6<x≤15时,同理可得:y2=30x+30(6<x≤15);故函数的表达式为:y=;(2)①当1≤x≤6时,m1=35,②当6<x≤15时,同理可得:m2=x+29(6<x≤15),故m=;故当1≤x≤6时,每件产品的利润为60﹣35=25,总利润W1=25(20x+90)=500x+2250(1≤x≤6);当6<x≤15时,每件产品的利润为60﹣(x+29)=﹣x+31,W2=(30x+30)(﹣x+31)=﹣30(x﹣15)2+7680(6<x≤15),故当x=15时,函数有最大值7680,故:第15天后小王的利润可达到最大值,最大值为7680.22.【解答】解:【问题发现】DF与EF的数量关系为DF=EF,理由是:如图1,∵∠ABC=90°,AB=CB,∴△ABC是等腰直角三角形,∵BF⊥AC,∴AF=CF=BF,∠ABF=∠CBF=45°,∵∠AFD+∠BFD=∠BFD+∠BFE=90°,∴∠AFD=∠BFE,在△ADF和△BEF中,∵,∴△ADF≌△BEF(SAS),∴DF=EF,故答案为:=;【类比探究】不存在①中的关系,关系为:DF=2EF,理由是:如图2所示,∵∠A+∠ABF=∠A+∠C=90°,∴∠ABF=∠C,∵∠A=∠A,∴△ABC∽△AFB,∴,∴,∵∠A+∠ABF=∠ABF+∠CBF=90°,∴∠A=∠CBF,∵∠AFD+∠BFD=∠BFD+∠BFE=90°,∴∠AFD=∠BFE,在△ADF和△BEF中,∵,∴△ADF∽△BEF,∴,∵,AB=2BC,∴,∴DF=2EF;【拓展延伸】连接DE,设CE=a,由以上结论可知:=====,∵EF=,CE=a,∴BD=a,DF==,在Rt△DBE中,∠DBE=90°,得BD2+BE2=DE2,在Rt△DFE中,∠DFE=90°,得DF2+EF2=DE2,∴BD2+BE2=DF2+EF2,即=,整理得:,解得:a1=,a2=(舍),∴BD=a=.23.【解答】解:(1)∵点A的坐标为(﹣3,0),点B的坐标为(0,﹣4),∴OA=3,OB=4,∴AB==5.∵四边形ABCD为菱形,∴AD∥BC,BC=AB=5,∴点C的坐标为(5,﹣4).将A(﹣3,0),B(0,﹣4),C(5,﹣4)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣x﹣4.(2)∵EF∥OB,AD∥BC,∴∠OBD=∠FEB,∠ODB=∠FBE,∴△BOD∽△EFB,∴=()2.∵S△BOD=4S△EBF,∴OD=2BF.∵AD=AB=5,OA=3,∴OD=2,∴点D的坐标为(2,0),BF=1.设直线BD的解析式为y=kx+d(k≠0),将B(0,﹣4),D(2,0)代入y=kx+d,得:,解得:,∴直线BD的解析式为y=2x﹣4.当x=1时,y=2x﹣4=﹣2,∴点E的坐标为(1,﹣2).(3)∵抛物线解析式为y=x2﹣x﹣4,∴抛物线的对称轴为直线x=﹣=.设点P的坐标为(,m),∵点B的坐标为(0,﹣4),点D的坐标为(2,0),∴BP2=(﹣0)2+[m﹣(﹣4)]2=m2+8m+,DP2=(﹣2)2+(m﹣0)2=m2+,BD2=(2﹣0)2+[0﹣(﹣4)]2=20.∵△BPD是以BD为斜边的直角三角形,∴BP2+DP2=BD2,即m2+8m++m2+=20,整理,得:4m2+16m+5=0,解得:m1=,m2=,∴抛物线的对称轴上存在点P,使△BPD是以BD为斜边的直角三角形,点P的坐标为(,)或(,).。
2019年河南省中考数学一模试卷及参考答案

2019年河南省中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)﹣8的相反数是()A.﹣8B.C.8D.﹣2.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.26.(3分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AC交BC于点E.若∠BCD =80°,则∠AEC的度数为()A.80°B.100°C.120°D.140°8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)=.12.(3分)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.19.(9分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.20.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23.(11分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.2019年河南省中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)﹣8的相反数是()A.﹣8B.C.8D.﹣【解答】解:﹣8的相反数是8,故选:C.2.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【解答】解:44亿=4.4×109.故选:B.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.2【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.6.(3分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【解答】解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选:A.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AC交BC于点E.若∠BCD =80°,则∠AEC的度数为()A.80°B.100°C.120°D.140°【解答】解:∵四边形ABCD为平行四边形,∴∠BAD=∠BCD=80°,AD∥BC,由作法得AE平分∠BAD,∴∠F AE=∠BAD=40°,∵AF∥BE,∴∠AEB=∠F AE=40°,∴∠AEC=180°﹣40°=140°.故选:D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.(3分)如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.∴S△BPQ=PQ•BQ,①当点P在BD上,Q在BC上时(即0s≤t≤2s),BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=t,∴S△BPQ=PQ•BQ=•t•t=t2此时S△BPQ的图象是关于t(0s≤t≤2s)的二次函数.∵>0,∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s),PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1,∴S△BPQ=PQ•BQ=••(t﹣1)=t﹣;此时S△BPQ的图象是关于t(2s<t≤4s)的一次函数.∵斜率>0∴S△BPQ随t的增大而增大,直线由左向右依次上升.③P在EC上时,由∠C=45°易求得EC=•=(即4s<t≤4+s)PQ=﹣(t﹣4)(4s<t≤4+s),BQ=3+(t﹣4),∴S△BPQ=PQ•BQ=﹣(t﹣4)2﹣(t﹣4)+3,∴抛物线开口向下.故选:D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)=2.【解答】解:原式=2﹣4+4=2,故答案为:2.12.(3分)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5x2﹣50x﹣128【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.(3分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.【解答】解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠F AD=∠B=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACE=.故答案为:.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:,其中x=4|cos30°|+3【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是117度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在B等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.19.(9分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.【解答】解:(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP,(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BC=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.20.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330件,日销售利润是660元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.23.(11分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.【解答】解:(1)∵二次函数y=ax2+bx﹣3经过点A(﹣3,0)、B(1,0),∴,解得:,∴二次函数解析式为y=x2+2x﹣3;(2)设直线AE的解析式为y=kx+b,∵过点A(﹣3,0),E(0,1),∴,解得:,∴直线AE解析式为y=x+1,如图,过点D作DG⊥x轴于点G,延长DG交AE于点F,设D(m,m2+2m﹣3),则F(m,m+1),∴DF=﹣m2﹣2m+3+m+1=﹣m2﹣m+4,∴S△ADE=S△ADF+S△DEF=×DF×AG+DF×OG=×DF×(AG+OG)=×3×DF=(﹣m2﹣m+4)=﹣m2﹣m+6=﹣(m+)2+,∴当m=﹣时,△ADE的面积取得最大值为.(3)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,设P(﹣1,n),∵A(﹣3,0),E(0,1),∴AP2=(﹣1+3)2+(n﹣0)2=4+n2,AE2=(0+3)2+(1﹣0)2=10,PE2=(0+1)2+(1﹣n)2=(n﹣1)2+1,①若AP=AE,则AP2=AE2,即4+n2=10,解得n=±,∴点P(﹣1,)或(﹣1,﹣);②若AP=PE,则AP2=PE2,即4+n2=(n﹣1)2+1,解得n=﹣1,∴P(﹣1,﹣1);③若AE=PE,则AE2=PE2,即10=(n﹣1)2+1,解得n=﹣2或n=4,∴P(﹣1,﹣2)或(﹣1,4);综上,点P的坐标为(﹣1,)或(﹣1,﹣)或(﹣1,﹣1)或(﹣1,﹣2)或(﹣1,4).。
2019年河南省新乡市中考数学模拟试卷

2019年河南省新乡市中考数学模拟试卷一、选择题(每小题3分,共24分)下列各小题均有四个选项,其中只有一个是正确的1.12-的倒数是A .12-B .12 C . 2- D .22A .1与2B . 2 与3C .3与4D .4与5 3.有10位同学参加数学竞赛,成绩如下表:则上列数据中的中位数是 A . 80 B . 82.5 C . 85 D . 87.54.我国计划在2020年左右发射火星探测卫星,据科学研究测量,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法表示为 A .5.5×106 B . 5.5×107 C .55×107 D .0.55×108 5.如图,直线m ∥n ,△ABC 的顶点B ,C 分别在n ,m 上, 且∠C = 90°,若∠1= 40° ,则∠2的度数为A . 130°B .120°C .110°D .100°6.如图所示是某个几何体的三视图,该几何体是 A . 圆锥 B .三棱锥 C .圆柱 D .三棱柱 7.关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根,则m 的取值范围是 A .m ≥ 54-B .m ≤ 54-C .m < 54-D .m > 54- 8.在矩形ABCD 中,AD = 2AB = 4,E 为AD 的中点,一块432190858075分数人数第5题图C Am n21第6题图M ED Aα足够大的三角板的直角顶点与E重合,将三角板绕点E旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点M、N,设∠AEM = α(0°<α<90°),给出四个结论:①AM =CN②∠AME =∠BNE③BN-AM =2 ④上述结论中正确的个数是A.1 B.2 C.3 D.4二、填空题(每小题3分,共21分)9.的平方根是.10.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为度.11.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.12.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=.13.写一个你喜欢的实数m的值,使得事件“对于二次函数y=x2﹣(m﹣1)x+3,当x<﹣3时,y随x的增大而减小”成为随机事件.14.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.15.如图,在矩形ABCD中,AB=4,BC=3,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B′的对应点落在矩形ABCD的对角线上时,BP=.三、解答题(本大题有8个小题,共75分)16.先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.17.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程有一个实数根是最大的负整数,求实数m的值及另一根.18.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?19.如图1,△ABC是边长为6的等边三角形,点D、E分别是边AB、AC的中点,将△ADE绕点A旋转,BD与CE所在的直线交于点F.(1)如图(2)所示,将△ADE绕点A逆时针旋转,且旋转角小于60°,∠CFB 的度数是多少?说明你的理由?(2)当△ADE绕点A旋转时,若△BCF为直角三角形,线段BF的长为(请直接写出答案)20.如图.有一艘渔船P在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A,B上的观测点进行观测,从观测站A测得渔船P在北偏西60°的方向,同时测得搜救船C也在北偏西60°的方向,从观测站B测得渔船P在北偏东32°的方向,测得搜救船C在北偏西45°方向,已知观测站A在观测站B东40里处,问搜救船C与渔船P的距离是多少?(结果保留整数,参考数据:sin32°≈0.53,cos32°≈0.85;tan32°≈0.62,sin58°≈0.85;cos58°≈0.53;tan58°≈1.60;≈1.41,≈1.73).21.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a的值.22.我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2时,a=,b=.如图2,当∠ABE=30°,c=4时,a=,b=.归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.23.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△CAB的铅垂高CD及S△CAB;(3)抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.2019年河南省新乡市中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个选项,其中只有一个二、填空题(每小题3分,共21分)9.的平方根是±\sqrt{2}.【考点】平方根;算术平方根.【分析】的平方根就是2的平方根,只需求出2的平方根即可.【解答】解:∵=2,2的平方根是±,∴的平方根是±.故答案为是±.10.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为22度.【考点】平移的性质;同位角、内错角、同旁内角.【分析】由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.【解答】解:由平移的性质知,AO∥SM,故∠WMS=∠OWM=22°;故答案为:22.11.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为6.【考点】中位数;算术平均数.【分析】首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.【解答】解:∵两组数据:3,a,2b,5与a,6,b的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.12.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=1.【考点】整式的混合运算;解一元一次方程.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:利用题中新定义得:(x+3)2﹣(x﹣3)2=12,整理得:12x=12,解得:x=1.故答案为:1.13.写一个你喜欢的实数m的值﹣4(答案不唯一),使得事件“对于二次函数y=x2﹣(m﹣1)x+3,当x<﹣3时,y随x的增大而减小”成为随机事件.【考点】随机事件;二次函数的性质.【分析】直接利用公式得出二次函数的对称轴,再利用二次函数的增减性结合随机事件的定义得出答案.【解答】解:y=x2﹣(m﹣1)x+3x=﹣=m﹣1,∵当x<﹣3时,y随x的增大而减小,∴m﹣1<﹣3,解得:m<﹣2,∴x<﹣2的任意实数即可.故答案为:﹣4(答案不唯一).14.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=﹣5.【考点】切线的性质;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【分析】作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P的半径为r,根据切线的性质和切线长定理得到PD=PE=r,AD=AE,再利用勾股定理计算出OB=6,则可判断△OBC为等腰直角三角形,从而得到△PCD为等腰直角三角形,则PD=CD=r,AE=AD=2+r,通过证明△ACH∽△ABO,利用相似比计算出CH=,接着利用勾股定理计算出AH=,所以BH=10﹣=,然后证明△BEP∽△BHC,利用相似比得到即=,解得r=1,从而易得P点坐标,再利用反比例函数图象上点的坐标特征求出k的值.【解答】解:作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P 的半径为r,∵⊙P与边AB,AO都相切,∴PD=PE=r,AD=AE,在Rt△OAB中,∵OA=8,AB=10,∴OB==6,∵AC=2,∴OC=6,∴△OBC为等腰直角三角形,∴△PCD为等腰直角三角形,∴PD=CD=r,∴AE=AD=2+r,∵∠CAH=∠BAO,∴△ACH∽△ABO,∴=,即=,解得CH=,∴AH===,∴BH=10﹣=,∵PE∥CH,∴△BEP∽△BHC,∴=,即=,解得r=1,∴OD=OC﹣CD=6﹣1=5,∴P(5,﹣1),∴k=5×(﹣1)=﹣5.