2019年河南省新乡市中考数学一模试卷(解析版)
2019年河南省新乡市卫辉市中考数学一模试卷解析版
2019年河南省新乡市卫辉市中考数学一模试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的.)1.(3分)下列各数中,最大的数是()A.|﹣2|B.﹣C.D.﹣π2.(3分)2018年12月18日中国球员周琦被休斯顿火箭队正式裁员,当日在各大搜索引擎中输入“周琦”,能搜索到与之相关的网页约84000000个,将这个数用科学记数法表示为()A.8.4×105B.8.4×106C.8.4×107D.8.4×1083.(3分)如图所示是正方形的展开图,原正方体相对两个面上的数字之和的最大值是()A.5B.6C.7D.84.(3分)下列计算正确的是()A.a6÷a2=a3B.(﹣3a2)3=﹣27a6C.a2+2a2=3a4D.(a+2b)2=a2+4b25.(3分)某中学为了调查学生备战中考体育的训练情况,特抽查了40名学生进行了模拟测试(满分70分),体育组根据抽测成绩制成如表格:则这批考生模拟成绩的中位数和众数分别是()A.59,59B.59,62C.62,67D.62,626.(3分)如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x,宽为y,则依据题意可得二元一次方程组为()A.B.C.D.7.(3分)已知关于x的一元二次方程mx2﹣2x﹣1=0有实数根,则m的取值范围是()A.m≤1且m≠0B.x≥1C.m≥﹣1D.m≥﹣1且m≠0 8.(3分)在一个不透明的纸箱里有四个除了标记数字不同之外其他完全相同的小球,上面标记数字1,2,3,4,现在从中先后随机抽出两个小球,则两球上数字之和能被3整除的概率为()A.B.C.D.9.(3分)如图所示,菱形ABOC如图所置,其一边OB在x轴上,将菱形ABOC绕点B顺时针旋转75°至FBDE的位置,若BO=2,∠A=120°,则点E的坐标为()A.()B.()C.()D.()10.(3分)如图所示,已知△ABC与△DEF均为等边三角形,且AB=2,DB=1,现△ABC 静止不动,△DEF沿着直线EC以每秒1个单位的速度向右移动设△DEF移动的时间为x,△DEF与△ABC重合的面积为y,则能大致反映y与x函数关系的图象是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算=.12.(3分)如图所示,四边形ABCD为矩形,AE⊥EG,已知∠1=25°,则∠2=13.(3分)不等式组的解集为.14.(3分)在Rt△ABC中,AB=2,AC=4,将△ABC绕点C顺时针旋转,A、B的对应点分别为D、E,当B、C、D三点在同一直线上时旋转停止,此时线段AB扫过的阴影面积为.15.(3分)如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中.17.(9分)为了响应上级教委的“海航招飞”号召,某校从九年级应届男生中抽取视力等生理指标合格的部分学生进行了文化课初检,教务处负责同志将测測试结果分为四个等级:甲、乙、丙、丁,然后将相关数据整理为两幅不完整的统计图,请依据相关信息解答下列问题:(1)本次参加文化课初检的男生人数为;(2)扇形图中m的数值为,把条形统计图补充完整;(3)据统计,全省生理指标过关的九年级男生有2400名左右,若规定文化课等级为“甲”“乙”的可进行文化课二检,请估计进入二检的男生有;(4)本次抽检进入“甲”等的4名男生中九(1)、九(2)班各占2名,若从“甲”等学生中随机抽取两名男生进行调研,请用树形图表示抽到的两名男生恰为九(1)班的概率.18.(9分)如图所示,函数y1=kx+b的图象与函数(x<0)的图象交于A(a﹣2,3)、B(﹣3,a)两点.(1)求函数y1、y2的表达式;(2)过A作AM⊥y轴,过B作BN⊥x轴,试问在线段AB上是否存在点P,使S△P AM =3S△PBN?若存在,请求出P点坐标;若不存在,请说明理由.19.(9分)如图所示,以BC为直径的⊙O中,点A、E为圆周上两点,过点A作AD⊥BC,垂足为D,作AF⊥CE的延长线于点F,垂足为F,连接AC、AO,已知BD=EF,BC =4.(1)求证:∠ACB=∠ACF;(2)当∠AEF=°时,四边形AOCE是菱形;(3)当AC=时,四边形AOCE是正方形.20.(9分)夏季多雨,在山坡CD处出现了滑坡,为了测量山体滑坡的坡面长度CD,探测队在距离坡底C点米处的E点用热气球进行数据监测,当热气球垂直升腾到B点时观察滑坡的终端C点,俯视角为60°,当热气球继续垂直升腾90米到达A点,此时探测到滑坡的始端D点,俯视角为45°,若滑坡的山体坡角∠DCH为30°,求山体滑坡的坡面长度CD的长.(计算保留根号)21.(10分)小王从同事小李手中接收一批生产任务,派单方要求必须在15天内完成,届时承以每件60元的价格全部回收,小王在接受任务之后,其生产的任务y(件)与生产的天数x(天)关系如图1所示,其中在生产6天之后,每天的生产数量达到了30件.(1)求y与x之间的函数表达式;(2)设第x天生产的产品成本为m元/件,m与x的函数图象如图2所示,若小王第x 天的利润为W元,求W与x的关系式,并求出第几天后小王的利润可达到最大值,最大值为多少?22.(10分)如图所示,在Rt△ABC中,∠ABC=90°,BF为斜边上的高,在射线AB上有点D,连接DF,作∠DFE=90°,FE交射线BC于点E.【问题发现】如图1所示,如果AB=CB,则DF与EF的数量关系为DF EF(选填>,<,=)【类比探究】如图2所示,如果改变Rt△ABC中两直角边的比例,使得AB=2BC,则DF与EF还存在①中的关系吗?【拓展延伸】如图3所示,在Rt△ABC中,如果已知BC=,AB=3,EF=,试求BD的长.23.(11分)如图所示,菱形ABCD位于平面直角坐标系中,抛物线y=ax2+bx+c经过菱形的三个顶点A、B、C,已知A(﹣3,0)、B(0,﹣4).(1)求抛物线解析式;(2)线段BD上有一动点E,过点E作y轴的平行线,交BC于点F,若S△BOD=4S△EBF,求点E的坐标;(3)抛物线的对称轴上是否存在点P,使△BPD是以BD为斜边的直角三角形?如果存在,求出点P的坐标;如果不存在,说明理由.2019年河南省新乡市卫辉市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的.)1.【解答】解:∵|﹣2|=2,2>﹣>﹣>﹣π,∴最大的数是:|﹣2|.故选:A.2.【解答】解:84000000个,将这个数用科学记数法表示为8.4×107.故选:C.3.【解答】解:由正方体的展开可知:2与4是对面,3与5是对面,1和6是对面;∴两个对面的数字和最大为8;故选:D.4.【解答】解:A、a6÷a2=a4,故此选项错误;B、(﹣3a2)3=﹣27a6,故此选项正确;C、a2+2a2=3a2,故此选项错误;D、(a+2b)2=a2+4ab+4b2,故此选项错误;故选:B.5.【解答】解:67分15人,众数为67分;数据从小到大依次排列,第20、21个数据均为62分,中位数为62分;故选:C.6.【解答】解:设每一个小长方形的长为x,宽为y,依题意,得:.故选:A.7.【解答】解:∵关于x的一元二次方程mx2+2x﹣1=0有两实数根,∴,解得:m≥﹣1且m≠0.故选:D.8.【解答】解:画树状图为:共有12种等可能的结果数,其中两球上数字之和能被3整除的结果数为4,两球上数字之和能被3整除的概率==.故选:B.9.【解答】解:过C作CG⊥OB于G,过E作EH⊥OB于H,在菱形ABOC中,∵∠A=120°,AC∥BO,∴∠ABO=60°,∴∠CBO=30°,∵BO=CO=2,∠COG=60°,在Rt△COG中,OG=OC•cos60°=1,∴BG=1+2=3,在Rt△BCG中,BC==2,∵∠HBE=75°﹣30°=45°,在Rt△BHE中,BH=HE=BE•sin45°=2×=,∴OH=﹣2,∴点E的坐标为(﹣2,﹣).故选:A.10.【解答】解:由题意知:在△DEF移动的过程中,重叠部分总为等腰三角形.当0<x≤1时,此时重合部分的边长为x,则y=;当1<x≤2时,此时重合部分的边长为1,则y=;当2<x≤3时,此时重合部分的边长为x,则y=.由以上分析可知,这个分段函数的图象左边为抛物线的一部分且开口向上,中间为一条线段,右边为抛物线的一部分且开口向下.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=﹣1=﹣.故答案为:﹣.12.【解答】解:∵四边形ABCD是矩形∴AD∥BC∴∠DFE=∠2∵∠DFE=∠1+∠E=115°∴∠2=115°故答案为:115°13.【解答】解:,由①得,x≤,由②得,x>﹣,所以,不等式组的解集﹣<x≤.故答案为:﹣<x≤.14.【解答】解:∵在Rt△ABC中,AB=2,AC=4,∴sin∠ACB=,BC==2,∴∠ACB=30°,∴∠DCE=∠ACB=30°,∴∠ACD=∠BCE=150°,∴S阴影=﹣=,故答案为:.15.【解答】解:按两种情况分析:①点F在线段BC上,如图所示,由折叠性质可知∠A=∠DFE=60°∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C ∴△BDF∽△CFE∴∵AB=4,BF:FC=1:3∴BF=1,CF=3设AE=x,则EF=AE=x,CE=4﹣x∴解得BD=,DF=∵BD+DF=AD+BD=4∴解得x=,经检验当x=时,4﹣x≠0∴x=是原方程的解②当点F在线段CB的延长线上时,如图所示,同理可知△BDF∽△CFE∴∵AB=4,BF:FC=1:3,可得BF=2,CF=6设AE=a,可知AE=EF=a,CE=a﹣4∴解得BD=,DF=∵BD+DF=BD+AD=4∴解得a=14经检验当a=14时,a﹣4≠0∴a=14是原方程的解,综上可得线段AE的长为或14故答案为或14三、解答题(本大题共8个小题,满分75分)16.【解答】解:===a+1,当时,原式=﹣1+1=.17.【解答】解:(1)14÷35%=40,所以本次参加文化课初检的男生人数为40人;(2)甲等级的百分比=×100%=10%,所以m°=360°×10%=36°,即m的值为36;丙等级的人数为40×25%=10(人),补全条形统计图:(3)2400×=1080,所以估计进入二检的男生有1080人;故答案为40人;36;1080人;(4)画树状图为:(用A、B表示九(1)的两名学生;用a、b表示九(2)的两名学生)共有12种等可能的结果数,其中抽到的两名男生恰为九(1)班的结果数为2,所以抽到的两名男生恰为九(1)班的概率==.18.【解答】解:(1)∵A、B两点在函数(x<0)的图象上,∴3(a﹣2)=﹣3a=m,∴a=1,m=﹣3,∴A(﹣1,3),B(﹣3,1),∵函数y1=kx+b的图象过A、B点,∴,解得k=1,b=4∴y1=x+4,y2=﹣;(2)由(1)知A(﹣1,3),B(﹣3,1),∴AM=BN=1,∵P点在线段AB上,∴设P点坐标为(x,x+4),其中﹣1≤x≤﹣3,则P到AM的距离为h A=3﹣(x+4)=﹣x﹣1,P到BN的距离为h B=3+x,∴S△PBN=BN•h B=×1×(3+x)=(x+3),S△P AM=AM•h A=×1×(﹣x﹣1)=﹣(x+1),∵S△P AM=3S△PBN,∴﹣(x+1)=(x+3),解得x=﹣,且﹣1≤x≤﹣3,符合条件,∴P(﹣,),综上可知存在满足条件的点P,其坐标为(﹣,).19.【解答】(1)证明:∵∠ABC+∠AEC=∠AEC+∠AEF=180°,∴∠ABC=∠AEF,在△ABD和△AEF中,,∴△ABD≌△AEF(ASA)∴AB=AE,∴∠ACB=∠ACF;(2)60,如图所示,连接OE,∵四边形AOCE是菱形,∴OA=OC=CE=AE,∵OC=CE=OE,∴△ECO是等边三角形,∴∠OCE=60°,∴AE∥BC,∴∠AEF=∠OCE=60°.故答案为:60;(3)2,∵BC=4,∴OC==2,∵四边形AOCE是正方形,∴∠AOC=90°,∴.故答案为:2.20.【解答】解:作DG⊥AE于G,DF⊥EH于F,则四边形GEFD为矩形,∴GE=DF,GD=EF,设DF=a米,则GE=a,在Rt△DCF中,∠DCF=30°,∴CD=2DF=2a,CF=a,∴EF=EC+CF=120+a,∵AM∥GD,∴∠ADG=∠MAD=45°,∴AG=DE=EF=120+a,∵BN∥EF,∴∠BCE=∠NBC=60°,在Rt△BEC中,tan∠BCE=,BE=EC•tan60°=120×=360,AG=AB+BE﹣GE=450﹣a,∴450﹣a=120+a,解得,a=285﹣405,∴CD=2a=570﹣810,答:山体滑坡的坡面长度CD的长为(570﹣810)米.21.【解答】解:(1)①当1≤x≤6时,设函数的表达式为:y=kx+b,由题意得:,解得:,y1=20x+90(1≤x≤6);②当6<x≤15时,同理可得:y2=30x+30(6<x≤15);故函数的表达式为:y=;(2)①当1≤x≤6时,m1=35,②当6<x≤15时,同理可得:m2=x+29(6<x≤15),故m=;故当1≤x≤6时,每件产品的利润为60﹣35=25,总利润W1=25(20x+90)=500x+2250(1≤x≤6);当6<x≤15时,每件产品的利润为60﹣(x+29)=﹣x+31,W2=(30x+30)(﹣x+31)=﹣30(x﹣15)2+7680(6<x≤15),故当x=15时,函数有最大值7680,故:第15天后小王的利润可达到最大值,最大值为7680.22.【解答】解:【问题发现】DF与EF的数量关系为DF=EF,理由是:如图1,∵∠ABC=90°,AB=CB,∴△ABC是等腰直角三角形,∵BF⊥AC,∴AF=CF=BF,∠ABF=∠CBF=45°,∵∠AFD+∠BFD=∠BFD+∠BFE=90°,∴∠AFD=∠BFE,在△ADF和△BEF中,∵,∴△ADF≌△BEF(SAS),∴DF=EF,故答案为:=;【类比探究】不存在①中的关系,关系为:DF=2EF,理由是:如图2所示,∵∠A+∠ABF=∠A+∠C=90°,∴∠ABF=∠C,∵∠A=∠A,∴△ABC∽△AFB,∴,∴,∵∠A+∠ABF=∠ABF+∠CBF=90°,∴∠A=∠CBF,∵∠AFD+∠BFD=∠BFD+∠BFE=90°,∴∠AFD=∠BFE,在△ADF和△BEF中,∵,∴△ADF∽△BEF,∴,∵,AB=2BC,∴,∴DF=2EF;【拓展延伸】连接DE,设CE=a,由以上结论可知:=====,∵EF=,CE=a,∴BD=a,DF==,在Rt△DBE中,∠DBE=90°,得BD2+BE2=DE2,在Rt△DFE中,∠DFE=90°,得DF2+EF2=DE2,∴BD2+BE2=DF2+EF2,即=,整理得:,解得:a1=,a2=(舍),∴BD=a=.23.【解答】解:(1)∵点A的坐标为(﹣3,0),点B的坐标为(0,﹣4),∴OA=3,OB=4,∴AB==5.∵四边形ABCD为菱形,∴AD∥BC,BC=AB=5,∴点C的坐标为(5,﹣4).将A(﹣3,0),B(0,﹣4),C(5,﹣4)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣x﹣4.(2)∵EF∥OB,AD∥BC,∴∠OBD=∠FEB,∠ODB=∠FBE,∴△BOD∽△EFB,∴=()2.∵S△BOD=4S△EBF,∴OD=2BF.∵AD=AB=5,OA=3,∴OD=2,∴点D的坐标为(2,0),BF=1.设直线BD的解析式为y=kx+d(k≠0),将B(0,﹣4),D(2,0)代入y=kx+d,得:,解得:,∴直线BD的解析式为y=2x﹣4.当x=1时,y=2x﹣4=﹣2,∴点E的坐标为(1,﹣2).(3)∵抛物线解析式为y=x2﹣x﹣4,∴抛物线的对称轴为直线x=﹣=.设点P的坐标为(,m),∵点B的坐标为(0,﹣4),点D的坐标为(2,0),∴BP2=(﹣0)2+[m﹣(﹣4)]2=m2+8m+,DP2=(﹣2)2+(m﹣0)2=m2+,BD2=(2﹣0)2+[0﹣(﹣4)]2=20.∵△BPD是以BD为斜边的直角三角形,∴BP2+DP2=BD2,即m2+8m++m2+=20,整理,得:4m2+16m+5=0,解得:m1=,m2=,∴抛物线的对称轴上存在点P,使△BPD是以BD为斜边的直角三角形,点P的坐标为(,)或(,).。
2019年河南省中考数学一模试卷及参考答案
2019年河南省中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)﹣8的相反数是()A.﹣8B.C.8D.﹣2.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.26.(3分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AC交BC于点E.若∠BCD =80°,则∠AEC的度数为()A.80°B.100°C.120°D.140°8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)=.12.(3分)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.19.(9分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.20.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23.(11分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.2019年河南省中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)﹣8的相反数是()A.﹣8B.C.8D.﹣【解答】解:﹣8的相反数是8,故选:C.2.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【解答】解:44亿=4.4×109.故选:B.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.2【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.6.(3分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【解答】解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选:A.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AC交BC于点E.若∠BCD =80°,则∠AEC的度数为()A.80°B.100°C.120°D.140°【解答】解:∵四边形ABCD为平行四边形,∴∠BAD=∠BCD=80°,AD∥BC,由作法得AE平分∠BAD,∴∠F AE=∠BAD=40°,∵AF∥BE,∴∠AEB=∠F AE=40°,∴∠AEC=180°﹣40°=140°.故选:D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.(3分)如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.∴S△BPQ=PQ•BQ,①当点P在BD上,Q在BC上时(即0s≤t≤2s),BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=t,∴S△BPQ=PQ•BQ=•t•t=t2此时S△BPQ的图象是关于t(0s≤t≤2s)的二次函数.∵>0,∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s),PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1,∴S△BPQ=PQ•BQ=••(t﹣1)=t﹣;此时S△BPQ的图象是关于t(2s<t≤4s)的一次函数.∵斜率>0∴S△BPQ随t的增大而增大,直线由左向右依次上升.③P在EC上时,由∠C=45°易求得EC=•=(即4s<t≤4+s)PQ=﹣(t﹣4)(4s<t≤4+s),BQ=3+(t﹣4),∴S△BPQ=PQ•BQ=﹣(t﹣4)2﹣(t﹣4)+3,∴抛物线开口向下.故选:D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)=2.【解答】解:原式=2﹣4+4=2,故答案为:2.12.(3分)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5x2﹣50x﹣128【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.(3分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.【解答】解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠F AD=∠B=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACE=.故答案为:.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:,其中x=4|cos30°|+3【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是117度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在B等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.19.(9分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.【解答】解:(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP,(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BC=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.20.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330件,日销售利润是660元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.23.(11分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.【解答】解:(1)∵二次函数y=ax2+bx﹣3经过点A(﹣3,0)、B(1,0),∴,解得:,∴二次函数解析式为y=x2+2x﹣3;(2)设直线AE的解析式为y=kx+b,∵过点A(﹣3,0),E(0,1),∴,解得:,∴直线AE解析式为y=x+1,如图,过点D作DG⊥x轴于点G,延长DG交AE于点F,设D(m,m2+2m﹣3),则F(m,m+1),∴DF=﹣m2﹣2m+3+m+1=﹣m2﹣m+4,∴S△ADE=S△ADF+S△DEF=×DF×AG+DF×OG=×DF×(AG+OG)=×3×DF=(﹣m2﹣m+4)=﹣m2﹣m+6=﹣(m+)2+,∴当m=﹣时,△ADE的面积取得最大值为.(3)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,设P(﹣1,n),∵A(﹣3,0),E(0,1),∴AP2=(﹣1+3)2+(n﹣0)2=4+n2,AE2=(0+3)2+(1﹣0)2=10,PE2=(0+1)2+(1﹣n)2=(n﹣1)2+1,①若AP=AE,则AP2=AE2,即4+n2=10,解得n=±,∴点P(﹣1,)或(﹣1,﹣);②若AP=PE,则AP2=PE2,即4+n2=(n﹣1)2+1,解得n=﹣1,∴P(﹣1,﹣1);③若AE=PE,则AE2=PE2,即10=(n﹣1)2+1,解得n=﹣2或n=4,∴P(﹣1,﹣2)或(﹣1,4);综上,点P的坐标为(﹣1,)或(﹣1,﹣)或(﹣1,﹣1)或(﹣1,﹣2)或(﹣1,4).。
2019年河南省新乡市中考数学模拟试卷
2019年河南省新乡市中考数学模拟试卷一、选择题(每小题3分,共24分)下列各小题均有四个选项,其中只有一个是正确的1.12-的倒数是A .12-B .12 C . 2- D .22A .1与2B . 2 与3C .3与4D .4与5 3.有10位同学参加数学竞赛,成绩如下表:则上列数据中的中位数是 A . 80 B . 82.5 C . 85 D . 87.54.我国计划在2020年左右发射火星探测卫星,据科学研究测量,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法表示为 A .5.5×106 B . 5.5×107 C .55×107 D .0.55×108 5.如图,直线m ∥n ,△ABC 的顶点B ,C 分别在n ,m 上, 且∠C = 90°,若∠1= 40° ,则∠2的度数为A . 130°B .120°C .110°D .100°6.如图所示是某个几何体的三视图,该几何体是 A . 圆锥 B .三棱锥 C .圆柱 D .三棱柱 7.关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根,则m 的取值范围是 A .m ≥ 54-B .m ≤ 54-C .m < 54-D .m > 54- 8.在矩形ABCD 中,AD = 2AB = 4,E 为AD 的中点,一块432190858075分数人数第5题图C Am n21第6题图M ED Aα足够大的三角板的直角顶点与E重合,将三角板绕点E旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点M、N,设∠AEM = α(0°<α<90°),给出四个结论:①AM =CN②∠AME =∠BNE③BN-AM =2 ④上述结论中正确的个数是A.1 B.2 C.3 D.4二、填空题(每小题3分,共21分)9.的平方根是.10.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为度.11.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.12.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=.13.写一个你喜欢的实数m的值,使得事件“对于二次函数y=x2﹣(m﹣1)x+3,当x<﹣3时,y随x的增大而减小”成为随机事件.14.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.15.如图,在矩形ABCD中,AB=4,BC=3,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B′的对应点落在矩形ABCD的对角线上时,BP=.三、解答题(本大题有8个小题,共75分)16.先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.17.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程有一个实数根是最大的负整数,求实数m的值及另一根.18.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?19.如图1,△ABC是边长为6的等边三角形,点D、E分别是边AB、AC的中点,将△ADE绕点A旋转,BD与CE所在的直线交于点F.(1)如图(2)所示,将△ADE绕点A逆时针旋转,且旋转角小于60°,∠CFB 的度数是多少?说明你的理由?(2)当△ADE绕点A旋转时,若△BCF为直角三角形,线段BF的长为(请直接写出答案)20.如图.有一艘渔船P在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A,B上的观测点进行观测,从观测站A测得渔船P在北偏西60°的方向,同时测得搜救船C也在北偏西60°的方向,从观测站B测得渔船P在北偏东32°的方向,测得搜救船C在北偏西45°方向,已知观测站A在观测站B东40里处,问搜救船C与渔船P的距离是多少?(结果保留整数,参考数据:sin32°≈0.53,cos32°≈0.85;tan32°≈0.62,sin58°≈0.85;cos58°≈0.53;tan58°≈1.60;≈1.41,≈1.73).21.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a的值.22.我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2时,a=,b=.如图2,当∠ABE=30°,c=4时,a=,b=.归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.23.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△CAB的铅垂高CD及S△CAB;(3)抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.2019年河南省新乡市中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个选项,其中只有一个二、填空题(每小题3分,共21分)9.的平方根是±\sqrt{2}.【考点】平方根;算术平方根.【分析】的平方根就是2的平方根,只需求出2的平方根即可.【解答】解:∵=2,2的平方根是±,∴的平方根是±.故答案为是±.10.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为22度.【考点】平移的性质;同位角、内错角、同旁内角.【分析】由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.【解答】解:由平移的性质知,AO∥SM,故∠WMS=∠OWM=22°;故答案为:22.11.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为6.【考点】中位数;算术平均数.【分析】首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.【解答】解:∵两组数据:3,a,2b,5与a,6,b的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.12.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=1.【考点】整式的混合运算;解一元一次方程.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:利用题中新定义得:(x+3)2﹣(x﹣3)2=12,整理得:12x=12,解得:x=1.故答案为:1.13.写一个你喜欢的实数m的值﹣4(答案不唯一),使得事件“对于二次函数y=x2﹣(m﹣1)x+3,当x<﹣3时,y随x的增大而减小”成为随机事件.【考点】随机事件;二次函数的性质.【分析】直接利用公式得出二次函数的对称轴,再利用二次函数的增减性结合随机事件的定义得出答案.【解答】解:y=x2﹣(m﹣1)x+3x=﹣=m﹣1,∵当x<﹣3时,y随x的增大而减小,∴m﹣1<﹣3,解得:m<﹣2,∴x<﹣2的任意实数即可.故答案为:﹣4(答案不唯一).14.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=﹣5.【考点】切线的性质;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【分析】作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P的半径为r,根据切线的性质和切线长定理得到PD=PE=r,AD=AE,再利用勾股定理计算出OB=6,则可判断△OBC为等腰直角三角形,从而得到△PCD为等腰直角三角形,则PD=CD=r,AE=AD=2+r,通过证明△ACH∽△ABO,利用相似比计算出CH=,接着利用勾股定理计算出AH=,所以BH=10﹣=,然后证明△BEP∽△BHC,利用相似比得到即=,解得r=1,从而易得P点坐标,再利用反比例函数图象上点的坐标特征求出k的值.【解答】解:作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P 的半径为r,∵⊙P与边AB,AO都相切,∴PD=PE=r,AD=AE,在Rt△OAB中,∵OA=8,AB=10,∴OB==6,∵AC=2,∴OC=6,∴△OBC为等腰直角三角形,∴△PCD为等腰直角三角形,∴PD=CD=r,∴AE=AD=2+r,∵∠CAH=∠BAO,∴△ACH∽△ABO,∴=,即=,解得CH=,∴AH===,∴BH=10﹣=,∵PE∥CH,∴△BEP∽△BHC,∴=,即=,解得r=1,∴OD=OC﹣CD=6﹣1=5,∴P(5,﹣1),∴k=5×(﹣1)=﹣5.故答案为﹣5.15.如图,在矩形ABCD中,AB=4,BC=3,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B′的对应点落在矩形ABCD的对角线上时,BP=\frac{3}{2}或\frac{9}{4}.【考点】翻折变换(折叠问题);矩形的性质.【分析】分两种情况探讨:①点B落在矩形对角线BD上,②点B落在矩形对角线AC上,由三角形相似得出比例式,即可得出结果.【解答】解①点A落在矩形对角线BD上,如图1所示.∵矩形ABCD中,AB=4,BC=3∴∠ABC=90°,AC=BD,∴AC=BD==5.根据折叠的性质得:PC⊥BB′,∴∠PBD=∠BCP,∴△BCP∽△ABD,∴,即=,解得:BP=.②点A落在矩形对角线AC上,如图2所示.根据折叠的性质得:BP=B′P,∠B=∠PB′C=90°,∴∠AB′A=90°,∴△APB′∽△ACB,∴,即,解得:BP=.故答案为:或.三、解答题(本大题有8个小题,共75分)16.先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】首先根据运算顺序和分式的化简方法,化简÷,然后应用因数分解法解一元二次方程,求出m的值是多少;最后把求出的m的值代入化简后的算式,求出算式÷的值是多少即可.【解答】解:÷==∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,解得x1=﹣3,x2=1,∵m是方程x2+2x﹣3=0的根,∴m1=﹣3,m2=1,∵m+3≠0,∴m≠﹣3,∴m=1,所以原式===17.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程有一个实数根是最大的负整数,求实数m的值及另一根.【考点】根与系数的关系;根的判别式.【分析】(1)利用方程根与判别式的关系,得出根的判别式符号直接解不等式得出即可;(2)将x=﹣1代入,进而求出m的值,进而得出方程的解.【解答】解:(1)∵方程有实数根,∴b2﹣4ac=(﹣4)2﹣4m≥0,∴m≤4;(2)∵最大的负整数是﹣1,∴把x=﹣1代入原方程中,得:(﹣1)2﹣4×(﹣1)+m=0,解得:m=﹣1﹣4=﹣5,∴x2﹣4x﹣5=0,解得:x1=5,x2=﹣1,答:m的值为﹣5,另一个实数根是5.18.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得(1)a=60,b=0.15;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第三组频数除以数据总数可得b的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)样本容量是:10÷0.05=200,a=200×0.30=60,b=30÷200=0.15;(2)补全频数分布直方图,如下:(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段;(4)3000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.故答案为60,0.15;80≤x<90;1200.19.如图1,△ABC是边长为6的等边三角形,点D、E分别是边AB、AC的中点,将△ADE绕点A旋转,BD与CE所在的直线交于点F.(1)如图(2)所示,将△ADE绕点A逆时针旋转,且旋转角小于60°,∠CFB 的度数是多少?说明你的理由?(2)当△ADE绕点A旋转时,若△BCF为直角三角形,线段BF的长为\frac{4\sqrt{3}}{3}(请直接写出答案)【考点】旋转的性质.【分析】(1)根据等边三角形的性质得到AC=AB,∠EAD=∠CAB=60°,由点D、E分别是边AB、AC的中点,得到AE=AD,根据旋转的性质得到∠EAC=∠BAD,根据全等三角形的性质得到∠ACE=∠ABD,推出A,B,C,F四点共圆,根据圆周角定理即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)∠CFB=60°,理由:∵△ABC是等边三角形,∴AC=AB,∠EAD=∠CAB=60°,∵点D、E分别是边AB、AC的中点,∴AE=AD,∵将△ADE绕点A旋转,BD与CE所在的直线交于点F,∴∠EAC=∠BAD,在△ACE与△ABD中,,∴△ACE≌△ABD,∴∠ACE=∠ABD,∴A,B,C,F四点共圆,∴∠CFB=∠CAB=60°;(2)∵∠CFB=60°,∠BCF=90°,∴∠CBF=30°,∴BF===.故答案为:.20.如图.有一艘渔船P在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A,B上的观测点进行观测,从观测站A测得渔船P在北偏西60°的方向,同时测得搜救船C也在北偏西60°的方向,从观测站B测得渔船P在北偏东32°的方向,测得搜救船C在北偏西45°方向,已知观测站A在观测站B东40里处,问搜救船C与渔船P的距离是多少?(结果保留整数,参考数据:sin32°≈0.53,cos32°≈0.85;tan32°≈0.62,sin58°≈0.85;cos58°≈0.53;tan58°≈1.60;≈1.41,≈1.73).【考点】解直角三角形的应用-方向角问题.【分析】过C作CD⊥AB于D,PE⊥AB于E,连接PB,根据已知条件得到BD=CD,AD=CD,求得CD=20(+1)里,AD=40+20(+1)里,解直角三角形得到PE≈12,即可得到结论.