故答案为﹣5.15.如图,在矩形ABCD中,AB=4,BC=3,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B′的对应点落在矩形ABCD的对角线上时,BP=\frac{3}{2}或\frac{9}{4}.【考点】翻折变换(折叠问题);矩形的性质.【分析】分两种情况探讨:①点B落在矩形对角线BD上,②点B落在矩形对角线AC上,由三角形相似得出比例式,即可得出结果.【解答】解①点A落在矩形对角线BD上,如图1所示.∵矩形ABCD中,AB=4,BC=3∴∠ABC=90°,AC=BD,∴AC=BD==5.根据折叠的性质得:PC⊥BB′,∴∠PBD=∠BCP,∴△BCP∽△ABD,∴,即=,解得:BP=.②点A落在矩形对角线AC上,如图2所示.根据折叠的性质得:BP=B′P,∠B=∠PB′C=90°,∴∠AB′A=90°,∴△APB′∽△ACB,∴,即,解得:BP=.故答案为:或.三、解答题(本大题有8个小题,共75分)16.先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】首先根据运算顺序和分式的化简方法,化简÷,然后应用因数分解法解一元二次方程,求出m的值是多少;最后把求出的m的值代入化简后的算式,求出算式÷的值是多少即可.【解答】解:÷==∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,解得x1=﹣3,x2=1,∵m是方程x2+2x﹣3=0的根,∴m1=﹣3,m2=1,∵m+3≠0,∴m≠﹣3,∴m=1,所以原式===17.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程有一个实数根是最大的负整数,求实数m的值及另一根.【考点】根与系数的关系;根的判别式.【分析】(1)利用方程根与判别式的关系,得出根的判别式符号直接解不等式得出即可;(2)将x=﹣1代入,进而求出m的值,进而得出方程的解.【解答】解:(1)∵方程有实数根,∴b2﹣4ac=(﹣4)2﹣4m≥0,∴m≤4;(2)∵最大的负整数是﹣1,∴把x=﹣1代入原方程中,得:(﹣1)2﹣4×(﹣1)+m=0,解得:m=﹣1﹣4=﹣5,∴x2﹣4x﹣5=0,解得:x1=5,x2=﹣1,答:m的值为﹣5,另一个实数根是5.18.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得(1)a=60,b=0.15;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第三组频数除以数据总数可得b的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)样本容量是:10÷0.05=200,a=200×0.30=60,b=30÷200=0.15;(2)补全频数分布直方图,如下:(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段;(4)3000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.故答案为60,0.15;80≤x<90;1200.19.如图1,△ABC是边长为6的等边三角形,点D、E分别是边AB、AC的中点,将△ADE绕点A旋转,BD与CE所在的直线交于点F.(1)如图(2)所示,将△ADE绕点A逆时针旋转,且旋转角小于60°,∠CFB 的度数是多少?说明你的理由?(2)当△ADE绕点A旋转时,若△BCF为直角三角形,线段BF的长为\frac{4\sqrt{3}}{3}(请直接写出答案)【考点】旋转的性质.【分析】(1)根据等边三角形的性质得到AC=AB,∠EAD=∠CAB=60°,由点D、E分别是边AB、AC的中点,得到AE=AD,根据旋转的性质得到∠EAC=∠BAD,根据全等三角形的性质得到∠ACE=∠ABD,推出A,B,C,F四点共圆,根据圆周角定理即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)∠CFB=60°,理由:∵△ABC是等边三角形,∴AC=AB,∠EAD=∠CAB=60°,∵点D、E分别是边AB、AC的中点,∴AE=AD,∵将△ADE绕点A旋转,BD与CE所在的直线交于点F,∴∠EAC=∠BAD,在△ACE与△ABD中,,∴△ACE≌△ABD,∴∠ACE=∠ABD,∴A,B,C,F四点共圆,∴∠CFB=∠CAB=60°;(2)∵∠CFB=60°,∠BCF=90°,∴∠CBF=30°,∴BF===.故答案为:.20.如图.有一艘渔船P在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A,B上的观测点进行观测,从观测站A测得渔船P在北偏西60°的方向,同时测得搜救船C也在北偏西60°的方向,从观测站B测得渔船P在北偏东32°的方向,测得搜救船C在北偏西45°方向,已知观测站A在观测站B东40里处,问搜救船C与渔船P的距离是多少?(结果保留整数,参考数据:sin32°≈0.53,cos32°≈0.85;tan32°≈0.62,sin58°≈0.85;cos58°≈0.53;tan58°≈1.60;≈1.41,≈1.73).【考点】解直角三角形的应用-方向角问题.【分析】过C作CD⊥AB于D,PE⊥AB于E,连接PB,根据已知条件得到BD=CD,AD=CD,求得CD=20(+1)里,AD=40+20(+1)里,解直角三角形得到PE≈12,即可得到结论.【解答】解:过C作CD⊥AB于D,PE⊥AB于E,连接PB,∴∠CBD=45°,∠CAD=30°,∠PBE=58°,∴BD=CD,AD=CD,∵AB=40里,∴=,∴CD=20(+1),∴AD=40+20(+1)里,在Rt△PBE中,BE==,在Rt△APE中,AE=PE,∴+PE=40,∴PE≈12,∴AP=2PE=24,AC=2CD=40(+1),∴CP=AC﹣PC=109﹣24=85(里).答:搜救船C与渔船P的距离是85里.21.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x 人.如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a 元;人数超过100人时,每张门票降价2a 元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a 的值.【考点】一次函数的应用;一元二次方程的应用;一元一次不等式的应用.【分析】(1)根据甲团队人数为x 人,乙团队人数不超过50人,得到x ≥70,分两种情况:①当70≤x ≤100时,W=70x+80=﹣10x+9600,②当100<x <120时,W=60x+80=﹣20x+9600,即可解答;(2)根据甲团队人数不超过100人,所以x ≤100,由W=﹣10x+9600,根据70≤x ≤100,利用一次函数的性质,当x=70时,W 最大=8900(元),两团联合购票需120×60=7200(元),即可解答;(3)根据每张门票降价a 元,可得W=(70﹣a )x+80=﹣(a+10)x+9600,利用一次函数的性质,x=70时,W 最大=﹣70a+8900(元),而两团联合购票需120(60﹣2a )=7200﹣240a (元),所以﹣70a+8900﹣=3400,即可解答.【解答】解:(1)∵甲团队人数为x 人,乙团队人数不超过50人,∴120﹣x ≤50,∴x ≥70,①当70≤x ≤100时,W=70x+80=﹣10x+9600,②当100<x <120时,W=60x+80=﹣20x+9600,综上所述,W=(2)∵甲团队人数不超过100人,∴x ≤100,∴W=﹣10x+9600,∵70≤x ≤100,∴x=70时,W 最大=8900(元),两团联合购票需120×60=7200(元),∴最多可节约8900﹣7200=1700(元).(3)∵x ≤100,∴W=(70﹣a )x+80=﹣(a+10)x+9600,∴x=70时,W 最大=﹣70a+8900(元),两团联合购票需120(60﹣2a )=7200﹣240a (元),∵﹣70a+8900﹣=3400,解得:a=10.22.我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF ,BE 是△ABC 的中线,AF ⊥BE ,垂足为P ,像△ABC 这样的三角形均称为“中垂三角形”,设BC=a ,AC=b ,AB=c .特例探索(1)如图1,当∠ABE=45°,c=2时,a= 2\sqrt{5} ,b= 2\sqrt{5} . 如图2,当∠ABE=30°,c=4时,a= 2\sqrt{13} ,b= 2\sqrt{7} . 归纳证明(2)请你观察(1)中的计算结果,猜想a 2,b 2,c 2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD 中,点E 、F 、G 分别是AD ,BC ,CD 的中点,BE ⊥EG ,AD=2,AB=3,求AF 的长.【考点】相似形综合题.【分析】(1)由等腰直角三角形的性质得到AP=BP=AB=2,根据三角形中位线的性质,得到EF ∥AB ,EF=AB=,再由勾股定理得到结果;(2)连接EF ,设∠ABP=α,类比着(1)即可证得结论.(3)连接AC 交EF 于H ,设BE 与AF 的交点为P ,由点E 、G 分别是AD ,CD 的中点,得到EG 是△ACD 的中位线于是证出BE ⊥AC ,由四边形ABCD 是平行四边形,得到AD ∥BC ,AD=BC=2,∠EAH=∠FCH 根据E ,F 分别是AD ,BC 的中点,得到AE=BF=CF=AD=,证出四边形ABFE 是平行四边形,证得EH=FH ,推出EH ,AH 分别是△AFE 的中线,由(2)的结论得即可得到结果.【解答】解:(1)∵AF ⊥BE ,∠ABE=45°,∴AP=BP=AB=2,∵AF ,BE 是△ABC 的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=45°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×4=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=4,∠ABP=30°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为:2,2,2,2;(2)猜想:a2+b2=5c2,如图3,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(3)如图4,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=3,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=4.23.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△CAB的铅垂高CD及S△CAB;(3)抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)已知了顶点C坐标,可用顶点式的二次函数通式设出这个二次函数,然后根据A点的坐标可求出二次函数的解析式.然后根据求出的二次函数的解析式,求出B点的坐标,然后可用待定系数法用B、A的坐标求出AB所在直线的解析式;(2)要求三角形CAB的面积,根据题中给出的求三角形面积的求法,那么要先求出水平宽和铅垂高,求铅垂高就要求出C,D两点纵坐标,C点的坐标已知,可用(1)中的一次函数求出D点的纵坐标,那么C,D两点的纵坐标的差的绝对值就是三角形CAB的铅垂高,而水平宽是A点的横坐标,这样可根据题中给出的求三角形的面积的方法得出三角形CAB的面积;(3)可先根据(2)中三角形CAB的面积得出三角形PAB的面积,三角形PAB 中,水平宽是A的横坐标为定值,因此根据三角形PAB的面积可得出此时的铅垂高,然后用抛物线的解析式以及一次函数的解析式,先表示出铅垂高,然后根据由三角形PAB的面积求出的铅垂高可得出关于x的方程,即可得出x的值,然后代入二次函数式中即可得出此点的坐标.【解答】解:(1)设抛物线的解析式为:y1=a(x﹣1)2+4把A(3,0)代入解析式求得a=﹣1所以y1=﹣(x﹣1)2+4=﹣x2+2x+3设直线AB的解析式为:y2=kx+b由y1=﹣x2+2x+3求得B点的坐标为(0,3)把A(3,0),B(0,3)代入y2=kx+b中解得:k=﹣1,b=3所以y2=﹣x+3;(2)因为C点坐标为(1,4)所以当x=1时,y1=4,y2=2所以CD=4﹣2=2S△CAB=×3×2=3(平方单位);(3)假设存在符合条件的点P,设P点的横坐标为x,△PAB的铅垂高为h,则h=y1﹣y2=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x由S△PAB=S△CAB得:×3×(﹣x2+3x)=×3化简得:4x2﹣12x+9=0解得,x1=x2=,将x=代入y1=﹣x2+2x+3中,解得P点坐标为(,).第21页(共21页)。
2019年河南地区中考一模数学试卷一及答案解析

2019年河南地区中考一模数学试卷一(考试时间120分钟;试卷满分120分)第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.) 1.-12的绝对值是( )A .2B .12C .-12 D .-22.俗话说:“水滴石穿”,水滴不断地落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000 000 039 cm 的小洞,则0.000 000 039用科学记数法可表示为( ) A .3.9×10-8B .39×10-8C .0.39×10-7D .39×10-93.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是( )A .郑B .力C .州D .魅 4.下列运算正确的是( )A .m 3+m 2=m 5B .m 5÷m 2=m 3C .(2m )3=6m 3D .(m +1)2=m 2+15.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80 人数232341则这些运动员成绩的中位数和众数分别为( ) A .1.65,1.75 B .1.65,1.70 C .1.70,1.75D .1.70,1.706.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x ,y 的二元一次方程组中符合题意的是( ) A .⎩⎪⎨⎪⎧x +y =999,119x +47y =1 000B .⎩⎪⎨⎪⎧x +y =1 000,911x +74y =999 C .⎩⎨⎧x +y =1 000,99x +28y =999D .⎩⎪⎨⎪⎧x +y =1 000,119x +47y =9997.若一元二次方程x 2-2x +m =0有两个不相等的实数根,则实数m 的取值范围是( )A .m ≥1B .m ≤1C .m >1D .m <18.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为( )A .14B .38C .12D .589.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD 是菱形的只有( )A .AC ⊥BDB .AB =BC C .AC =BD D .∠1=∠210.如图,正方形ABCD 的边长为10,对角线AC ,BD 相交于点E ,点F 是BC 上一动点,过点E 作EF 的垂线,交CD 于点G ,设BF =x ,FG =y ,那么下列图象中可能表示y 与x 的函数关系的是( )A B C D第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:16-(12)-1= .12.将拋物线y =2x 2-4x +3向左平移1个单位长度,得到的抛物线的解析式为 .13.如图,在Rt △ABC 中,∠C =90°,∠A =25°,按以下步骤作图:①分别以A ,B为圆心,以大于12AB 的长为半径作弧,两弧交于M ,N 两点;②作直线MN 交AB于点D ,交AC 于点E ,连接BE ,则∠CBE = °.14.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以点A 为圆心,AC 的长为半径作CE ︵交AB 于点E ,以点B 为圆心,BC 的长为半径作CD ︵交AB 于点D ,则阴影部分的面积为 .15.如图,在Rt △ABC 中,∠B =90°,∠A =60°,AC =23+4,点M ,N 分别在线段AC ,AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:(1-1m -1)÷m 2-4m +4m 2-m ,其中m =2+ 2.17.(本小题满分9分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并将调查结果绘制成如下统计图表.家庭藏书情况统计表类别家庭藏书m本学生人数A 0≤m≤2520B 26≤m≤100aC 101≤m≤20050D m≥20166请根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)在扇形统计图中,“A”对应的扇形圆心角度数为;(3)若该校有2 000名学生,请估计全校学生中家庭藏书200本以上的人数.18.(本小题满分9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.19.(本小题满分9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,请求出这段河的宽度.(结果精确到1米.参考数据:sin 33°≈0.54,cos 33°≈0.84,tan 33°≈0.65,2≈1.41)20.(本小题满分9分)如图,已知反比例函数y =mx (m ≠0)的图象经过点(1,4),一次函数y =-x +b 的图象经过反比例函数图象上的点Q (-4,n ). (1)求反比例函数与一次函数的解析式;(2)一次函数的图象分别与x 轴,y 轴交于A ,B 两点,与反比例函数图象的另一个交点为P 点,连接OP ,OQ ,求△OPQ 的面积.21.(本小题满分10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1 000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x (m 2),种草所需费用y 1(元)与x (m 2)的函数关系式为y 1=⎩⎨⎧k 1x (0≤x <600),k 2x +b (600≤x ≤1 000),其图象如图所示.栽花所需费用y 2(元)与x (m 2)的函数关系式为y 2=-0.01x 2-20x +30 000(0≤x ≤1 000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1 000 m 2空地的绿化总费用为w (元),请利用w 与x 的函数关系式,求出绿化总费用w 的最大值;(3)若种草部分的面积不少于700 m2,栽花部分的面积不少于100 m2,请求出绿化总费用w的最小值.22.(本小题满分10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图1,当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图2,当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由;(3)解决问题如图3,在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC 上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长.23.(本小题满分11分)如图,抛物线y=ax2+bx+6过点A(6,0),B(4,6),与y 轴交于点C.