【解答】解:过C作CD⊥AB于D,PE⊥AB于E,连接PB,∴∠CBD=45°,∠CAD=30°,∠PBE=58°,∴BD=CD,AD=CD,∵AB=40里,∴=,∴CD=20(+1),∴AD=40+20(+1)里,在Rt△PBE中,BE==,在Rt△APE中,AE=PE,∴+PE=40,∴PE≈12,∴AP=2PE=24,AC=2CD=40(+1),∴CP=AC﹣PC=109﹣24=85(里).答:搜救船C与渔船P的距离是85里.21.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x 人.如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a 元;人数超过100人时,每张门票降价2a 元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a 的值.【考点】一次函数的应用;一元二次方程的应用;一元一次不等式的应用.【分析】(1)根据甲团队人数为x 人,乙团队人数不超过50人,得到x ≥70,分两种情况:①当70≤x ≤100时,W=70x+80=﹣10x+9600,②当100<x <120时,W=60x+80=﹣20x+9600,即可解答;(2)根据甲团队人数不超过100人,所以x ≤100,由W=﹣10x+9600,根据70≤x ≤100,利用一次函数的性质,当x=70时,W 最大=8900(元),两团联合购票需120×60=7200(元),即可解答;(3)根据每张门票降价a 元,可得W=(70﹣a )x+80=﹣(a+10)x+9600,利用一次函数的性质,x=70时,W 最大=﹣70a+8900(元),而两团联合购票需120(60﹣2a )=7200﹣240a (元),所以﹣70a+8900﹣=3400,即可解答.【解答】解:(1)∵甲团队人数为x 人,乙团队人数不超过50人,∴120﹣x ≤50,∴x ≥70,①当70≤x ≤100时,W=70x+80=﹣10x+9600,②当100<x <120时,W=60x+80=﹣20x+9600,综上所述,W=(2)∵甲团队人数不超过100人,∴x ≤100,∴W=﹣10x+9600,∵70≤x ≤100,∴x=70时,W 最大=8900(元),两团联合购票需120×60=7200(元),∴最多可节约8900﹣7200=1700(元).(3)∵x ≤100,∴W=(70﹣a )x+80=﹣(a+10)x+9600,∴x=70时,W 最大=﹣70a+8900(元),两团联合购票需120(60﹣2a )=7200﹣240a (元),∵﹣70a+8900﹣=3400,解得:a=10.22.我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF ,BE 是△ABC 的中线,AF ⊥BE ,垂足为P ,像△ABC 这样的三角形均称为“中垂三角形”,设BC=a ,AC=b ,AB=c .特例探索(1)如图1,当∠ABE=45°,c=2时,a= 2\sqrt{5} ,b= 2\sqrt{5} . 如图2,当∠ABE=30°,c=4时,a= 2\sqrt{13} ,b= 2\sqrt{7} . 归纳证明(2)请你观察(1)中的计算结果,猜想a 2,b 2,c 2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD 中,点E 、F 、G 分别是AD ,BC ,CD 的中点,BE ⊥EG ,AD=2,AB=3,求AF 的长.【考点】相似形综合题.【分析】(1)由等腰直角三角形的性质得到AP=BP=AB=2,根据三角形中位线的性质,得到EF ∥AB ,EF=AB=,再由勾股定理得到结果;(2)连接EF ,设∠ABP=α,类比着(1)即可证得结论.(3)连接AC 交EF 于H ,设BE 与AF 的交点为P ,由点E 、G 分别是AD ,CD 的中点,得到EG 是△ACD 的中位线于是证出BE ⊥AC ,由四边形ABCD 是平行四边形,得到AD ∥BC ,AD=BC=2,∠EAH=∠FCH 根据E ,F 分别是AD ,BC 的中点,得到AE=BF=CF=AD=,证出四边形ABFE 是平行四边形,证得EH=FH ,推出EH ,AH 分别是△AFE 的中线,由(2)的结论得即可得到结果.【解答】解:(1)∵AF ⊥BE ,∠ABE=45°,∴AP=BP=AB=2,∵AF ,BE 是△ABC 的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=45°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×4=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=4,∠ABP=30°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为:2,2,2,2;(2)猜想:a2+b2=5c2,如图3,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(3)如图4,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=3,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=4.23.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△CAB的铅垂高CD及S△CAB;(3)抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)已知了顶点C坐标,可用顶点式的二次函数通式设出这个二次函数,然后根据A点的坐标可求出二次函数的解析式.然后根据求出的二次函数的解析式,求出B点的坐标,然后可用待定系数法用B、A的坐标求出AB所在直线的解析式;(2)要求三角形CAB的面积,根据题中给出的求三角形面积的求法,那么要先求出水平宽和铅垂高,求铅垂高就要求出C,D两点纵坐标,C点的坐标已知,可用(1)中的一次函数求出D点的纵坐标,那么C,D两点的纵坐标的差的绝对值就是三角形CAB的铅垂高,而水平宽是A点的横坐标,这样可根据题中给出的求三角形的面积的方法得出三角形CAB的面积;(3)可先根据(2)中三角形CAB的面积得出三角形PAB的面积,三角形PAB 中,水平宽是A的横坐标为定值,因此根据三角形PAB的面积可得出此时的铅垂高,然后用抛物线的解析式以及一次函数的解析式,先表示出铅垂高,然后根据由三角形PAB的面积求出的铅垂高可得出关于x的方程,即可得出x的值,然后代入二次函数式中即可得出此点的坐标.【解答】解:(1)设抛物线的解析式为:y1=a(x﹣1)2+4把A(3,0)代入解析式求得a=﹣1所以y1=﹣(x﹣1)2+4=﹣x2+2x+3设直线AB的解析式为:y2=kx+b由y1=﹣x2+2x+3求得B点的坐标为(0,3)把A(3,0),B(0,3)代入y2=kx+b中解得:k=﹣1,b=3所以y2=﹣x+3;(2)因为C点坐标为(1,4)所以当x=1时,y1=4,y2=2所以CD=4﹣2=2S△CAB=×3×2=3(平方单位);(3)假设存在符合条件的点P,设P点的横坐标为x,△PAB的铅垂高为h,则h=y1﹣y2=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x由S△PAB=S△CAB得:×3×(﹣x2+3x)=×3化简得:4x2﹣12x+9=0解得,x1=x2=,将x=代入y1=﹣x2+2x+3中,解得P点坐标为(,).第21页(共21页)。
2019年河南地区中考一模数学试卷一及答案解析
2019年河南地区中考一模数学试卷一(考试时间120分钟;试卷满分120分)第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.) 1.-12的绝对值是( )A .2B .12C .-12 D .-22.俗话说:“水滴石穿”,水滴不断地落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000 000 039 cm 的小洞,则0.000 000 039用科学记数法可表示为( ) A .3.9×10-8B .39×10-8C .0.39×10-7D .39×10-93.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是( )A .郑B .力C .州D .魅 4.下列运算正确的是( )A .m 3+m 2=m 5B .m 5÷m 2=m 3C .(2m )3=6m 3D .(m +1)2=m 2+15.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80 人数232341则这些运动员成绩的中位数和众数分别为( ) A .1.65,1.75 B .1.65,1.70 C .1.70,1.75D .1.70,1.706.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x ,y 的二元一次方程组中符合题意的是( ) A .⎩⎪⎨⎪⎧x +y =999,119x +47y =1 000B .⎩⎪⎨⎪⎧x +y =1 000,911x +74y =999 C .⎩⎨⎧x +y =1 000,99x +28y =999D .⎩⎪⎨⎪⎧x +y =1 000,119x +47y =9997.若一元二次方程x 2-2x +m =0有两个不相等的实数根,则实数m 的取值范围是( )A .m ≥1B .m ≤1C .m >1D .m <18.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为( )A .14B .38C .12D .589.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD 是菱形的只有( )A .AC ⊥BDB .AB =BC C .AC =BD D .∠1=∠210.如图,正方形ABCD 的边长为10,对角线AC ,BD 相交于点E ,点F 是BC 上一动点,过点E 作EF 的垂线,交CD 于点G ,设BF =x ,FG =y ,那么下列图象中可能表示y 与x 的函数关系的是( )A B C D第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:16-(12)-1= .12.将拋物线y =2x 2-4x +3向左平移1个单位长度,得到的抛物线的解析式为 .13.如图,在Rt △ABC 中,∠C =90°,∠A =25°,按以下步骤作图:①分别以A ,B为圆心,以大于12AB 的长为半径作弧,两弧交于M ,N 两点;②作直线MN 交AB于点D ,交AC 于点E ,连接BE ,则∠CBE = °.14.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以点A 为圆心,AC 的长为半径作CE ︵交AB 于点E ,以点B 为圆心,BC 的长为半径作CD ︵交AB 于点D ,则阴影部分的面积为 .15.如图,在Rt △ABC 中,∠B =90°,∠A =60°,AC =23+4,点M ,N 分别在线段AC ,AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:(1-1m -1)÷m 2-4m +4m 2-m ,其中m =2+ 2.17.(本小题满分9分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并将调查结果绘制成如下统计图表.家庭藏书情况统计表类别家庭藏书m本学生人数A 0≤m≤2520B 26≤m≤100aC 101≤m≤20050D m≥20166请根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)在扇形统计图中,“A”对应的扇形圆心角度数为;(3)若该校有2 000名学生,请估计全校学生中家庭藏书200本以上的人数.18.(本小题满分9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.19.(本小题满分9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,请求出这段河的宽度.(结果精确到1米.参考数据:sin 33°≈0.54,cos 33°≈0.84,tan 33°≈0.65,2≈1.41)20.(本小题满分9分)如图,已知反比例函数y =mx (m ≠0)的图象经过点(1,4),一次函数y =-x +b 的图象经过反比例函数图象上的点Q (-4,n ). (1)求反比例函数与一次函数的解析式;(2)一次函数的图象分别与x 轴,y 轴交于A ,B 两点,与反比例函数图象的另一个交点为P 点,连接OP ,OQ ,求△OPQ 的面积.21.(本小题满分10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1 000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x (m 2),种草所需费用y 1(元)与x (m 2)的函数关系式为y 1=⎩⎨⎧k 1x (0≤x <600),k 2x +b (600≤x ≤1 000),其图象如图所示.栽花所需费用y 2(元)与x (m 2)的函数关系式为y 2=-0.01x 2-20x +30 000(0≤x ≤1 000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1 000 m 2空地的绿化总费用为w (元),请利用w 与x 的函数关系式,求出绿化总费用w 的最大值;(3)若种草部分的面积不少于700 m2,栽花部分的面积不少于100 m2,请求出绿化总费用w的最小值.22.(本小题满分10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图1,当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图2,当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由;(3)解决问题如图3,在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC 上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长.23.(本小题满分11分)如图,抛物线y=ax2+bx+6过点A(6,0),B(4,6),与y 轴交于点C.(1)求该抛物线的解析式;(2)如图1,直线l的解析式为y=x,抛物线的对称轴与线段BC交于点P,过点P作直线l的垂线,垂足为点H,连接OP,求△OPH的面积;(3)把图1中的直线y=x向下平移4个单位长度得到直线y=x-4,如图2,直线y=x-4与x轴交于点G,点P是四边形ABCO边上的一点,过点P分别作x轴,直线l的垂线,垂足分别为点E,F.是否存在点P,使得以P,E,F为顶点的三角形是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解析卷2019年河南地区中考一模数学试卷一(考试时间120分钟;试卷满分120分)第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.) 1.-12的绝对值是( B )A .2B .12C .-12 D .-22.俗话说:“水滴石穿”,水滴不断地落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000 000 039 cm 的小洞,则0.000 000 039用科学记数法可表示为( A )A .3.9×10-8B .39×10-8C .0.39×10-7D .39×10-93.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是( C )A .郑B .力C .州D .魅 4.下列运算正确的是( B )A .m 3+m 2=m 5B .m 5÷m 2=m 3C .(2m )3=6m 3D .(m +1)2=m 2+15.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.501.601.651.701.751.80人数 2 3 2 3 4 1则这些运动员成绩的中位数和众数分别为( C ) A .1.65,1.75 B .1.65,1.70 C .1.70,1.75D .1.70,1.706.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x ,y 的二元一次方程组中符合题意的是( D ) A .⎩⎪⎨⎪⎧x +y =999,119x +47y =1 000B .⎩⎪⎨⎪⎧x +y =1 000,911x +74y =999 C .⎩⎨⎧x +y =1 000,99x +28y =999D .⎩⎪⎨⎪⎧x +y =1 000,119x +47y =9997.若一元二次方程x 2-2x +m =0有两个不相等的实数根,则实数m 的取值范围是( D )A .m ≥1B .m ≤1C .m >1D .m <18.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为( D )A .14B .38C .12D .589.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD 是菱形的只有( C )A .AC ⊥BDB .AB =BC C .AC =BD D .∠1=∠210.如图,正方形ABCD 的边长为10,对角线AC ,BD 相交于点E ,点F 是BC 上一动点,过点E 作EF 的垂线,交CD 于点G ,设BF =x ,FG =y ,那么下列图象中可能表示y 与x 的函数关系的是( B )A B C D第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:16-(12)-1= 2 .12.将拋物线y =2x 2-4x +3向左平移1个单位长度,得到的抛物线的解析式为 y =2x 2+1 .13.如图,在Rt △ABC 中,∠C =90°,∠A =25°,按以下步骤作图:①分别以A ,B为圆心,以大于12AB 的长为半径作弧,两弧交于M ,N 两点;②作直线MN 交AB于点D ,交AC 于点E ,连接BE ,则∠CBE = 40 °.14.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以点A 为圆心,AC 的长为半径作CE ︵交AB 于点E ,以点B 为圆心,BC 的长为半径作CD ︵交AB 于点D ,则阴影部分的面积为 π-2 .15.如图,在Rt △ABC 中,∠B =90°,∠A =60°,AC =23+4,点M ,N 分别在线段AC ,AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为23+43或 6 .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:(1-1m -1)÷m 2-4m +4m 2-m,其中m =2+ 2.解:原式=m -2m -1÷(m -2)2m (m -1)=m -2m -1·m (m -1)(m -2)2 =m m -2.当m=2+2时,原式=2+22+2-2=2+22=2+1.17.(本小题满分9分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并将调查结果绘制成如下统计图表.家庭藏书情况统计表类别家庭藏书m本学生人数A 0≤m≤2520B 26≤m≤100aC 101≤m≤20050D m≥20166请根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)在扇形统计图中,“A”对应的扇形圆心角度数为;(3)若该校有2 000名学生,请估计全校学生中家庭藏书200本以上的人数.解:(1)200,64.(2)36°.(3)2 000×66200=660(人).答:估计全校学生中家庭藏书200本以上的学生有660人.18.(本小题满分9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,∴△CPM≌△AOM(AAS),∴PC=O A.∵AB是半圆O的直径,∴OA=OB,∴PC=O B.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①120°;②45°.19.(本小题满分9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,请求出这段河的宽度.(结果精确到1米.参考数据:sin 33°≈0.54,cos 33°≈0.84,tan 33°≈0.65,2≈1.41)解:延长CA 交BE 于点D ,如解图所示,则CD ⊥B D .由题意可知∠DAB =45°,∠DCB =33°. 设AD =x .在Rt △ADB 中,BD =AD =x , ∴CD =20+x .在Rt △CDB 中,tan ∠DCB =BD CD , ∴x 20+x ≈0.65, 解得x ≈37.答:这段河的宽度约为37米.20.(本小题满分9分)如图,已知反比例函数y =mx (m ≠0)的图象经过点(1,4),一次函数y =-x +b 的图象经过反比例函数图象上的点Q (-4,n ). (1)求反比例函数与一次函数的解析式;(2)一次函数的图象分别与x 轴,y 轴交于A ,B 两点,与反比例函数图象的另一个交点为P 点,连接OP ,OQ ,求△OPQ 的面积.解:(1)∵反比例函数y =mx ( m ≠0)的图象经过点(1,4), ∴4=m1,解得m =4,∴反比例函数的解析式为y =4x . 将Q (-4,n )代入y =4x 中, 得-4=4n ,解得n =-1, ∴Q 点的坐标为(-4,-1). 将Q (-4,-1)代入y =-x +b 中, 得-1=-(-4)+b ,解得b =-5, ∴一次函数的解析式为y =-x -5.(2)联立一次函数与反比例函数的解析式,得⎩⎪⎨⎪⎧y =-x -5,y =4x,解得⎩⎨⎧x =-1,y =-4或⎩⎨⎧x =-4,y =-1.∴点P 的坐标为(-1,-4). 在一次函数y =-x -5中,令y =0,得-x -5=0,解得x =-5, ∴点A 的坐标为(-5,0), ∴OA =5,∴S △OPQ =S △OPA -S △OQA =12OA ·(|y P |-|y Q |)=12×5×(4-1)=152.21.(本小题满分10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1 000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x (m 2),种草所需费用y 1(元)与x (m 2)的函数关系式为y 1=⎩⎨⎧k 1x (0≤x <600),k 2x +b (600≤x ≤1 000),其图象如图所示.栽花所需费用y 2(元)与x (m 2)的函数关系式为y 2=-0.01x 2-20x +30 000(0≤x ≤1 000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1 000 m 2空地的绿化总费用为w (元),请利用w 与x 的函数关系式,求出绿化总费用w 的最大值;(3)若种草部分的面积不少于700 m 2,栽花部分的面积不少于100 m 2,请求出绿化总费用w 的最小值.解:(1)k 1=30,k 2=20,b =6 000. (2)当0≤x <600时,w =30x +(-0.01x 2-20x +30 000)=-0.01(x -500)2+32 500. ∵-0.01<0,∴当x =500时,w 有最大值,为32 500. 当600≤x ≤1 000时,w=20x+6 000+(-0.01x2-20x+30 000)=-0.01x2+36 000.∵-0.01<0,∴w随x的增大而减小,∴当x=600时,w有最大值,为32 400.∵32 400<32 500,∴绿化总费用w的最大值为32 500.(3)由题意,得x≥700.又1 000-x≥100,∴700≤x≤900.∴w=20x+6 000+(-0.01x2-20x+30 000)=-0.01x2+36 000.∵-0.01<0,∴w随x的增大而减小,∴当x=900时,w有最小值,为27 900.答:绿化总费用w的最小值为27 900.22.(本小题满分10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图1,当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图2,当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由;(3)解决问题如图3,在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC 上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长.解:(1)AF=BE;90°.(2)AF=BE,∠ABE=α.理由如下:∵DF∥AC,∴∠ACB=∠FDB=α,∠CAB=∠DF B.∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF.由旋转的性质,可知AD=ED,∠ADE=∠ACB=∠FDB=α.∵∠ADF=∠ADE-∠FDE,∠EDB=∠FDB-∠FDE,∴∠ADF=∠ED B.又∵AD=DE,∴△ADF≌△EDB(SAS),∴AF=EB,∠AFD=∠EB D.∵∠AFD=∠ABC+∠FDB,∠EBD=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)BE的长为2或4.【提示】①当点D在BC上时,如解图1所示.过点D 作DF ∥A C .由(2),可知BE =AF .∵DF ∥AC ,∴AF AB =CD CB =14.∵AB =8,∴AF =2,∴BE =AF =2;②当点D 在BC 的延长线上时,如解图2所示.过点D 作DF ∥AC ,则AF AB =CD CB =12.∵AB =8,∴AF =4,∴BE =AF =4.综上所述,BE 的长为2或4.23.(本小题满分11分)如图,抛物线y =ax 2+bx +6过点A (6,0),B (4,6),与y 轴交于点C .(1)求该抛物线的解析式;(2)如图1,直线l 的解析式为y =x ,抛物线的对称轴与线段BC 交于点P ,过点P 作直线l 的垂线,垂足为点H ,连接OP ,求△OPH 的面积;(3)把图1中的直线y =x 向下平移4个单位长度得到直线y =x -4, 如图2,直线y =x -4与x 轴交于点G ,点P 是四边形ABCO 边上的一点,过点P 分别作x 轴,直线l 的垂线,垂足分别为点E ,F .是否存在点P ,使得以P ,E ,F 为顶点的三角形是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)将A (6,0),B (4,6)代入y =ax 2+bx +6中,得⎩⎨⎧36a +6b +6=0,16a +4b +6=6, 解得⎩⎪⎨⎪⎧a =-12,b =2.∴该抛物线的解析式为y =-12x 2+2x +6. (2)∵该抛物线的对称轴为直线x =-22×(-12)=2,点C 的坐标为(0,6),∴BC ∥x 轴,CP =2.如解图1所示,延长HP 交y 轴于点M .∵直线l 的解析式为y =x ,∴∠AOH =∠COH =45°,∴△OMH 和△CMP 均为等腰直角三角形,∴CM =CP =2,∴OM =OC +CM =6+2=8.由勾股定理,可得OH =MH =4 2.∴S △OPH =S △OMH -S △OPM =12×42×42-12×8×2=16-8=8.(3)存在点P ,使得以P ,E ,F 为顶点的三角形是等腰三角形,点P 的坐标为(0,4)或(10-32,92-12)或(4,6)或(10-62,6).【提示】 ①当点P 在线段OC 上运动时,如解图2所示,则∠PHF =∠HPF =45°.ⅰ.当PE =PF 时,设PE =PF =t ,则PH =2PF =2t .由平移的性质,可知OH =4,∴2t =4+t ,解得t =42+4.∵42+4>6,∴此种情况不存在.ⅱ.当FP =FE 时,∠PFE =90°.∵∠PFE <∠PFH =90°,∴此种情况不存在.ⅲ.当EP =EF 时,∠PEF =90°,此时点F 和点G 重合,∴此时点P 的坐标为(0,4).②当点P 在线段BC 上运动时,如解图3所示,则∠HPF =∠OGH =45°.ⅰ.当PE =PF =6时,PH =2PF =62,∴EH =EG =PH -PE =62-6,∴OE =OG -EG =10-62,∴此时点P 的坐标为(10-62,6).ⅱ.当FP =FE 时,∠PFE =90°,当点E 和点G 重合时,满足∠PFE =90°,∴此时点P 的坐标为(4,6).ⅲ.当EP =EF 时,∠PEF =90°,此种情况不存在.③当点P 在线段AB 上运动时.ⅰ.当点P 在直线l 的上方时,如解图4所示,∠EPF =45°,∠PFE >90°,∴△PEF 不可能为等腰三角形.ⅱ.当点P 在直线l 的下方时,如解图5所示,∠FPE =135°,若△PEF 为等腰三角形,则PE =PF ,∴点P 在∠FGA 的平分线上.方法一:设∠FGA 的平分线为直线l ′,由题可求得l ′的解析式为y =(2-1)x +4-4 2.联立直线l ′和直线AB 的解析式,得⎩⎨⎧y =(2-1)x +4-42,y =-3x +18,解得⎩⎨⎧x =10-32,y =92-12. ∴此时点P 的坐标为(10-32,92-12).方法二:如解图6所示.设P (m ,-3m +18),则H (m ,m -4),∴PE =-3m +18,PH =4m -22.在Rt △PFH 中,PH PF =2,即4m -22-3m +18=2,解得m =10-32,∴此时点P 的坐标为(10-32,92-12).综上所述,存在点P ,使得以P ,E ,F 为顶点的三角形是等腰三角形,点P 的坐标为(0,4),(10-32,92-12),(4,6),(10-62,6).。
2019年河南省新乡市中考数学一模试卷(带解析)
2019年河南省新乡市中考数学一模试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填在答题卡指定位置1.(3分)(2019•新乡一模)的绝对值等于()A.﹣2B.2C.D.2.(3分)(2019•新乡一模)据海关统计,今年1月份,我国货物贸易进出口总值2.73万亿元人民币,比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013 3.(3分)(2019•新乡一模)将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.(3分)(2019•新乡一模)如图,直线CE∥AB,直线CD交CE于C,交AB于O,过点O作OT⊥AB于O,已知∠ECO=30°,则∠DOT的度数为()A.30°B.45°C.60°D.120°5.(3分)(2019•新乡一模)上篮球课时,某小组8位男生的各10次投篮的成绩如下所示,则这组数据的众数和中位数分别是()A.5,6B.6,6.5C.7,6D.8,6.56.(3分)(2019•新乡一模)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)(2019•新乡一模)如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB 的中点,连接OE,若OE=3,∠ADC=60°,则BD的长度为()A.6B.6C.3D.38.(3分)(2019•新乡一模)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.(3分)(2019•新乡一模)如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.(3分)(2019•新乡一模)如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A.B.C.2D.二、填空题(每小题3分,共15分)11.(3分)(2019•新乡一模)计算:(﹣π)0﹣=.12.(3分)(2019•新乡一模)如图,△ABC中,以点B为圆心,任意长为半径作弧,分别交AB,BC于E、F点,分别以点E、F为圆心,以大于EF的长为半径作弧,两弧交于点G,做射线BG,交AC于点D,过点D作DH∥BC交AB于点H.已知HD=3,BC =7,则AH的长为.13.(3分)(2019•新乡一模)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.(3分)(2019•新乡一模)如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C 为旋转中心将△ABC顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为.15.(3分)(2019•新乡一模)如图,在Rt△ABC中,∠C=90°,点D、E分别是BC、AB 上一个动点,连接DE.将点B沿直线DE折叠,点B的对应点为F,若AC=3,BC=4,当点F落在AC的三等分点上时,BD的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)(2019•新乡一模)先化简,再求值:+÷,其中a =.17.(9分)(2019•新乡一模)为了了解大气污染情况,某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a=,m=;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.18.(9分)(2019•新乡一模)如图,⊙O中,AB为直径,点P为⊙O外一点,且P A=AB,P A、PB交⊙O于D、E两点,∠P AB为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)(2019•新乡一模)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)20.(9分)(2019•新乡一模)如图,直线AB经过A(,0)和B(0,1),点C在反比例函数y=的图象上,且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2,0)过点D作PD⊥x轴,当△P AD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请说明理由.21.(10分)(2019•新乡一模)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)(2019•新乡一模)等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为,线段MN 和线段NF的数量关系为;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为.23.(11分)(2019•新乡一模)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.2019年河南省新乡市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填在答题卡指定位置1.(3分)(2019•新乡一模)的绝对值等于()A.﹣2B.2C.D.【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣|=,∴﹣的绝对值是.故选:D.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3分)(2019•新乡一模)据海关统计,今年1月份,我国货物贸易进出口总值2.73万亿元人民币,比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据2.73万亿元用科学记数法表示为2.73×1012.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2019•新乡一模)将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1:常规题型.【分析】由几何体形状直接得出其左视图,正方形上面有一条斜线.【解答】解:如图所示:图2的左视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确注意观察角度是解题关键.4.(3分)(2019•新乡一模)如图,直线CE∥AB,直线CD交CE于C,交AB于O,过点O作OT⊥AB于O,已知∠ECO=30°,则∠DOT的度数为()A.30°B.45°C.60°D.120°【考点】J3:垂线;JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】由CE∥AB,根据两直线平行,同位角相等,即可求得∠BOD的度数,又由OT ⊥AB,求得∠BOT的度数,然后由∠DOT=∠BOT﹣∠DOB,即可求得答案.【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选:C.【点评】此题考查了平行线的性质,垂直的定义.解题的关键是注意数形结合思想的应用,注意两直线平行,同位角相等.5.(3分)(2019•新乡一模)上篮球课时,某小组8位男生的各10次投篮的成绩如下所示,则这组数据的众数和中位数分别是()A.5,6B.6,6.5C.7,6D.8,6.5【考点】W4:中位数;W5:众数.【专题】542:统计的应用.【分析】根据众数和中位数的概念求解.【解答】解:将数据重新排列为3,5,6,6,7,8,9,10,所以这组数据的众数为6,中位数为=6.5(分),故选:B.【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)(2019•新乡一模)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解3x﹣2<1,得x<1;解x+1≥0,得x≥﹣1;不等式组的解集是﹣1≤x<1,故选:D.