(1)求该抛物线的解析式;(2)如图1,直线l的解析式为y=x,抛物线的对称轴与线段BC交于点P,过点P作直线l的垂线,垂足为点H,连接OP,求△OPH的面积;(3)把图1中的直线y=x向下平移4个单位长度得到直线y=x-4,如图2,直线y=x-4与x轴交于点G,点P是四边形ABCO边上的一点,过点P分别作x轴,直线l的垂线,垂足分别为点E,F.是否存在点P,使得以P,E,F为顶点的三角形是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解析卷2019年河南地区中考一模数学试卷一(考试时间120分钟;试卷满分120分)第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.) 1.-12的绝对值是( B )A .2B .12C .-12 D .-22.俗话说:“水滴石穿”,水滴不断地落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000 000 039 cm 的小洞,则0.000 000 039用科学记数法可表示为( A )A .3.9×10-8B .39×10-8C .0.39×10-7D .39×10-93.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是( C )A .郑B .力C .州D .魅 4.下列运算正确的是( B )A .m 3+m 2=m 5B .m 5÷m 2=m 3C .(2m )3=6m 3D .(m +1)2=m 2+15.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.501.601.651.701.751.80人数 2 3 2 3 4 1则这些运动员成绩的中位数和众数分别为( C ) A .1.65,1.75 B .1.65,1.70 C .1.70,1.75D .1.70,1.706.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x ,y 的二元一次方程组中符合题意的是( D ) A .⎩⎪⎨⎪⎧x +y =999,119x +47y =1 000B .⎩⎪⎨⎪⎧x +y =1 000,911x +74y =999 C .⎩⎨⎧x +y =1 000,99x +28y =999D .⎩⎪⎨⎪⎧x +y =1 000,119x +47y =9997.若一元二次方程x 2-2x +m =0有两个不相等的实数根,则实数m 的取值范围是( D )A .m ≥1B .m ≤1C .m >1D .m <18.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为( D )A .14B .38C .12D .589.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD 是菱形的只有( C )A .AC ⊥BDB .AB =BC C .AC =BD D .∠1=∠210.如图,正方形ABCD 的边长为10,对角线AC ,BD 相交于点E ,点F 是BC 上一动点,过点E 作EF 的垂线,交CD 于点G ,设BF =x ,FG =y ,那么下列图象中可能表示y 与x 的函数关系的是( B )A B C D第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:16-(12)-1= 2 .12.将拋物线y =2x 2-4x +3向左平移1个单位长度,得到的抛物线的解析式为 y =2x 2+1 .13.如图,在Rt △ABC 中,∠C =90°,∠A =25°,按以下步骤作图:①分别以A ,B为圆心,以大于12AB 的长为半径作弧,两弧交于M ,N 两点;②作直线MN 交AB于点D ,交AC 于点E ,连接BE ,则∠CBE = 40 °.14.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以点A 为圆心,AC 的长为半径作CE ︵交AB 于点E ,以点B 为圆心,BC 的长为半径作CD ︵交AB 于点D ,则阴影部分的面积为 π-2 .15.如图,在Rt △ABC 中,∠B =90°,∠A =60°,AC =23+4,点M ,N 分别在线段AC ,AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为23+43或 6 .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:(1-1m -1)÷m 2-4m +4m 2-m,其中m =2+ 2.解:原式=m -2m -1÷(m -2)2m (m -1)=m -2m -1·m (m -1)(m -2)2 =m m -2.当m=2+2时,原式=2+22+2-2=2+22=2+1.17.(本小题满分9分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并将调查结果绘制成如下统计图表.家庭藏书情况统计表类别家庭藏书m本学生人数A 0≤m≤2520B 26≤m≤100aC 101≤m≤20050D m≥20166请根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)在扇形统计图中,“A”对应的扇形圆心角度数为;(3)若该校有2 000名学生,请估计全校学生中家庭藏书200本以上的人数.解:(1)200,64.(2)36°.(3)2 000×66200=660(人).答:估计全校学生中家庭藏书200本以上的学生有660人.18.(本小题满分9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,∴△CPM≌△AOM(AAS),∴PC=O A.∵AB是半圆O的直径,∴OA=OB,∴PC=O B.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①120°;②45°.19.(本小题满分9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,请求出这段河的宽度.(结果精确到1米.参考数据:sin 33°≈0.54,cos 33°≈0.84,tan 33°≈0.65,2≈1.41)解:延长CA 交BE 于点D ,如解图所示,则CD ⊥B D .由题意可知∠DAB =45°,∠DCB =33°. 设AD =x .在Rt △ADB 中,BD =AD =x , ∴CD =20+x .在Rt △CDB 中,tan ∠DCB =BD CD , ∴x 20+x ≈0.65, 解得x ≈37.答:这段河的宽度约为37米.20.(本小题满分9分)如图,已知反比例函数y =mx (m ≠0)的图象经过点(1,4),一次函数y =-x +b 的图象经过反比例函数图象上的点Q (-4,n ). (1)求反比例函数与一次函数的解析式;(2)一次函数的图象分别与x 轴,y 轴交于A ,B 两点,与反比例函数图象的另一个交点为P 点,连接OP ,OQ ,求△OPQ 的面积.解:(1)∵反比例函数y =mx ( m ≠0)的图象经过点(1,4), ∴4=m1,解得m =4,∴反比例函数的解析式为y =4x . 将Q (-4,n )代入y =4x 中, 得-4=4n ,解得n =-1, ∴Q 点的坐标为(-4,-1). 将Q (-4,-1)代入y =-x +b 中, 得-1=-(-4)+b ,解得b =-5, ∴一次函数的解析式为y =-x -5.(2)联立一次函数与反比例函数的解析式,得⎩⎪⎨⎪⎧y =-x -5,y =4x,解得⎩⎨⎧x =-1,y =-4或⎩⎨⎧x =-4,y =-1.∴点P 的坐标为(-1,-4). 在一次函数y =-x -5中,令y =0,得-x -5=0,解得x =-5, ∴点A 的坐标为(-5,0), ∴OA =5,∴S △OPQ =S △OPA -S △OQA =12OA ·(|y P |-|y Q |)=12×5×(4-1)=152.21.(本小题满分10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1 000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x (m 2),种草所需费用y 1(元)与x (m 2)的函数关系式为y 1=⎩⎨⎧k 1x (0≤x <600),k 2x +b (600≤x ≤1 000),其图象如图所示.栽花所需费用y 2(元)与x (m 2)的函数关系式为y 2=-0.01x 2-20x +30 000(0≤x ≤1 000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1 000 m 2空地的绿化总费用为w (元),请利用w 与x 的函数关系式,求出绿化总费用w 的最大值;(3)若种草部分的面积不少于700 m 2,栽花部分的面积不少于100 m 2,请求出绿化总费用w 的最小值.解:(1)k 1=30,k 2=20,b =6 000. (2)当0≤x <600时,w =30x +(-0.01x 2-20x +30 000)=-0.01(x -500)2+32 500. ∵-0.01<0,∴当x =500时,w 有最大值,为32 500. 当600≤x ≤1 000时,w=20x+6 000+(-0.01x2-20x+30 000)=-0.01x2+36 000.∵-0.01<0,∴w随x的增大而减小,∴当x=600时,w有最大值,为32 400.∵32 400<32 500,∴绿化总费用w的最大值为32 500.(3)由题意,得x≥700.又1 000-x≥100,∴700≤x≤900.∴w=20x+6 000+(-0.01x2-20x+30 000)=-0.01x2+36 000.∵-0.01<0,∴w随x的增大而减小,∴当x=900时,w有最小值,为27 900.答:绿化总费用w的最小值为27 900.22.(本小题满分10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图1,当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图2,当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由;(3)解决问题如图3,在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC 上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长.解:(1)AF=BE;90°.(2)AF=BE,∠ABE=α.理由如下:∵DF∥AC,∴∠ACB=∠FDB=α,∠CAB=∠DF B.∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF.由旋转的性质,可知AD=ED,∠ADE=∠ACB=∠FDB=α.∵∠ADF=∠ADE-∠FDE,∠EDB=∠FDB-∠FDE,∴∠ADF=∠ED B.又∵AD=DE,∴△ADF≌△EDB(SAS),∴AF=EB,∠AFD=∠EB D.∵∠AFD=∠ABC+∠FDB,∠EBD=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)BE的长为2或4.【提示】①当点D在BC上时,如解图1所示.过点D 作DF ∥A C .由(2),可知BE =AF .∵DF ∥AC ,∴AF AB =CD CB =14.∵AB =8,∴AF =2,∴BE =AF =2;②当点D 在BC 的延长线上时,如解图2所示.过点D 作DF ∥AC ,则AF AB =CD CB =12.∵AB =8,∴AF =4,∴BE =AF =4.综上所述,BE 的长为2或4.23.(本小题满分11分)如图,抛物线y =ax 2+bx +6过点A (6,0),B (4,6),与y 轴交于点C .(1)求该抛物线的解析式;(2)如图1,直线l 的解析式为y =x ,抛物线的对称轴与线段BC 交于点P ,过点P 作直线l 的垂线,垂足为点H ,连接OP ,求△OPH 的面积;(3)把图1中的直线y =x 向下平移4个单位长度得到直线y =x -4, 如图2,直线y =x -4与x 轴交于点G ,点P 是四边形ABCO 边上的一点,过点P 分别作x 轴,直线l 的垂线,垂足分别为点E ,F .是否存在点P ,使得以P ,E ,F 为顶点的三角形是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)将A (6,0),B (4,6)代入y =ax 2+bx +6中,得⎩⎨⎧36a +6b +6=0,16a +4b +6=6, 解得⎩⎪⎨⎪⎧a =-12,b =2.∴该抛物线的解析式为y =-12x 2+2x +6. (2)∵该抛物线的对称轴为直线x =-22×(-12)=2,点C 的坐标为(0,6),∴BC ∥x 轴,CP =2.如解图1所示,延长HP 交y 轴于点M .∵直线l 的解析式为y =x ,∴∠AOH =∠COH =45°,∴△OMH 和△CMP 均为等腰直角三角形,∴CM =CP =2,∴OM =OC +CM =6+2=8.由勾股定理,可得OH =MH =4 2.∴S △OPH =S △OMH -S △OPM =12×42×42-12×8×2=16-8=8.(3)存在点P ,使得以P ,E ,F 为顶点的三角形是等腰三角形,点P 的坐标为(0,4)或(10-32,92-12)或(4,6)或(10-62,6).【提示】 ①当点P 在线段OC 上运动时,如解图2所示,则∠PHF =∠HPF =45°.ⅰ.当PE =PF 时,设PE =PF =t ,则PH =2PF =2t .由平移的性质,可知OH =4,∴2t =4+t ,解得t =42+4.∵42+4>6,∴此种情况不存在.ⅱ.当FP =FE 时,∠PFE =90°.∵∠PFE <∠PFH =90°,∴此种情况不存在.ⅲ.当EP =EF 时,∠PEF =90°,此时点F 和点G 重合,∴此时点P 的坐标为(0,4).②当点P 在线段BC 上运动时,如解图3所示,则∠HPF =∠OGH =45°.ⅰ.当PE =PF =6时,PH =2PF =62,∴EH =EG =PH -PE =62-6,∴OE =OG -EG =10-62,∴此时点P 的坐标为(10-62,6).ⅱ.当FP =FE 时,∠PFE =90°,当点E 和点G 重合时,满足∠PFE =90°,∴此时点P 的坐标为(4,6).ⅲ.当EP =EF 时,∠PEF =90°,此种情况不存在.③当点P 在线段AB 上运动时.ⅰ.当点P 在直线l 的上方时,如解图4所示,∠EPF =45°,∠PFE >90°,∴△PEF 不可能为等腰三角形.ⅱ.当点P 在直线l 的下方时,如解图5所示,∠FPE =135°,若△PEF 为等腰三角形,则PE =PF ,∴点P 在∠FGA 的平分线上.方法一:设∠FGA 的平分线为直线l ′,由题可求得l ′的解析式为y =(2-1)x +4-4 2.联立直线l ′和直线AB 的解析式,得⎩⎨⎧y =(2-1)x +4-42,y =-3x +18,解得⎩⎨⎧x =10-32,y =92-12. ∴此时点P 的坐标为(10-32,92-12).方法二:如解图6所示.设P (m ,-3m +18),则H (m ,m -4),∴PE =-3m +18,PH =4m -22.在Rt △PFH 中,PH PF =2,即4m -22-3m +18=2,解得m =10-32,∴此时点P 的坐标为(10-32,92-12).综上所述,存在点P ,使得以P ,E ,F 为顶点的三角形是等腰三角形,点P 的坐标为(0,4),(10-32,92-12),(4,6),(10-62,6).。
2019年河南省新乡市中考数学一模试卷(带解析)

2019年河南省新乡市中考数学一模试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填在答题卡指定位置1.(3分)(2019•新乡一模)的绝对值等于()A.﹣2B.2C.D.2.(3分)(2019•新乡一模)据海关统计,今年1月份,我国货物贸易进出口总值2.73万亿元人民币,比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013 3.(3分)(2019•新乡一模)将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.(3分)(2019•新乡一模)如图,直线CE∥AB,直线CD交CE于C,交AB于O,过点O作OT⊥AB于O,已知∠ECO=30°,则∠DOT的度数为()A.30°B.45°C.60°D.120°5.(3分)(2019•新乡一模)上篮球课时,某小组8位男生的各10次投篮的成绩如下所示,则这组数据的众数和中位数分别是()A.5,6B.6,6.5C.7,6D.8,6.56.(3分)(2019•新乡一模)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)(2019•新乡一模)如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB 的中点,连接OE,若OE=3,∠ADC=60°,则BD的长度为()A.6B.6C.3D.38.(3分)(2019•新乡一模)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.(3分)(2019•新乡一模)如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.(3分)(2019•新乡一模)如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A.B.C.2D.二、填空题(每小题3分,共15分)11.(3分)(2019•新乡一模)计算:(﹣π)0﹣=.12.(3分)(2019•新乡一模)如图,△ABC中,以点B为圆心,任意长为半径作弧,分别交AB,BC于E、F点,分别以点E、F为圆心,以大于EF的长为半径作弧,两弧交于点G,做射线BG,交AC于点D,过点D作DH∥BC交AB于点H.已知HD=3,BC =7,则AH的长为.13.(3分)(2019•新乡一模)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.(3分)(2019•新乡一模)如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C 为旋转中心将△ABC顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为.15.(3分)(2019•新乡一模)如图,在Rt△ABC中,∠C=90°,点D、E分别是BC、AB 上一个动点,连接DE.将点B沿直线DE折叠,点B的对应点为F,若AC=3,BC=4,当点F落在AC的三等分点上时,BD的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)(2019•新乡一模)先化简,再求值:+÷,其中a =.17.(9分)(2019•新乡一模)为了了解大气污染情况,某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a=,m=;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.18.(9分)(2019•新乡一模)如图,⊙O中,AB为直径,点P为⊙O外一点,且P A=AB,P A、PB交⊙O于D、E两点,∠P AB为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)(2019•新乡一模)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)20.(9分)(2019•新乡一模)如图,直线AB经过A(,0)和B(0,1),点C在反比例函数y=的图象上,且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2,0)过点D作PD⊥x轴,当△P AD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请说明理由.21.(10分)(2019•新乡一模)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)(2019•新乡一模)等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为,线段MN 和线段NF的数量关系为;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为.23.(11分)(2019•新乡一模)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.2019年河南省新乡市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填在答题卡指定位置1.(3分)(2019•新乡一模)的绝对值等于()A.﹣2B.2C.D.【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣|=,∴﹣的绝对值是.故选:D.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3分)(2019•新乡一模)据海关统计,今年1月份,我国货物贸易进出口总值2.73万亿元人民币,比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据2.73万亿元用科学记数法表示为2.73×1012.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2019•新乡一模)将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1:常规题型.【分析】由几何体形状直接得出其左视图,正方形上面有一条斜线.【解答】解:如图所示:图2的左视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确注意观察角度是解题关键.4.(3分)(2019•新乡一模)如图,直线CE∥AB,直线CD交CE于C,交AB于O,过点O作OT⊥AB于O,已知∠ECO=30°,则∠DOT的度数为()A.30°B.45°C.60°D.120°【考点】J3:垂线;JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】由CE∥AB,根据两直线平行,同位角相等,即可求得∠BOD的度数,又由OT ⊥AB,求得∠BOT的度数,然后由∠DOT=∠BOT﹣∠DOB,即可求得答案.【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选:C.【点评】此题考查了平行线的性质,垂直的定义.解题的关键是注意数形结合思想的应用,注意两直线平行,同位角相等.5.(3分)(2019•新乡一模)上篮球课时,某小组8位男生的各10次投篮的成绩如下所示,则这组数据的众数和中位数分别是()A.5,6B.6,6.5C.7,6D.8,6.5【考点】W4:中位数;W5:众数.【专题】542:统计的应用.【分析】根据众数和中位数的概念求解.【解答】解:将数据重新排列为3,5,6,6,7,8,9,10,所以这组数据的众数为6,中位数为=6.5(分),故选:B.【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)(2019•新乡一模)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解3x﹣2<1,得x<1;解x+1≥0,得x≥﹣1;不等式组的解集是﹣1≤x<1,故选:D.【点评】在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(3分)(2019•新乡一模)如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB 的中点,连接OE,若OE=3,∠ADC=60°,则BD的长度为()A.6B.6C.3D.3【考点】KM:等边三角形的判定与性质;KP:直角三角形斜边上的中线;KX:三角形中位线定理;L8:菱形的性质.【专题】555:多边形与平行四边形.【分析】利用三角形中位线定理求出AD,再在Rt△AOD中,解直角三角形求出OD即可解决问题.【解答】解:∵四边形ABCD是菱形,∠ADC=60°,∴AC⊥BD,OA=OC,OB=OD,∠ADO=∠CDO=30°,∵AE=EB,BO=OD,∴AD=2OE=6,在Rt△AOD中,∵AD=6,∠AOD=90°,∠ADO=30°,∴OD=AD•cos30°=3,∴BD=2OD=6,故选:A.【点评】本题考查菱形的性质,三角形的中位线定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(3分)(2019•新乡一模)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【专题】1:常规题型;543:概率及其应用.【分析】利用树状图法列举出所有可能,进而求出概率.【解答】解:画树状图如下:由树状图可知,共有12种等可能结果,其中标号数字和大于6的结果数为3,所以标号数字和大于6的概率为=,故选:C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2019•新乡一模)如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)【考点】D5:坐标与图形性质;KK:等边三角形的性质.【专题】552:三角形.【分析】设BG=x,依据∠BFG=∠CEF=∠ODE=30°,可得BF=2x,CF=12﹣2x,CE=2CF=24﹣4x,OE=12﹣CE=4x﹣12,OD=2OE=8x﹣24,再根据当G与D重合时,OD+BG=OB列方程,即可得到x的值,进而得出点D的坐标.【解答】解:如图,设BG=x,∵△OBC是等边三角形,∴∠BOC=∠B=∠C=60°,∵DE⊥OC于点E,EF⊥BC于点F,FG⊥OB,∴∠BFG=∠CEF=∠ODE=30°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴OE=12﹣CE=4x﹣12,∴OD=2OE=8x﹣24,当G与D重合时,OD+BG=OB,∴8x﹣24+x=12,解得x=4,∴OD=8x﹣24=32﹣24=8,∴OE=4,DE=4,∴D(4,4).故选:C.【点评】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.10.(3分)(2019•新乡一模)如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A.B.C.2D.【考点】E7:动点问题的函数图象.【专题】15:综合题;31:数形结合.【分析】本题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG的长度,求出等边三角形EFG的最小面积.【解答】由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2∴等边三角形ABC的高为∴等边三角形ABC的面积为由图2可知,x=1时△EFG的面积y最小此时AE=AG=CG=CF=BF=BE显然△EGF是等边三角形且边长为1所以△EGF的面积为故选:A.【点评】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、填空题(每小题3分,共15分)11.(3分)(2019•新乡一模)计算:(﹣π)0﹣=4.【考点】2C:实数的运算;6E:零指数幂.【专题】11:计算题.【分析】本题涉及三次根式化简、零指数幂2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣π)0﹣=1+3=4.故答案为:4.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握三次根式、零指数幂等考点的运算.12.(3分)(2019•新乡一模)如图,△ABC中,以点B为圆心,任意长为半径作弧,分别交AB,BC于E、F点,分别以点E、F为圆心,以大于EF的长为半径作弧,两弧交于点G,做射线BG,交AC于点D,过点D作DH∥BC交AB于点H.已知HD=3,BC=7,则AH的长为.【考点】KF:角平分线的性质;N3:作图—复杂作图;S9:相似三角形的判定与性质.【专题】11:计算题;55D:图形的相似.【分析】根据题意可知射线BG是∠ABC的平分线,从而可得△HBD是等腰三角形,且HD=HB,再根据相似三角形对应边成比例可求AH的长.【解答】解:由题意可知射线BG是∠ABC的平分线,∴∠ABD=∠CBD而DH∥BC∴∠HDB=∠CBD∴∠ABD=∠HDB∴HB=HD=3又∵DH∥BC∴△AHD∽△ABC∴即:得AH=故答案为.【点评】本题考查的是相似三角形的判定与性质,利用相似三角形对应边成比例进行解题是关键.13.(3分)(2019•新乡一模)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是a<1且a≠0.【考点】F8:一次函数图象上点的坐标特征;H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征.【专题】535:二次函数图象及其性质.【分析】当a=0时,两直线y=﹣2x和y=1只有一个交点,则当a≠0时,先联立抛物线与直线的解析式得出关于x的方程,再由直线y=﹣2x和抛物线有两个不同交点可知△>0,求出a的取值范围.【解答】解:当a=0时,两直线y=﹣2x和y=1只有一个交点,当a≠0时,,由题意得,方程ax2+1=﹣2x有两个不同的实数根,∴△=4﹣4a>0,解得:a<1.故答案为:a<1且a≠0.【点评】主要考查的是函数图象的交点问题,两函数有两个不同的交点,则△>0.14.(3分)(2019•新乡一模)如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C 为旋转中心将△ABC顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为﹣2+.【考点】KH:等腰三角形的性质;R2:旋转的性质.【专题】554:等腰三角形与直角三角形;558:平移、旋转与对称.【分析】作CK⊥BD于K.根据S阴=S△ABC+S扇形ACE﹣S△BCD﹣S△EDC计算即可.【解答】解:作CK⊥BD于K.∵AB=AC=3,∴∠B=∠ACB=75°,∴∠BAC=180°﹣75°﹣75°=30°,在Rt△ACK中,CK=AC=1,AK=,∴BK=2﹣,∵CB=CD,CK⊥BD,∴BD=2BK=4﹣2,∠B=∠CDB=75°,∴ACE=∠BCD=30°,∴S阴=S△ABC+S扇形ACE﹣S△BCD﹣S△EDC=﹣•(4﹣2)•1=﹣2+,故答案为﹣2+.【点评】本题考查旋转变换,扇形的面积,等腰三角形的性质,解直角三角形等知识,解题的关键是学会用分割法求阴影部分面积.15.(3分)(2019•新乡一模)如图,在Rt△ABC中,∠C=90°,点D、E分别是BC、AB 上一个动点,连接DE.将点B沿直线DE折叠,点B的对应点为F,若AC=3,BC=4,当点F落在AC的三等分点上时,BD的长为或.【考点】PB:翻折变换(折叠问题).【专题】558:平移、旋转与对称.【分析】由折叠的性质可得BD=DF,由勾股定理可求BD的长.【解答】解:∵折叠∴BD=DF,∵点F落在AC的三等分点上∴CF=1或CF=2,若CF=1时,在Rt△CDF中,DF2=CD2+CF2,∴BD2=(4﹣BD)2+1∴BD=当CF=2时,在Rt△CDF中,DF2=CD2+CF2,∴BD2=(4﹣BD)2+4∴BD=故答案为:或【点评】本题考查了翻折变换,勾股定理,利用分类讨论思想解决问题是本题的关键.三、解答题(本大题共8个小题,满分75分)16.(8分)(2019•新乡一模)先化简,再求值:+÷,其中a=.【考点】6D:分式的化简求值.【专题】11:计算题;513:分式.【分析】根据分式的混合运算顺序和运算法则化简原式,再将a的值代入化简可得.【解答】解:+÷=+•=+=,当a=时,原式==.【点评】本题主要考查分式的混合运算﹣化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.17.(9分)(2019•新乡一模)为了了解大气污染情况,某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a=48,m=20%;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是72度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)用24÷120,即可得到m;120×40%即可得到a;(2)根据a的值,即可补全条形统计图;(3)用级别为“优”的百分比×360°,即可得到所对应的圆心角的度数;(4)根据样本估计总体,即可解答.【解答】解:(1)a=120×40%=48,m=24÷120=20%.故答案为:48,20%;(2)如图所示:(3)360°×20%=72°.故答案为:72;(4)365×=146(天).故答案为:146.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2019•新乡一模)如图,⊙O中,AB为直径,点P为⊙O外一点,且P A=AB,P A、PB交⊙O于D、E两点,∠P AB为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为8;②当DE=4时,四边形OBED为菱形.【考点】MR:圆的综合题.【专题】15:综合题;559:圆的有关概念及性质.【分析】(1)如图1,连AE,由等腰三角形的性质可知E为PB中点,则OE是△P AB 的中位线,OE∥P A,可证得∠DOE=∠EOB,则∠EDO=∠EBO可证;(2)如图2,由条件知OA=4,当OA边上的高最大时,△AOD的面积最大,可知点D 是的中点时满足题意,此时最大面积为8;(3)如图3,当DE=4时,四边形ODEB是菱形.只要证明△ODE是等边三角形即可解决问题.【解答】证明:(1)如图1,连AE,∵AB为⊙O的直径,∴∠AEB=90°,∵P A=AB,∴E为PB的中点,∵AO=OB,∴OE∥P A,∴∠ADO=∠DOE,∠A=∠EOB∵OD=OA,∴∠A=∠ADO,∴∠EOB=∠DOE,∵OD=OE=OB,∴∠EDO=∠EBO;(2)①∵AB=8,∴OA=4,当OA边上的高最大时,△AOD的面积最大(如图2),此时点D是的中点,∴OD⊥AB,∴;②如图3,当DE=4时,四边形OBED为菱形,理由如下:∵OD=DE=OE=4,∴△ODE是等边三角形,∴∠EDO=60°,由(1)知∠EBO=∠EDO=60°,∴OB=BE=OE,∴四边形OBED为菱形,故答案为:8;4.【点评】本题考查了圆周角定理、等腰三角形的性质、中位线定理、菱形的判定等知识,解题的关键是找准动点D在圆上的位置,灵活运用所学知识解决问题,19.(9分)(2019•新乡一模)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】55E:解直角三角形及其应用.【分析】作AE⊥CD于E.则四边形ABCE是矩形.解直角三角形分别求出CD,DE即可解决问题.【解答】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC•tan60°=50×≈87(米),在Rt△ADE中,∵DE=AE•tan37°=50×0.75≈38(米),∴AB=CE=CD﹣DE=87﹣38=49(米).答:甲、乙两楼的高度分别为87米,49米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(9分)(2019•新乡一模)如图,直线AB经过A(,0)和B(0,1),点C在反比例函数y=的图象上,且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2,0)过点D作PD⊥x轴,当△P AD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请说明理由.【考点】GB:反比例函数综合题.【专题】15:综合题.【分析】(1)将点A,B坐标代入y=k'x+b中,求出k',b,得出直线AB解析式,再判断出∠AOC=90°,求出AC的长,得出点C坐标,即可得出结论;(2)分两种情况求出点P坐标,代入反比例函数解析式中,判断即可得出结论.【解答】解:(1)设直线AB的解析式为y=k'x+b,将点A(,0)和B(0,1)代入y=k'x+b中,得,解得,,∴直线AB的解析式为y=﹣x+1,∵A(,0)和B(0,1),∴OA=,OB=1,AB==2,∵AC=AB=2,在Rt△AOB中,tan∠OAB==,∴∠OAB=30°,∵AC=BC=AB,∴△ABC是等边三角形,∴∠BAC=60°,∴∠OAC=∠OAB+∠BAC=90°,∴AC⊥x轴,∴C(,2),将点C坐标代入y=中,得k=2×=2,∴反比例函数解析式为y=;(2)由(1)知,OA=,OB=1,∵点D坐标为(2,0),∴OD=2,∴AD=OD﹣OA=,∵PD⊥x轴,∴∠ADP=90°=∠AOB,∵当△P AD与△OAB相似时,∴①当△ADP∽△AOB时,∴,∴,∴DP=1,∴P(2,1),当x=2时,y=1,∴点P(2,1),在反比例函数解析式为y=上;②当△ADP∽△BOA时,∴,∴,∴DP=3,∴P(2,3),当x=2时,y=1≠3,∴点P(2,3),不在反比例函数解析式为y=上.【点评】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,等边三角形的性质,锐角三角函数,用分类讨论的思想解决问题是解本题的关键.21.(10分)(2019•新乡一模)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用;FH:一次函数的应用.【专题】521:一次方程(组)及应用;524:一元一次不等式(组)及应用;533:一次函数及其应用.【分析】(1)设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为y元,列出方程组求解即可;(2)①把(1)得出的数据代入即可解答;②根据题意可以得到x的取值范围,然后根据一次函数的性质即可求得w的最大值和相应的进货方案.【解答】解:(1)设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为y元,根据题意得,,解得,所以购进A品牌文具袋的单价为10元,购进B品牌文具袋的单价为15元;(2)①由题意可得,y=(12﹣10)x+(23﹣15)(100﹣x)=800﹣6x;②由题意可得,﹣6x+800≤40%[10x+15(100﹣x)],解得:x≥50,又由(1)得:w=﹣6x+800,k=﹣6<0,∴w随x的增大而减小,∴当x=50时,w达到最大值,即最大利润w=﹣50×6+800=500元,此时100﹣x=100﹣50=50个,答:购进A品牌文具袋50个,B品牌文具袋50个时所获利润最大,利润最大为500元.【点评】本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.22.(10分)(2019•新乡一模)等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为45°,线段MN 和线段NF的数量关系为NF=MN;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为4.【考点】RB:几何变换综合题.【专题】152:几何综合题.【分析】(1)如图1,连接DB,MF,CE,延长BD交EC于H.证明△BAD≌△CAE(SAS),推出BD=EC,∠ACE=∠ABD,再根据三角形中位线定理即可解决问题.(2)如图2,连接MF,EC,BD.设EC交AB于O,BD交EC于H.证明△BAD≌△CAE(SAS),推出BD=EC,∠ACE=∠ABD,再利用三角形中位线定理即可解决问题.(3)如图3中,如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时,△BCP的面积最小.【解答】解:(1)如图1中,连接DB,MF,CE,延长BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠ABD+∠ADB=90°,∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.故答案为:45°(2):如图2中,连接MF,EC,BD.设EC交AB于O,BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠AOC+∠ACO=90°,∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.(3):如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时,此时∠CBP的值最小,点P到BC的距离最小,即△BCP的面积最小,∵AD=AE,AB=AC,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD,BD=EC,∵∠ABD+∠AOB=90°,∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2,BD=EC==2,∴PC=2﹣2,PB=2+2,∴S△BCP的最小值=×PC×PB=(2﹣2)(2+2)=4.【点评】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质和判定,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.(11分)(2019•新乡一模)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;34:方程思想;537:函数的综合应用.【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【解答】解:(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0,3),∵B(3,0),。