【点评】在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(3分)(2019•新乡一模)如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB 的中点,连接OE,若OE=3,∠ADC=60°,则BD的长度为()A.6B.6C.3D.3【考点】KM:等边三角形的判定与性质;KP:直角三角形斜边上的中线;KX:三角形中位线定理;L8:菱形的性质.【专题】555:多边形与平行四边形.【分析】利用三角形中位线定理求出AD,再在Rt△AOD中,解直角三角形求出OD即可解决问题.【解答】解:∵四边形ABCD是菱形,∠ADC=60°,∴AC⊥BD,OA=OC,OB=OD,∠ADO=∠CDO=30°,∵AE=EB,BO=OD,∴AD=2OE=6,在Rt△AOD中,∵AD=6,∠AOD=90°,∠ADO=30°,∴OD=AD•cos30°=3,∴BD=2OD=6,故选:A.【点评】本题考查菱形的性质,三角形的中位线定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(3分)(2019•新乡一模)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【专题】1:常规题型;543:概率及其应用.【分析】利用树状图法列举出所有可能,进而求出概率.【解答】解:画树状图如下:由树状图可知,共有12种等可能结果,其中标号数字和大于6的结果数为3,所以标号数字和大于6的概率为=,故选:C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2019•新乡一模)如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)【考点】D5:坐标与图形性质;KK:等边三角形的性质.【专题】552:三角形.【分析】设BG=x,依据∠BFG=∠CEF=∠ODE=30°,可得BF=2x,CF=12﹣2x,CE=2CF=24﹣4x,OE=12﹣CE=4x﹣12,OD=2OE=8x﹣24,再根据当G与D重合时,OD+BG=OB列方程,即可得到x的值,进而得出点D的坐标.【解答】解:如图,设BG=x,∵△OBC是等边三角形,∴∠BOC=∠B=∠C=60°,∵DE⊥OC于点E,EF⊥BC于点F,FG⊥OB,∴∠BFG=∠CEF=∠ODE=30°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴OE=12﹣CE=4x﹣12,∴OD=2OE=8x﹣24,当G与D重合时,OD+BG=OB,∴8x﹣24+x=12,解得x=4,∴OD=8x﹣24=32﹣24=8,∴OE=4,DE=4,∴D(4,4).故选:C.【点评】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.10.(3分)(2019•新乡一模)如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A.B.C.2D.【考点】E7:动点问题的函数图象.【专题】15:综合题;31:数形结合.【分析】本题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG的长度,求出等边三角形EFG的最小面积.【解答】由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2∴等边三角形ABC的高为∴等边三角形ABC的面积为由图2可知,x=1时△EFG的面积y最小此时AE=AG=CG=CF=BF=BE显然△EGF是等边三角形且边长为1所以△EGF的面积为故选:A.【点评】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、填空题(每小题3分,共15分)11.(3分)(2019•新乡一模)计算:(﹣π)0﹣=4.【考点】2C:实数的运算;6E:零指数幂.【专题】11:计算题.【分析】本题涉及三次根式化简、零指数幂2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣π)0﹣=1+3=4.故答案为:4.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握三次根式、零指数幂等考点的运算.12.(3分)(2019•新乡一模)如图,△ABC中,以点B为圆心,任意长为半径作弧,分别交AB,BC于E、F点,分别以点E、F为圆心,以大于EF的长为半径作弧,两弧交于点G,做射线BG,交AC于点D,过点D作DH∥BC交AB于点H.已知HD=3,BC=7,则AH的长为.【考点】KF:角平分线的性质;N3:作图—复杂作图;S9:相似三角形的判定与性质.【专题】11:计算题;55D:图形的相似.【分析】根据题意可知射线BG是∠ABC的平分线,从而可得△HBD是等腰三角形,且HD=HB,再根据相似三角形对应边成比例可求AH的长.【解答】解:由题意可知射线BG是∠ABC的平分线,∴∠ABD=∠CBD而DH∥BC∴∠HDB=∠CBD∴∠ABD=∠HDB∴HB=HD=3又∵DH∥BC∴△AHD∽△ABC∴即:得AH=故答案为.【点评】本题考查的是相似三角形的判定与性质,利用相似三角形对应边成比例进行解题是关键.13.(3分)(2019•新乡一模)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是a<1且a≠0.【考点】F8:一次函数图象上点的坐标特征;H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征.【专题】535:二次函数图象及其性质.【分析】当a=0时,两直线y=﹣2x和y=1只有一个交点,则当a≠0时,先联立抛物线与直线的解析式得出关于x的方程,再由直线y=﹣2x和抛物线有两个不同交点可知△>0,求出a的取值范围.【解答】解:当a=0时,两直线y=﹣2x和y=1只有一个交点,当a≠0时,,由题意得,方程ax2+1=﹣2x有两个不同的实数根,∴△=4﹣4a>0,解得:a<1.故答案为:a<1且a≠0.【点评】主要考查的是函数图象的交点问题,两函数有两个不同的交点,则△>0.14.(3分)(2019•新乡一模)如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C 为旋转中心将△ABC顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为﹣2+.【考点】KH:等腰三角形的性质;R2:旋转的性质.【专题】554:等腰三角形与直角三角形;558:平移、旋转与对称.【分析】作CK⊥BD于K.根据S阴=S△ABC+S扇形ACE﹣S△BCD﹣S△EDC计算即可.【解答】解:作CK⊥BD于K.∵AB=AC=3,∴∠B=∠ACB=75°,∴∠BAC=180°﹣75°﹣75°=30°,在Rt△ACK中,CK=AC=1,AK=,∴BK=2﹣,∵CB=CD,CK⊥BD,∴BD=2BK=4﹣2,∠B=∠CDB=75°,∴ACE=∠BCD=30°,∴S阴=S△ABC+S扇形ACE﹣S△BCD﹣S△EDC=﹣•(4﹣2)•1=﹣2+,故答案为﹣2+.【点评】本题考查旋转变换,扇形的面积,等腰三角形的性质,解直角三角形等知识,解题的关键是学会用分割法求阴影部分面积.15.(3分)(2019•新乡一模)如图,在Rt△ABC中,∠C=90°,点D、E分别是BC、AB 上一个动点,连接DE.将点B沿直线DE折叠,点B的对应点为F,若AC=3,BC=4,当点F落在AC的三等分点上时,BD的长为或.【考点】PB:翻折变换(折叠问题).【专题】558:平移、旋转与对称.【分析】由折叠的性质可得BD=DF,由勾股定理可求BD的长.【解答】解:∵折叠∴BD=DF,∵点F落在AC的三等分点上∴CF=1或CF=2,若CF=1时,在Rt△CDF中,DF2=CD2+CF2,∴BD2=(4﹣BD)2+1∴BD=当CF=2时,在Rt△CDF中,DF2=CD2+CF2,∴BD2=(4﹣BD)2+4∴BD=故答案为:或【点评】本题考查了翻折变换,勾股定理,利用分类讨论思想解决问题是本题的关键.三、解答题(本大题共8个小题,满分75分)16.(8分)(2019•新乡一模)先化简,再求值:+÷,其中a=.【考点】6D:分式的化简求值.【专题】11:计算题;513:分式.【分析】根据分式的混合运算顺序和运算法则化简原式,再将a的值代入化简可得.【解答】解:+÷=+•=+=,当a=时,原式==.【点评】本题主要考查分式的混合运算﹣化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.17.(9分)(2019•新乡一模)为了了解大气污染情况,某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a=48,m=20%;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是72度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)用24÷120,即可得到m;120×40%即可得到a;(2)根据a的值,即可补全条形统计图;(3)用级别为“优”的百分比×360°,即可得到所对应的圆心角的度数;(4)根据样本估计总体,即可解答.【解答】解:(1)a=120×40%=48,m=24÷120=20%.故答案为:48,20%;(2)如图所示:(3)360°×20%=72°.故答案为:72;(4)365×=146(天).故答案为:146.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2019•新乡一模)如图,⊙O中,AB为直径,点P为⊙O外一点,且P A=AB,P A、PB交⊙O于D、E两点,∠P AB为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为8;②当DE=4时,四边形OBED为菱形.【考点】MR:圆的综合题.【专题】15:综合题;559:圆的有关概念及性质.【分析】(1)如图1,连AE,由等腰三角形的性质可知E为PB中点,则OE是△P AB 的中位线,OE∥P A,可证得∠DOE=∠EOB,则∠EDO=∠EBO可证;(2)如图2,由条件知OA=4,当OA边上的高最大时,△AOD的面积最大,可知点D 是的中点时满足题意,此时最大面积为8;(3)如图3,当DE=4时,四边形ODEB是菱形.只要证明△ODE是等边三角形即可解决问题.【解答】证明:(1)如图1,连AE,∵AB为⊙O的直径,∴∠AEB=90°,∵P A=AB,∴E为PB的中点,∵AO=OB,∴OE∥P A,∴∠ADO=∠DOE,∠A=∠EOB∵OD=OA,∴∠A=∠ADO,∴∠EOB=∠DOE,∵OD=OE=OB,∴∠EDO=∠EBO;(2)①∵AB=8,∴OA=4,当OA边上的高最大时,△AOD的面积最大(如图2),此时点D是的中点,∴OD⊥AB,∴;②如图3,当DE=4时,四边形OBED为菱形,理由如下:∵OD=DE=OE=4,∴△ODE是等边三角形,∴∠EDO=60°,由(1)知∠EBO=∠EDO=60°,∴OB=BE=OE,∴四边形OBED为菱形,故答案为:8;4.【点评】本题考查了圆周角定理、等腰三角形的性质、中位线定理、菱形的判定等知识,解题的关键是找准动点D在圆上的位置,灵活运用所学知识解决问题,19.(9分)(2019•新乡一模)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】55E:解直角三角形及其应用.【分析】作AE⊥CD于E.则四边形ABCE是矩形.解直角三角形分别求出CD,DE即可解决问题.【解答】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC•tan60°=50×≈87(米),在Rt△ADE中,∵DE=AE•tan37°=50×0.75≈38(米),∴AB=CE=CD﹣DE=87﹣38=49(米).答:甲、乙两楼的高度分别为87米,49米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(9分)(2019•新乡一模)如图,直线AB经过A(,0)和B(0,1),点C在反比例函数y=的图象上,且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2,0)过点D作PD⊥x轴,当△P AD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请说明理由.【考点】GB:反比例函数综合题.【专题】15:综合题.【分析】(1)将点A,B坐标代入y=k'x+b中,求出k',b,得出直线AB解析式,再判断出∠AOC=90°,求出AC的长,得出点C坐标,即可得出结论;(2)分两种情况求出点P坐标,代入反比例函数解析式中,判断即可得出结论.【解答】解:(1)设直线AB的解析式为y=k'x+b,将点A(,0)和B(0,1)代入y=k'x+b中,得,解得,,∴直线AB的解析式为y=﹣x+1,∵A(,0)和B(0,1),∴OA=,OB=1,AB==2,∵AC=AB=2,在Rt△AOB中,tan∠OAB==,∴∠OAB=30°,∵AC=BC=AB,∴△ABC是等边三角形,∴∠BAC=60°,∴∠OAC=∠OAB+∠BAC=90°,∴AC⊥x轴,∴C(,2),将点C坐标代入y=中,得k=2×=2,∴反比例函数解析式为y=;(2)由(1)知,OA=,OB=1,∵点D坐标为(2,0),∴OD=2,∴AD=OD﹣OA=,∵PD⊥x轴,∴∠ADP=90°=∠AOB,∵当△P AD与△OAB相似时,∴①当△ADP∽△AOB时,∴,∴,∴DP=1,∴P(2,1),当x=2时,y=1,∴点P(2,1),在反比例函数解析式为y=上;②当△ADP∽△BOA时,∴,∴,∴DP=3,∴P(2,3),当x=2时,y=1≠3,∴点P(2,3),不在反比例函数解析式为y=上.【点评】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,等边三角形的性质,锐角三角函数,用分类讨论的思想解决问题是解本题的关键.21.(10分)(2019•新乡一模)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用;FH:一次函数的应用.【专题】521:一次方程(组)及应用;524:一元一次不等式(组)及应用;533:一次函数及其应用.【分析】(1)设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为y元,列出方程组求解即可;(2)①把(1)得出的数据代入即可解答;②根据题意可以得到x的取值范围,然后根据一次函数的性质即可求得w的最大值和相应的进货方案.【解答】解:(1)设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为y元,根据题意得,,解得,所以购进A品牌文具袋的单价为10元,购进B品牌文具袋的单价为15元;(2)①由题意可得,y=(12﹣10)x+(23﹣15)(100﹣x)=800﹣6x;②由题意可得,﹣6x+800≤40%[10x+15(100﹣x)],解得:x≥50,又由(1)得:w=﹣6x+800,k=﹣6<0,∴w随x的增大而减小,∴当x=50时,w达到最大值,即最大利润w=﹣50×6+800=500元,此时100﹣x=100﹣50=50个,答:购进A品牌文具袋50个,B品牌文具袋50个时所获利润最大,利润最大为500元.【点评】本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.22.(10分)(2019•新乡一模)等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为45°,线段MN 和线段NF的数量关系为NF=MN;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为4.【考点】RB:几何变换综合题.【专题】152:几何综合题.【分析】(1)如图1,连接DB,MF,CE,延长BD交EC于H.证明△BAD≌△CAE(SAS),推出BD=EC,∠ACE=∠ABD,再根据三角形中位线定理即可解决问题.(2)如图2,连接MF,EC,BD.设EC交AB于O,BD交EC于H.证明△BAD≌△CAE(SAS),推出BD=EC,∠ACE=∠ABD,再利用三角形中位线定理即可解决问题.(3)如图3中,如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时,△BCP的面积最小.【解答】解:(1)如图1中,连接DB,MF,CE,延长BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠ABD+∠ADB=90°,∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.故答案为:45°(2):如图2中,连接MF,EC,BD.设EC交AB于O,BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠AOC+∠ACO=90°,∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.(3):如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时,此时∠CBP的值最小,点P到BC的距离最小,即△BCP的面积最小,∵AD=AE,AB=AC,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD,BD=EC,∵∠ABD+∠AOB=90°,∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2,BD=EC==2,∴PC=2﹣2,PB=2+2,∴S△BCP的最小值=×PC×PB=(2﹣2)(2+2)=4.【点评】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质和判定,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.(11分)(2019•新乡一模)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;34:方程思想;537:函数的综合应用.【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【解答】解:(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0,3),∵B(3,0),。
2019年河南省新乡市中考一模数学试卷含参考答案
2019年河南省新乡市中考一模数学试卷一、选择题(每小题3分, 共30分)下列各小题均有四个选项, 其中只有一个是正确的, 将正确选项的代号字母填在答题卡指定位置1.(3分)的绝对值等于()A.﹣2B.2C.D.2.(3分)据海关统计, 今年1月份, 我国货物贸易进出口总值2.73万亿元人民币, 比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013 3.(3分)将一个正方体沿图1所示切开, 形成如图2的图形, 则图2的左视图为()A.B.C.D.4.(3分)如图, 直线CE∥AB, 直线CD交CE于C, 交AB于O, 过点O作OT⊥AB 于O, 已知∠ECO=30°, 则∠DOT的度数为()A.30°B.45°C.60°D.120°5.(3分)上篮球课时, 某小组8位男生的各10次投篮的成绩如下所示, 则这组数据的众数和中位数分别是()12345678成绩(m)396651087A.5, 6B.6, 6.5C.7, 6D.8, 6.56.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图, 菱形ABCD中, 对角线AC、BD交于点O, 点E为AB的中点, 连接OE, 若OE=3, ∠ADC=60°, 则BD的长度为()A.6B.6C.3D.38.(3分)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球, 7个小球除标号外其余均相同, 随机从两个袋子中抽取一个小球, 则其标号数字和大于6的概率为()A.B.C.D.9.(3分)如图, 在平面直角坐标系中, 等边△OBC的边OC在x轴正半轴上, 点O为原点, 点C坐标为(12, 0), D是OB上的动点, 过D作DE⊥x轴于点E, 过E作EF ⊥BC于点F, 过F作FG⊥OB于点G.当G与D重合时, 点D的坐标为()A.(1, )B.(2, 2)C.(4, 4)D.(8, 8)10.(3分)如图1.已知正△ABC中, E, F, G分别是AB, BC, CA上的点, 且AE=BF=CG, 设△EFG的面积为y, AE的长为x, y关于x的函数图象如图2, 则△EFG 的最小面积为()A.B.C.2D.二、填空题(每小题3分, 共15分)11.(3分)计算:(﹣π)0﹣=.12.(3分)如图, △ABC中, 以点B为圆心, 任意长为半径作弧, 分别交AB, BC于E、F点, 分别以点E、F为圆心, 以大于EF的长为半径作弧, 两弧交于点G, 做射线BG, 交AC于点D, 过点D作DH∥BC交AB于点H.已知HD=3, BC=7, 则AH 的长为.13.(3分)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点, 则实数a的取值范围是.14.(3分)如图, 等腰三角形ABC中, AB=AC=2, ∠B=75°, 以C为旋转中心将△ABC顺时针旋转, 当点B落在AB上点D处时, 点A的对应点为E, 则阴影部分面积为.15.(3分)如图, 在Rt△ABC中, ∠C=90°, 点D、E分别是BC、AB上一个动点, 连接DE.将点B沿直线DE折叠, 点B的对应点为F, 若AC=3, BC=4, 当点F落在AC的三等分点上时, BD的长为.三、解答题(本大题共8个小题, 满分75分)16.(8分)先化简, 再求值:+÷, 其中a =.17.(9分)为了了解大气污染情况, 某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数, 绘制了如下不完整的统计图表:空气质量指数统计表级别指数天数百分比优0﹣5024m良51﹣100a40%轻度污染101﹣1501815%中度污染151﹣2001512.5%重度污染201﹣30097.5%严重污染大于30065%合计120100%请根据图表中提供的信息, 解答下面的问题:(1)空气质量指数统计表中的a=, m=;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”, 级别为“优”所对应扇形的圆心角是度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.18.(9分)如图, ⊙O中, AB为直径, 点P为⊙O外一点, 且P A=AB, P A、PB交⊙O 于D、E两点, ∠P AB为锐角, 连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时, 四边形OBED为菱形.19.(9分)如图, 某小区有甲、乙两座楼房, 楼间距BC为50米, 在乙楼顶部A点测得甲楼顶部D点的仰角为37°, 在乙楼底部B点测得甲楼顶部D点的仰角为60°, 则甲、乙两楼的高度为多少?(结果精确到1米, sin37°≈0.60, cos37°≈0.80, tan37°≈0.75, ≈1.73)20.(9分)如图, 直线AB经过A(, 0)和B(0, 1), 点C在反比例函数y=的图象上, 且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2, 0)过点D作PD⊥x轴, 当△P AD与△OAB相似时, P点是否在(1)中反比例函数图象上?如果在, 求出P点坐标;如果不在, 请说明理由.21.(10分)开学前夕, 某文具店准备购进A、B两种品牌的文具袋进行销售, 若购进A 品牌文具袋和B品牌文具袋各5个共花费125元, 购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A, B两种品牌的文具袋共100个, 其中A品牌文具袋售价为12元, B品牌文具袋售价为23元, 设购进A品牌文具袋x个, 获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大, 且所获利润不超过进货价格的40%, 请你帮该文具店设计一个进货方案, 并求出其所获利润的最大值.22.(10分)等腰直角三角形ABC和等腰直角三角形ADE中, ∠BAC=∠DAE=90°, AB =4, AE=2, 其中△ABC固定, △ADE绕点A作360°旋转, 点F、M、N分别为线段BE、BC、CD的中点, 连接MN、NF.问题提出:(1)如图1, 当AD在线段AC上时, 则∠MNF的度数为, 线段MN 和线段NF的数量关系为;深入讨论:(2)如图2, 当AD不在线段AC上时, 请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3, △ADE持续旋转过程中, 若CE与BD交点为P, 则△BCP面积的最小值为.23.(11分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3, 0), 交y轴于点C, 直线y=﹣x+m经过点C, 交x轴于E(4, 0).(1)求出抛物线的解析式;(2)如图1, 点M为线段BD上不与B、D重合的一个动点, 过点M作x轴的垂线, 垂足为N, 设点M的横坐标为x, 四边形OCMN的面积为S, 求S与x之间的函数关系式, 并求S的最大值;(3)点P为x轴的正半轴上一个动点, 过P作x轴的垂线, 交直线y=﹣x+m于G, 交抛物线于H, 连接CH, 将△CGH沿CH翻折, 若点G的对应点F恰好落在y轴上时, 请直接写出点P的坐标.2019年河南省新乡市中考一模数学试卷参考答案与试题解析一、选择题(每小题3分, 共30分)下列各小题均有四个选项, 其中只有一个是正确的, 将正确选项的代号字母填在答题卡指定位置1.(3分)的绝对值等于()A.﹣2B.2C.D.【解答】解:∵|﹣|=,∴﹣的绝对值是.故选:D.2.(3分)据海关统计, 今年1月份, 我国货物贸易进出口总值2.73万亿元人民币, 比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013【解答】解:数据2.73万亿元用科学记数法表示为2.73×1012.故选:B.3.(3分)将一个正方体沿图1所示切开, 形成如图2的图形, 则图2的左视图为()A.B.C.D.【解答】解:如图所示:图2的左视图为:.故选:C.4.(3分)如图, 直线CE∥AB, 直线CD交CE于C, 交AB于O, 过点O作OT⊥AB于O, 已知∠ECO=30°, 则∠DOT的度数为()A.30°B.45°C.60°D.120°【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选:C.5.(3分)上篮球课时, 某小组8位男生的各10次投篮的成绩如下所示, 则这组数据的众数和中位数分别是()12345678成绩(m)396651087A.5, 6B.6, 6.5C.7, 6D.8, 6.5【解答】解:将数据重新排列为3, 5, 6, 6, 7, 8, 9, 10,所以这组数据的众数为6, 中位数为=6.5(分),故选:B.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:解3x﹣2<1, 得x<1;解x+1≥0, 得x≥﹣1;不等式组的解集是﹣1≤x<1,故选:D.7.(3分)如图, 菱形ABCD中, 对角线AC、BD交于点O, 点E为AB的中点, 连接OE, 若OE=3, ∠ADC=60°, 则BD的长度为()A.6B.6C.3D.3【解答】解:∵四边形ABCD是菱形, ∠ADC=60°,∴AC⊥BD, OA=OC, OB=OD, ∠ADO=∠CDO=30°,∵AE=EB, BO=OD,∴AD=2OE=6,在Rt△AOD中, ∵AD=6, ∠AOD=90°, ∠ADO=30°,∴OD=AD•cos30°=3,∴BD=2OD=6,故选:A.8.(3分)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球, 7个小球除标号外其余均相同, 随机从两个袋子中抽取一个小球, 则其标号数字和大于6的概率为()A.B.C.D.【解答】解:画树状图如下:由树状图可知, 共有12种等可能结果, 其中标号数字和大于6的结果数为3,所以标号数字和大于6的概率为=,故选:C.9.(3分)如图, 在平面直角坐标系中, 等边△OBC的边OC在x轴正半轴上, 点O为原点, 点C坐标为(12, 0), D是OB上的动点, 过D作DE⊥x轴于点E, 过E作EF ⊥BC于点F, 过F作FG⊥OB于点G.当G与D重合时, 点D的坐标为()A.(1, )B.(2, 2)C.(4, 4)D.(8, 8)【解答】解:如图, 设BG=x,∵△OBC是等边三角形,∴∠BOC=∠B=∠C=60°,∵DE⊥OC于点E, EF⊥BC于点F, FG⊥OB,∴∠BFG=∠CEF=∠ODE=30°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴OE=12﹣CE=4x﹣12,∴OD=2OE=8x﹣24,当G与D重合时, OD+BG=OB,∴8x﹣24+x=12,解得x=4,∴OD=8x﹣24=32﹣24=8,∴OE=4, DE=4,∴D(4, 4).故选:C.10.(3分)如图1.已知正△ABC中, E, F, G分别是AB, BC, CA上的点, 且AE=BF=CG, 设△EFG的面积为y, AE的长为x, y关于x的函数图象如图2, 则△EFG 的最小面积为()A.B.C.2D.【解答】由图2可知, x=2时△EFG的面积y最大, 此时E与B重合, 所以AB=2∴等边三角形ABC的高为∴等边三角形ABC的面积为由图2可知, x=1时△EFG的面积y最小此时AE=AG=CG=CF=BG=BE显然△EGF是等边三角形且边长为1所以△EGF的面积为故选:A.二、填空题(每小题3分, 共15分)11.(3分)计算:(﹣π)0﹣=4.【解答】解:(﹣π)0﹣=1+3=4.故答案为:4.12.(3分)如图, △ABC中, 以点B为圆心, 任意长为半径作弧, 分别交AB, BC于E、F点, 分别以点E、F为圆心, 以大于EF的长为半径作弧, 两弧交于点G, 做射线BG, 交AC于点D, 过点D作DH∥BC交AB于点H.已知HD=3, BC=7, 则AH 的长为.【解答】解:由题意可知射线BG是∠ABC的平分线,∴∠ABD=∠CBD而DH∥BC∴∠HDB=∠CBD∴∠ABD=∠HDB∴HB=HD=3又∵DH∥BC∴△AHD∽△ABC∴即:得AH=故答案为.13.(3分)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点, 则实数a的取值范围是a<1.【解答】解:当a=0时, 两直线y=﹣2x和y=1只有一个交点,当a≠0时, , 由题意得, 方程ax2+1=﹣2x有两个不同的实数根,∴△=4﹣4a>0,解得:a<1.故答案为:a<1.14.(3分)如图, 等腰三角形ABC中, AB=AC=2, ∠B=75°, 以C为旋转中心将△ABC顺时针旋转, 当点B落在AB上点D处时, 点A的对应点为E, 则阴影部分面积为﹣2+.【解答】解:作CK⊥BD于K.∵AB=AC=3,∴∠B=∠ACB=75°,∴∠BAC=180°﹣75°﹣75°=30°,在Rt△ACK中, CK=AC=1, AK=,∴BK=2﹣,∵CB=CD, CK⊥BD,∴BD=2BK=4﹣2, ∠B=∠CDB=75°,∴ACE=∠BCD=30°,∴S阴=S△ABC+S扇形ACE﹣S△BCD﹣S△EDC=﹣•(4﹣2)•1=﹣2+,故答案为﹣2+.15.(3分)如图, 在Rt△ABC中, ∠C=90°, 点D、E分别是BC、AB上一个动点, 连接DE.将点B沿直线DE折叠, 点B的对应点为F, 若AC=3, BC=4, 当点F落在AC的三等分点上时, BD的长为或.【解答】解:∵折叠∴BD=DF,∵点F落在AC的三等分点上∴CF=1或CF=2,若CF=1时,在Rt△CDF中, DF2=CD2+CF2,∴BD2=(4﹣BD)2+1∴BD=当CF=2时,在Rt△CDF中, DF2=CD2+CF2,∴BD2=(4﹣BD)2+4∴BD=故答案为:或三、解答题(本大题共8个小题, 满分75分)16.(8分)先化简, 再求值:+÷, 其中a=.【解答】解:+÷=+•=+=,当a=时, 原式==.17.(9分)为了了解大气污染情况, 某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数, 绘制了如下不完整的统计图表:空气质量指数统计表级别指数天数百分比优0﹣5024m良51﹣100a40%轻度污染101﹣1501815%中度污染151﹣2001512.5%重度污染201﹣30097.5%严重污染大于30065%合计120100%请根据图表中提供的信息, 解答下面的问题:(1)空气质量指数统计表中的a=48, m=20%;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”, 级别为“优”所对应扇形的圆心角是72度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.【解答】解:(1)a=120×40%=48, m=24÷120=20%.故答案为:48, 20%;(2)如图所示:(3)360°×20%=72°.故答案为:72;(4)365×=146(天).故答案为:146.18.(9分)如图, ⊙O中, AB为直径, 点P为⊙O外一点, 且P A=AB, P A、PB交⊙O 于D、E两点, ∠P AB为锐角, 连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为8;②当DE=4时, 四边形OBED为菱形.【解答】证明:(1)如图1, 连AE,∵AB为⊙O的直径,∴∠AEB=90°,∵P A=AB,∴E为PB的中点,∵AO=OB,∴OE∥P A,∴∠ADO=∠DOE, ∠A=∠EOB∵OD=OA,∴∠A=∠ADO,∴∠EOB=∠DOE,∵OD=OE=OB,∴∠EDO=∠EBO;(2)①∵AB=8,∴OA=4,当OA边上的高最大时, △AOD的面积最大(如图2), 此时点D是的中点, ∴OD⊥AB,∴;②如图3, 当DE=4时, 四边形OBED为菱形, 理由如下:∵OD=DE=OE=4,∴△ODE是等边三角形,∴∠EDO=60°,由(1)知∠EBO=∠EDO=60°,∴OB=BE=OE,∴四边形OBED为菱形,故答案为:8;4.19.(9分)如图, 某小区有甲、乙两座楼房, 楼间距BC为50米, 在乙楼顶部A点测得甲楼顶部D点的仰角为37°, 在乙楼底部B点测得甲楼顶部D点的仰角为60°, 则甲、乙两楼的高度为多少?(结果精确到1米, sin37°≈0.60, cos37°≈0.80, tan37°≈0.75, ≈1.73)【解答】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中, CD=BC•tan60°=50×≈87(米),在Rt△ADE中, ∵DE=AE•tan37°=50×0.75≈38(米),∴AB=CE=CD﹣DE=87﹣38=49(米).答:甲、乙两楼的高度分别为87米, 38米.20.(9分)如图, 直线AB经过A(, 0)和B(0, 1), 点C在反比例函数y=的图象上, 且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2, 0)过点D作PD⊥x轴, 当△P AD与△OAB相似时, P点是否在(1)中反比例函数图象上?如果在, 求出P点坐标;如果不在, 请说明理由.【解答】解:(1)设直线AB的解析式为y=k'x+b,将点A(, 0)和B(0, 1)代入y=k'x+b中, 得,解得, ,∴直线AB的解析式为y=﹣x+1,∵A(, 0)和B(0, 1),∴OA=, OB=1, AB==2,∵AC=AB=2,在Rt△AOB中, tan∠OAB==,∴∠OAB=30°,∵AC=BC=AB,∴△ABC是等边三角形,∴∠BAC=60°,∴∠OAC=∠OAB+∠BAC=90°,∴AC⊥x轴,∴C(, 2),将点C坐标代入y=中, 得k=2×=2,∴反比例函数解析式为y=;(2)由(1)知, OA=, OB=1,∵点D坐标为(2, 0),∴OD=2,∴AD=OD﹣OA=,∵PD⊥x轴,∴∠ADP=90°=∠AOB,∵当△P AD与△OAB相似时,∴①当△ADP∽△AOB时, ∴,∴,∴DP=1,∴P(2, 1),当x=2时, y=1,∴点P(2, 1), 在反比例函数解析式为y=上;②当△ADP∽△BOA时, ∴,∴,∴DP=3,∴P(2, 3),当x=2时, y=1≠3,∴点P(2, 3), 不在反比例函数解析式为y=上.21.(10分)开学前夕, 某文具店准备购进A、B两种品牌的文具袋进行销售, 若购进A 品牌文具袋和B品牌文具袋各5个共花费125元, 购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A, B两种品牌的文具袋共100个, 其中A品牌文具袋售价为12元, B品牌文具袋售价为23元, 设购进A品牌文具袋x个, 获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大, 且所获利润不超过进货价格的40%, 请你帮该文具店设计一个进货方案, 并求出其所获利润的最大值.【解答】解:(1)设购进A品牌文具袋的单价为x元, 购进B品牌文具袋的单价为y元, 根据题意得,,解得,所以购进A品牌文具袋的单价为10元, 购进B品牌文具袋的单价为15元;(2)①由题意可得,y=(12﹣10)x+(23﹣15)(100﹣x)=800﹣6x;②由题意可得,﹣6x+800≤40%[10x+15(100﹣x)],解得:x≥50,又由(1)得:w=﹣6x+800, k=﹣6<0,∴w随x的增大而减小,∴当x=50时, w达到最大值, 即最大利润w=﹣50×6+800=500元,此时100﹣x=100﹣50=50个,答:购进A品牌文具袋50个, B品牌文具袋50个时所获利润最大, 利润最大为500元.22.(10分)等腰直角三角形ABC和等腰直角三角形ADE中, ∠BAC=∠DAE=90°, AB =4, AE=2, 其中△ABC固定, △ADE绕点A作360°旋转, 点F、M、N分别为线段BE、BC、CD的中点, 连接MN、NF.问题提出:(1)如图1, 当AD在线段AC上时, 则∠MNF的度数为45°, 线段MN和线段NF的数量关系为NF=MN;深入讨论:(2)如图2, 当AD不在线段AC上时, 请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3, △ADE持续旋转过程中, 若CE与BD交点为P, 则△BCP面积的最小值为4.【解答】解:(1)如图1中, 连接DB, MF, CE, 延长BD交EC于H.∵AC=AB, AE=AD, ∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC, ∠ACE=∠ABD,∵∠ABD+∠ADB=90°, ∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC, BF=FE,∴MF∥EC, MF=EC,∵CM=MB, CN=ND,∴MN∥BD, MN=BD,∴MN=MF, MN⊥MF,∴∠NMF=90°,∴∠MNF=45°, NF=MN.故答案为:45°(2):如图2中, 连接MF, EC, BD.设EC交AB于O, BD交EC于H.∵AC=AB, AE=AD, ∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC, ∠ACE=∠ABD,∵∠AOC+∠ACO=90°, ∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC, BF=FE,∴MF∥EC, MF=EC,∵CM=MB, CN=ND,∴MN∥BD, MN=BD,∴MN=MF, MN⊥MF,∴∠NMF=90°,∴∠MNF=45°, NF=MN.(3):如图3中, 如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时, △BCP的面积最小,∵AD=AE, AB=AC, ∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD, BD=EC,∵∠ABD+∠AOB=90°, ∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2, BD=EC==2,∴PC=2﹣2, PB=2+2,∴S△BCP的最小值=×PC×PB=(2﹣2)(2+2)=4.23.(11分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3, 0), 交y轴于点C, 直线y=﹣x+m经过点C, 交x轴于E(4, 0).(1)求出抛物线的解析式;(2)如图1, 点M为线段BD上不与B、D重合的一个动点, 过点M作x轴的垂线, 垂足为N, 设点M的横坐标为x, 四边形OCMN的面积为S, 求S与x之间的函数关系式, 并求S的最大值;(3)点P为x轴的正半轴上一个动点, 过P作x轴的垂线, 交直线y=﹣x+m于G, 交抛物线于H, 连接CH, 将△CGH沿CH翻折, 若点G的对应点F恰好落在y轴上时, 请直接写出点P的坐标.【解答】解:(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0, 3),∵B(3, 0),则有解得∴抛物线的解析式为:y=﹣x2+2x+3.(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1, 4),设直线BD的解析式为y=kx+b, 代入点B、D,解得∴直线BD的解析式为y=﹣2x+6,则点M的坐标为(x, ﹣2x+6),∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,∴当x=时, S有最大值, 最大值为.(3)存在如图所示,设点P的坐标为(t, 0),则点G(t, ﹣t+3), H(t, ﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折, G的对应点为点F, F落在y轴上, 而HG∥y轴,∴HG∥CF, HG=HF, CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,当t2﹣t=t时,解得t1=0(舍), t2=4,此时点P(4, 0).当t2﹣t=﹣t时,解得t1=0(舍), t2=,此时点P(, 0).综上, 点P的坐标为(4, 0)或(, 0).注意事项.1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上。
河南省新乡市中考数学一模考试试卷
河南省新乡市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019九上·宜兴期末) 如图,,直线与分别相交于点和点,若, ,则的长是()A .B .C . 6D . 102. (2分)下列说法正确的是()A . 所有的矩形都是相似形B . 有一个角等于100°的两个等腰三角形相似C . 对应角相等的两个多边形相似D . 对应边成比例的两个多边形相似3. (2分) (2020九上·三门期末) 对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A . 图象过点(0,﹣3)B . 图象与x轴的交点为(1,0),(﹣3,0)C . 此函数有最小值为﹣6D . 当x<1时,y随x的增大而减小4. (2分)如图,矩形OABC的顶点O是坐标原点,边OA在x轴上,边OC在y轴上.若矩形OA1B1C1与矩形OABC关于点O位似,且矩形OA1B1C1的面积等于矩形OABC面积的,则点B1的坐标是()A . (3,2)B . (﹣2,﹣3)C . (2,3)或(﹣2,﹣3)D . (3,2)或(﹣3,﹣2)5. (2分)(2017·普陀模拟) 如图,在△ABC中,中线AD、CE交于点O,设 = , = ,那么向量用向量、表示为()A . +B . +C . +D . +6. (2分) (2020九下·西安月考) 一个点到圆的最大距离为11,最小距离为5,则圆的半径为().A . 16或6B . 3或8C . 3D . 8二、填空题 (共12题;共12分)7. (1分)(2017·冷水滩模拟) 抛物线y=3(x﹣2)2+5的顶点坐标是________.8. (1分)(2019·叶县模拟) 将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:________9. (1分) (2019九上·台安月考) 如图,抛物线(a,b,c是常数,)与x轴交于A,B两点,顶点.给出下列结论:① ;②若,,在抛物线上,则;③关于x的方程有实数解,则;④当时,为等腰直角三角形.其中正确结论是________(填写序号).10. (1分)(2017·闵行模拟) 计算:( + )﹣(﹣2 )=________.11. (1分) (2017九下·莒县开学考) 已知△ABC∽△DEF,相似比为3:5,△ABC的周长为6,则△DEF的周长为________.12. (1分) (2019八下·谢家集期末) 如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为________.13. (1分) (2019八上·交城期中) 如图,在Rt△ACB中,AC=BC=8,O为AB的中点,以O为直角顶点作等腰直角三角形OEF,与边AC,BC相交于点M,N.有下列结论:①AM=CN;②CM+CN=8;③ ;④当M 是AC的中点时,OM=ON.其中正确结论的序号是________.14. (1分)如图,把两个等腰直角三角板如图放置,点F为BC中点,AG=1,BG=2,则CH的长为________.15. (1分)(2019·上海模拟) 如图,已知⊙A、⊙B、⊙C两两相切,连接圆心构成△ABC ,如果AC=3,BC=5,AB=6,那么⊙C的半径长为________.16. (1分)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C 的平分线应依次分别是________ (填A′D、A′E、A′F).17. (1分)(2017·淅川模拟) 如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积________.18. (1分)(2019·宝山模拟) 甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10 cm,那么地图上距离为4.5 cm的两地之间的实际距离为________千米.三、解答题 (共7题;共60分)19. (5分)(2011·湖州) 计算:|﹣2|﹣2sin30°+ + .20. (5分)如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)21. (10分) (2016九上·江阴期末) 如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.(1) D是BC的中点;(2)△BEC∽△ADC;(3)若,求⊙O的半径。
2019年河南省新乡市中考数学一模试卷
2019年河南省新乡市中考数学一模试卷一、选择题(每小题3分,共24分)1.﹣2的倒数是()A.B.2 C.﹣D.﹣22.如图,正三棱柱的主视图为()A. B.C.D.3.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×1084.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°5.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元6.不等式组的解集,在数轴上表示正确的是()A.B.C.D.7.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5 D.68.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,)D.(2n+1,)二、填空题(每小题3分,共21分)9.计算: +|﹣1|=.10.如图,AD是△ABC的外角平分线,AD∥BC,若∠C=70°,则∠BAC的度数为.11.已知点A(1,y1),B(﹣2,y2),C(﹣,y2)都在反比例函数y=(k为常数)的图象上,则y1,y2,y3的大小关系是.12.不透明的袋子中装有2个红球,3个黄球,他们除颜色外,其它都相同,从中随机一次摸出两个球,颜色不同的概率是.13.如图,菱形ABCD的边长为5cm,cosB=0.6,则对角线AC的长为cm.14.如图,直径AB为10的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是.15.如图,正方形ABCD的边长是2,点E、F分别是AB、BC边上的动点(不与点A、B、C重合),且BE=BF,EG⊥AB,FG⊥BC,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为.三、解答题(本大题包括8个小题,共75分)16.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.17.2016年3月8日,国务院批复同意自2016年起,将每年4月24日作为“中国航天日”,某市针对中学生开展了航天知识普及活动,活动结束后进行了一次航天知识问卷调查,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.调查结果统计表根据以上信息解答下列问题:(1)统计表中,a=,b=,c=;(2)扇形统计图中,m的值为,“B”所对应的圆心角的度数是;(3)若参加本次航天知识问卷调查的同学共有20000人,请你估计成绩在95分及以上的学生大约有多少人?18.如图,△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,交AC 于点E.(1)求证:△OBD≌△OED;(2)填空:①当∠BAC=度时,CA是⊙O的切线;②当∠BAC=度时,四边形OBDE是菱形.19.关于x的一元二次方程(m﹣1)x2+2x﹣3=0.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.20.如图所示,为了知道楼房CD外墙上一电子屏的高度DE是多少,某数学活动小组利用测角仪和米尺等工具进行如下操作;在A处测得点E的仰角为31°,在B出测得点D的仰角为50°,A、B、H共线,且AH⊥CD于点H,AB为20米,测角仪的高度(AF、BG)为1.6米.已知楼房CD高为34.6米,根据测量数据,请求出DE的高度.(参考数据:tan31°≈0.6,tan50°≈1.2)21.甲、乙两家商店以同样价格销售相同的商品,某次促销活动中,它们的优惠方案分别为:甲店,所有商品一律八折优惠;乙店,一次性购物中超过200元后的价格部分打六折.设商品原价为x元(x>0),购物应付金额为y元.(1)求在乙商店购物时y2与x之间的函数关系;(2)两种购物方式对应的函数如图所示,求出交点B的坐标;(3)根据图象,请直接写出本次促销活动汇总选择哪家商店购物更优惠.22.(1)尝试探究如图1,Rt△ABC中,AB=AC,AD是高,点E是AB边上一点,CE与AD交于点G,过点E作EF⊥CE交BC于点F.若AE=2BE,则EF与EG的数量关系是.(2)类比延伸如图2,在(1)的条件下,若AE=nBE(n>0),则EF与EG的数量关系是(用含n的代数式表示),试写出解答过程.(3)拓展迁移如图3,Rt△ABC中,∠BAC=90°,AD是高,点E是AB边上一点,CE与AD 交于点G,过点E作EF⊥CE交BC于点F,若AE=aBE,AB=bAC(a>0,b>0),则EF与EG的数量关系是.23.如图,抛物线y=x2+bx+c的对称轴是y轴,点D,P在抛物线上,A(0,2),D(0,1),PC⊥x轴于点C,CB∥AP,交x轴于点B.(1)求抛物线的解析式;(2)若点P是抛物线上的动点,四边形ABCP是什么特殊的四边形?证明你的结论;(3)设点Q是x轴上一动点,当(2)中的四边形ABCP是正方形时,△DQP 周长是否存在最小值,若存在,请直接写出△DQP周长最小时点Q的坐标;若不存在,请说明理由.2019年河南省新乡市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.﹣2的倒数是()A.B.2 C.﹣D.﹣2【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣2的倒数是,故选C.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,正三棱柱的主视图为()A. B.C.D.【考点】简单几何体的三视图.【分析】根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.【解答】解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.3.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将27 000 000用科学记数法表示为2.7×107.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°【考点】平行线的性质.【专题】计算题.【分析】首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.【解答】解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.【点评】本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC 的度数是解题的难点.5.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元【考点】中位数.【分析】根据题意得出按照从小到大顺序排列的第25个和第26个数据都是20(元),它们的平均数即为中位数.【解答】解:∵10+13+12+15=50,按照从小到大顺序排列的第25个和第26个数据都是20(元),∴它们的平均数即为中位数,=20(元),∴学生捐款金额的中位数是20元;故选:D.【点评】本题考查了中位数的定义、平均数的计算;熟练掌握中位数的定义,正确求出中位数是解决问题的关键.6.不等式组的解集,在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先解不等式,然后在数轴上表示出解集.【解答】解:解不等式1﹣x<2得,x>﹣1,解不等式3x≤6得:x≤2,则不等式的解集为:.故选B.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.7.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5 D.6【考点】菱形的性质;矩形的性质.【分析】连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2,根据△AOE∽△ABC,即可得到结果.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故选C.【点评】本题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用定理是解题的关键.8.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,)D.(2n+1,)【考点】坐标与图形变化-旋转.【专题】压轴题;规律型.【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故选:C.【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.二、填空题(每小题3分,共21分)9.计算: +|﹣1|=4.【考点】实数的运算.【分析】根据立方根的定义和绝对值的性质进行计算即可.【解答】解:原式=3+1=4,故答案为4.【点评】本题考查了实数的运算,掌握立方根的定义和绝对值的性质是解题的关键.10.如图,AD是△ABC的外角平分线,AD∥BC,若∠C=70°,则∠BAC的度数为40°.【考点】平行线的性质;三角形内角和定理.【分析】根据平行线的性质得出∠DAC=∠C=70°,∠EAD=∠B,根据角平分线定义得出∠EAD=∠DAC=70°,求出∠B,即可求出∠BAC.【解答】解:∵AD∥BC,∠C=70°,∴∠DAC=∠C=70°,∠EAD=∠B,∵AD是△ABC的外角平分线,∴∠EAD=∠DAC=70°,∴∠B=70°,∴∠BAC=180°﹣∠B﹣∠C=40°,故答案为:40°【点评】本题考查了平行线的性质,三角形内角和定理的应用,能求出∠B的度数是解此题的关键.11.已知点A(1,y1),B(﹣2,y2),C(﹣,y2)都在反比例函数y=(k为常数)的图象上,则y1,y2,y3的大小关系是y1<y2<y3.【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据各点横坐标的值判断出各点所在的象限.进而可得出结论.【解答】解:∵反比例函数y=(k为常数)中,﹣k2﹣1<0,∴函数图象的两个分式分别位于二四象限,且在每一象限内y随x的增大而增大.∵﹣2<﹣<0,1>0,∴点B、C在第二象限,点A在第四象限,∴y1<y2<y3.故答案为:y1<y2<y3.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.不透明的袋子中装有2个红球,3个黄球,他们除颜色外,其它都相同,从中随机一次摸出两个球,颜色不同的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与颜色不同的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,颜色不同的有12种情况,∴从中随机一次摸出两个球,颜色不同的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.注意用到的知识点为:概率=所求情况数与总情况数之比.13.如图,菱形ABCD的边长为5cm,cosB=0.6,则对角线AC的长为2cm.【考点】菱形的性质.【分析】过C作CE⊥AB于E,则∠CEB=∠CEA=90°,解直角三角形求出BE,根据勾股定理求出CE,求出AE,根据勾股定理求出AC即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC=5cm,过C作CE⊥AB于E,则∠CEB=∠CEA=90°,∵cosB==0.6,BC=5cm,∴BE=3cm,∴AE=5cm﹣3cm=2cm,在Rt△BEC中,由勾股定理得:CE==4(cm),在Rt△CEA中,由勾股定理得:AC===2(cm),故答案为:2.【点评】本题考查了菱形的性质,勾股定理,解直角三角形的应用,能构造直角三角形是解此题的关键,注意:菱形的四条边都相等.14.如图,直径AB为10的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是.【考点】扇形面积的计算;旋转的性质.【分析】根据题意得出AB=AB′=8,∠BAB′=60°,根据图形得出图中阴影部分的面积S=+π×102﹣π×102,求出即可.【解答】解:如图,∵AB=AB′=8,∠BAB′=60°∴图中阴影部分的面积是:S=S扇形B′AB+S半圆O′﹣S半圆O=+π×102﹣π×102=π.故答案为:.【点评】本题考查了旋转的性质,扇形的面积的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较好,难度适中.15.如图,正方形ABCD的边长是2,点E、F分别是AB、BC边上的动点(不与点A、B、C重合),且BE=BF,EG⊥AB,FG⊥BC,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为1或2﹣.【考点】正方形的性质;等腰三角形的性质.【分析】首先判断点G在对角线上,分两种情形讨论①DA=DG,②GA=GD.求出BG,再根据BE=BG即可解决问题.【解答】解:∵四边形ABCD是正方形,四边形BEGF是正方形,∴AB=BC=CD=AD=2,∠EBG=∠ABD=45°,∴B、G、D共线,BD=2,当DA=DG时,BG=2﹣2,∴BE=BG=2﹣,当GA=DG时,G是BD中点,∴BG=,∴BE=BG=1,故答案为1或2﹣【点评】本题考查正方形的性质、等腰三角形的性质等知识,解题的关键是判断点G的位置,注意考虑问题要全面,学会分类讨论,属于中考常考题型.三、解答题(本大题包括8个小题,共75分)16.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式===,当a=+1,b=﹣1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.2016年3月8日,国务院批复同意自2016年起,将每年4月24日作为“中国航天日”,某市针对中学生开展了航天知识普及活动,活动结束后进行了一次航天知识问卷调查,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.调查结果统计表根据以上信息解答下列问题:(1)统计表中,a=450,b=1000,c=0.3;(2)扇形统计图中,m的值为45,“B”所对应的圆心角的度数是54°;(3)若参加本次航天知识问卷调查的同学共有20000人,请你估计成绩在95分及以上的学生大约有多少人?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)由A组频数及频率可得总数b,根据频数之和等于总数可得a,用C组频数除以总数可得其频率c;(2)用D组频数除以总数即可得m的值,用B组人数占总人数的比例乘以360°可得圆心角度数;(3)用成绩在95分及以上的学生数占被调查人数的比例,即D组频率乘以总人数20000即可得.【解答】解:(1)b=100÷0.1=1000,a=1000﹣100﹣150﹣300=450,c=300÷1000=0.3;故答案为:450,1000,0.3;(2)∵m%=×100%=45%,∴m=45,“B”所对应的圆心角的度数是×360°=54°,故答案为:45,54;(3)20000×0.45=9000,答:成绩在9分及以上的学生大约有9000人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.如图,△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,交AC 于点E.(1)求证:△OBD≌△OED;(2)填空:①当∠BAC=90度时,CA是⊙O的切线;②当∠BAC=60度时,四边形OBDE是菱形.【考点】圆的综合题.【分析】(1)由AB是⊙O的直径,可证得AD⊥BC,根据等腰三角形的性质得到∠BAD=∠CAD,于是得到BD=ED,根据“SSS“定理即可证得结论;(2)①当∠BAC=90°时,由切线的判定定理即可证得CA是⊙O的切线,②当∠BAC=60度时,得到△OBD是等边三角形,即OB=OD=BD,由(1)得:BD=ED,于是有OB=BD=DE=OE,由菱形的定义得到四边形OBDE是菱形.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴AD⊥BC,又∵AB=AC,∴∠BAD=∠CAD,∴=.∴BD=ED,在△OBD和△OED中,,∴△OBD≌△OED(SSS);(2)①当∠BAC=90°,∵AB为⊙O的直径,∴CA是⊙O的切线,故答案为:90;②当∠BAC=60度时,∵OB=OD,∴△OBD是等边三角形,即OB=OD=BD,由(1)得:BD=ED,∴OB=BD=DE,∵OE=OB,∴OB=BD=DE=OE,∴四边形OBDE是菱形,故答案为:60.【点评】本题主要考查了圆周角的性质和判定,等腰三角形的判定与性质,全等三角形的判定与性质,切线的判定定理,菱形的判定定理,正确作出辅助线,证得BD=ED是解题的关键.19.关于x的一元二次方程(m﹣1)x2+2x﹣3=0.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.【考点】根的判别式;一元二次方程的解.【分析】(1)根据一元二次方程的定义和根的判别式得到m﹣1≠0且△=22﹣4(m﹣1)×(﹣3)=12m﹣8>0,然后求出两不等式的公共部分即可;(2)先把x=1代入原方程得到m的一元一次方程,求出m的值,从而确定原一元二次方程,然后利用因式分解法解一元二次方程即可得到方程的另一个解.【解答】解:(1)由题意知,m﹣1≠0,所以m≠1.∵原方程有两个不相等的实数根,∴△=22﹣4(m﹣1)×(﹣3)=12m﹣8>0,解得:m>,综上所述,m的取值范围是m>且m≠1;(2)把x=1代入原方程,得:m﹣1+2﹣3=0.解得:m=2.把m=2代入原方程,得:x2+2x﹣3=0,解得:x1=1,x2=﹣3.∴此时m的值为2,方程的另外一个根为是﹣3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义及解法.20.如图所示,为了知道楼房CD外墙上一电子屏的高度DE是多少,某数学活动小组利用测角仪和米尺等工具进行如下操作;在A处测得点E的仰角为31°,在B出测得点D的仰角为50°,A、B、H共线,且AH⊥CD于点H,AB为20米,测角仪的高度(AF、BG)为1.6米.已知楼房CD高为34.6米,根据测量数据,请求出DE的高度.(参考数据:tan31°≈0.6,tan50°≈1.2)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先由题意知∠EAH=31°,∠DBH=50°,CH=AF=1.6,则可求得DH的长,然后由在Rt△DBH中,tan50°=,求得BH的长,继而求得AH的长,然后在Rt△EAH中,求得EH的长,则可求得答案.【解答】解:由题意知∠EAH=31°,∠DBH=50°,CH=AF=1.6,∴DH=DC﹣CH=34.6﹣1.6=33,在Rt△DBH中,∵tan50°==,∴BH=≈=27.5,∴AH=27.5+20=47.5.在Rt△EAH中,∵tan31°=,∴EH=47.5×tan31°≈28.5,∴DE=DH﹣EH≈33﹣28.5=4.5(米).答:DE的高度约为4.5米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.甲、乙两家商店以同样价格销售相同的商品,某次促销活动中,它们的优惠方案分别为:甲店,所有商品一律八折优惠;乙店,一次性购物中超过200元后的价格部分打六折.设商品原价为x元(x>0),购物应付金额为y元.(1)求在乙商店购物时y2与x之间的函数关系;(2)两种购物方式对应的函数如图所示,求出交点B的坐标;(3)根据图象,请直接写出本次促销活动汇总选择哪家商店购物更优惠.【考点】一次函数的应用.【分析】(1)分别利用当0<x≤200时,当x>200时,求出函数解析式;(2)将y=0.6x+80和y=0.8x联立求出函数交点进而求出答案;(3)利用(2)中所求得出选择哪家商店购物更优惠.【解答】解:(1)当0<x≤200时,y2=x;当x>200时,y2=200+0.6(x﹣200)=0.6x+80,综上所述:y2=;(2)由题意知,y1=0.8x,故,解得:,则点B的坐标(400,320).(3)当x=400件,选择甲、乙两店付费相同;当x<400件时,选择甲店购物更优惠;当x>400件时,选择乙店购物更优惠.【点评】此题主要考查了一次函数的应用,利用数形结合得出正确信息是解题关键.22.(1)尝试探究如图1,Rt△ABC中,AB=AC,AD是高,点E是AB边上一点,CE与AD交于点G,过点E作EF⊥CE交BC于点F.若AE=2BE,则EF与EG的数量关系是EG=2EF.(2)类比延伸如图2,在(1)的条件下,若AE=nBE(n>0),则EF与EG的数量关系是EG=nEF (用含n的代数式表示),试写出解答过程.(3)拓展迁移如图3,Rt△ABC中,∠BAC=90°,AD是高,点E是AB边上一点,CE与AD 交于点G,过点E作EF⊥CE交BC于点F,若AE=aBE,AB=bAC(a>0,b>0),则EF与EG的数量关系是EG=abEF.【考点】相似形综合题.【分析】(1)如图1中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,先证明△BPE∽△AQE,再证明△EPF∽△EQG即可.(2)如图2中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,证明方法类似(1).(3)如图3中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,由△EPF ∽△EQG,得=①,由△AEQ∽△CBA,得=②,①×②得=ab,由此即可解决问题.【解答】解:(1)EG=2EF;理由:如图1中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q.∴∠BPE=∠AQE=90°.∵AD是等腰直角三角形的高,∴∠B=∠EAQ=45°.∴△BPE∽△AQE,∴==,∴EQ=2EP,∵∠FEP+∠PEG=90°,∠GEQ+∠PEG=90°,∴∠FEP=∠GEQ.又∵∠EPF=∠EQG=90°,∴△EPF∽△EQG,∴==,∴EG=2EF.故答案为EG=2EF.(2)EG=nEF;理由:如图2中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q.∴∠BPE=∠AQE=90°.∵AD是等腰直角三角形的高,∴∠B=∠EAQ=45°.∴△BPE∽△AQE,∴=,∵AE=nBE,∴EQ=nEP.∵∠FEP+∠PEG=90°,∠GEQ+∠PEG=90°,∴∠FEP=∠GEQ.又∵∠EPF=∠EQG=90°,∴△EPF∽△EQG,∴=,∴EG=nEF.故答案为EG=2EF.(3)EG=abEF,理由:如图3中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,∵△EPF∽△EQG,∴=①∵∠AQE=∠BAC,∠EAQ=∠ACB,∴△AEQ∽△CBA,∴=,∴=②①×②得==ab,∵△EPF∽△EQG,∴=,∴=ab,∴EG=abEF.故答案为EG=abEF.【点评】本题考查相似三角形的判定和性质,解题的关键是添加辅助线,构造相似三角形,本题需要用到多次相似,属于中考常考题型.23.如图,抛物线y=x2+bx+c的对称轴是y轴,点D,P在抛物线上,A(0,2),D(0,1),PC⊥x轴于点C,CB∥AP,交x轴于点B.(1)求抛物线的解析式;(2)若点P是抛物线上的动点,四边形ABCP是什么特殊的四边形?证明你的结论;(3)设点Q是x轴上一动点,当(2)中的四边形ABCP是正方形时,△DQP 周长是否存在最小值,若存在,请直接写出△DQP周长最小时点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由抛物线的对称轴方程可求得b的值,然后把D(0,1)代入y= x2+c可求得c的值,从而可求得抛物线的解析式;(2)先依据两组对边分别平行的四边形是平行四边形证明四边形ABCP是平行四边形,设点P的坐标是(m,m2+1),则PC=m2+1.然后依据两点间的距离公式可求得PA的长,从而得到PC=PA,故此可判断出四边形ABCP的形状;(3)作点D关于x轴的对称点D′.连接PD′交x轴与点Q.由四边形APCB为正方形可知PA∥x轴,点B与点O重合.于是可求得点P的坐标,然后求得直线D′P的解析式,从而可求得点Q的坐标,最后由抛物线的对称性可求得点Q′的坐标.【解答】解:(1)∵抛物线的对称轴是y轴,∴b=0.把D(0,1)代入y=x2+c得c=1.∴抛物线的解析式为y=+1.(2)四边形ABCP是菱形.∵PC⊥x轴,AB⊥x轴,∴PC∥AB.又∵CB∥AP,∴四边形ABCP是平行四边形.设点P的坐标是(m,m2+1),则PC=m2+1.过点P作PE⊥y轴于点E,则∴PA2=PE2+AE2=|m|2+|(m2+1)﹣2|2=m4+m2+1=(m2+1)2.∴PA=m2+1.∴PC=PA.∴平行四边形ABCP是菱形.(3)如图所示:作点D关于x轴的对称点D′.连接PD′交x轴与点Q.∵四边形APCB为正方形,∴∠APC=∠PCB=90°.∴点PA∥x轴,点B与点O重合.∴点P的纵坐标为2.将y=2代入y=+1得: +1=2,解得:x=±2.∴点P(2,2)、P′(﹣2,2).∵点D′与点D关于x轴对称,∴DQ=D′Q,D′(﹣1,0).∴当点D′、Q、P在一条直线上时,PQ+QD有最小值.又∵DP的长度不变,∴当点D′、Q、P在一条直线上时,△PDQ的周长最小.设直线PD′的解析式为y=kx+b.∵将点P、D′的坐标代入得,解得:k=,b=﹣1,∴直线PD′的解析式为y=x﹣1.将y=0代入得;x﹣1=0,解得:x=,∴点Q的坐标为(,0).∵点Q′关于点Q对称,∴Q′(﹣,0).综上所述,点Q的坐标为(,0)或Q′(﹣,0).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、轴对称路径最短问题、平行四边形的判定、菱形的判定,明确当点D′、Q、P在一条直线上时,△PDQ的周长最小时解题的关键.。
河南省新乡市2019届数学中考模试试卷