2019年河南省新乡市中考一模数学试卷含参考答案

2019年河南省新乡市中考一模数学试卷一、选择题(每小题3分, 共30分)下列各小题均有四个选项, 其中只有一个是正确的, 将正确选项的代号字母填在答题卡指定位置1.(3分)的绝对值等于()A.﹣2B.2C.D.2.(3分)据海关统计, 今年1月份, 我国货物贸易进出口总值2.73万亿元人民币, 比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013 3.(3分)将一个正方体沿图1所示切开, 形成如图2的图形, 则图2的左视图为()A.B.C.D.4.(3分)如图, 直线CE∥AB, 直线CD交CE于C, 交AB于O, 过点O作OT⊥AB 于O, 已知∠ECO=30°, 则∠DOT的度数为()A.30°B.45°C.60°D.120°5.(3分)上篮球课时, 某小组8位男生的各10次投篮的成绩如下所示, 则这组数据的众数和中位数分别是()12345678成绩(m)396651087A.5, 6B.6, 6.5C.7, 6D.8, 6.56.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图, 菱形ABCD中, 对角线AC、BD交于点O, 点E为AB的中点, 连接OE, 若OE=3, ∠ADC=60°, 则BD的长度为()A.6B.6C.3D.38.(3分)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球, 7个小球除标号外其余均相同, 随机从两个袋子中抽取一个小球, 则其标号数字和大于6的概率为()A.B.C.D.9.(3分)如图, 在平面直角坐标系中, 等边△OBC的边OC在x轴正半轴上, 点O为原点, 点C坐标为(12, 0), D是OB上的动点, 过D作DE⊥x轴于点E, 过E作EF ⊥BC于点F, 过F作FG⊥OB于点G.当G与D重合时, 点D的坐标为()A.(1, )B.(2, 2)C.(4, 4)D.(8, 8)10.(3分)如图1.已知正△ABC中, E, F, G分别是AB, BC, CA上的点, 且AE=BF=CG, 设△EFG的面积为y, AE的长为x, y关于x的函数图象如图2, 则△EFG 的最小面积为()A.B.C.2D.二、填空题(每小题3分, 共15分)11.(3分)计算:(﹣π)0﹣=.12.(3分)如图, △ABC中, 以点B为圆心, 任意长为半径作弧, 分别交AB, BC于E、F点, 分别以点E、F为圆心, 以大于EF的长为半径作弧, 两弧交于点G, 做射线BG, 交AC于点D, 过点D作DH∥BC交AB于点H.已知HD=3, BC=7, 则AH 的长为.13.(3分)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点, 则实数a的取值范围是.14.(3分)如图, 等腰三角形ABC中, AB=AC=2, ∠B=75°, 以C为旋转中心将△ABC顺时针旋转, 当点B落在AB上点D处时, 点A的对应点为E, 则阴影部分面积为.15.(3分)如图, 在Rt△ABC中, ∠C=90°, 点D、E分别是BC、AB上一个动点, 连接DE.将点B沿直线DE折叠, 点B的对应点为F, 若AC=3, BC=4, 当点F落在AC的三等分点上时, BD的长为.三、解答题(本大题共8个小题, 满分75分)16.(8分)先化简, 再求值:+÷, 其中a =.17.(9分)为了了解大气污染情况, 某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数, 绘制了如下不完整的统计图表:空气质量指数统计表级别指数天数百分比优0﹣5024m良51﹣100a40%轻度污染101﹣1501815%中度污染151﹣2001512.5%重度污染201﹣30097.5%严重污染大于30065%合计120100%请根据图表中提供的信息, 解答下面的问题:(1)空气质量指数统计表中的a=, m=;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”, 级别为“优”所对应扇形的圆心角是度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.18.(9分)如图, ⊙O中, AB为直径, 点P为⊙O外一点, 且P A=AB, P A、PB交⊙O 于D、E两点, ∠P AB为锐角, 连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时, 四边形OBED为菱形.19.(9分)如图, 某小区有甲、乙两座楼房, 楼间距BC为50米, 在乙楼顶部A点测得甲楼顶部D点的仰角为37°, 在乙楼底部B点测得甲楼顶部D点的仰角为60°, 则甲、乙两楼的高度为多少?(结果精确到1米, sin37°≈0.60, cos37°≈0.80, tan37°≈0.75, ≈1.73)20.(9分)如图, 直线AB经过A(, 0)和B(0, 1), 点C在反比例函数y=的图象上, 且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2, 0)过点D作PD⊥x轴, 当△P AD与△OAB相似时, P点是否在(1)中反比例函数图象上?如果在, 求出P点坐标;如果不在, 请说明理由.21.(10分)开学前夕, 某文具店准备购进A、B两种品牌的文具袋进行销售, 若购进A 品牌文具袋和B品牌文具袋各5个共花费125元, 购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A, B两种品牌的文具袋共100个, 其中A品牌文具袋售价为12元, B品牌文具袋售价为23元, 设购进A品牌文具袋x个, 获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大, 且所获利润不超过进货价格的40%, 请你帮该文具店设计一个进货方案, 并求出其所获利润的最大值.22.(10分)等腰直角三角形ABC和等腰直角三角形ADE中, ∠BAC=∠DAE=90°, AB =4, AE=2, 其中△ABC固定, △ADE绕点A作360°旋转, 点F、M、N分别为线段BE、BC、CD的中点, 连接MN、NF.问题提出:(1)如图1, 当AD在线段AC上时, 则∠MNF的度数为, 线段MN 和线段NF的数量关系为;深入讨论:(2)如图2, 当AD不在线段AC上时, 请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3, △ADE持续旋转过程中, 若CE与BD交点为P, 则△BCP面积的最小值为.23.(11分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3, 0), 交y轴于点C, 直线y=﹣x+m经过点C, 交x轴于E(4, 0).(1)求出抛物线的解析式;(2)如图1, 点M为线段BD上不与B、D重合的一个动点, 过点M作x轴的垂线, 垂足为N, 设点M的横坐标为x, 四边形OCMN的面积为S, 求S与x之间的函数关系式, 并求S的最大值;(3)点P为x轴的正半轴上一个动点, 过P作x轴的垂线, 交直线y=﹣x+m于G, 交抛物线于H, 连接CH, 将△CGH沿CH翻折, 若点G的对应点F恰好落在y轴上时, 请直接写出点P的坐标.2019年河南省新乡市中考一模数学试卷参考答案与试题解析一、选择题(每小题3分, 共30分)下列各小题均有四个选项, 其中只有一个是正确的, 将正确选项的代号字母填在答题卡指定位置1.(3分)的绝对值等于()A.﹣2B.2C.D.【解答】解:∵|﹣|=,∴﹣的绝对值是.故选:D.2.(3分)据海关统计, 今年1月份, 我国货物贸易进出口总值2.73万亿元人民币, 比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013【解答】解:数据2.73万亿元用科学记数法表示为2.73×1012.故选:B.3.(3分)将一个正方体沿图1所示切开, 形成如图2的图形, 则图2的左视图为()A.B.C.D.【解答】解:如图所示:图2的左视图为:.故选:C.4.(3分)如图, 直线CE∥AB, 直线CD交CE于C, 交AB于O, 过点O作OT⊥AB于O, 已知∠ECO=30°, 则∠DOT的度数为()A.30°B.45°C.60°D.120°【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选:C.5.(3分)上篮球课时, 某小组8位男生的各10次投篮的成绩如下所示, 则这组数据的众数和中位数分别是()12345678成绩(m)396651087A.5, 6B.6, 6.5C.7, 6D.8, 6.5【解答】解:将数据重新排列为3, 5, 6, 6, 7, 8, 9, 10,所以这组数据的众数为6, 中位数为=6.5(分),故选:B.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:解3x﹣2<1, 得x<1;解x+1≥0, 得x≥﹣1;不等式组的解集是﹣1≤x<1,故选:D.7.(3分)如图, 菱形ABCD中, 对角线AC、BD交于点O, 点E为AB的中点, 连接OE, 若OE=3, ∠ADC=60°, 则BD的长度为()A.6B.6C.3D.3【解答】解:∵四边形ABCD是菱形, ∠ADC=60°,∴AC⊥BD, OA=OC, OB=OD, ∠ADO=∠CDO=30°,∵AE=EB, BO=OD,∴AD=2OE=6,在Rt△AOD中, ∵AD=6, ∠AOD=90°, ∠ADO=30°,∴OD=AD•cos30°=3,∴BD=2OD=6,故选:A.8.(3分)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球, 7个小球除标号外其余均相同, 随机从两个袋子中抽取一个小球, 则其标号数字和大于6的概率为()A.B.C.D.【解答】解:画树状图如下:由树状图可知, 共有12种等可能结果, 其中标号数字和大于6的结果数为3,所以标号数字和大于6的概率为=,故选:C.9.(3分)如图, 在平面直角坐标系中, 等边△OBC的边OC在x轴正半轴上, 点O为原点, 点C坐标为(12, 0), D是OB上的动点, 过D作DE⊥x轴于点E, 过E作EF ⊥BC于点F, 过F作FG⊥OB于点G.当G与D重合时, 点D的坐标为()A.(1, )B.(2, 2)C.(4, 4)D.(8, 8)【解答】解:如图, 设BG=x,∵△OBC是等边三角形,∴∠BOC=∠B=∠C=60°,∵DE⊥OC于点E, EF⊥BC于点F, FG⊥OB,∴∠BFG=∠CEF=∠ODE=30°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴OE=12﹣CE=4x﹣12,∴OD=2OE=8x﹣24,当G与D重合时, OD+BG=OB,∴8x﹣24+x=12,解得x=4,∴OD=8x﹣24=32﹣24=8,∴OE=4, DE=4,∴D(4, 4).故选:C.10.(3分)如图1.已知正△ABC中, E, F, G分别是AB, BC, CA上的点, 且AE=BF=CG, 设△EFG的面积为y, AE的长为x, y关于x的函数图象如图2, 则△EFG 的最小面积为()A.B.C.2D.【解答】由图2可知, x=2时△EFG的面积y最大, 此时E与B重合, 所以AB=2∴等边三角形ABC的高为∴等边三角形ABC的面积为由图2可知, x=1时△EFG的面积y最小此时AE=AG=CG=CF=BG=BE显然△EGF是等边三角形且边长为1所以△EGF的面积为故选:A.二、填空题(每小题3分, 共15分)11.(3分)计算:(﹣π)0﹣=4.【解答】解:(﹣π)0﹣=1+3=4.故答案为:4.12.(3分)如图, △ABC中, 以点B为圆心, 任意长为半径作弧, 分别交AB, BC于E、F点, 分别以点E、F为圆心, 以大于EF的长为半径作弧, 两弧交于点G, 做射线BG, 交AC于点D, 过点D作DH∥BC交AB于点H.已知HD=3, BC=7, 则AH 的长为.【解答】解:由题意可知射线BG是∠ABC的平分线,∴∠ABD=∠CBD而DH∥BC∴∠HDB=∠CBD∴∠ABD=∠HDB∴HB=HD=3又∵DH∥BC∴△AHD∽△ABC∴即:得AH=故答案为.13.(3分)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点, 则实数a的取值范围是a<1.【解答】解:当a=0时, 两直线y=﹣2x和y=1只有一个交点,当a≠0时, , 由题意得, 方程ax2+1=﹣2x有两个不同的实数根,∴△=4﹣4a>0,解得:a<1.故答案为:a<1.14.(3分)如图, 等腰三角形ABC中, AB=AC=2, ∠B=75°, 以C为旋转中心将△ABC顺时针旋转, 当点B落在AB上点D处时, 点A的对应点为E, 则阴影部分面积为﹣2+.【解答】解:作CK⊥BD于K.∵AB=AC=3,∴∠B=∠ACB=75°,∴∠BAC=180°﹣75°﹣75°=30°,在Rt△ACK中, CK=AC=1, AK=,∴BK=2﹣,∵CB=CD, CK⊥BD,∴BD=2BK=4﹣2, ∠B=∠CDB=75°,∴ACE=∠BCD=30°,∴S阴=S△ABC+S扇形ACE﹣S△BCD﹣S△EDC=﹣•(4﹣2)•1=﹣2+,故答案为﹣2+.15.(3分)如图, 在Rt△ABC中, ∠C=90°, 点D、E分别是BC、AB上一个动点, 连接DE.将点B沿直线DE折叠, 点B的对应点为F, 若AC=3, BC=4, 当点F落在AC的三等分点上时, BD的长为或.【解答】解:∵折叠∴BD=DF,∵点F落在AC的三等分点上∴CF=1或CF=2,若CF=1时,在Rt△CDF中, DF2=CD2+CF2,∴BD2=(4﹣BD)2+1∴BD=当CF=2时,在Rt△CDF中, DF2=CD2+CF2,∴BD2=(4﹣BD)2+4∴BD=故答案为:或三、解答题(本大题共8个小题, 满分75分)16.(8分)先化简, 再求值:+÷, 其中a=.【解答】解:+÷=+•=+=,当a=时, 原式==.17.(9分)为了了解大气污染情况, 某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数, 绘制了如下不完整的统计图表:空气质量指数统计表级别指数天数百分比优0﹣5024m良51﹣100a40%轻度污染101﹣1501815%中度污染151﹣2001512.5%重度污染201﹣30097.5%严重污染大于30065%合计120100%请根据图表中提供的信息, 解答下面的问题:(1)空气质量指数统计表中的a=48, m=20%;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”, 级别为“优”所对应扇形的圆心角是72度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.【解答】解:(1)a=120×40%=48, m=24÷120=20%.故答案为:48, 20%;(2)如图所示:(3)360°×20%=72°.故答案为:72;(4)365×=146(天).故答案为:146.18.(9分)如图, ⊙O中, AB为直径, 点P为⊙O外一点, 且P A=AB, P A、PB交⊙O 于D、E两点, ∠P AB为锐角, 连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为8;②当DE=4时, 四边形OBED为菱形.【解答】证明:(1)如图1, 连AE,∵AB为⊙O的直径,∴∠AEB=90°,∵P A=AB,∴E为PB的中点,∵AO=OB,∴OE∥P A,∴∠ADO=∠DOE, ∠A=∠EOB∵OD=OA,∴∠A=∠ADO,∴∠EOB=∠DOE,∵OD=OE=OB,∴∠EDO=∠EBO;(2)①∵AB=8,∴OA=4,当OA边上的高最大时, △AOD的面积最大(如图2), 此时点D是的中点, ∴OD⊥AB,∴;②如图3, 当DE=4时, 四边形OBED为菱形, 理由如下:∵OD=DE=OE=4,∴△ODE是等边三角形,∴∠EDO=60°,由(1)知∠EBO=∠EDO=60°,∴OB=BE=OE,∴四边形OBED为菱形,故答案为:8;4.19.(9分)如图, 某小区有甲、乙两座楼房, 楼间距BC为50米, 在乙楼顶部A点测得甲楼顶部D点的仰角为37°, 在乙楼底部B点测得甲楼顶部D点的仰角为60°, 则甲、乙两楼的高度为多少?(结果精确到1米, sin37°≈0.60, cos37°≈0.80, tan37°≈0.75, ≈1.73)【解答】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中, CD=BC•tan60°=50×≈87(米),在Rt△ADE中, ∵DE=AE•tan37°=50×0.75≈38(米),∴AB=CE=CD﹣DE=87﹣38=49(米).答:甲、乙两楼的高度分别为87米, 38米.20.(9分)如图, 直线AB经过A(, 0)和B(0, 1), 点C在反比例函数y=的图象上, 且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2, 0)过点D作PD⊥x轴, 当△P AD与△OAB相似时, P点是否在(1)中反比例函数图象上?如果在, 求出P点坐标;如果不在, 请说明理由.【解答】解:(1)设直线AB的解析式为y=k'x+b,将点A(, 0)和B(0, 1)代入y=k'x+b中, 得,解得, ,∴直线AB的解析式为y=﹣x+1,∵A(, 0)和B(0, 1),∴OA=, OB=1, AB==2,∵AC=AB=2,在Rt△AOB中, tan∠OAB==,∴∠OAB=30°,∵AC=BC=AB,∴△ABC是等边三角形,∴∠BAC=60°,∴∠OAC=∠OAB+∠BAC=90°,∴AC⊥x轴,∴C(, 2),将点C坐标代入y=中, 得k=2×=2,∴反比例函数解析式为y=;(2)由(1)知, OA=, OB=1,∵点D坐标为(2, 0),∴OD=2,∴AD=OD﹣OA=,∵PD⊥x轴,∴∠ADP=90°=∠AOB,∵当△P AD与△OAB相似时,∴①当△ADP∽△AOB时, ∴,∴,∴DP=1,∴P(2, 1),当x=2时, y=1,∴点P(2, 1), 在反比例函数解析式为y=上;②当△ADP∽△BOA时, ∴,∴,∴DP=3,∴P(2, 3),当x=2时, y=1≠3,∴点P(2, 3), 不在反比例函数解析式为y=上.21.