河南省新乡市2019届数学中考模试试卷一、选择题(每小题5分;共50分)1.下列各数中,绝对值最小的数是( )A. πB.C. -2D. -2.北京交通一卡通已经覆盖了全市的地面公交、轨道交通和部分出租车及停车场.据北京市交通委透露,北京市政交通一卡通卡发卡量目前已经超过280 000 000张,用科学记数法表示280 000 000正确是( )A. 2.8×107B. 2.8×108C. 2.8×109D. 0.28×1010 3.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( ) A. 12π B. 24π C. 36π D. 48π第3题图 第4题图4.已知一次函数y=k x+b 中,x 取不同值时,y 对应的值列表如下: 则不等式k x+b >0(其中k ,b ,m ,n 为常数)的解集为( )A. x >2B. x >3C. x <2D. 无法确定5.某校举行健美操比赛,甲、乙两班个班选20名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是, 则参赛学生身高比较整齐的班级是( )A. 甲班B. 乙班C. 同样整齐D. 无法确定 6.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,下列等式中不一定成立的是( ) A. ∠1=∠2 B. ∠3=∠5 C. ∠BAD=∠DCE D. ∠4=∠67.平面内有一个角是60°的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少 是() A. 90° B. 180° C. 270° D. 360°第6题图 第8题图8.如图,将矩形ABCD 沿AE 折叠,点D 的对应点落在BC 上点F 处,过点F 作FG ∥CD ,连接EF ,DG ,下列结论中正确的有( )①∠ADG=∠AFG ;②四边形DEFG 是菱形;③DG 2=AE•EG ;④若AB=4,AD=5,则CE=1.A. ①②③④B. ①②③C. ①③④D. ①②9.将二次函数y=3x2的图象向右平移3个单位,再向下平移4个单位后,所得图象的函数表达式是()A. y=3(x-3)2-4B. y=3(x-3)2-4C. y=3(x+3)2-4D. y=3(x+3)2+410.在正方形ABCD中,对角线AC=BD=12cm,点P为AB边上的任一点,则点P到AC,BD的距离之和为()A. 6cmB. 7cmC. 6cmD. 12cm二、填空题(每小题4分;共20分)11.计算:(+π)0﹣2|1﹣sin30°|+()﹣1=________.12.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是________.13.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y 轴于点E.若△BCE的面积为8,则k=________ .第13题图第15题图14.二次函数y=2x2﹣1,∵a=________,∴函数有最________值.15.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.三、解答题(16、17、18、19、20、22小题各10分;21小题8分;22小题12分;共80分)16.先化简,再求值:,其中,.17.课外阅读是提高学生素养的重要途径,亚光初中为了了解学校学生的阅读情况,组织调查组对全校三个年级共1500名学生进行了抽样调查,抽取的样本容量为300.已知该校有初一学生600名,初二学生500名,初三学生400名.(1)为使调查的结果更加准确地反映全校的总体情况,应分别在初一年级随机抽取________人;在初二年级随机抽取________人;在初三年级随机抽取________人.(请直接填空)(2)调查组对本校学生课外阅读量的统计结果分别用扇形统计图和频数分布直方图表示如下请根据上统计图,计算样本中各类阅读量的人数,并补全频数分布直方图.(3)根据(2)的调查结果,从该校中随机抽取一名学生,他最大可能的阅读量是多少本?为什么?18.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.19.2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是30°和60°,若CD的长是点C到海平面的最短距离.(1)问BD与AB有什么数量关系,试说明理由;(2)求信号发射点的深度.(结果精确到1m,参考数据:≈1.414,≈1.732)20.列方程(或方程组)解应用题:(1)某服装店到厂家选购甲、乙两种服装,若购进甲种服装9件、乙种服装10件,需1810元;购进甲种服装11件乙种服装8件,需1790元,求甲乙两种服装每件价格相差多少元?(2)某工厂现库存某种原料1200吨,用来生产A、B两种产品,每生产1吨A产品需这种原料2吨、生产费用1000元;每生产1吨B产品需这种原料2.5吨、生产费用900元,如果用来生产这两种产品的资金为53万元,那么A、B两种产品各生产多少吨才能使库存原料和资金恰好用完?21.已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.22.如图,在▱ABCD中,AE=CF.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为平行四边形.23.如图,抛物线y=-x 2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C两点的直线的表达式为y=-x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC于D,交抛物线于E,EF∥x 轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?(3)在坐标平面内是否存在点Q,将△OAC绕点Q逆时针旋转90°,使得旋转后的三角形恰好有两个顶点落在抛物线上.若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.参考答案一、选择题1. D2. B3. B4. A5. A6. D7. B8. B9. A 10. A二、填空题11.2 12.且13.16 14.2;小15.1.5三、解答题16.解:原式= = = ,当,时,原式= = .17.(1)120;100;80(2)解:根据扇形图得出:6~10本的有300× =60(人),300×(1﹣6%﹣22%﹣×100%)=156(人),0本的有300×6%=18(人),1~5本的有300×22%=66(人),补全频数分布直方图,如图所示:(3)解:根据扇形图可知10本以上所占比例最大,故从该校中随机抽取一名学生,他最大可能的阅读量是10本以上18.(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF= BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF的延长线于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME19.(1)解:由图形可得∠BCA=30°,∴CB=BA=400米,∴在Rt△CDB中又含30°角,得DB= CB=200米,可知,BD= AB,(2)解:由勾股定理DC== ,=200 米,∴点C的垂直深度CD是346米.20.(1)解:设甲服装的价格为x元,乙服装的价格为y元,根据题意得,2x﹣2y=﹣10,所以x﹣y=10.答:甲乙两种服装每件价格相差10元(2)解:解:设A种产品生产x吨、乙种产品生产y吨,才能使库存原料和资金恰好用完,根据题意得,解得.答:A种产品生产350吨、乙种产品生产200吨才能使库存原料和资金恰好用完21.(1)解:∵y=-x2+4x=-(x-2)2+4,∴对称轴是过点(2,4)且平行于y轴的直线x=2;(2)解:列表得:描点,连线.(3)解:由图象可知,当y<0时,x的取值范围是x<0或x>422.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS)(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴DF=EB,∵DF∥EB,∴四边形BFDE是平行四边形.23.(1)解:在y=-x+3中,令y=0,得x=3;令x=0,得y=3,∴B(3,0),C(0,3)∵抛物线y=-x2+bx+c经过B、C两点∴解得∴抛物线的函数表达式为y=-x2+2x+3(2)解:∵P(m,0),PD∥y轴交直线BC于D,交抛物线于E∴D(m,-m+3),E(m,-m2+2m+3)∴DE=-m2+2m+3-(-m+3)=-m2+3m=-(m-)2+∴当m=时,DE有最大值,由题意可知四边形DEFG为矩形∵OB=OC=3,∴∠DBP=∠BDP=∠EDF=∠EFD=45°∴DE=EF∴四边形DEFG为正方形∴S=DE2∴当m=时,S有最大值;(3)解:如图所示,有两种情况:①当点A′、C′落在抛物线上时由O′A′=OA=1,O′C′=OC=3设A′(a,-a2+2a+3),则C′(a-3,-a2+2a+4)∴-a2+2a+4=-(a-3)2+2(a-3)+3解得a=,∴A′(,)作QN⊥x轴于N,A′M⊥QN于M,连接QA、QA′则∠AQA′=90°,可证△QAN≌△A′QM设Q(x,y),则QM=AN=x+1A′M=QN=y=x+1+=-x解得x=,y=∴Q1(,)②当点O′、C′落在抛物线上时则O′、C′两点关于抛物线的对称轴对称,易知抛物线的对称轴为直线x=1,由O′C′=OC=3,可知C′(-,),作QN⊥O′C′于N,CM⊥QN于M,连接QC、QC′则∠CQC′=90°,可证△CQM≌△QC′N,设Q(x,y),则QM=C′N=x+CM=QN=y-=x=3-(x+)-解得x=,y=∴Q2(,)综上所述,存在符合条件的点Q,点Q的坐标为(,)或(,)。
河南省新乡市2019-2020学年中考数学一模考试卷含解析
河南省新乡市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为()A.4.67×107B.4.67×106C.46.7×105D.0.467×1072.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°3.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指()A.80 B.被抽取的80名初三学生C.被抽取的80名初三学生的体重D.该校初三学生的体重4.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90A∠=o,∠=,45C oE∠=o,90∠+∠等于()∠=o,则1230DA.150o B.180o C.210o D.270o5.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m6.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是47.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣12,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有()A.1个B.3个C.4个D.5个8.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A.8073 B.8072 C.8071 D.80709.(﹣1)0+|﹣1|=()A.2 B.1 C.0 D.﹣110.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a1011.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④12.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm.14.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.15.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为_____.16.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________.17.如图,在△ACB中,∠ACB=90°,点D为AB的中点,将△ACB绕点C按顺时针方向旋转,当CB 经过点D时得到△A1CB1.若AC=6,BC=8,则DB1的长为________.18.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线21y x bx 2c =-++与x 轴交于A ,B ,与y 轴交于点C (0,2),直线1x 22y =-+经过点A ,C.(1)求抛物线的解析式;(2)点P 为直线AC 上方抛物线上一动点;①连接PO ,交AC 于点E ,求PE EO的最大值; ②过点P 作PF ⊥AC ,垂足为点F ,连接PC ,是否存在点P ,使△PFC 中的一个角等于∠CAB 的2倍?若存在,请直接写出点P 的坐标;若不存在,请说明理由.20.(6分)如图所示:△ABC 是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB 的垂直平分线l ,垂足为H .(保留作图痕迹,不写作法);(2)垂直平分线l 交AC 于点D ,求证:AB=2DH .21.(6分)如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB=32.求反比例函数的解析式;若P (1x ,1y )、Q (2x ,2y )是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.22.(8分)先化简,再求值:()()()2111x x x x +-+-,其中2x =-.23.(8分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.24.(10分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m= ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.25.(10分)A 、B 两辆汽车同时从相距330千米的甲、乙两地相向而行,s (千米)表示汽车与甲地的距离,t (分)表示汽车行驶的时间,如图,L 1,L 2分别表示两辆汽车的s 与t 的关系.(1)L 1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B 的速度是多少?(3)求L 1,L 2分别表示的两辆汽车的s 与t 的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A 、B 两车相遇?26.(12分)有这样一个问题:探究函数1x y x =+的图象与性质.小怀根据学习函数的经验,对函数1x y x =+的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:(1)函数1x y x =+的自变量x 的取值范围是 ; (2)列出y 与x 的几组对应值.请直接写出m 的值,m= ;(3)请在平面直角坐标系xOy 中,描出表中各对对应值为坐标的点,并画出该函数的图象; (4)结合函数的图象,写出函数1x y x =+的一条性质.27.(12分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟 米,乙在A 地时距地面的高度b 为 米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将4670000用科学记数法表示为4.67×106,故选B.【点睛】本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.2.A【解析】试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.考点:平行线的性质.3.C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】样本是被抽取的80名初三学生的体重,故选C .【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.C【解析】【分析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:1D DOA ∠∠∠=+Q ,2E EPB ∠∠∠=+,DOA COP ∠∠=Q ,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++=D E 180C ∠∠∠++-o=309018090210++-=o o o o o ,故选C .【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.5.D【解析】【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【详解】∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE=, ∵DF=50cm=0.5m ,EF=30cm=0.3m ,AC=1.5m ,CD=20m ,∴由勾股定理求得DE=40cm , ∴200.30.4BC =, ∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m .【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.6.D【解析】试题分析:A 、选举中,人们通常最关心的数据为出现次数最多的数,所以A 选项的说法正确; B 、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B 选项的说法正确;C 、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,所以C 选项的说法正确;D 、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D 选项的说法错误. 故选D .考点:随机事件发生的可能性(概率)的计算方法7.B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a =1,即b=-4a ,变形为4a+b=0,所以(1)正确;由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(1)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+1c=7a+11a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+1c <0,故(3)不正确;根据图像可知当x <1时,y 随x 增大而增大,当x >1时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 1)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 1,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.8.A【解析】【分析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=4×1+1;第2个图案中涂有阴影的小正方形个数为:9=4×2+1;第3个图案中涂有阴影的小正方形个数为:13=4×3+1;…发现规律:第n个图案中涂有阴影的小正方形个数为:4n+1;∴第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1.故选:A.【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.9.A【解析】【分析】根据绝对值和数的0次幂的概念作答即可.【详解】原式=1+1=2故答案为:A.【点睛】本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.10.B【解析】【分析】根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.【详解】A、a2•a3=a5,错误;B、(a2)3=a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2a5,错误;故选B.【点睛】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.11.B【解析】【分析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.【详解】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;剩下的选项中都有③,所以③是正确的;易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.12.C【解析】熟记反证法的步骤,然后进行判断即可.解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考点:1轴对称;2矩形的性质;3等腰三角形.14.2:1.【解析】【分析】过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得AB OECD OF,由此即可求得答案.【详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴AB OECD OF==23,故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键. 15.2.4cm【解析】分析:根据图2可判断AC=3,BC=4,则可确定t=5时BP的值,利用sin∠B的值,可求出PD.详解:由图2可得,AC=3,BC=4,∴AB=22345+=.当t=5时,如图所示:,此时AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B=ACAB=35,∴PD=BP·sin∠B=2×35=65=1.2(cm).故答案是:1.2 cm.点睛:本题考查了动点问题的函数图象,勾股定理,锐角三角函数等知识,解答本题的关键是根据图形得到AC、BC的长度,此题难度一般.16.1 42π-.【解析】【分析】连接CD,根据题意可得△DCE≌△BDF,阴影部分的面积等于扇形的面积减去△BCD的面积.【详解】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,DM=2.则扇形FDE的面积是:2901= 3604ππ⨯.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,则在△DMG和△DNH中,DMG DNHGDM HDN DM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=12.则阴影部分的面积是:1 42π-.故答案为:1 42π-.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.17.2【解析】【分析】根据勾股定理可以得出AB的长度,从而得知CD的长度,再根据旋转的性质可知BC=B1C,从而可以得出答案.【详解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴10AB=,∵点D为AB的中点,∴152CD AB==,∵将△ACB 绕点C 按顺时针方向旋转,当CB 经过点D 时得到△A 1CB 1.∴CB 1=BC =8,∴DB 1=CB 1-CD=8﹣5=2,故答案为:2.【点睛】本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB 的长是解题的关键.18.14. 【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=14.故答案为14. 考点:列表法与树状图法.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)213222y x x =-++;(2)①PE EO 有最大值1;②(2,3)或(2911,300121) 【解析】【分析】(1)根据自变量与函数值的对应关系,可得A ,C 点坐标,根据代定系数法,可得函数解析式;(2)①根据相似三角形的判定与性质,可得PE PM OE OC=,根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案; ②根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点D ,求得D (32,0),得到DA=DC=DB=52,过P 作x 轴的平行线交y 轴于R ,交AC 于G ,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG ,情况二,∠FPC=2∠BAC ,解直角三角形即可得到结论.【详解】(1)当x=0时,y=2,即C (0,2),当y=0时,x=4,即A (4,0),将A ,C 点坐标代入函数解析式,得2412402b c c -⨯⎧⎪⎩++⎪⎨==, 解得232b c ⎧⎪⎨⎪⎩==,抛物线的解析是为213222y x x =-++; (2)过点P 向x 轴做垂线,交直线AC 于点M ,交x 轴于点N,∵直线PN ∥y 轴,∴△PEM ~△OEC , ∴PE PM OE OC = 把x=0代入y=-12x+2,得y=2,即OC=2, 设点P (x ,-12x 2+32x+2),则点M (x ,-12x+2), ∴PM=(-12x 2+32x+2)-(-12x+2)=-12x 2+2x=-12(x-2)2+2, ∴PE PM OE OC ==()221222 x --+, ∵0<x <4,∴当x=2时,PE PM OE OC ==()221222 x --+有最大值1. ②∵A (4,0),B (-1,0),C (0,2),∴55AB=5,∴AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点D ,∴D (32,0),∴DA=DC=DB=52,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=43,过P作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=12,即12 RCRP=,令P(a,-12a2+32a+2),∴PR=a,RC=-12a2+32a,∴2131 222a aa-+=,∴a1=0(舍去),a2=2,∴x P=2,-12a2+32a+2=3,P(2,3)情况二,∴∠FPC=2∠BAC,∴tan∠FPC=43,设FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=312 kFG=,∴FG=6k,∴CG=2k,PG=35k,∴RC=25k,RG=455k,PR=35k-455k=115k,∴211551325225kPR aRC a ak==-+,∴a1=0(舍去),a2=2911,x P=2911,-12a2+32a+2=300121,即P(2911,300121),综上所述:P点坐标是(2,3)或(2911,300121).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出PE PMOE OC=,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏.20.(1)见解析;(2)证明见解析.【解析】【分析】(1)利用线段垂直平分线的作法,分别以A,B为端点,大于12AB为半径作弧,得出直线l即可;(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.【详解】解:(1)如图所示:直线l即为所求;(2)证明:∵点H是AB的中点,且DH⊥AB,∴DH∥BC,∴点D是AC的中点,∵12DH BC BC AB==,,∴AB=2DH.【点睛】考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.21.(1)3y x =-;(2)P 在第二象限,Q 在第三象限. 【解析】试题分析:(1)求出点B 坐标即可解决问题;(2)结论:P 在第二象限,Q 在第三象限.利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B (﹣2,32),把B (﹣2,32)代入k y x=中,得到k=﹣3,∴反比例函数的解析式为3y x=-. (2)结论:P 在第二象限,Q 在第三象限.理由:∵k=﹣3<0,∴反比例函数y 在每个象限y 随x 的增大而增大,∵P (x 1,y 1)、Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,∴P 、Q 在不同的象限,∴P 在第二象限,Q 在第三象限.点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.3x -1, -9.【解析】【分析】先去括号,再合并同类项;最后把x=-2代入即可.【详解】原式=323211x x x x --=-+,当x=-2时,原式=-8-1=-9.【点睛】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.23.(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°. 【解析】试题分析:(1)用“极高”的人数÷所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;(3)用“中”的人数÷调查的学生人数,即可得到所占的百分比,所占的百分比360,⨯o即可求出对应的扇形圆心角的度数.试题解析:()15025%200÷=(人).()2学生学习兴趣为“高”的人数为:20050602070---=(人). 补全统计图如下:()3分组后学生学习兴趣为“中”的所占的百分比为:60100%30%.200⨯= 学生学习兴趣为“中”对应扇形的圆心角为:30%360108.⨯=o o 24.(1)150,(2)36°,(3)1.【解析】【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可; (3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【详解】(1)m=21÷14%=150, (2)“足球“的人数=150×20%=30人, 补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×15150=36°; (4)1200×20%=1人, 答:估计该校约有1名学生最喜爱足球活动. 故答案为150,36°,1.本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.25.(1)L 1表示汽车B 到甲地的距离与行驶时间的关系;(2)汽车B 的速度是1.5千米/分;(3)s 1=﹣1.5t+330,s 2=t ;(4)2小时后,两车相距30千米;(5)行驶132分钟,A 、B 两车相遇.【解析】试题分析:(1)直接根据函数图象的走向和题意可知L 1表示汽车B 到甲地的距离与行驶时间的关系; (2)由L 1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;(4)结合(3)中函数图象求得120t =时s 的值,做差即可求解;(5)求出函数图象的交点坐标即可求解.试题解析:(1)函数图形可知汽车B 是由乙地开往甲地,故L 1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L 1为1s kt b =+, 把点(0,330),(60,240)代入得1.5330.k b =-=, 所以1 1.5330s t ;=-+ 设L 2为2s k t =',把点(60,60)代入得 1.k '=所以2.s t =(4)当120t =时,12150120.s s ==,330﹣150﹣120=60(千米);所以2小时后,两车相距60千米;(5)当12s s =时, 1.5330,t t -+=解得132.t =即行驶132分钟,A 、B 两车相遇.26.(1)x≠﹣1;(2)2;(2)见解析;(4)在x <﹣1和x >﹣1上均单调递增;【解析】【分析】(1)根据分母非零即可得出x+1≠0,解之即可得出自变量x 的取值范围;(2)将y=34代入函数解析式中求出x 值即可; (2)描点、连线画出函数图象;(4)观察函数图象,写出函数的一条性质即可.解:(1)∵x+1≠0,∴x≠﹣1.故答案为x≠﹣1.(2)当y=1x x +=34时,解得:x=2. 故答案为2.(2)描点、连线画出图象如图所示.(4)观察函数图象,发现:函数1x y x =+在x <﹣1和x >﹣1上均单调递增.【点睛】本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键. 27.(1)10,30;(2)y=15(02)3030(211)x x x x ≤≤⎧⎨-≤≤⎩;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【解析】【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A 地时距地面的高度b 的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y 关于x 的函数关系;(3)当乙未到终点时,找出甲登山全程中y 关于x 的函数关系式,令二者做差等于50即可得出关于x 的一元一次方程,解之即可求出x 值;当乙到达终点时,用终点的高度﹣甲登山全程中y 关于x 的函数关系式=50,即可得出关于x 的一元一次方程,解之可求出x 值.综上即可得出结论.【详解】(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30,故答案为10,30;(2)当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30,当y=30x﹣30=300时,x=11,∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=()()1502 3030211x xx x⎧≤≤⎪⎨-≤≤⎪⎩;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4,当30x﹣30﹣(10x+100)=50时,解得:x=9,当300﹣(10x+100)=50时,解得:x=15,答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.。
河南省新乡市2019-2020学年中考数学一月模拟试卷含解析
河南省新乡市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A .110B .19C .16D .152.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为( )A .0.21×108B .21×106C .2.1×107D .2.1×1063.如果a ﹣b=5,那么代数式(22a b ab +﹣2)•ab a b -的值是( ) A .﹣15 B .15 C .﹣5 D .54.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米5.在△ABC 中,点D 、E 分别在AB 、AC 上,如果AD =2,BD =3,那么由下列条件能够判定DE ∥BC 的是( )A .DE BC =23B .DE BC =25 C .AE AC =23D .AE AC =256.若代数式22x x -有意义,则实数x 的取值范围是( ) A .x =0B .x =2C .x≠0D .x≠2 7.已知e →为单位向量,a r =-3e →,那么下列结论中错误..的是( ) A .a r ∥e → B .3a =r C .a r 与e →方向相同 D .a r 与e →方向相反 8.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( )A .2003503x x =-B .2003503x x =+C .2003503x x =+D .2003503x x=-9.如图,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使△DEF 与△ABC 相似,则点F 应是G ,H ,M ,N 四点中的( )A .H 或NB .G 或HC .M 或ND .G 或M10.如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( ).A .25︒B .30︒C .35︒D .40︒11.计算3()a a •- 的结果是( )A .a 2B .-a 2C .a 4D .-a 4 12.要使式子1x +有意义,x 的取值范围是( ) A .x≠1 B .x≠0 C .x >﹣1且≠0 D .x≥﹣1且x≠0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.14.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.15.方程3211x x x---=1的解是___. 16.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .17.因式分解:2xy 4x -= .18.,A B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有____________千米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:|3﹣1|+(﹣1)2018﹣tan60°20.(6分)如图,在△ABC 中,AB >AC ,点D 在边AC 上.(1)作∠ADE ,使∠ADE =∠ACB ,DE 交AB 于点E ;(尺规作图,保留作图痕迹,不写作法) (2)若BC =5,点D 是AC 的中点,求DE 的长.21.(6分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A .减少杨树新增面积,控制杨树每年的栽种量B .调整树种结构,逐渐更换现有杨树C .选育无絮杨品种,并推广种植D .对雌性杨树注射生物干扰素,避免产生飞絮E .其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有 人;(2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数. 22.(8分)某种型号油电混合动力汽车,从A 地到B 地燃油行驶需纯燃油费用76元,从A 地到B 地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?23.(8分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB=90°,求证:a 2+b 2=c 2证明:连接DB ,过点D 作DF ⊥BC 交BC 的延长线于点F ,则DF=b-aS 四边形ADCB =21122ADC ABC S S b ab +=-+V V S 四边形ADCB =211()22ADB BCDS S c a b a +=+-V V ∴221111()2222b abc a b a +=+-化简得:a 2+b 2=c 2 请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a 2+b 2=c 2 24.(10分)如图,在△ABC 中,AB=AC ,∠BAC=120°,EF 为AB 的垂直平分线,交BC 于点F ,交AB 于点E .求证:FC=2BF .25.(10分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)26.(12分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.27.(12分)如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.(1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)若平行于x 轴的直线与该抛物线交于M 、N 两点(其中点M 在点N 的右侧),在x 轴上是否存在点Q ,使△MNQ 为等腰直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能), ∴当他忘记了末位数字时,要一次能打开的概率是110. 故选A.2.D【解析】2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.3.D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可. 【详解】(22a b ab+﹣2)•ab a b - =222·a b ab ab ab a b+-- =()2·a b ab ab a b--=a-b,当a-b=5时,原式=5,故选D.4.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.5.D【解析】【分析】根据平行线分线段成比例定理的逆定理,当AD AEDB EC=或AD AEAB AC=时,DE BDP,然后可对各选项进行判断.【详解】解:当AD AEDB EC=或AD AEAB AC=时,DE BDP,即23AEEC=或25AEAC=.所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.6.D【解析】【分析】根据分式的分母不等于0即可解题.【详解】 解:∵代数式22x x -有意义, ∴x-2≠0,即x≠2,故选D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.7.C【解析】【分析】由向量的方向直接判断即可.【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.8.B【解析】试题分析:设每个笔记本的价格为x 元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程9.C【解析】【分析】根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则△ABC 的各边分别为3,只能F 是M 或N 时,其各边是6、△ABC 各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键10.B【解析】试题分析:作点P 关于OA 对称的点P 3,作点P 关于OB 对称的点P 3,连接P 3P 3,与OA 交于点M,与OB 交于点N,此时△PMN 的周长最小.由线段垂直平分线性质可得出△PMN 的周长就是P 3P 3的长,∵OP=3,∴OP 3=OP 3=OP=3.又∵P 3P 3=3,,∴OP 3=OP 3=P 3P 3,∴△OP 3P 3是等边三角形, ∴∠P 3OP 3=60°,即3(∠AOP+∠BOP )=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B .考点:3.线段垂直平分线性质;3.轴对称作图.11.D【解析】【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:34()=a a a •--,故选D .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.12.D【解析】【分析】根据二次根式由意义的条件是:被开方数大于或等于1,和分母不等于1,即可求解.【详解】根据题意得:10{0x x +≥≠,解得:x≥-1且x≠1.故选:D .【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】试题分析:设该商品每件的进价为x 元,则150×80%-10-x =x×10%,解得 x =1.即该商品每件的进价为1元.故答案为1.点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.14.甲.【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.【详解】∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,∴甲的方差大于乙的方差.故答案为:甲.【点睛】本题考查的知识点是方差,条形统计图,解题的关键是熟练的掌握方差,条形统计图.15.x=﹣4【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3+2x=x﹣1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.16.1或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,在Rt △ABC 中,AB=1,BC=4,∴AC=2243+=5,∵∠B 沿AE 折叠,使点B 落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,∴EB=EB′,AB=AB′=1,∴CB′=5-1=2,设BE=x ,则EB′=x ,CE=4-x ,在Rt △CEB′中,∵EB′2+CB′2=CE 2,∴x 2+22=(4-x )2,解得3x 2=, ∴BE=32; ②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=1.综上所述,BE 的长为32或1. 故答案为:32或1. 17.. 【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22xy 4x x y 4x y 2y 2-=-=+-. 18.90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1【解析】【分析】原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.【详解】1|+(﹣1)2118﹣tan61°=1+1=1.【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.20.(1)作图见解析;(2)5 2【解析】【分析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DE∥BC,又因为D是AC的中点,可证DE为△ABC的中位线,从而运用三角形中位线的性质求解.【详解】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵点D是AC的中点,∴DE为△ABC的中位线,∴DE=12BC=52.21.(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360°×1602000=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.【解析】【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【详解】(1)设每行驶1千米纯用电的费用为x元,根据题意得:760.5 x = 26 x解得:x=0.26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,得:0.26y+(260.26﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用电行驶74千米.23.见解析.【解析】【分析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b1+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c1+12a(b-a),∴12ab+12b1+12ab=12ab+12c1+12a(b-a),∴a1+b1=c1.【点睛】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.24.见解析【解析】【分析】连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=12CF,可证得结论.【详解】证明:连接AF,∵EF为AB的垂直平分线,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.【点睛】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.25.建筑物AB 的高度约为5.9米【解析】【分析】在△CED 中,得出DE ,在△CFD 中,得出DF ,进而得出EF ,列出方程即可得出建筑物AB 的高度;【详解】在Rt △CED 中,∠CED=58°,∵tan58°=CD DE, ∴DE=2tan 58tan 58o o CD = , 在Rt △CFD 中,∠CFD=22°,∵tan22°=CD DF, ∴DF=2tan 22tan 22o oCD = , ∴EF=DF ﹣DE=2tan 22o -2tan 58o , 同理:EF=BE ﹣BF=tan 4570o oAB AB tam - , ∴tan 4570o o AB AB tam -=2tan 22o -2tan 58o , 解得:AB≈5.9(米),答:建筑物AB 的高度约为5.9米.【点睛】考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.26.(1)y =−1x有反向值,反向距离为2;y =x 2有反向值,反向距离是1;(2)①b =±1;②0≤n≤8;(3)当m >2或m≤﹣2时,n =2,当﹣2<m≤2时,n =2.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b 的值;②根据题意和b 的取值范围可以求得相应的n 的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m =﹣m+1时,该方程无解,故函数y =﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.27.(1)y=﹣x2+2x+1;(2)P(2,135+55-;(1)存在,且Q1(1,0),Q2(25,0),Q1(50),Q450),Q550). 【解析】【分析】(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.(1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.【详解】解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依题意有:203a a bb++=⎧⎨=⎩,解得13ab=-⎧⎨=⎩;∴y=﹣x2+2x+1.(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=2<2,②由①此时CD⊥PD,根据垂线段最短可得,PC不可能与CD相等;②PC=PD时,∵CP22=(1﹣y)2+x2,D P22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2将y=﹣x2+2x+1代入可得:352x=,∴55y -= ;∴P 2.综上所述,P (2,1.(1)存在,且Q 1(1,0),Q 2(20),Q 1(0),Q 4,0),Q 5,0); ①若Q 是直角顶点,由对称性可直接得Q 1(1,0);②若N 是直角顶点,且M 、N 在x 轴上方时;设Q 2(x ,0)(x <1),∴MN=2Q 1O 2=2(1﹣x ),∵△Q 2MN 为等腰直角三角形;∴y=2(1﹣x )即﹣x 2+2x+1=2(1﹣x );∵x <1,∴Q 2(2-,0);由对称性可得Q 10);③若N 是直角顶点,且M 、N 在x 轴下方时;同理设Q 4(x ,y ),(x <1)∴Q 1Q 4=1﹣x ,而Q 4N=2(Q 1Q 4),∵y 为负,∴﹣y=2(1﹣x ),∴﹣(﹣x 2+2x+1)=2(1﹣x ),∵x <1,∴x=∴Q 4(0);由对称性可得Q 5,0).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.。
【附5套中考模拟试卷】河南省新乡市2019-2020学年中考数学一模试卷含解析
河南省新乡市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.2.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣73.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A.①②B.①③C.②③D.①②③4.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=23cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A.B.C.D.5.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为()A.512B.1213C.513D.13126.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132×12D.x(x-1)=132×27.方程x2﹣3x+2=0的解是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2 D.x1=﹣1,x2=28.甲乙两同学均从同一本书的第一页开始,按照顺序逐页依次在每页上写一个数,甲同学在第1页写1,第2页写3,第3页写1,……,每一页写的数均比前一页写的数多2;乙同学在第1页写1,第2页写6,第3页写11,……,每一页写的数均比前一页写的数多1.若甲同学在某一页写的数为49,则乙同学在这一页写的数为()A.116 B.120 C.121 D.1269.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×10810.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.1411.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.2C.3D.2312.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°二、填空题:(本大题共6个小题,每小题4分,共24分.)1313___1.(填“>”、“<”或“=”)14.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.15.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.16.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.17.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是_________.18.计算:|﹣5|9.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.20.(6分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。
河南省新乡市2019-2020学年中考数学模拟试题(1)含解析
河南省新乡市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A .2B .3C .4D .52.下面几何的主视图是( )A .B .C .D .3.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.如图①是半径为2的半圆,点C 是弧AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .43πB .43π﹣3C .23+3πD .23﹣23π 5.把不等式组24030x x -≥⎧⎨->⎩的解集表示在数轴上,正确的是( ) A .B .C .D .6.6的相反数为( )A .-6B .6C .16-D .16 7.若()292m m --=1,则符合条件的m 有( ) A .1个 B .2个 C .3个 D .4个8.对于函数y=21x,下列说法正确的是( ) A .y 是x 的反比例函数 B .它的图象过原点C .它的图象不经过第三象限D .y 随x 的增大而减小 9.如图所示,在长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A .28cm 2B .27cm 2C .21cm 2D .20cm 210.如图,在△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,DE ⊥AB,垂足为点E,DE=1,则BC= ( )A .3B .2C .3D .3+211.抛物线y=ax 2﹣4ax+4a ﹣1与x 轴交于A ,B 两点,C (x 1,m )和D (x 2,n )也是抛物线上的点,且x 1<2<x 2,x 1+x 2<4,则下列判断正确的是( )A .m <nB .m≤nC .m >nD .m≥n12.不等式2x ﹣1<1的解集在数轴上表示正确的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为_____.14.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.15.用科学计数器计算:2×sin15°×cos15°= _______(结果精确到0.01).16.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .17.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A 、B 、C 、D 都是格点,AB 与CD 相交于M ,则AM :BM=__.18.如图,在△ABC 中,AB =AC ,∠A =36°, BD 平分∠ABC 交AC 于点D ,DE 平分∠BDC 交BC 于点E ,则= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E .求证:△AFE ≌△CDF ;若AB=4,BC=8,求图中阴影部分的面积.20.(6分)如图,二次函数y =﹣212x +mx+4﹣m 的图象与x 轴交于A 、B 两点(A 在B 的左侧),与),轴交于点C .抛物线的对称轴是直线x =﹣2,D 是抛物线的顶点.(1)求二次函数的表达式;(2)当﹣12<x <1时,请求出y 的取值范围; (3)连接AD ,线段OC 上有一点E ,点E 关于直线x =﹣2的对称点E'恰好在线段AD 上,求点E 的坐标.21.(6分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)22.(8分)计算:﹣(﹣2)2+|﹣3|﹣20180×32723.(8分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.(1)求tan∠ADF的值;(2)证明:DE是⊙O的切线;(3)若⊙O的半径R=5,求EF的长.24.(10分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D 均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N 均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.25.(10分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?26.(12分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)27.(12分)计算:﹣16+(﹣12)﹣2﹣32|+2tan60°参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股定理.2.B【解析】【分析】主视图是从物体正面看所得到的图形.【详解】解:从几何体正面看故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.B【解析】【分析】根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.【详解】解:∵一次函数y=kx-3且y随x的增大而增大,∴它的图象经过一、三、四象限,∴不经过第二象限,故选:B.【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.4.D【解析】【分析】连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=12OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.【详解】解:连接OC交MN于点P,连接OM、ON,由题意知,OC ⊥MN ,且OP=PC=1,在Rt △MOP 中,∵OM=2,OP=1,∴cos ∠POM=OP OM =12,AC=22OM OP -=3, ∴∠POM=60°,MN=2MP=23,∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S 半圆-2S 弓形MCN=12×π×22-2×(21202360π⨯-12×23×1) =23-23π, 故选D. 【点睛】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.5.A【解析】【分析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.【详解】2x 4030x -≥⎧⎨-⎩①>② 由①,得x≥2,由②,得x <1,所以不等式组的解集是:2≤x <1.不等式组的解集在数轴上表示为:.故选A .【点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.A【解析】【分析】根据相反数的定义进行求解.【详解】1的相反数为:﹣1.故选A.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.7.C【解析】【分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m 的等式,即可得出.【详解】Q ()29 2m m --=1∴m 2-9=0或m-2= ±1即m= ±3或m=3,m=1∴m 有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.8.C【解析】【分析】直接利用反比例函数的性质结合图象分布得出答案.【详解】对于函数y=21x,y 是x 2的反比例函数,故选项A 错误; 它的图象不经过原点,故选项B 错误;它的图象分布在第一、二象限,不经过第三象限,故选项C 正确;第一象限,y 随x 的增大而减小,第二象限,y 随x 的增大而增大,故选C .【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.9.B【解析】【分析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC 中截取矩形ABFE ,则矩形ABDC ∽矩形FDCE ,则 AB BD DF DC= 设DF=xcm ,得到:68=x 6 解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm 1. 【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.10.C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt △ADE 可得AD=2DE=2,根据题意可得△ADB 为等腰三角形,则DE 为AB 的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.11.C【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->V ,求得 0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--,∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->V ,得0a >, ∵121224x x x x <<+<,,∴1222x x ,->-∴m n >,故选C .点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大, 12.D【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】移项得,2x <1+1,合并同类项得,2x <2,x 的系数化为1得,x <1. 在数轴上表示为:.故选D .【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(52,0) 【解析】试题解析:过点B 作BD ⊥x 轴于点D ,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD ,在△ACO 与△BCD 中,OAC BCD AOC BDC AC BC ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△ACO ≌△BCD (AAS )∴OC=BD ,OA=CD ,∵A (0,2),C (1,0)∴OD=3,BD=1,∴B (3,1),∴设反比例函数的解析式为y=k x , 将B (3,1)代入y=k x , ∴k=3,∴y=3x, ∴把y=2代入y=3x , ∴x=32, 当顶点A 恰好落在该双曲线上时, 此时点A 移动了32个单位长度, ∴C 也移动了32个单位长度, 此时点C 的对应点C′的坐标为(52,0) 故答案为(52,0). 14.3:2【解析】 因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 15.0.50【解析】【分析】 直接使用科学计算器计算即可,结果需保留二位有效数字.【详解】用科学计算器计算得0.5,故填0.50,【点睛】此题主要考查科学计算器的使用,注意结果保留二位有效数字. 16.:k<1.【解析】【详解】∵一元二次方程220x x k-+=有两个不相等的实数根,∴△=24b ac-=4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为k<1.17.5:1【解析】【分析】根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.【详解】解:作AE∥BC交DC于点E,交DF于点F,设每个小正方形的边长为a,则△DEF∽△DCN,∴EFCN=DFDN=13,∴EF=13 a,∵AF=2a,∴AE=53 a,∵△AME∽△BMC,∴AMBM=AEBC=534aa=512,故答案为:5:1.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.【解析】试题分析:因为△ABC中,AB=AC,∠A=36°所以∠ABC=∠ACB=72°因为BD平分∠ABC交AC于点D所以∠ABD=∠CBD=36°=∠A因为DE平分∠BDC交BC于点E所以∠CDE=∠BDE=36°=∠A所以AD=BD=BC根据黄金三角形的性质知,,,所以考点:黄金三角形点评:黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°.它的腰与它的底成黄金比.当底角被平分时,角平分线分对边也成黄金比,三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)1.【解析】试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B 落在点E 处,∴∠E=∠B ,AB=AE ,∴AE=CD ,∠E=∠D ,在△AEF 与△CDF 中,∵∠E=∠D ,∠AFE=∠CFD ,AE=CD ,∴△AEF ≌△CDF ;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF ≌△CDF ,∴AF=CF ,EF=DF ,∴DF 2+CD 2=CF 2,即DF 2+42=(8﹣DF )2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S △ACE ﹣S △AEF =12×4×8﹣12×4×3=1. 点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.20.(1)y=﹣12x 1﹣1x+6;(1)72<y <558;(3)(0,4). 【解析】【分析】(1)利用对称轴公式求出m 的值,即可确定出解析式;(1)根据x 的范围,利用二次函数的增减性确定出y 的范围即可;(3)根据题意确定出D 与A 坐标,进而求出直线AD 解析式,设出E 坐标,利用对称性确定出E 坐标即可.【详解】(1)∵抛物线对称轴为直线x=﹣1,∴﹣122m ⨯-()=﹣1,即m=﹣1,则二次函数解析式为y=﹣12x 1﹣1x+6;(1)当x=﹣12时,y=558;当x=1时,y=72. ∵﹣12<x <1位于对称轴右侧,y 随x 的增大而减小,∴72<y <558; (3)当x=﹣1时,y=8,∴顶点D 的坐标是(﹣1,8),令y=0,得到:﹣12x 1﹣1x+6=0,解得:x=﹣6或x=1.∵点A 在点B 的左侧,∴点A 坐标为(﹣6,0).设直线AD 解析式为y=kx+b ,可得:2860k b k b -+=⎧⎨-+=⎩,解得:212k b =⎧⎨=⎩,即直线AD 解析式为y=1x+11. 设E (0,n ),则有E′(﹣4,n ),代入y=1x+11中得:n=4,则点E 坐标为(0,4).【点睛】本题考查了抛物线与x 轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键. 21.水坝原来的高度为12米【解析】试题分析:设BC=x 米,用x 表示出AB 的长,利用坡度的定义得到BD=BE ,进而列出x 的方程,求出x的值即可.试题解析:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水坝原来的高度为12米..考点:解直角三角形的应用,坡度.22.﹣1【解析】【分析】根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.【详解】原式=﹣1+3﹣1×3=﹣1.【点睛】本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.23.(1)12;(2)见解析;(3)83【解析】【分析】(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.【详解】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==12;(2)连接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(3)设AD=x,则BD=2x,∴AB=x=10,∴x=2,∴AD=2,同理得:AF=2,DF=4,∵AF∥OD,∴△AFE∽△ODE,∴,∴=,∴EF=83.【点睛】本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.24.(1)画图见解析;(2)画图见解析;(35【解析】【分析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论.【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得5【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.25.(1)一台A 型无人机售价800元,一台B 型无人机的售价1000元;(2)①y =﹣200x+50000;②购进A 型、B 型无人机各16台、34台时,才能使总费用最少.【解析】【分析】(1)根据3台A 型无人机和4台B 型无人机共需6400元,4台A 型无人机和3台B 型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;(2)①根据题意可以得到y 与x 的函数关系式;②根据①中的函数关系式和B 型无人机的数量不少于A 型无人机的数量的2倍,可以求得购进A 型、B 型无人机各多少台,才能使总费用最少.【详解】解:(1)设一台A 型无人机售价x 元,一台B 型无人机的售价y 元,346400436200x y x y +=⎧⎨+=⎩, 解得,8001000x y =⎧⎨=⎩, 答:一台A 型无人机售价800元,一台B 型无人机的售价1000元;(2)①由题意可得,y 800x 100050x 200x 50000++=(﹣)=﹣,即y 与x 的函数关系式为y 200x 50000+=﹣; ②∵B 型无人机的数量不少于A 型无人机的数量的2倍,50x 2x ﹣∴≥, 解得,2163x ≤, y 200x 50000+Q =﹣,∴当x 16=时,y 取得最小值,此时y 20016500004680050x 34⨯+=﹣=,﹣=, 答:购进A 型、B 型无人机各16台、34台时,才能使总费用最少.【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.26.(1)此人所在P 的铅直高度约为14.3米;(2)从P 到点B 的路程约为17.1米【解析】分析:(1)过P 作PF ⊥BD 于F ,作PE ⊥AB 于E ,设PF =5x ,在Rt △ABC 中求出AB ,用含x 的式子表示出AE ,EP ,由tan ∠APE ,求得x 即可;(2)在Rt △CPF 中,求出CP 的长.详解:过P 作PF ⊥BD 于F ,作PE ⊥AB 于E ,∵斜坡的坡度i =5:1,设PF =5x ,CF =1x ,∵四边形BFPE 为矩形,∴BF =PEPF =BE.在RT △ABC 中,BC =90,tan ∠ACB =AB BC, ∴AB =tan63.4°×BC≈2×90=180,∴AE =AB -BE =AB -PF =180-5x ,EP =BC +CF≈90+10x.在RT △AEP 中,tan ∠APE =1805490123AE x EP x -≈=+, ∴x =207, ∴PF =5x =10014.37≈. 答:此人所在P 的铅直高度约为14.3米.由(1)得CP=13x,∴CP=13×20737.1,BC+CP=90+37.1=17.1.答:从P到点B的路程约为17.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长. 27.3【解析】【分析】先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果.【详解】﹣16+(﹣12)﹣2﹣3﹣2|+2tan60°=﹣1+4﹣(233,=﹣1+4﹣333【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则.。
河南省新乡市2019-2020学年中考一诊数学试题含解析