(10分)开学前夕, 某文具店准备购进A、B两种品牌的文具袋进行销售, 若购进A 品牌文具袋和B品牌文具袋各5个共花费125元, 购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A, B两种品牌的文具袋共100个, 其中A品牌文具袋售价为12元, B品牌文具袋售价为23元, 设购进A品牌文具袋x个, 获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大, 且所获利润不超过进货价格的40%, 请你帮该文具店设计一个进货方案, 并求出其所获利润的最大值.【解答】解:(1)设购进A品牌文具袋的单价为x元, 购进B品牌文具袋的单价为y元, 根据题意得,,解得,所以购进A品牌文具袋的单价为10元, 购进B品牌文具袋的单价为15元;(2)①由题意可得,y=(12﹣10)x+(23﹣15)(100﹣x)=800﹣6x;②由题意可得,﹣6x+800≤40%[10x+15(100﹣x)],解得:x≥50,又由(1)得:w=﹣6x+800, k=﹣6<0,∴w随x的增大而减小,∴当x=50时, w达到最大值, 即最大利润w=﹣50×6+800=500元,此时100﹣x=100﹣50=50个,答:购进A品牌文具袋50个, B品牌文具袋50个时所获利润最大, 利润最大为500元.22.(10分)等腰直角三角形ABC和等腰直角三角形ADE中, ∠BAC=∠DAE=90°, AB =4, AE=2, 其中△ABC固定, △ADE绕点A作360°旋转, 点F、M、N分别为线段BE、BC、CD的中点, 连接MN、NF.问题提出:(1)如图1, 当AD在线段AC上时, 则∠MNF的度数为45°, 线段MN和线段NF的数量关系为NF=MN;深入讨论:(2)如图2, 当AD不在线段AC上时, 请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3, △ADE持续旋转过程中, 若CE与BD交点为P, 则△BCP面积的最小值为4.【解答】解:(1)如图1中, 连接DB, MF, CE, 延长BD交EC于H.∵AC=AB, AE=AD, ∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC, ∠ACE=∠ABD,∵∠ABD+∠ADB=90°, ∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC, BF=FE,∴MF∥EC, MF=EC,∵CM=MB, CN=ND,∴MN∥BD, MN=BD,∴MN=MF, MN⊥MF,∴∠NMF=90°,∴∠MNF=45°, NF=MN.故答案为:45°(2):如图2中, 连接MF, EC, BD.设EC交AB于O, BD交EC于H.∵AC=AB, AE=AD, ∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC, ∠ACE=∠ABD,∵∠AOC+∠ACO=90°, ∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC, BF=FE,∴MF∥EC, MF=EC,∵CM=MB, CN=ND,∴MN∥BD, MN=BD,∴MN=MF, MN⊥MF,∴∠NMF=90°,∴∠MNF=45°, NF=MN.(3):如图3中, 如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时, △BCP的面积最小,∵AD=AE, AB=AC, ∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD, BD=EC,∵∠ABD+∠AOB=90°, ∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2, BD=EC==2,∴PC=2﹣2, PB=2+2,∴S△BCP的最小值=×PC×PB=(2﹣2)(2+2)=4.23.(11分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3, 0), 交y轴于点C, 直线y=﹣x+m经过点C, 交x轴于E(4, 0).(1)求出抛物线的解析式;(2)如图1, 点M为线段BD上不与B、D重合的一个动点, 过点M作x轴的垂线, 垂足为N, 设点M的横坐标为x, 四边形OCMN的面积为S, 求S与x之间的函数关系式, 并求S的最大值;(3)点P为x轴的正半轴上一个动点, 过P作x轴的垂线, 交直线y=﹣x+m于G, 交抛物线于H, 连接CH, 将△CGH沿CH翻折, 若点G的对应点F恰好落在y轴上时, 请直接写出点P的坐标.【解答】解:(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0, 3),∵B(3, 0),则有解得∴抛物线的解析式为:y=﹣x2+2x+3.(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1, 4),设直线BD的解析式为y=kx+b, 代入点B、D,解得∴直线BD的解析式为y=﹣2x+6,则点M的坐标为(x, ﹣2x+6),∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,∴当x=时, S有最大值, 最大值为.(3)存在如图所示,设点P的坐标为(t, 0),则点G(t, ﹣t+3), H(t, ﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折, G的对应点为点F, F落在y轴上, 而HG∥y轴,∴HG∥CF, HG=HF, CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,当t2﹣t=t时,解得t1=0(舍), t2=4,此时点P(4, 0).当t2﹣t=﹣t时,解得t1=0(舍), t2=,此时点P(, 0).综上, 点P的坐标为(4, 0)或(, 0).注意事项.1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上。
河南省新乡市中考数学一模考试试卷

河南省新乡市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019九上·宜兴期末) 如图,,直线与分别相交于点和点,若, ,则的长是()A .B .C . 6D . 102. (2分)下列说法正确的是()A . 所有的矩形都是相似形B . 有一个角等于100°的两个等腰三角形相似C . 对应角相等的两个多边形相似D . 对应边成比例的两个多边形相似3. (2分) (2020九上·三门期末) 对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A . 图象过点(0,﹣3)B . 图象与x轴的交点为(1,0),(﹣3,0)C . 此函数有最小值为﹣6D . 当x<1时,y随x的增大而减小4. (2分)如图,矩形OABC的顶点O是坐标原点,边OA在x轴上,边OC在y轴上.若矩形OA1B1C1与矩形OABC关于点O位似,且矩形OA1B1C1的面积等于矩形OABC面积的,则点B1的坐标是()A . (3,2)B . (﹣2,﹣3)C . (2,3)或(﹣2,﹣3)D . (3,2)或(﹣3,﹣2)5. (2分)(2017·普陀模拟) 如图,在△ABC中,中线AD、CE交于点O,设 = , = ,那么向量用向量、表示为()A . +B . +C . +D . +6. (2分) (2020九下·西安月考) 一个点到圆的最大距离为11,最小距离为5,则圆的半径为().A . 16或6B . 3或8C . 3D . 8二、填空题 (共12题;共12分)7. (1分)(2017·冷水滩模拟) 抛物线y=3(x﹣2)2+5的顶点坐标是________.8. (1分)(2019·叶县模拟) 将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:________9. (1分) (2019九上·台安月考) 如图,抛物线(a,b,c是常数,)与x轴交于A,B两点,顶点.给出下列结论:① ;②若,,在抛物线上,则;③关于x的方程有实数解,则;④当时,为等腰直角三角形.其中正确结论是________(填写序号).10. (1分)(2017·闵行模拟) 计算:( + )﹣(﹣2 )=________.11. (1分) (2017九下·莒县开学考) 已知△ABC∽△DEF,相似比为3:5,△ABC的周长为6,则△DEF的周长为________.12. (1分) (2019八下·谢家集期末) 如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为________.13. (1分) (2019八上·交城期中) 如图,在Rt△ACB中,AC=BC=8,O为AB的中点,以O为直角顶点作等腰直角三角形OEF,与边AC,BC相交于点M,N.有下列结论:①AM=CN;②CM+CN=8;③ ;④当M 是AC的中点时,OM=ON.其中正确结论的序号是________.14. (1分)如图,把两个等腰直角三角板如图放置,点F为BC中点,AG=1,BG=2,则CH的长为________.15. (1分)(2019·上海模拟) 如图,已知⊙A、⊙B、⊙C两两相切,连接圆心构成△ABC ,如果AC=3,BC=5,AB=6,那么⊙C的半径长为________.16. (1分)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C 的平分线应依次分别是________ (填A′D、A′E、A′F).17. (1分)(2017·淅川模拟) 如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积________.18. (1分)(2019·宝山模拟) 甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10 cm,那么地图上距离为4.5 cm的两地之间的实际距离为________千米.三、解答题 (共7题;共60分)19. (5分)(2011·湖州) 计算:|﹣2|﹣2sin30°+ + .20. (5分)如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)21. (10分) (2016九上·江阴期末) 如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.(1) D是BC的中点;(2)△BEC∽△ADC;(3)若,求⊙O的半径。
2019年河南省新乡市中考数学一模试卷

2019年河南省新乡市中考数学一模试卷一、选择题(每小题3分,共24分)1.﹣2的倒数是()A.B.2 C.﹣D.﹣22.如图,正三棱柱的主视图为()A. B.C.D.3.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×1084.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°5.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元6.不等式组的解集,在数轴上表示正确的是()A.B.C.D.7.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5 D.68.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,)D.(2n+1,)二、填空题(每小题3分,共21分)9.计算: +|﹣1|=.10.如图,AD是△ABC的外角平分线,AD∥BC,若∠C=70°,则∠BAC的度数为.11.已知点A(1,y1),B(﹣2,y2),C(﹣,y2)都在反比例函数y=(k为常数)的图象上,则y1,y2,y3的大小关系是.12.不透明的袋子中装有2个红球,3个黄球,他们除颜色外,其它都相同,从中随机一次摸出两个球,颜色不同的概率是.13.如图,菱形ABCD的边长为5cm,cosB=0.6,则对角线AC的长为cm.14.如图,直径AB为10的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是.15.如图,正方形ABCD的边长是2,点E、F分别是AB、BC边上的动点(不与点A、B、C重合),且BE=BF,EG⊥AB,FG⊥BC,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为.三、解答题(本大题包括8个小题,共75分)16.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.17.2016年3月8日,国务院批复同意自2016年起,将每年4月24日作为“中国航天日”,某市针对中学生开展了航天知识普及活动,活动结束后进行了一次航天知识问卷调查,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.调查结果统计表根据以上信息解答下列问题:(1)统计表中,a=,b=,c=;(2)扇形统计图中,m的值为,“B”所对应的圆心角的度数是;(3)若参加本次航天知识问卷调查的同学共有20000人,请你估计成绩在95分及以上的学生大约有多少人?18.如图,△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,交AC 于点E.(1)求证:△OBD≌△OED;(2)填空:①当∠BAC=度时,CA是⊙O的切线;②当∠BAC=度时,四边形OBDE是菱形.19.关于x的一元二次方程(m﹣1)x2+2x﹣3=0.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.20.如图所示,为了知道楼房CD外墙上一电子屏的高度DE是多少,某数学活动小组利用测角仪和米尺等工具进行如下操作;在A处测得点E的仰角为31°,在B出测得点D的仰角为50°,A、B、H共线,且AH⊥CD于点H,AB为20米,测角仪的高度(AF、BG)为1.6米.已知楼房CD高为34.6米,根据测量数据,请求出DE的高度.(参考数据:tan31°≈0.6,tan50°≈1.2)21.甲、乙两家商店以同样价格销售相同的商品,某次促销活动中,它们的优惠方案分别为:甲店,所有商品一律八折优惠;乙店,一次性购物中超过200元后的价格部分打六折.设商品原价为x元(x>0),购物应付金额为y元.(1)求在乙商店购物时y2与x之间的函数关系;(2)两种购物方式对应的函数如图所示,求出交点B的坐标;(3)根据图象,请直接写出本次促销活动汇总选择哪家商店购物更优惠.22.(1)尝试探究如图1,Rt△ABC中,AB=AC,AD是高,点E是AB边上一点,CE与AD交于点G,过点E作EF⊥CE交BC于点F.若AE=2BE,则EF与EG的数量关系是.(2)类比延伸如图2,在(1)的条件下,若AE=nBE(n>0),则EF与EG的数量关系是(用含n的代数式表示),试写出解答过程.(3)拓展迁移如图3,Rt△ABC中,∠BAC=90°,AD是高,点E是AB边上一点,CE与AD 交于点G,过点E作EF⊥CE交BC于点F,若AE=aBE,AB=bAC(a>0,b>0),则EF与EG的数量关系是.23.如图,抛物线y=x2+bx+c的对称轴是y轴,点D,P在抛物线上,A(0,2),D(0,1),PC⊥x轴于点C,CB∥AP,交x轴于点B.(1)求抛物线的解析式;(2)若点P是抛物线上的动点,四边形ABCP是什么特殊的四边形?证明你的结论;(3)设点Q是x轴上一动点,当(2)中的四边形ABCP是正方形时,△DQP 周长是否存在最小值,若存在,请直接写出△DQP周长最小时点Q的坐标;若不存在,请说明理由.2019年河南省新乡市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.﹣2的倒数是()A.B.2 C.﹣D.﹣2【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣2的倒数是,故选C.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,正三棱柱的主视图为()A. B.C.D.【考点】简单几何体的三视图.【分析】根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.【解答】解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.3.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将27 000 000用科学记数法表示为2.7×107.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°【考点】平行线的性质.【专题】计算题.【分析】首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.【解答】解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.【点评】本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC 的度数是解题的难点.5.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元【考点】中位数.【分析】根据题意得出按照从小到大顺序排列的第25个和第26个数据都是20(元),它们的平均数即为中位数.【解答】解:∵10+13+12+15=50,按照从小到大顺序排列的第25个和第26个数据都是20(元),∴它们的平均数即为中位数,=20(元),∴学生捐款金额的中位数是20元;故选:D.【点评】本题考查了中位数的定义、平均数的计算;熟练掌握中位数的定义,正确求出中位数是解决问题的关键.6.不等式组的解集,在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先解不等式,然后在数轴上表示出解集.【解答】解:解不等式1﹣x<2得,x>﹣1,解不等式3x≤6得:x≤2,则不等式的解集为:.故选B.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.7.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5 D.6【考点】菱形的性质;矩形的性质.【分析】连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2,根据△AOE∽△ABC,即可得到结果.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故选C.【点评】本题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用定理是解题的关键.8.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,)D.(2n+1,)【考点】坐标与图形变化-旋转.【专题】压轴题;规律型.【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故选:C.【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.二、填空题(每小题3分,共21分)9.计算: +|﹣1|=4.【考点】实数的运算.【分析】根据立方根的定义和绝对值的性质进行计算即可.【解答】解:原式=3+1=4,故答案为4.【点评】本题考查了实数的运算,掌握立方根的定义和绝对值的性质是解题的关键.10.如图,AD是△ABC的外角平分线,AD∥BC,若∠C=70°,则∠BAC的度数为40°.