河南省新乡市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则»AB的长等于()A.πB.2πC.3πD.4π2.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=3;④∠ACB=50°.其中错误的是()A.①②B.②④C.①③D.③④3.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤23-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个4.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7D.4<m≤75.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-6.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD=.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A.19B.29C.23D.138.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤B.①②④C.①③④D.①③⑤9.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5sinαB.5sinαC.5cosαD.5cosα10.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A .90°-12α B .90°+12α C .2α D .360°-α11.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内12.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,则该三角形的周长为( ) A .14B .12C .12或14D .以上都不对二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知y 与x 的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数:__________.14.如图,PC 是⊙O 的直径,PA 切⊙O 于点P ,AO 交⊙O 于点B ;连接BC ,若32C ∠=︒,则A ∠=______.15.和平中学自行车停车棚顶部的剖面如图所示,已知AB =16m ,半径OA =10m ,高度CD 为____m .16.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x≥0)与22x y 5=(x≥0)于B 、C 两点,过点C作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DEAB=_.17.若a ﹣3有平方根,则实数a 的取值范围是_____. 18.如图所示,点C 在反比例函数ky (x 0)x=>的图象上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB BC =,已知AOB V 的面积为1,则k 的值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)(本题满分8分)如图,四边形ABCD 中,,E 是边CD 的中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC 是平行四边形;(2)若△BCD 是等腰三角形,求四边形BDFC 的面积.20.(6分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.(6分)已知OA ,OB 是⊙O 的半径,且OA ⊥OB ,垂足为O ,P 是射线OA 上的一点(点A 除外),直线BP 交⊙O 于点Q ,过Q 作⊙O 的切线交射线OA 于点E .(1)如图①,点P 在线段OA 上,若∠OBQ=15°,求∠AQE 的大小; (2)如图②,点P 在OA 的延长线上,若∠OBQ=65°,求∠AQE 的大小. 22.(8分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n (n >10,且n 为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)23.(8分)已知抛物线y =ax 2+(3b+1)x+b ﹣3(a >0),若存在实数m ,使得点P (m ,m )在该抛物线上,我们称点P (m ,m )是这个抛物线上的一个“和谐点”. (1)当a =2,b =1时,求该抛物线的“和谐点”;(2)若对于任意实数b ,抛物线上恒有两个不同的“和谐点”A 、B . ①求实数a 的取值范围; ②若点A ,B 关于直线y =﹣x ﹣(21a +1)对称,求实数b 的最小值.24.(10分)解方程组:220 7441x yx y++=⎧⎨-=-⎩.25.(10分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?26.(12分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点P 为AB 边上的定点,且AP=AD.求证:PD=AB.如图(2),若在“完美矩形“ABCD 的边BC 上有一动点E,当BECE的值是多少时,△PDE 的周长最小?如图(3),点Q 是边AB 上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE 并延长交AB 的延长线于点F,连接CF,G 为CF 的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.27.(12分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77整理、描述数据将成绩按如下分段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据圆周角得出∠AOB=60°,进而利用弧长公式解答即可.【详解】解:∵∠ACB=30°,∴∠AOB=60°,∴»AB 的长=606180π⨯=2π, 故选B . 【点睛】此题考查弧长的计算,关键是根据圆周角得出∠AOB =60°. 2.B 【解析】 【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可. 【详解】 如图所示,由题意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B 在C 处的北偏西50°,故①正确; ∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A 在B 处的北偏西120°,故②错误; ∵∠1=∠2=60°, ∴∠BAC=30°, ∴cos ∠BAC=3,故③正确; ∵∠6=90°﹣∠5=40°,即公路AC 和BC 的夹角是40°,故④错误. 故选B .【点睛】本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解. 3.C 【解析】 【分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误; ②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴-2ba=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0), ∴a-b+c=3a+c=0, ∴a=-3c. 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点), ∴2≤c≤3, ∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ), ∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确; ④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点, 又∵a <0, ∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.4.A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解:解不等式3x﹣m+1>0,得:x>1 3m-,∵不等式有最小整数解2,∴1≤13m-<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.5.C【解析】【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.6.D【解析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.7.D【解析】【分析】连接OC 、OD 、BD ,根据点C ,D 是半圆O 的三等分点,推导出OC ∥BD 且△BOD 是等边三角形,阴影部分面积转化为扇形BOD 的面积,分别计算出扇形BOD 的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC 、OD 、BD ,∵点C 、D 是半圆O 的三等分点,∴»»»==AC CDDB , ∴∠AOC=∠COD=∠DOB=60°,∵OC=OD ,∴△COD 是等边三角形,∴OC=OD=CD ,∵2CD =,∴2OC OD CD ===,∵OB=OD ,∴△BOD 是等边三角形,则∠ODB=60°,∴∠ODB=∠COD=60°,∴OC ∥BD ,∴=V V BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD , 飞镖落在阴影区域的概率21233ππ=÷=, 故选:D .【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.8.D【解析】【分析】根据题意,得到P 、Q 分别同时到达D 、C 可判断①②,分段讨论PQ 位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P 在DC 上时,存在△BPQ 与△BEA 相似的可能性,分类讨论计算即可.【详解】解:由图象可知,点Q 到达C 时,点P 到E 则BE=BC=10,ED=4故①正确则AE=10﹣4=6t=10时,△BPQ 的面积等于111040,22BC DC DC ⋅=⨯⋅= ∴AB=DC=8 故124,2ABE S AB AE =⋅=V 故②错误当14<t <22时,()1110221105,22y BC PC x t =⋅=⨯⨯-=- 故③正确;分别以A 、B 为圆心,AB 为半径画圆,将两圆交点连接即为AB 垂直平分线则⊙A 、⊙B 及AB 垂直平分线与点P 运行路径的交点是P ,满足△ABP 是等腰三角形此时,满足条件的点有4个,故④错误.∵△BEA 为直角三角形∴只有点P 在DC 边上时,有△BPQ 与△BEA 相似由已知,PQ=22﹣t ∴当AB PQ AE BC=或AB BC AE PQ =时,△BPQ 与△BEA 相似分别将数值代入822 610t-=或810 622t =-,解得t=13214(舍去)或t=14.1故⑤正确故选:D.【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.9.D【解析】【分析】利用所给的角的余弦值求解即可.【详解】∵BC=5米,∠CBA=∠α,∴AB=BCcosα=5cosα.故选D.【点睛】本题主要考查学生对坡度、坡角的理解及运用.10.C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=12(360°﹣α)=180°﹣12α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣12α)=12α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.11.C【解析】【分析】利用图中信息一一判断即可.【详解】解: A 、正确.不符合题意.B 、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m 3的持续时间达到了11min ,正确,不符合题意;C 、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;D 、正确.不符合题意,故选C.【点睛】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型. 12.B【解析】【详解】解方程212350x x -+=得:x=5或x=1.当x=1时,3+4=1,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y=-x+2(答案不唯一)【解析】①图象经过(1,1)点;②当x >1时.y 随x 的增大而减小,这个函数解析式为 y=-x+2,故答案为y=-x+2(答案不唯一).14.26°【解析】【分析】根据圆周角定理得到∠AOP=2∠C=64°,根据切线的性质定理得到∠APO=90°,根据直角三角形两锐角互余计算即可.【详解】由圆周角定理得:∠AOP=2∠C=64°.∵PC 是⊙O 的直径,PA 切⊙O 于点P ,∴∠APO=90°,∴∠A=90°﹣∠AOP=90°﹣64°=26°.故答案为:26°.【点睛】本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.15.1.【解析】【分析】由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD =OC−OD求出CD.【详解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半径OA=10m,∴OD2222OA AD108-=-=6,∴CD=OC﹣OD=10﹣6=1(m).故答案为1.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.16.5【解析】试题分析:本题我们可以假设一个点的坐标,然后进行求解.设点C的坐标为(1,15),则点B的坐标为(515),点D的坐标为(1,1),点E51),则5,51,则DEAB=55.考点:二次函数的性质17.a≥1.【解析】【分析】根据平方根的定义列出不等式计算即可. 【详解】根据题意,得30.a-≥解得: 3.a≥故答案为 3.a≥【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.18.1【解析】【分析】根据题意可以设出点A 的坐标,从而以得到点C 和点B 的坐标,再根据AOB V 的面积为1,即可求得k 的值.【详解】解:设点A 的坐标为()a,0-,Q 过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB BC =,AOB V 的面积为1,∴点k C a,a ⎛⎫ ⎪⎝⎭, ∴点B 的坐标为k 0,2a ⎛⎫ ⎪⎝⎭, 1k a 122a∴⋅⋅=, 解得,k 4=,故答案为:1.【点睛】本题考查了反比例函数系数k 的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)6或【解析】试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.试题解析:(1)证明:∵∠A=∠ABC=90°∴AF ∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E 是边CD 的中点∴CE=DE∴△BCE ≌△FDE (AAS )∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=∴四边形BDFC的面积为S=×3=6;②若BD=DC过D作BC的垂线,则垂足为BC得中点,不可能;③若BC=DC过D作DG⊥BC,垂足为G在Rt△CDG中,DG=∴四边形BDFC的面积为S=.考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积20.(1)15人;(2)补图见解析.(3)1 2 .【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=31 62 .【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.21.(1)30°;(2)20°;【解析】【分析】(1)利用圆切线的性质求解;(2) 连接OQ,利用圆的切线性质及角之间的关系求解。
【附五套中考模拟卷】2019年河南省新乡市中考数学一模试卷
2019年河南省新乡市中考数学一模试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.下列各数中,最小的数是()A.﹣ B.﹣1 C.﹣|﹣| D.3﹣22.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×1063.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.4.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④ B.①③ C.①② D.③④5.有15位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8分获奖名额,甲同学知道自己的分数后,若要判断自己能否获奖,那么在15位同学成绩统计数据中,只要知道这组数据的()A.平均数B.中位数C.众数 D.方差6.如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠CDB=∠BFD B.△BAC∽△OFD C.DF∥AC D.OD=BC7.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24 C.6 D.128.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1 D.x<﹣1或x>59.如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB 长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是()A.B.3 C.D.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y 与x的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.|﹣3|0+= .12.写一个你喜欢的整数m的值,使关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,m= .13.用m、n、p、q四把钥匙去开A、B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能打开一把锁”的概率是.14.如图,菱形ABCD,∠A=60°,AB=4,以点B为圆心的扇形与边CD相切于点E,扇形的圆心角为60°,点E 是CD的中点,图中两块阴影部分的面积分别为S1,S2,则S2﹣S1= .15.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI 与边CD交于点H,折痕为EF,则AE= 时,△EGH为等腰三角形.三、解答题(本题共8小题,满分75分)16.先化简(﹣)÷然后代入合适的x值求值,整数x满足﹣.(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?18.如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.(1)求证:DE是⊙O的切线.(2)填空:①当∠CAB= 时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH的长(,要求结果精确得到0.1m)20.在平面直角坐标系内,双曲线:y=(x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有艘,乙型货轮有艘(用含有m 的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?22.如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.(1)发现:在图1中, = ;(2)应用:如图2,将△ADE绕点A旋转,请求出的值;(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出的值.23.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下列各数中,最小的数是()A.﹣ B.﹣1 C.﹣|﹣| D.3﹣2【考点】2A:实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣|﹣|<﹣1<﹣<3﹣2,∴各数中,最小的数是﹣|﹣|.故选:C.2.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14.2万=142000=1.42×105.故选:A.3.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.【解答】解:该几何体的左视图是:故选B.4.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④ B.①③ C.①② D.③④【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:①原式不能合并,不符合题意;②原式=﹣8a6,符合题意;③原式=3x4,不符合题意;④原式=xy5,符合题意,故选A5.有15位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8分获奖名额,甲同学知道自己的分数后,若要判断自己能否获奖,那么在15位同学成绩统计数据中,只要知道这组数据的()A.平均数B.中位数C.众数 D.方差【考点】WA:统计量的选择.【分析】由于比赛设置了8个获奖名额,共有15名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:B.6.如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠CDB=∠BFD B.△BAC∽△OFD C.DF∥AC D.OD=BC【考点】S8:相似三角形的判定;MC:切线的性质.【分析】根据切线的性质、直径的性质、相似三角形的判定和性质等知识,一一判断即可.【解答】解:∵AD是切线,∴OD⊥DF,∵AC⊥OD,∴DF∥AC,故C正确,∴∠F=∠CAB,∵∠CDB=∠CBA,∴∠CDB=∠BFD,故A正确,∵AB是直径,∴∠AEO=∠ACB=90°,∴OE∥BC,∴△BAC∽△OAE,∵△OAE∽△OFD,∴△BAC∽△OFD,故B正确,无法证明OD=BC,故选D.7.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24 C.6 D.12【考点】G6:反比例函数图象上点的坐标特征;G5:反比例函数系数k的几何意义.【分析】设点M的坐标为(m,n),由点M为线段AB的中点即可得知点A(2m,0)、点B(0,2n),再根据反比例函数图象上点的坐标特征结合三角形的面积即可求出S△AOB的值.【解答】解:设点M的坐标为(m,n),则点A(2m,0),点B(0,2n),∵点M在双曲线y=(x>0)上,∴mn=6,∴S△AOB=OA•OB=2mn=12.故选D.8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1 D.x<﹣1或x>5【考点】HC:二次函数与不等式(组).【分析】根据二次函数的对称性求出与x轴的另一个交点坐标,然后根据函数图象写出x轴上方部分的x的取值范围即可.【解答】解:由图可知,对称轴为直线x=2,∵抛物线与x轴的一个交点坐标为(5,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),又∵抛物线开口向下,∴不等式ax2+bx+c>0的解集是﹣1<x<5.故选A.9.如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB 长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是()A.B.3 C.D.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KO:含30度角的直角三角形.【分析】先根据直角三角形的性质求出AB的长,再由作法可知DE是线段AB的垂直平分线,故可得出BD=AD,BE=AE,再由直角三角形的性质即可得出结论.【解答】解:∵△ABC中,∠C=90°,∠A=30°,BC=2,∴AB=2BC=4.∵DE是线段AB的垂直平分线,∴BD=AD=AB=2,BE=AE,∴∠ABE=∠A=30°,∴BE===.故选A.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y 与x的函数关系的图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】连接DE,根据折叠的性质可得∠CPD=∠C′PD,再根据角平分线的定义可得∠BPE=∠C′PE,然后证明∠DPE=90°,从而得到△DPE是直角三角形,再分别表示出AE、CP的长度,然后利用勾股定理进行列式整理即可得到y与x的函数关系式,根据函数所对应的图象即可得解.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=﹣x2+x(0<x<5),纵观各选项,只有D选项符合.故选:D.二、填空题(每小题3分,共15分)11.|﹣3|0+= ﹣1 .【考点】24:立方根;6E:零指数幂.【分析】根据题目中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:|﹣3|0+=1+(﹣2)=﹣1,故答案为:﹣1.12.写一个你喜欢的整数m的值,使关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,m= 1 .【考点】AA:根的判别式.【分析】根据根的判别式求出m<,答案不唯一,只要取小于的整数就可以.【解答】解:∵关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,∴△=(﹣3)2﹣4×1×2m=9﹣8m>0,解得:m<,取m=1,故答案为:1.13.用m、n、p、q四把钥匙去开A、B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能打开一把锁”的概率是.【考点】X6:列表法与树状图法.【分析】画树状图展示所有8种等可能的结果数,再找出取一把钥匙恰能打开一把锁”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有8种等可能的结果数,其中取一把钥匙恰能打开一把锁”的结果数为2,所以取一把钥匙恰能打开一把锁”的概率==,故答案为:.14.如图,菱形ABCD,∠A=60°,AB=4,以点B为圆心的扇形与边CD相切于点E,扇形的圆心角为60°,点E是CD的中点,图中两块阴影部分的面积分别为S1,S2,则S2﹣S1= 2﹣π.【考点】MC:切线的性质;L8:菱形的性质;MO:扇形面积的计算.【分析】连接BE,由以点B为圆心的扇形与边CD相切于点E,得到在菱形ABCD中,∠A=60°,AB=4,求得BE⊥CD,由点E是CD的中点,得到CE=CD=2,BE=2,∠EBC=30°,于是得到结论.【解答】解:连接BE,∵以点B为圆心的扇形与边CD相切于点E,∵在菱形ABCD中,∠A=60°,AB=4,∴BE⊥CD,∵点E是CD的中点,∴CE=CD=2,BE=2,∠EBC=30°,∵扇形的圆心角为60°,∴S2﹣S1=×CE•BE﹣=2×2﹣π=2﹣π.故答案为:2﹣π.15.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE= 4﹣2 时,△EGH为等腰三角形.【考点】PB:翻折变换(折叠问题);KI:等腰三角形的判定;LB:矩形的性质.【分析】根据余角的性质得到∠AEG=∠DGH,根据全等三角形的性质得到DG=AE,由折叠的性质得到BE=GE,根据勾股定理列方程即可得到结论.【解答】解:∵在矩形ABCD中,∠A=∠D=∠B=∠EGH=90°,∴∠AGE+∠AEG=∠AGE+∠DGH=90°,∴∠AEG=∠DGH,∵△EGH为等腰三角形,∴EG=GH,在△AEG与△DGH中,,∴△AEG≌△DGH,∴DG=AE,∵AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,∴BE=GE,∴BE=8﹣AE,∴AG=AE+2,∵AG2+AE2=GE2,∴(AE+2)2+AE2=(8﹣AE)2,∴AE=4﹣2,∴AE=4﹣2时,△EGH为等腰三角形.故答案为:4﹣2.三、解答题(本题共8小题,满分75分)16.先化简(﹣)÷然后代入合适的x值求值,整数x满足﹣.【考点】6D:分式的化简求值;2B:估算无理数的大小.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的x的值代入求值即可,注意整数x满足﹣.【解答】解:(﹣)÷==2(x﹣2)﹣(x+2)=2x﹣4﹣x﹣2=x﹣6,∵x满足﹣,∴当x=1时,原式=1﹣6=﹣5.(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【考点】VC:条形统计图;V2:全面调查与抽样调查;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.18.如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.(1)求证:DE是⊙O的切线.(2)填空:①当∠CAB= 45°时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为正方形.【考点】MR:圆的综合题.【分析】(1)连接OD后,证明△DOE≌△BOE后,可得∠OBE=∠ODE=90°,所以DE是⊙O的切线;(2)①由(1)可知:∠ODE=90°,要使四边形AOED是平行四边形,即需要DE∥AO,所以需要∠AOD=90°,又因为OA=OD,所以∠CAB=45°;②由①可知:四边形OBED是矩形,又因为OD=OB,所以四边形OBED是正方形.【解答】解:(1)连接OD,∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∠BOE=∠BAC,∠DOE=∠ADO,∵OD=OA,∴∠BAC=∠ADO,∴∠BOE=∠DOE,在△DOE与△BOE中,,∴△DOE≌△BOE,∴∠OBE=∠ODE=90°,∴DE是⊙O的切线;(2)①当∠CAB=45°时,∴∠ADO=45°,∴∠AOD=90°,又∵∠EDO=90°,∴DE∥AB,∵OE∥AC,∴四边形AOED是平行四边形;②由①可知:∠EDO=∠DOB=∠ABC=90°,∴四边形OBED是矩形,∵OD=OB,∴矩形OBED是正方形.故答案为:①45°;②正方形.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH的长(,要求结果精确得到0.1m)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先过点D作DE⊥AH于点E,设DE=xm,则CE=(x+2)m,解Rt△AEC和Rt△BED,得出AE=(x+2),BE=x,根据AE﹣BE=10列出方程(x+2)﹣x=10,解方程求出x的值,进而得出GH的长.【解答】解:如图,过点D作DE⊥AH于点E,设DE=xm,则CE=(x+2)m.在Rt△AEC和Rt△BED中,有tan30°=,tan60°=,∴AE=(x+2),BE=x,∵AE﹣BE=AB=10,∴(x+2)﹣x=10,∴x=5﹣3,∴GH=CD+DE=2+5﹣3=5﹣1≈7.7(m).答:GH的长约为7.7m.20.在平面直角坐标系内,双曲线:y=(x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知==3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.【解答】解:(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴==3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y=(x>0)(2)由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB=×3×3+×(1+3)×6+×1×1=17,∴四边形OCDB的面积是17(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有16﹣0.5m 艘,乙型货轮有4﹣0.5m 艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设用乙、丙两种型号的货轮分别为x艘,y艘,根据题意列方程组即可得到结论;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,根据题意列不等式得到m=2,4,6,设集团的总利润为w,于是得到结论.【解答】解:(1)设用乙、丙两种型号的货轮分别为x艘,y艘,则,解得:,答:用2艘乙种型号的货轮,6艘丙种型号的货轮;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,则4﹣0.5m+m≤16﹣0.5m,解得:m≤12,∵m为正整数,(16﹣0.5m)与94﹣0.5m)均为正整数,∴m=2,4,6,设集团的总利润为w,则w=10×5(16﹣0.5m)+5×3.6(4﹣0.5m)+7.5×4m=﹣4m+872,当m=2时,集团获得最大利润,最大利润为8.64亿元.故答案为:16﹣0.5m,4﹣0.5m.22.如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.(1)发现:在图1中, = ;(2)应用:如图2,将△ADE绕点A旋转,请求出的值;(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出的值.【考点】SO:相似形综合题.【分析】(1)如图1中,作DH⊥BC于H,连接AM.只要证明四边形MNDH时矩形,即可解决问题.(2)如图2中,连接AM、AN.只要证明△BAD∽△MAN,利用相似比为即可解决问题.(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.由△BAD∽△MAN,推出==sin∠ABC,只要证明△ABC时等腰直角三角形即可解决问题.【解答】解:(1)如图1中,作DH⊥BC于H,连接AM.∵AB=AC,BM=CM,∴AM⊥BC,∵△ADE时等边三角形,∴∠ADE=60°=∠B,∴DE∥BC,∵AM⊥BC,∴AM⊥DE,∴AM平分线段DE,∵DN=NE,∴A、N、M共线,∴∠NMH=∠MND=∠DHM=90°,∴四边形MNDH时矩形,∴MN=DH,∴==sin60°=,故答案为.(2)如图2中,连接AM、AN.∵△ABC,△ADE都是等边三角形,BM=MC,DN=NE,∴AM⊥BC,AN⊥DE,∴=sin60°,=sin60°,∴=,∵∠MAB=∠DAN=30°,∴∠BAD=∠MAN,∴△BAD∽△MAN,∴==sin60°=.(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.∵AB=AC,AD=AE,BM=CM,DN=NE,∴AM⊥BC,AN⊥DE,∵∠BAC=∠DAE,∴∠ABC=∠ADE,∴sin∠ABM=sin∠ADN,∴=,∵∠BAM=BAC,∠DAN=∠DAE,∴∠BAM=∠DAN,∴∠BAD=∠MAN.∴△BAD∽△MAN,∴==sin∠ABC,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE,∴∠ABD=∠ACE,∵BD⊥CE,∴∠BHC=90°,∴∠ACE+∠COH=90°,∵∠AOB=∠COH,∴∠ABD+∠AOB=90°,∴∠BAO=90°,∵AB=AC,∴∠ABC=45°,∴=sin45°=.23.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标;(3)P、B重合,E点在x轴上,这样A、P、E三点在x轴上,所以A、P、E、F为顶点不可能构成平行四边形,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F 点的坐标.【解答】解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).中考数学模拟试卷一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............) 1.-2的相反数是( )A .-2B .2C .21-D .212.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab23.如图1,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其主视图是( )4.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .5.已知一组数据x 1,x 2,x 3的平均数为8,方差为3.2,那么数据x 1-2, x 2-2,x 3-2的平均数和方差分别是( ) A .6,2 B .6,3.2 C .8,2 D .8,3.2 6.根据函数表达式21x y =,下列关于函数21xy =图像特征叙述错误..的是( ) A .图像位于第一、二象限 B .图像既没有最高点,也没有最低点C .图像与直线y=x+2有两个公共点D .图像关于y 轴对称二、填空题(本题共10小题,每题3分,计30分,请将答案写在答题卡上相应横线上)7.请你写出一个大于0且小于3的无理数为 ▲ .8.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为 ▲ .9.若二次函数y=x 2+2x+m 的图像与 x 轴有公共点,则m 的取值范围是 ▲ . 10.如图2,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是 ▲ .11.如图,已知l 1∥l 2,直线l 与l 1、l 2相交于C 、D 两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= ▲ . 12.如果α、β是方程x 2﹣2x ﹣1=0的两个实数根,那么代数式α2﹣3α-β的值是 ▲ .13.我们规定:当k ,b 为常数,k≠0,b≠0,k≠b 时,一次函数y=kx+b 与y=bx+k 互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx-2与它的交换函数图象的交点横坐标为 ▲ .14.如图4,扇形AOB 中,OA=5,∠AOB=36°.若将此扇形绕点B 顺时针旋转,得一新扇形A′O′B,其中A 点在O′B 上,则点O 的运动路径长为 ▲ cm .(结果保留π)图215.如图5,在Rt△ABC 中,∠C=90°,∠A=α,分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,交点分别为M 、N ,过M 、N 作直线交AB 于点D ,交AC 于点E .若tan α=31,则tan2α= ▲ .16.如图6,在正方形ABCD 内有一条折线段,其中AE ⊥EF ,EF ⊥FC ,且AE=6,EF=6,FC=2,则正方形与其外接圆之间形成的阴影部分面积为 ▲ . 三、解答题(本题共11小题,共102分,请在答题卡上写出相应的解答过程) 17.(本题满分6分)计算:|﹣tan450|﹣38+(﹣2018)0.18.(本题满分6分)解不等式组⎪⎩⎪⎨⎧-≤+->+x x x x 237121)1(315,并写出所有的整数解.19.(本题满分8分)先化简,再求值:(x ﹣xy xy 22-)÷xyx y x +-222,其中x=23+,y=23-.20.(本题满分8分)如图7,点O 是△ABC 内一点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,得到四边形DEFG .(1)求证:四边形DEFG 是平行四边形;(2)若M 为EF 的中点,OM =3,∠OBC 和∠OCB 互余,求DG 的长度.M 图7C AM图4第16题21.(本题满分9分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案) 22.(本题满分9分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图8①和图8②,请根据相关信息,解答下列问题:(1)图1中a 的值为 ;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛. 23.(本题满分10分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台? 24.(本题满分10分)如图9,直线y=k 1x (x ≥0)与双曲线y=22k (x >0)相交于点P (2,4).已知点A (4,0),B (0,3),连接AB ,将Rt △AOB 沿OP 方向平移,使点O 移动到点P ,得到△A'PB'.过点A'作A'C ∥y 轴交双曲线于点C . (1)求k 1与k 2的值;(2)求直线PC 的表达式;(3)直接写出线段AB 扫过的面积.图8①图8②。