【考点】平行线的性质;三角形内角和定理.【分析】根据平行线的性质得出∠DAC=∠C=70°,∠EAD=∠B,根据角平分线定义得出∠EAD=∠DAC=70°,求出∠B,即可求出∠BAC.【解答】解:∵AD∥BC,∠C=70°,∴∠DAC=∠C=70°,∠EAD=∠B,∵AD是△ABC的外角平分线,∴∠EAD=∠DAC=70°,∴∠B=70°,∴∠BAC=180°﹣∠B﹣∠C=40°,故答案为:40°【点评】本题考查了平行线的性质,三角形内角和定理的应用,能求出∠B的度数是解此题的关键.11.已知点A(1,y1),B(﹣2,y2),C(﹣,y2)都在反比例函数y=(k为常数)的图象上,则y1,y2,y3的大小关系是y1<y2<y3.【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据各点横坐标的值判断出各点所在的象限.进而可得出结论.【解答】解:∵反比例函数y=(k为常数)中,﹣k2﹣1<0,∴函数图象的两个分式分别位于二四象限,且在每一象限内y随x的增大而增大.∵﹣2<﹣<0,1>0,∴点B、C在第二象限,点A在第四象限,∴y1<y2<y3.故答案为:y1<y2<y3.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.不透明的袋子中装有2个红球,3个黄球,他们除颜色外,其它都相同,从中随机一次摸出两个球,颜色不同的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与颜色不同的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,颜色不同的有12种情况,∴从中随机一次摸出两个球,颜色不同的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.注意用到的知识点为:概率=所求情况数与总情况数之比.13.如图,菱形ABCD的边长为5cm,cosB=0.6,则对角线AC的长为2cm.【考点】菱形的性质.【分析】过C作CE⊥AB于E,则∠CEB=∠CEA=90°,解直角三角形求出BE,根据勾股定理求出CE,求出AE,根据勾股定理求出AC即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC=5cm,过C作CE⊥AB于E,则∠CEB=∠CEA=90°,∵cosB==0.6,BC=5cm,∴BE=3cm,∴AE=5cm﹣3cm=2cm,在Rt△BEC中,由勾股定理得:CE==4(cm),在Rt△CEA中,由勾股定理得:AC===2(cm),故答案为:2.【点评】本题考查了菱形的性质,勾股定理,解直角三角形的应用,能构造直角三角形是解此题的关键,注意:菱形的四条边都相等.14.如图,直径AB为10的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是.【考点】扇形面积的计算;旋转的性质.【分析】根据题意得出AB=AB′=8,∠BAB′=60°,根据图形得出图中阴影部分的面积S=+π×102﹣π×102,求出即可.【解答】解:如图,∵AB=AB′=8,∠BAB′=60°∴图中阴影部分的面积是:S=S扇形B′AB+S半圆O′﹣S半圆O=+π×102﹣π×102=π.故答案为:.【点评】本题考查了旋转的性质,扇形的面积的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较好,难度适中.15.如图,正方形ABCD的边长是2,点E、F分别是AB、BC边上的动点(不与点A、B、C重合),且BE=BF,EG⊥AB,FG⊥BC,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为1或2﹣.【考点】正方形的性质;等腰三角形的性质.【分析】首先判断点G在对角线上,分两种情形讨论①DA=DG,②GA=GD.求出BG,再根据BE=BG即可解决问题.【解答】解:∵四边形ABCD是正方形,四边形BEGF是正方形,∴AB=BC=CD=AD=2,∠EBG=∠ABD=45°,∴B、G、D共线,BD=2,当DA=DG时,BG=2﹣2,∴BE=BG=2﹣,当GA=DG时,G是BD中点,∴BG=,∴BE=BG=1,故答案为1或2﹣【点评】本题考查正方形的性质、等腰三角形的性质等知识,解题的关键是判断点G的位置,注意考虑问题要全面,学会分类讨论,属于中考常考题型.三、解答题(本大题包括8个小题,共75分)16.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式===,当a=+1,b=﹣1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.2016年3月8日,国务院批复同意自2016年起,将每年4月24日作为“中国航天日”,某市针对中学生开展了航天知识普及活动,活动结束后进行了一次航天知识问卷调查,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.调查结果统计表根据以上信息解答下列问题:(1)统计表中,a=450,b=1000,c=0.3;(2)扇形统计图中,m的值为45,“B”所对应的圆心角的度数是54°;(3)若参加本次航天知识问卷调查的同学共有20000人,请你估计成绩在95分及以上的学生大约有多少人?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)由A组频数及频率可得总数b,根据频数之和等于总数可得a,用C组频数除以总数可得其频率c;(2)用D组频数除以总数即可得m的值,用B组人数占总人数的比例乘以360°可得圆心角度数;(3)用成绩在95分及以上的学生数占被调查人数的比例,即D组频率乘以总人数20000即可得.【解答】解:(1)b=100÷0.1=1000,a=1000﹣100﹣150﹣300=450,c=300÷1000=0.3;故答案为:450,1000,0.3;(2)∵m%=×100%=45%,∴m=45,“B”所对应的圆心角的度数是×360°=54°,故答案为:45,54;(3)20000×0.45=9000,答:成绩在9分及以上的学生大约有9000人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.如图,△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,交AC 于点E.(1)求证:△OBD≌△OED;(2)填空:①当∠BAC=90度时,CA是⊙O的切线;②当∠BAC=60度时,四边形OBDE是菱形.【考点】圆的综合题.【分析】(1)由AB是⊙O的直径,可证得AD⊥BC,根据等腰三角形的性质得到∠BAD=∠CAD,于是得到BD=ED,根据“SSS“定理即可证得结论;(2)①当∠BAC=90°时,由切线的判定定理即可证得CA是⊙O的切线,②当∠BAC=60度时,得到△OBD是等边三角形,即OB=OD=BD,由(1)得:BD=ED,于是有OB=BD=DE=OE,由菱形的定义得到四边形OBDE是菱形.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴AD⊥BC,又∵AB=AC,∴∠BAD=∠CAD,∴=.∴BD=ED,在△OBD和△OED中,,∴△OBD≌△OED(SSS);(2)①当∠BAC=90°,∵AB为⊙O的直径,∴CA是⊙O的切线,故答案为:90;②当∠BAC=60度时,∵OB=OD,∴△OBD是等边三角形,即OB=OD=BD,由(1)得:BD=ED,∴OB=BD=DE,∵OE=OB,∴OB=BD=DE=OE,∴四边形OBDE是菱形,故答案为:60.【点评】本题主要考查了圆周角的性质和判定,等腰三角形的判定与性质,全等三角形的判定与性质,切线的判定定理,菱形的判定定理,正确作出辅助线,证得BD=ED是解题的关键.19.关于x的一元二次方程(m﹣1)x2+2x﹣3=0.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.【考点】根的判别式;一元二次方程的解.【分析】(1)根据一元二次方程的定义和根的判别式得到m﹣1≠0且△=22﹣4(m﹣1)×(﹣3)=12m﹣8>0,然后求出两不等式的公共部分即可;(2)先把x=1代入原方程得到m的一元一次方程,求出m的值,从而确定原一元二次方程,然后利用因式分解法解一元二次方程即可得到方程的另一个解.【解答】解:(1)由题意知,m﹣1≠0,所以m≠1.∵原方程有两个不相等的实数根,∴△=22﹣4(m﹣1)×(﹣3)=12m﹣8>0,解得:m>,综上所述,m的取值范围是m>且m≠1;(2)把x=1代入原方程,得:m﹣1+2﹣3=0.解得:m=2.把m=2代入原方程,得:x2+2x﹣3=0,解得:x1=1,x2=﹣3.∴此时m的值为2,方程的另外一个根为是﹣3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义及解法.20.如图所示,为了知道楼房CD外墙上一电子屏的高度DE是多少,某数学活动小组利用测角仪和米尺等工具进行如下操作;在A处测得点E的仰角为31°,在B出测得点D的仰角为50°,A、B、H共线,且AH⊥CD于点H,AB为20米,测角仪的高度(AF、BG)为1.6米.已知楼房CD高为34.6米,根据测量数据,请求出DE的高度.(参考数据:tan31°≈0.6,tan50°≈1.2)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先由题意知∠EAH=31°,∠DBH=50°,CH=AF=1.6,则可求得DH的长,然后由在Rt△DBH中,tan50°=,求得BH的长,继而求得AH的长,然后在Rt△EAH中,求得EH的长,则可求得答案.【解答】解:由题意知∠EAH=31°,∠DBH=50°,CH=AF=1.6,∴DH=DC﹣CH=34.6﹣1.6=33,在Rt△DBH中,∵tan50°==,∴BH=≈=27.5,∴AH=27.5+20=47.5.在Rt△EAH中,∵tan31°=,∴EH=47.5×tan31°≈28.5,∴DE=DH﹣EH≈33﹣28.5=4.5(米).答:DE的高度约为4.5米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.甲、乙两家商店以同样价格销售相同的商品,某次促销活动中,它们的优惠方案分别为:甲店,所有商品一律八折优惠;乙店,一次性购物中超过200元后的价格部分打六折.设商品原价为x元(x>0),购物应付金额为y元.(1)求在乙商店购物时y2与x之间的函数关系;(2)两种购物方式对应的函数如图所示,求出交点B的坐标;(3)根据图象,请直接写出本次促销活动汇总选择哪家商店购物更优惠.【考点】一次函数的应用.【分析】(1)分别利用当0<x≤200时,当x>200时,求出函数解析式;(2)将y=0.6x+80和y=0.8x联立求出函数交点进而求出答案;(3)利用(2)中所求得出选择哪家商店购物更优惠.【解答】解:(1)当0<x≤200时,y2=x;当x>200时,y2=200+0.6(x﹣200)=0.6x+80,综上所述:y2=;(2)由题意知,y1=0.8x,故,解得:,则点B的坐标(400,320).(3)当x=400件,选择甲、乙两店付费相同;当x<400件时,选择甲店购物更优惠;当x>400件时,选择乙店购物更优惠.【点评】此题主要考查了一次函数的应用,利用数形结合得出正确信息是解题关键.22.(1)尝试探究如图1,Rt△ABC中,AB=AC,AD是高,点E是AB边上一点,CE与AD交于点G,过点E作EF⊥CE交BC于点F.若AE=2BE,则EF与EG的数量关系是EG=2EF.(2)类比延伸如图2,在(1)的条件下,若AE=nBE(n>0),则EF与EG的数量关系是EG=nEF (用含n的代数式表示),试写出解答过程.(3)拓展迁移如图3,Rt△ABC中,∠BAC=90°,AD是高,点E是AB边上一点,CE与AD 交于点G,过点E作EF⊥CE交BC于点F,若AE=aBE,AB=bAC(a>0,b>0),则EF与EG的数量关系是EG=abEF.【考点】相似形综合题.【分析】(1)如图1中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,先证明△BPE∽△AQE,再证明△EPF∽△EQG即可.(2)如图2中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,证明方法类似(1).(3)如图3中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,由△EPF ∽△EQG,得=①,由△AEQ∽△CBA,得=②,①×②得=ab,由此即可解决问题.【解答】解:(1)EG=2EF;理由:如图1中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q.∴∠BPE=∠AQE=90°.∵AD是等腰直角三角形的高,∴∠B=∠EAQ=45°.∴△BPE∽△AQE,∴==,∴EQ=2EP,∵∠FEP+∠PEG=90°,∠GEQ+∠PEG=90°,∴∠FEP=∠GEQ.又∵∠EPF=∠EQG=90°,∴△EPF∽△EQG,∴==,∴EG=2EF.故答案为EG=2EF.(2)EG=nEF;理由:如图2中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q.∴∠BPE=∠AQE=90°.∵AD是等腰直角三角形的高,∴∠B=∠EAQ=45°.∴△BPE∽△AQE,∴=,∵AE=nBE,∴EQ=nEP.∵∠FEP+∠PEG=90°,∠GEQ+∠PEG=90°,∴∠FEP=∠GEQ.又∵∠EPF=∠EQG=90°,∴△EPF∽△EQG,∴=,∴EG=nEF.故答案为EG=2EF.(3)EG=abEF,理由:如图3中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,∵△EPF∽△EQG,∴=①∵∠AQE=∠BAC,∠EAQ=∠ACB,∴△AEQ∽△CBA,∴=,∴=②①×②得==ab,∵△EPF∽△EQG,∴=,∴=ab,∴EG=abEF.故答案为EG=abEF.【点评】本题考查相似三角形的判定和性质,解题的关键是添加辅助线,构造相似三角形,本题需要用到多次相似,属于中考常考题型.23.如图,抛物线y=x2+bx+c的对称轴是y轴,点D,P在抛物线上,A(0,2),D(0,1),PC⊥x轴于点C,CB∥AP,交x轴于点B.(1)求抛物线的解析式;(2)若点P是抛物线上的动点,四边形ABCP是什么特殊的四边形?证明你的结论;(3)设点Q是x轴上一动点,当(2)中的四边形ABCP是正方形时,△DQP 周长是否存在最小值,若存在,请直接写出△DQP周长最小时点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由抛物线的对称轴方程可求得b的值,然后把D(0,1)代入y= x2+c可求得c的值,从而可求得抛物线的解析式;(2)先依据两组对边分别平行的四边形是平行四边形证明四边形ABCP是平行四边形,设点P的坐标是(m,m2+1),则PC=m2+1.然后依据两点间的距离公式可求得PA的长,从而得到PC=PA,故此可判断出四边形ABCP的形状;(3)作点D关于x轴的对称点D′.连接PD′交x轴与点Q.由四边形APCB为正方形可知PA∥x轴,点B与点O重合.于是可求得点P的坐标,然后求得直线D′P的解析式,从而可求得点Q的坐标,最后由抛物线的对称性可求得点Q′的坐标.【解答】解:(1)∵抛物线的对称轴是y轴,∴b=0.把D(0,1)代入y=x2+c得c=1.∴抛物线的解析式为y=+1.(2)四边形ABCP是菱形.∵PC⊥x轴,AB⊥x轴,∴PC∥AB.又∵CB∥AP,∴四边形ABCP是平行四边形.设点P的坐标是(m,m2+1),则PC=m2+1.过点P作PE⊥y轴于点E,则∴PA2=PE2+AE2=|m|2+|(m2+1)﹣2|2=m4+m2+1=(m2+1)2.∴PA=m2+1.∴PC=PA.∴平行四边形ABCP是菱形.(3)如图所示:作点D关于x轴的对称点D′.连接PD′交x轴与点Q.∵四边形APCB为正方形,∴∠APC=∠PCB=90°.∴点PA∥x轴,点B与点O重合.∴点P的纵坐标为2.将y=2代入y=+1得: +1=2,解得:x=±2.∴点P(2,2)、P′(﹣2,2).∵点D′与点D关于x轴对称,∴DQ=D′Q,D′(﹣1,0).∴当点D′、Q、P在一条直线上时,PQ+QD有最小值.又∵DP的长度不变,∴当点D′、Q、P在一条直线上时,△PDQ的周长最小.设直线PD′的解析式为y=kx+b.∵将点P、D′的坐标代入得,解得:k=,b=﹣1,∴直线PD′的解析式为y=x﹣1.将y=0代入得;x﹣1=0,解得:x=,∴点Q的坐标为(,0).∵点Q′关于点Q对称,∴Q′(﹣,0).综上所述,点Q的坐标为(,0)或Q′(﹣,0).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、轴对称路径最短问题、平行四边形的判定、菱形的判定,明确当点D′、Q、P在一条直线上时,△PDQ的周长最小时解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年河南省新乡市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−12的绝对值等于()A. −2B. 2C. −12D. 122.据海关统计,今年1月份,我国货物贸易进出口总值2.73万亿元人民币,比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A. 2.73×1011B. 2.73×1012C. 2.73×1013D. 0.273×10133.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A. B. C. D.4.如图,直线CE∥AB,直线CD交CE于C,交AB于O,过点O作OT⊥AB于O,已知∠ECO=30°,则∠DOT的度数为()A. 30∘B. 45∘C. 60∘D. 120∘5.上篮球课时,某小组8位男生的各10次投篮的成绩如下所示,则这组数据的众数和中位数分别是()12345678成绩(m)396651087A. 5,6B. 6,6.5C. 7,6D. 8,6.56.不等式组{x+1≥03x−2<1的解集在数轴上表示正确的是()A. B.C. D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD的长度为()A. 6√3B. 6C. 3√3D. 38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A. 12B. 13C. 14D. 169.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A. (1,√3)B. (2,2√3)C. (4,4√3)D. (8,8√3)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A. √34B. √32C. 2D. √3二、填空题(本大题共5小题,共15.0分)11.计算:(12-π)0-√−273=______.12.如图,△ABC中,以点B为圆心,任意长为半径作弧,分别交AB,BC于E、F点,分别以点E、F为圆心,以大于12EF的长为半径作弧,两弧交于点G,做射线BG,交AC于点D,过点D作DH∥BC交AB于点H.已知HD=3,BC=7,则AH的长为______.13.如果函数y=-2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是______.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为______.15.如图,在Rt△ABC中,∠C=90°,点D、E分别是BC、AB上一个动点,连接DE.将点B沿直线DE折叠,点B的对应点为F,若AC=3,BC=4,当点F落在AC的三等分点上时,BD的长为______.第2页,共23页三、计算题(本大题共1小题,共8.0分) 16. 先化简,再求值:2a−6a 2−9+a+39÷a 2+6a+96,其中a =√3.四、解答题(本大题共7小题,共67.0分)17. 为了了解大气污染情况,某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数,绘制了如下不完整的统计图表: 空气质量指数统计表级别 指数 天数 百分比 优 0-50 24 m 良51-100a40% 轻度污染 101-150 18 15% 中度污染 151-200 15 12.5% 重度污染 201-300 9 7.5% 严重污染 大于300 6 5%合计120 100%请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a =______,m =______; (2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是______度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.18.如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为______;②当DE=______时,四边形OBED为菱形.19.如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)20.如图,直线AB经过A(√3,0)和B(0,1),点C在反比例函数y=k的图象上,且AC=BC=AB.x(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2√3,0)过点D作PD⊥x轴,当△PAD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请说明理由.第4页,共23页21.开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为______,线段MN和线段NF的数量关系为______;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP 面积的最小值为______.23.顶点为D的抛物线y=-x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=-34x+m 经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=-34x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.第6页,共23页答案和解析1.【答案】D【解析】解:∵|-|=,∴-的绝对值是.故选:D.计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.【答案】B【解析】解:数据2.73万亿元用科学记数法表示为2.73×1012.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:如图所示:图2的左视图为:.故选:C.由几何体形状直接得出其左视图,正方形上面有一条斜线.此题主要考查了简单组合体的三视图,正确注意观察角度是解题关键.4.【答案】C【解析】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT-∠DOB=90°-30°=60°.故选:C.由CE∥AB,根据两直线平行,同位角相等,即可求得∠BOD的度数,又由OT⊥AB,求得∠BOT的度数,然后由∠DOT=∠BOT-∠DOB,即可求得答案.此题考查了平行线的性质,垂直的定义.解题的关键是注意数形结合思想的应用,注意两直线平行,同位角相等.5.【答案】B【解析】解:将数据重新排列为3,5,6,6,7,8,9,10,所以这组数据的众数为6,中位数为=6.5(分),故选:B.根据众数和中位数的概念求解.本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.【答案】D【解析】解:解3x-2<1,得x<1;解x+1≥0,得x≥-1;不等式组的解集是-1≤x<1,故选:D.先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥第8页,共23页向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【答案】A【解析】解:∵四边形ABCD是菱形,∠ADC=60°,∴AC⊥BD,OA=OC,OB=OD,∠ADO=∠CDO=30°,∵AE=EB,BO=OD,∴AD=2OE=6,在Rt△AOD中,∵AD=6,∠AOD=90°,∠ADO=30°,∴OD=AD•cos30°=3,∴BD=2OD=6,故选:A.利用三角形中位线定理求出AD,再在Rt△AOD中,解直角三角形求出OD即可解决问题.本题考查菱形的性质,三角形的中位线定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】C【解析】解:画树状图如下:由树状图可知,共有12种等可能结果,其中标号数字和大于6的结果数为3,所以标号数字和大于6的概率为=,故选:C.利用树状图法列举出所有可能,进而求出概率.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】C【解析】解:如图,设BG=x,∵△OBC是等边三角形,∴∠BOC=∠B=∠C=60°,∵DE⊥OC于点E,EF⊥BC于点F,FG⊥OB,∴∠BFG=∠CEF=∠ODE=30°,∴BF=2x,∴CF=12-2x,∴CE=2CF=24-4x,∴OE=12-CE=4x-12,∴OD=2OE=8x-24,当G与D重合时,OD+BG=OB,∴8x-24+x=12,解得x=4,∴OD=8x-24=32-24=8,∴OE=4,DE=4,∴D(4,4).故选:C.设BG=x,依据∠BFG=∠CEF=∠ODE=30°,可得BF=2x,CF=12-2x,CE=2CF=24-4x,OE=12-CE=4x-12,OD=2OE=8x-24,再根据当G与D重合时,OD+BG=OB列方程,即可得到x的值,进而得出点D的坐标.本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.10.【答案】A【解析】由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2∴等边三角形ABC的高为∴等边三角形ABC的面积为由图2可知,x=1时△EFG的面积y最小此时AE=AG=CG=CF=BG=BE显然△EGF是等边三角形且边长为1第10页,共23页所以△EGF的面积为故选:A.本题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG的长度,求出等边三角形EFG的最小面积.本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.11.【答案】4【解析】解:(-π)0-=1+3=4.故答案为:4.本题涉及三次根式化简、零指数幂2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握三次根式、零指数幂等考点的运算.12.【答案】94【解析】解:由题意可知射线BG是∠ABC的平分线,∴∠ABD=∠CBD而DH∥BC∴∠HDB=∠CBD∴∠ABD=∠HDB∴HB=HD=3又∵DH∥BC∴△AHD∽△ABC∴即:得AH=故答案为.根据题意可知射线BG是∠ABC的平分线,从而可得△HBD是等腰三角形,且HD=HB,再根据相似三角形对应边成比例可求AH的长.本题考查的是相似三角形的判定与性质,利用相似三角形对应边成比例进行解题是关键.13.【答案】a<1【解析】解:当a=0时,两直线y=-2x和y=1只有一个交点,当a≠0时,,由题意得,方程ax2+1=-2x有两个不同的实数根,∴△=4-4a>0,解得:a<1.故答案为:a<1.当a=0时,两直线y=-2x和y=1只有一个交点,则当a≠0时,先联立抛物线与直线的解析式得出关于x的方程,再由直线y=-2x和抛物线有两个不同交点可知△>0,求出a的取值范围.主要考查的是函数图象的交点问题,两函数有两个不同的交点,则△>0.14.【答案】π3-2+√3【解析】解:作CK⊥BD于K.∵AB=AC=3,∴∠B=∠ACB=75°,∴∠BAC=180°-75°-75°=30°,在Rt△ACK中,CK=AC=1,AK=,∴BK=2-,∵CB=CD,CK⊥BD,∴BD=2BK=4-2,∠B=∠CDB=75°,∴ACE=∠BCD=30°,∴S阴=S△ABC+S扇形ACE-S△BCD-S△EDC第12页,共23页=-•(4-2)•1=-2+, 故答案为-2+.作CK ⊥BD 于K .根据S 阴=S △ABC +S 扇形ACE -S △BCD -S △EDC 计算即可. 本题考查旋转变换,扇形的面积,等腰三角形的性质,解直角三角形等知识,解题的关键是学会用分割法求阴影部分面积. 15.【答案】52或178【解析】解:∵折叠 ∴BD=DF ,∵点F 落在AC 的三等分点上 ∴CF=1或CF=2, 若CF=1时,在Rt △CDF 中,DF 2=CD 2+CF 2, ∴BD 2=(4-BD )2+1 ∴BD=当CF=2时,在Rt △CDF 中,DF 2=CD 2+CF 2, ∴BD 2=(4-BD )2+4 ∴BD= 故答案为:或由折叠的性质可得BD=DF ,由勾股定理可求BD 的长.本题考查了翻折变换,勾股定理,利用分类讨论思想解决问题是本题的关键.16.【答案】解:2a−6a −9+a+39÷a 2+6a+96 =2(a−3)(a+3)(a−3)+a+39•6(a+3)2第14页,共23页=2a+3+23(a+3) =83(a+3),当a =√3时,原式=3(√3+3)=12−4√39.【解析】根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入化简可得. 本题主要考查分式的混合运算-化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 17.【答案】48 20% 72【解析】解:(1)a=120×40%=48,m=24÷120=20%. 故答案为:48,20%;(2)如图所示:(3)360°×20%=72°. 故答案为:72; (4)365×=146(天).故答案为:146.(1)用24÷120,即可得到m ;120×40%即可得到a ; (2)根据a 的值,即可补全条形统计图;(3)用级别为“优”的百分比×360°,即可得到所对应的圆心角的度数; (4)根据样本估计总体,即可解答.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.【答案】8 4【解析】证明:(1)如图1,连AE,∵AB为⊙O的直径,∴∠AEB=90°,∵PA=AB,∴E为PB的中点,∵AO=OB,∴OE∥PA,∴∠ADO=∠DOE,∠A=∠EOB∵OD=OA,∴∠A=∠ADO,∴∠EOB=∠DOE,∵OD=OE=OB,∴∠EDO=∠EBO;(2)①∵AB=8,∴OA=4,当OA边上的高最大时,△AOD的面积最大(如图2),此时点D是的中点,∴OD⊥AB,∴;②如图3,当DE=4时,四边形OBED为菱形,理由如下:∵OD=DE=OE=4,∴△ODE是等边三角形,∴∠EDO=60°,由(1)知∠EBO=∠EDO=60°,∴OB=BE=OE,∴四边形OBED为菱形,故答案为:8;4.(1)如图1,连AE,由等腰三角形的性质可知E为PB中点,则OE是△PAB的中位线,OE∥PA,可证得∠DOE=∠EOB,则∠EDO=∠EBO可证;(2)如图2,由条件知OA=4,当OA边上的高最大时,△AOD的面积最大,可知点D 是的中点时满足题意,此时最大面积为8;(3)如图3,当DE=4时,四边形ODEB是菱形.只要证明△ODE是等边三角形即可解决问题.本题考查了圆周角定理、等腰三角形的性质、中位线定理、菱形的判定等知识,解题的关键是找准动点D在圆上的位置,灵活运用所学知识解决问题,第16页,共23页19.【答案】解:作AE ⊥CD 于E .则四边形ABCE 是矩形.在Rt △BCD 中,CD =BC •tan60°=50×√3≈87(米),在Rt △ADE 中,∵DE =AE •tan37°=50×0.75≈38(米), ∴AB =CE =CD -DE =87-38=49(米).答:甲、乙两楼的高度分别为87米,38米. 【解析】作AE ⊥CD 于E .则四边形ABCE 是矩形.解直角三角形分别求出CD ,DE 即可解决问题.本题考查解直角三角形的应用-仰角俯角问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【答案】解:(1)设直线AB 的解析式为y =k 'x +b ,将点A (√3,0)和B (0,1)代入y =k 'x +b 中,得{√3k′+b =0b =1,解得,{k′=−√33b =1,∴直线AB 的解析式为y =-√33x +1,∵A (√3,0)和B (0,1),∴OA =√3,OB =1,AB =√(√3)2+12=2, ∵AC =AB =2,在Rt △AOB 中,tan ∠OAB =OBOA =√33,∴∠OAB =30°, ∵AC =BC =AB ,∴△ABC 是等边三角形, ∴∠BAC =60°,∴∠OAC =∠OAB +∠BAC =90°, ∴AC ⊥x 轴, ∴C (√3,2),将点C 坐标代入y =kx 中,得k =2×√3=2√3, ∴反比例函数解析式为y =2√3x;第18页,共23页(2)由(1)知,OA =√3,OB =1, ∵点D 坐标为(2√3,0), ∴OD =2√3,∴AD =OD -OA =√3, ∵PD ⊥x 轴,∴∠ADP =90°=∠AOB , ∵当△PAD 与△OAB 相似时, ∴①当△ADP ∽△AOB 时,∴ADAO =DPOB , ∴√3√3=DP 1,∴DP =1,∴P (2√3,1), 当x =2√3时,y =1,∴点P (2√3,1),在反比例函数解析式为y =2√3x上;②当△ADP ∽△BOA 时,∴AD BO =DPOA , ∴√31=√3,∴DP =3,∴P (2√3,3),当x =2√3时,y =1≠3,∴点P (2√3,3),不在反比例函数解析式为y =2√3x上. 【解析】(1)将点A ,B 坐标代入y=k'x+b 中,求出k',b ,得出直线AB 解析式,再判断出∠AOC=90°,求出AC 的长,得出点C 坐标,即可得出结论;(2)分两种情况求出点P 坐标,代入反比例函数解析式中,判断即可得出结论. 此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,等边三角形的性质,锐角三角函数,用分类讨论的思想解决问题是解本题的关键.21.【答案】解:(1)设购进A 品牌文具袋的单价为x 元,购进B 品牌文具袋的单价为y 元,根据题意得, {3x +4y =905x+5y=125, 解得{y =15x=10,所以购进A 品牌文具袋的单价为10元,购进B 品牌文具袋的单价为15元;(2)①由题意可得,y=(12-10)x+(23-15)(100-x)=800-6x;②由题意可得,-6x+800≤40%[10x+15(100-x)],解得:x≥50,又由(1)得:w=-6x+800,k=-6<0,∴w随x的增大而减小,∴当x=50时,w达到最大值,即最大利润w=-50×6+800=500元,此时100-x=100-50=50个,答:购进A品牌文具袋50个,B品牌文具袋50个时所获利润最大,利润最大为500元.【解析】(1)设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为y元,列出方程组求解即可;(2)①把(1)得出的数据代入即可解答;②根据题意可以得到x的取值范围,然后根据一次函数的性质即可求得w的最大值和相应的进货方案.本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.22.【答案】45°NF=√2MN 4【解析】解:(1)如图1中,连接DB,MF,CE,延长BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠ABD+∠ADB=90°,∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.故答案为:45°(2):如图2中,连接MF,EC,BD.设EC交AB于O,BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠AOC+∠ACO=90°,∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.(3):如图3中,如图以A为圆心AD为半径作⊙A.第20页,共23页当直线PB与⊙A相切时,△BCP的面积最小,∵AD=AE,AB=AC,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD,BD=EC,∵∠ABD+∠AOB=90°,∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2,BD=EC==2,∴PC=2-2,PB=2+2,∴S△BCP的最小值=×PC×PB=(2-2)(2+2)=4.(1)如图1,连接DB,MF,CE,延长BD交EC于H.证明△BAD≌△CAE(SAS),推出BD=EC,∠ACE=∠ABD,再根据三角形中位线定理即可解决问题.(2)如图2,连接MF,EC,BD.设EC交AB于O,BD交EC于H.证明△BAD≌△CAE(SAS),推出BD=EC,∠ACE=∠ABD,再利用三角形中位线定理即可解决问题.(3)如图3中,如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A 相切时,△BCP的面积最小.第22页,共23页本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质和判定,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.【答案】解:(1)将点E 代入直线解析式中, 0=-34×4+m , 解得m =3,∴解析式为y =-34x +3,∴C (0,3),∵B (3,0),则有{0=−9+3b +c c=3解得{c =3b=2∴抛物线的解析式为:y =-x 2+2x +3.(2)∵y =-x 2+2x +3=-(x -1)2+4,∴D (1,4),设直线BD 的解析式为y =kx +b ,代入点B 、D ,{k +b =43k+b=0解得{b =6k=−2∴直线BD 的解析式为y =-2x +6,则点M 的坐标为(x ,-2x +6),∴S =(3+6-2x )•x •12=-(x -94)2+8116,∴当x =94时,S 有最大值,最大值为8116.(3)存在如图所示,设点P 的坐标为(t ,0),则点G (t ,-34t +3),H (t ,-t 2+2t +3),∴HG =|-t 2+2t +3-(-34t +3)|=|t 2-114t |CG =√t 2+(−34t +3−3)2=54t , ∵△CGH 沿GH 翻折,G 的对应点为点F ,F 落在y 轴上,而HG ∥y 轴,∴HG ∥CF ,HG =HF ,CG =CF ,∠GHC =∠CHF ,∴∠FCH =∠CHG ,∴∠FCH =∠FHC ,∴∠GCH =∠GHC ,∴CG =HG ,∴|t 2-114t |=54t ,当t 2-114t =54t 时,解得t 1=0(舍),t 2=4,此时点P (4,0).当t 2-114t =-54t 时,解得t 1=0(舍),t 2=32,此时点P (32,0).综上,点P 的坐标为(4,0)或(32,0).【解析】(1)将点E 代入直线解析式中,可求出点C 的坐标,将点C 、B 代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D 的坐标,设直线BD 的解析式,代入点B 、D ,可求出直线BD 的解析式,则MN 可表示,则S 可表示.(3)设点P 的坐标,则点G 的坐标可表示,点H 的坐标可表示,HG 长度可表示,利用翻折推出CG=HG ,列等式求解即可.此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG 为解题关键.。