【精选3份合集】河南省新乡市2019年中考一模数学试卷有答案含解析
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.10000x﹣10=14700(140)0x+B.10000x+10=14700(140)0x+C.10000(140)0x-﹣10=14700xD.10000(140)0x-+10=14700x解析:B【解析】【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.2.下列计算或化简正确的是()A.=B=C .2(3)3-=-D .2733÷=解析:D【解析】 解:A .不是同类二次根式,不能合并,故A 错误;B .822= ,故B 错误;C .2(3)3-=,故C 错误;D .27327393÷=÷==,正确.故选D .3.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°解析:C【解析】 分析:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C .4.下列命题中真命题是( )A .若a 2=b 2,则a=b B .4的平方根是±2C .两个锐角之和一定是钝角D .相等的两个角是对顶角解析:B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.5.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.解析:A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.7.如图,△ABC 中,∠B=70°,则∠BAC=30°,将△ABC 绕点C 顺时针旋转得△E DC .当点B 的对应点D 恰好落在AC 上时,∠CAE 的度数是( )A .30°B .40°C .50°D .60°解析:C【解析】【分析】 由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE ,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC 绕点C 顺时针旋转得△EDC.∴AC=CE ,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.812233499100+++++L 的整数部分是( ) A .3B .5C .9D .6 解析:C【解析】 21+2123+3299100+=991002﹣3299100=﹣1+10=1.故选C .9.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3B .a <3C .a≥3D .a≤3解析:D【解析】分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.详解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选D.点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b解析:A【解析】【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.【详解】由数轴可知,b<a<0<c,∴c-a>0,a+b<0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A.【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.11.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.。
2019年河南省新乡市卫辉市中考数学一模试卷解析版
2019年河南省新乡市卫辉市中考数学一模试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的.)1.(3分)下列各数中,最大的数是()A.|﹣2|B.﹣C.D.﹣π2.(3分)2018年12月18日中国球员周琦被休斯顿火箭队正式裁员,当日在各大搜索引擎中输入“周琦”,能搜索到与之相关的网页约84000000个,将这个数用科学记数法表示为()A.8.4×105B.8.4×106C.8.4×107D.8.4×1083.(3分)如图所示是正方形的展开图,原正方体相对两个面上的数字之和的最大值是()A.5B.6C.7D.84.(3分)下列计算正确的是()A.a6÷a2=a3B.(﹣3a2)3=﹣27a6C.a2+2a2=3a4D.(a+2b)2=a2+4b25.(3分)某中学为了调查学生备战中考体育的训练情况,特抽查了40名学生进行了模拟测试(满分70分),体育组根据抽测成绩制成如表格:则这批考生模拟成绩的中位数和众数分别是()A.59,59B.59,62C.62,67D.62,626.(3分)如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x,宽为y,则依据题意可得二元一次方程组为()A.B.C.D.7.(3分)已知关于x的一元二次方程mx2﹣2x﹣1=0有实数根,则m的取值范围是()A.m≤1且m≠0B.x≥1C.m≥﹣1D.m≥﹣1且m≠0 8.(3分)在一个不透明的纸箱里有四个除了标记数字不同之外其他完全相同的小球,上面标记数字1,2,3,4,现在从中先后随机抽出两个小球,则两球上数字之和能被3整除的概率为()A.B.C.D.9.(3分)如图所示,菱形ABOC如图所置,其一边OB在x轴上,将菱形ABOC绕点B顺时针旋转75°至FBDE的位置,若BO=2,∠A=120°,则点E的坐标为()A.()B.()C.()D.()10.(3分)如图所示,已知△ABC与△DEF均为等边三角形,且AB=2,DB=1,现△ABC 静止不动,△DEF沿着直线EC以每秒1个单位的速度向右移动设△DEF移动的时间为x,△DEF与△ABC重合的面积为y,则能大致反映y与x函数关系的图象是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算=.12.(3分)如图所示,四边形ABCD为矩形,AE⊥EG,已知∠1=25°,则∠2=13.(3分)不等式组的解集为.14.(3分)在Rt△ABC中,AB=2,AC=4,将△ABC绕点C顺时针旋转,A、B的对应点分别为D、E,当B、C、D三点在同一直线上时旋转停止,此时线段AB扫过的阴影面积为.15.(3分)如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中.17.(9分)为了响应上级教委的“海航招飞”号召,某校从九年级应届男生中抽取视力等生理指标合格的部分学生进行了文化课初检,教务处负责同志将测測试结果分为四个等级:甲、乙、丙、丁,然后将相关数据整理为两幅不完整的统计图,请依据相关信息解答下列问题:(1)本次参加文化课初检的男生人数为;(2)扇形图中m的数值为,把条形统计图补充完整;(3)据统计,全省生理指标过关的九年级男生有2400名左右,若规定文化课等级为“甲”“乙”的可进行文化课二检,请估计进入二检的男生有;(4)本次抽检进入“甲”等的4名男生中九(1)、九(2)班各占2名,若从“甲”等学生中随机抽取两名男生进行调研,请用树形图表示抽到的两名男生恰为九(1)班的概率.18.(9分)如图所示,函数y1=kx+b的图象与函数(x<0)的图象交于A(a﹣2,3)、B(﹣3,a)两点.(1)求函数y1、y2的表达式;(2)过A作AM⊥y轴,过B作BN⊥x轴,试问在线段AB上是否存在点P,使S△P AM =3S△PBN?若存在,请求出P点坐标;若不存在,请说明理由.19.(9分)如图所示,以BC为直径的⊙O中,点A、E为圆周上两点,过点A作AD⊥BC,垂足为D,作AF⊥CE的延长线于点F,垂足为F,连接AC、AO,已知BD=EF,BC =4.(1)求证:∠ACB=∠ACF;(2)当∠AEF=°时,四边形AOCE是菱形;(3)当AC=时,四边形AOCE是正方形.20.(9分)夏季多雨,在山坡CD处出现了滑坡,为了测量山体滑坡的坡面长度CD,探测队在距离坡底C点米处的E点用热气球进行数据监测,当热气球垂直升腾到B点时观察滑坡的终端C点,俯视角为60°,当热气球继续垂直升腾90米到达A点,此时探测到滑坡的始端D点,俯视角为45°,若滑坡的山体坡角∠DCH为30°,求山体滑坡的坡面长度CD的长.(计算保留根号)21.(10分)小王从同事小李手中接收一批生产任务,派单方要求必须在15天内完成,届时承以每件60元的价格全部回收,小王在接受任务之后,其生产的任务y(件)与生产的天数x(天)关系如图1所示,其中在生产6天之后,每天的生产数量达到了30件.(1)求y与x之间的函数表达式;(2)设第x天生产的产品成本为m元/件,m与x的函数图象如图2所示,若小王第x 天的利润为W元,求W与x的关系式,并求出第几天后小王的利润可达到最大值,最大值为多少?22.(10分)如图所示,在Rt△ABC中,∠ABC=90°,BF为斜边上的高,在射线AB上有点D,连接DF,作∠DFE=90°,FE交射线BC于点E.【问题发现】如图1所示,如果AB=CB,则DF与EF的数量关系为DF EF(选填>,<,=)【类比探究】如图2所示,如果改变Rt△ABC中两直角边的比例,使得AB=2BC,则DF与EF还存在①中的关系吗?【拓展延伸】如图3所示,在Rt△ABC中,如果已知BC=,AB=3,EF=,试求BD的长.23.(11分)如图所示,菱形ABCD位于平面直角坐标系中,抛物线y=ax2+bx+c经过菱形的三个顶点A、B、C,已知A(﹣3,0)、B(0,﹣4).(1)求抛物线解析式;(2)线段BD上有一动点E,过点E作y轴的平行线,交BC于点F,若S△BOD=4S△EBF,求点E的坐标;(3)抛物线的对称轴上是否存在点P,使△BPD是以BD为斜边的直角三角形?如果存在,求出点P的坐标;如果不存在,说明理由.2019年河南省新乡市卫辉市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的.)1.【解答】解:∵|﹣2|=2,2>﹣>﹣>﹣π,∴最大的数是:|﹣2|.故选:A.2.【解答】解:84000000个,将这个数用科学记数法表示为8.4×107.故选:C.3.【解答】解:由正方体的展开可知:2与4是对面,3与5是对面,1和6是对面;∴两个对面的数字和最大为8;故选:D.4.【解答】解:A、a6÷a2=a4,故此选项错误;B、(﹣3a2)3=﹣27a6,故此选项正确;C、a2+2a2=3a2,故此选项错误;D、(a+2b)2=a2+4ab+4b2,故此选项错误;故选:B.5.【解答】解:67分15人,众数为67分;数据从小到大依次排列,第20、21个数据均为62分,中位数为62分;故选:C.6.【解答】解:设每一个小长方形的长为x,宽为y,依题意,得:.故选:A.7.【解答】解:∵关于x的一元二次方程mx2+2x﹣1=0有两实数根,∴,解得:m≥﹣1且m≠0.故选:D.8.【解答】解:画树状图为:共有12种等可能的结果数,其中两球上数字之和能被3整除的结果数为4,两球上数字之和能被3整除的概率==.故选:B.9.【解答】解:过C作CG⊥OB于G,过E作EH⊥OB于H,在菱形ABOC中,∵∠A=120°,AC∥BO,∴∠ABO=60°,∴∠CBO=30°,∵BO=CO=2,∠COG=60°,在Rt△COG中,OG=OC•cos60°=1,∴BG=1+2=3,在Rt△BCG中,BC==2,∵∠HBE=75°﹣30°=45°,在Rt△BHE中,BH=HE=BE•sin45°=2×=,∴OH=﹣2,∴点E的坐标为(﹣2,﹣).故选:A.10.【解答】解:由题意知:在△DEF移动的过程中,重叠部分总为等腰三角形.当0<x≤1时,此时重合部分的边长为x,则y=;当1<x≤2时,此时重合部分的边长为1,则y=;当2<x≤3时,此时重合部分的边长为x,则y=.由以上分析可知,这个分段函数的图象左边为抛物线的一部分且开口向上,中间为一条线段,右边为抛物线的一部分且开口向下.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=﹣1=﹣.故答案为:﹣.12.【解答】解:∵四边形ABCD是矩形∴AD∥BC∴∠DFE=∠2∵∠DFE=∠1+∠E=115°∴∠2=115°故答案为:115°13.【解答】解:,由①得,x≤,由②得,x>﹣,所以,不等式组的解集﹣<x≤.故答案为:﹣<x≤.14.【解答】解:∵在Rt△ABC中,AB=2,AC=4,∴sin∠ACB=,BC==2,∴∠ACB=30°,∴∠DCE=∠ACB=30°,∴∠ACD=∠BCE=150°,∴S阴影=﹣=,故答案为:.15.【解答】解:按两种情况分析:①点F在线段BC上,如图所示,由折叠性质可知∠A=∠DFE=60°∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C ∴△BDF∽△CFE∴∵AB=4,BF:FC=1:3∴BF=1,CF=3设AE=x,则EF=AE=x,CE=4﹣x∴解得BD=,DF=∵BD+DF=AD+BD=4∴解得x=,经检验当x=时,4﹣x≠0∴x=是原方程的解②当点F在线段CB的延长线上时,如图所示,同理可知△BDF∽△CFE∴∵AB=4,BF:FC=1:3,可得BF=2,CF=6设AE=a,可知AE=EF=a,CE=a﹣4∴解得BD=,DF=∵BD+DF=BD+AD=4∴解得a=14经检验当a=14时,a﹣4≠0∴a=14是原方程的解,综上可得线段AE的长为或14故答案为或14三、解答题(本大题共8个小题,满分75分)16.【解答】解:===a+1,当时,原式=﹣1+1=.17.【解答】解:(1)14÷35%=40,所以本次参加文化课初检的男生人数为40人;(2)甲等级的百分比=×100%=10%,所以m°=360°×10%=36°,即m的值为36;丙等级的人数为40×25%=10(人),补全条形统计图:(3)2400×=1080,所以估计进入二检的男生有1080人;故答案为40人;36;1080人;(4)画树状图为:(用A、B表示九(1)的两名学生;用a、b表示九(2)的两名学生)共有12种等可能的结果数,其中抽到的两名男生恰为九(1)班的结果数为2,所以抽到的两名男生恰为九(1)班的概率==.18.【解答】解:(1)∵A、B两点在函数(x<0)的图象上,∴3(a﹣2)=﹣3a=m,∴a=1,m=﹣3,∴A(﹣1,3),B(﹣3,1),∵函数y1=kx+b的图象过A、B点,∴,解得k=1,b=4∴y1=x+4,y2=﹣;(2)由(1)知A(﹣1,3),B(﹣3,1),∴AM=BN=1,∵P点在线段AB上,∴设P点坐标为(x,x+4),其中﹣1≤x≤﹣3,则P到AM的距离为h A=3﹣(x+4)=﹣x﹣1,P到BN的距离为h B=3+x,∴S△PBN=BN•h B=×1×(3+x)=(x+3),S△P AM=AM•h A=×1×(﹣x﹣1)=﹣(x+1),∵S△P AM=3S△PBN,∴﹣(x+1)=(x+3),解得x=﹣,且﹣1≤x≤﹣3,符合条件,∴P(﹣,),综上可知存在满足条件的点P,其坐标为(﹣,).19.【解答】(1)证明:∵∠ABC+∠AEC=∠AEC+∠AEF=180°,∴∠ABC=∠AEF,在△ABD和△AEF中,,∴△ABD≌△AEF(ASA)∴AB=AE,∴∠ACB=∠ACF;(2)60,如图所示,连接OE,∵四边形AOCE是菱形,∴OA=OC=CE=AE,∵OC=CE=OE,∴△ECO是等边三角形,∴∠OCE=60°,∴AE∥BC,∴∠AEF=∠OCE=60°.故答案为:60;(3)2,∵BC=4,∴OC==2,∵四边形AOCE是正方形,∴∠AOC=90°,∴.故答案为:2.20.【解答】解:作DG⊥AE于G,DF⊥EH于F,则四边形GEFD为矩形,∴GE=DF,GD=EF,设DF=a米,则GE=a,在Rt△DCF中,∠DCF=30°,∴CD=2DF=2a,CF=a,∴EF=EC+CF=120+a,∵AM∥GD,∴∠ADG=∠MAD=45°,∴AG=DE=EF=120+a,∵BN∥EF,∴∠BCE=∠NBC=60°,在Rt△BEC中,tan∠BCE=,BE=EC•tan60°=120×=360,AG=AB+BE﹣GE=450﹣a,∴450﹣a=120+a,解得,a=285﹣405,∴CD=2a=570﹣810,答:山体滑坡的坡面长度CD的长为(570﹣810)米.21.【解答】解:(1)①当1≤x≤6时,设函数的表达式为:y=kx+b,由题意得:,解得:,y1=20x+90(1≤x≤6);②当6<x≤15时,同理可得:y2=30x+30(6<x≤15);故函数的表达式为:y=;(2)①当1≤x≤6时,m1=35,②当6<x≤15时,同理可得:m2=x+29(6<x≤15),故m=;故当1≤x≤6时,每件产品的利润为60﹣35=25,总利润W1=25(20x+90)=500x+2250(1≤x≤6);当6<x≤15时,每件产品的利润为60﹣(x+29)=﹣x+31,W2=(30x+30)(﹣x+31)=﹣30(x﹣15)2+7680(6<x≤15),故当x=15时,函数有最大值7680,故:第15天后小王的利润可达到最大值,最大值为7680.22.【解答】解:【问题发现】DF与EF的数量关系为DF=EF,理由是:如图1,∵∠ABC=90°,AB=CB,∴△ABC是等腰直角三角形,∵BF⊥AC,∴AF=CF=BF,∠ABF=∠CBF=45°,∵∠AFD+∠BFD=∠BFD+∠BFE=90°,∴∠AFD=∠BFE,在△ADF和△BEF中,∵,∴△ADF≌△BEF(SAS),∴DF=EF,故答案为:=;【类比探究】不存在①中的关系,关系为:DF=2EF,理由是:如图2所示,∵∠A+∠ABF=∠A+∠C=90°,∴∠ABF=∠C,∵∠A=∠A,∴△ABC∽△AFB,∴,∴,∵∠A+∠ABF=∠ABF+∠CBF=90°,∴∠A=∠CBF,∵∠AFD+∠BFD=∠BFD+∠BFE=90°,∴∠AFD=∠BFE,在△ADF和△BEF中,∵,∴△ADF∽△BEF,∴,∵,AB=2BC,∴,∴DF=2EF;【拓展延伸】连接DE,设CE=a,由以上结论可知:=====,∵EF=,CE=a,∴BD=a,DF==,在Rt△DBE中,∠DBE=90°,得BD2+BE2=DE2,在Rt△DFE中,∠DFE=90°,得DF2+EF2=DE2,∴BD2+BE2=DF2+EF2,即=,整理得:,解得:a1=,a2=(舍),∴BD=a=.23.【解答】解:(1)∵点A的坐标为(﹣3,0),点B的坐标为(0,﹣4),∴OA=3,OB=4,∴AB==5.∵四边形ABCD为菱形,∴AD∥BC,BC=AB=5,∴点C的坐标为(5,﹣4).将A(﹣3,0),B(0,﹣4),C(5,﹣4)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣x﹣4.(2)∵EF∥OB,AD∥BC,∴∠OBD=∠FEB,∠ODB=∠FBE,∴△BOD∽△EFB,∴=()2.∵S△BOD=4S△EBF,∴OD=2BF.∵AD=AB=5,OA=3,∴OD=2,∴点D的坐标为(2,0),BF=1.设直线BD的解析式为y=kx+d(k≠0),将B(0,﹣4),D(2,0)代入y=kx+d,得:,解得:,∴直线BD的解析式为y=2x﹣4.当x=1时,y=2x﹣4=﹣2,∴点E的坐标为(1,﹣2).(3)∵抛物线解析式为y=x2﹣x﹣4,∴抛物线的对称轴为直线x=﹣=.设点P的坐标为(,m),∵点B的坐标为(0,﹣4),点D的坐标为(2,0),∴BP2=(﹣0)2+[m﹣(﹣4)]2=m2+8m+,DP2=(﹣2)2+(m﹣0)2=m2+,BD2=(2﹣0)2+[0﹣(﹣4)]2=20.∵△BPD是以BD为斜边的直角三角形,∴BP2+DP2=BD2,即m2+8m++m2+=20,整理,得:4m2+16m+5=0,解得:m1=,m2=,∴抛物线的对称轴上存在点P,使△BPD是以BD为斜边的直角三角形,点P的坐标为(,)或(,).。
河南省新乡市2019届九年级第一次调研考试数学试题及答案(扫描版)
数学参考答案一、选择题(每小题3分,共30分)1. D2. B3. C4. C5. B6. D7. A8. C9. B 10. A二、填空题(每小题3分,共15分)11. 4 12. 94 13. a <1且a≠0 14. 23π+ 15. 178或52三、解答题(本大题共8个小题,满分75分)16.(8分)原式=()()()()22336333a aa a a a-++⋅+-+=))2633aa a a a+++=()()233aa a++=2a,…5分当时,原式8分17.(9分)解:(1)a=120×40%=48,m=24÷120×100%=20%;………………………2分(2)补充完整统计图如下:…………………………………………4分(3)360°×20%=72°;………………………………………………………………………6分(4)365×(15%+12.5%+7.5%+5%)=146(天)………………………………………9分18.(9分)解:(1)证明:连接AE,∵AB是⊙O的直径,∴AE⊥PB.∵PA=AB,∴∠PAE=∠BAE,∴DE=BE,∴DE BEOE OEOD OB=⎧⎪=⎨⎪=⎩,∴△DOE≌△BOE,∴∠EDO=∠EBO.…………………………………5分(2) ①8;②4.………………………………………………………………………………9分19.(9分)解:过点A作AF⊥CD,垂足为F.则AF=BC=50 m,在Rt△ADF中,∵∠DAF=37°,∴DF=AF×tan37°=50 tan37°m.………………………………………………………………3分在Rt△BCD中,∵∠DBC=60°,∴DC=BC·tan60°=m.∴CF=DC-DF=050tan37≈49.0≈49m.……………………………………………7分∴AB=CF≈49m.DC=86.5≈87m∴甲楼的高度约为87m,乙楼的高度约为49m.…………………………………………9分20. (9分)解:(1)设AB 的解析式为y ax b =+,A 0),B 点坐标(0,1),代入可得a= ,b=1,AB 的解析式为1y x =-+,………………………………………………………………2分∴tanOB OAB OA ∠===,∴∠OAB=30°. ∵△ABC 是等边三角形,∴∠BAC=60°,AB=AC ,∴∠OAC=∠BAC+∠OAB=60°+30°=90°.在Rt △BOA 中,2AB ==.∴AC=AB=2,∴C 2).又∵点C 在反比例函数k y x=的图象上,∴∴反比例函数的解析式为y =.…………………………………………………………5分(2)∵P (m ),当△ADP ∽△AOB 时,PD AD BO AO =,即1m =m=1,点P (,1);当△PDA ∽△AOB 时,PD ADAO BO ==m=3,点P (,3).把P (,1)代入y =得,1=P (,1)在反比例函数图象上.把P (,3)代入y =得,3≠,∴点P (,3)不在反比例函数图象上.综上,P 点坐标为(,1). ……………………………………………………………9分21. (9分)解:(1)设A 品牌文具袋单价为x 元,B 品牌文具袋单价为y 元,可得:51253490x+5y=x+y=⎧⎨⎩,解之得1015x=y=⎧⎨⎩答:购进A 品牌文具袋和B 品牌文具袋的单价分别为10元和15元;…………………4分(2)①利润为y ,则可得:y=(12﹣10)x+(23﹣15)(100﹣x )=2x+800﹣8x=﹣6x+800,即y=﹣6x+800………………………………………………………………………6分 ②由题意得(12﹣10)x+(23﹣15)(100﹣x )≤40%[10x+15(100﹣x )],解得:x≥50. ……………………………………………………………………………8分因为y=﹣6x+800,k=-6<0,所以当x=50时,利润最大,最大利润=﹣50×6+800=500元. 即:购进A 品牌文具袋50个,B 品牌文具袋50个时,其所获利润的最大,最大值为500元. ……………………………………………………………………………………………10分22. (10分)(1)结论:∠MNF=45°,NF=MN .………………………………………2分(2)结论不变.∠MNF=45°,NF=MN . 理由:如图2中,连接BD 、MF ,连接CE 交MN 于G ,交BD 于H ,交BA 于O .图2E D C∵AB=AC ,AE=AD ,∠CAB=∠EAD=90°,∴∠CAE=∠BAD ,在△CAE 和△BAD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△CAE ≌△BAD ,∴CE=BD ,∠CEA=∠BDA ,∠ACE=∠ABD ,………………………………………6分 ∵∠ACO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠HBO=90°,∴∠BHO=90°,∵BM=MC ,BF=FE ,∴MF=CE ,MF ∥CE ,∴∠NMF=∠NGE ,∵CN=ND ,CM=MB ,∴MN=BD ,MN ∥BD ,∴∠NGE=∠BHG=90°,MF=MN ,∴∠NMF=90°,∴△MNF 是等腰直角三角形,∴∠MNF=45°,NF=MN .………………………8分(3)4. …………………………………………………………………………………10分【提示】如图3中,图3C由题意可知点E 在以A 为圆心2为半径的圆上运动,当CP 与⊙A 相切时,∠BCP 的值最小,此时点P 到BC 的距离最小,因为BC=4是定值,所以此时△BCP 的面积最小.由(2)可知CP ⊥BD ,△CAE ≌△BAD ,∴∠AEP=∠EAD=∠BDA=90°,∴四边形EADP 是矩形,∵AE=AD ,∴四边形EADP 是正方形,∴EA=AD=EP=PD=2,在Rt △CAE 中,∵CA=4,AE=2,∴CE=BD=2,∴CP=2+2,BP=2﹣2, ∴S △BCP =•CP•BP=•(2+2)(2﹣2)=4.故答案为4. 23. (11分)(1)直线y=-34x+m 经过点C ,交x 轴于E(4,0),把E(4,0)代入直线y=-34x+m 可得,m=3,即点C 为(0,3),∴c=3,抛物线y=-x 2+bx+c 经过点B (3,0),把B (3,0)代入直线y=-x 2+bx+3可得,b=2,∴抛物线的解析式为y=-x 2+2x+3;……………………………………………………3分(2)∵y=-x 2+2x+3=-(x-1)2+4,∴D (1,4),当y=0时,-x 2+2x+3=0,解得x 1=-1,x 2=3,则A(- 1,0),设直线BD 的解析式为y=ax+b ,把B (3,0),D (1,4)分别代入得,a=-2,b=6∴直线BD 的解析式为y=-2x+6(1<x<3),………………………………………………5分 则M (x ,-2x+6),∴梯形OCMN 的面积S=12(MN+CO)×ON=12×(-2x+6+3)×x= -x 2+92x (1<x<3); 当x= -b 2a = 94时,面积S 取的最大值,最大面积为:S= -(94)2+94×92 = 8116.∴S 与x 之间的函数关系式为S= -x 2+92x (1<x<3); S 的最大值为8116;…………………7分(3)点P 的坐标为(32,0)或(4,0).………………………………………………11分【提示】∵△CGH沿CH翻转,G的对应点为F,F′落在y轴上,而PH⊥x轴,∴GH∥CF,HG=HF,CF=CG,∠CHG=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠CHF,∴CF=HF,∴HG=CG,设P(x,0),那么有G(x,- 34x+3),H(x,-x2+2x+3),C(0,3)∴HG=| -x2+2x+3-(- 34x+3)|=| x2-114x|,过点G作GI⊥y轴于I,GI=x,则CG=5 4 x∴| x2-114x|=54x当x2-114x=54x时,解得x=0或4,此时P点坐标为(4,0);当x2-114x=-54x时,解得t=0或32,此时P点坐标为(32,0),综上所述,点P的坐标为(32,0)或(4,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年河南省新乡市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−12的绝对值等于()A. −2B. 2C. −12D. 122.据海关统计,今年1月份,我国货物贸易进出口总值2.73万亿元人民币,比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A. 2.73×1011B. 2.73×1012C. 2.73×1013D. 0.273×10133.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A. B. C. D.4.如图,直线CE∥AB,直线CD交CE于C,交AB于O,过点O作OT⊥AB于O,已知∠ECO=30°,则∠DOT的度数为()A. 30∘B. 45∘C. 60∘D. 120∘5.上篮球课时,某小组8位男生的各10次投篮的成绩如下所示,则这组数据的众数和中位数分别是()12345678成绩(m)396651087A. 5,6B. 6,6.5C. 7,6D. 8,6.56.不等式组{x+1≥03x−2<1的解集在数轴上表示正确的是()A. B.C. D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD的长度为()A. 6√3B. 6C. 3√3D. 38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A. 12B. 13C. 14D. 169.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A. (1,√3)B. (2,2√3)C. (4,4√3)D. (8,8√3)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A. √34B. √32C. 2D. √3二、填空题(本大题共5小题,共15.0分)11.计算:(12-π)0-√−273=______.12.如图,△ABC中,以点B为圆心,任意长为半径作弧,分别交AB,BC于E、F点,分别以点E、F为圆心,以大于12EF的长为半径作弧,两弧交于点G,做射线BG,交AC于点D,过点D作DH∥BC交AB于点H.已知HD=3,BC=7,则AH的长为______.13.如果函数y=-2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是______.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为______.15.如图,在Rt△ABC中,∠C=90°,点D、E分别是BC、AB上一个动点,连接DE.将点B沿直线DE折叠,点B的对应点为F,若AC=3,BC=4,当点F落在AC的三等分点上时,BD的长为______.第2页,共23页三、计算题(本大题共1小题,共8.0分) 16. 先化简,再求值:2a−6a 2−9+a+39÷a 2+6a+96,其中a =√3.四、解答题(本大题共7小题,共67.0分)17. 为了了解大气污染情况,某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数,绘制了如下不完整的统计图表: 空气质量指数统计表级别 指数 天数 百分比 优 0-50 24 m 良51-100a40% 轻度污染 101-150 18 15% 中度污染 151-200 15 12.5% 重度污染 201-300 9 7.5% 严重污染 大于300 6 5%合计120 100%请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a =______,m =______; (2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是______度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.18.如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为______;②当DE=______时,四边形OBED为菱形.19.如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)20.如图,直线AB经过A(√3,0)和B(0,1),点C在反比例函数y=k的图象上,且AC=BC=AB.x(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2√3,0)过点D作PD⊥x轴,当△PAD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请说明理由.第4页,共23页21.开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为______,线段MN和线段NF的数量关系为______;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP 面积的最小值为______.23.顶点为D的抛物线y=-x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=-34x+m 经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=-34x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.第6页,共23页答案和解析1.【答案】D【解析】解:∵|-|=,∴-的绝对值是.故选:D.计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.【答案】B【解析】解:数据2.73万亿元用科学记数法表示为2.73×1012.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:如图所示:图2的左视图为:.故选:C.由几何体形状直接得出其左视图,正方形上面有一条斜线.此题主要考查了简单组合体的三视图,正确注意观察角度是解题关键.4.【答案】C【解析】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT-∠DOB=90°-30°=60°.故选:C.由CE∥AB,根据两直线平行,同位角相等,即可求得∠BOD的度数,又由OT⊥AB,求得∠BOT的度数,然后由∠DOT=∠BOT-∠DOB,即可求得答案.此题考查了平行线的性质,垂直的定义.解题的关键是注意数形结合思想的应用,注意两直线平行,同位角相等.5.【答案】B【解析】解:将数据重新排列为3,5,6,6,7,8,9,10,所以这组数据的众数为6,中位数为=6.5(分),故选:B.根据众数和中位数的概念求解.本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.【答案】D【解析】解:解3x-2<1,得x<1;解x+1≥0,得x≥-1;不等式组的解集是-1≤x<1,故选:D.先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥第8页,共23页向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【答案】A【解析】解:∵四边形ABCD是菱形,∠ADC=60°,∴AC⊥BD,OA=OC,OB=OD,∠ADO=∠CDO=30°,∵AE=EB,BO=OD,∴AD=2OE=6,在Rt△AOD中,∵AD=6,∠AOD=90°,∠ADO=30°,∴OD=AD•cos30°=3,∴BD=2OD=6,故选:A.利用三角形中位线定理求出AD,再在Rt△AOD中,解直角三角形求出OD即可解决问题.本题考查菱形的性质,三角形的中位线定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】C【解析】解:画树状图如下:由树状图可知,共有12种等可能结果,其中标号数字和大于6的结果数为3,所以标号数字和大于6的概率为=,故选:C.利用树状图法列举出所有可能,进而求出概率.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】C【解析】解:如图,设BG=x,∵△OBC是等边三角形,∴∠BOC=∠B=∠C=60°,∵DE⊥OC于点E,EF⊥BC于点F,FG⊥OB,∴∠BFG=∠CEF=∠ODE=30°,∴BF=2x,∴CF=12-2x,∴CE=2CF=24-4x,∴OE=12-CE=4x-12,∴OD=2OE=8x-24,当G与D重合时,OD+BG=OB,∴8x-24+x=12,解得x=4,∴OD=8x-24=32-24=8,∴OE=4,DE=4,∴D(4,4).故选:C.设BG=x,依据∠BFG=∠CEF=∠ODE=30°,可得BF=2x,CF=12-2x,CE=2CF=24-4x,OE=12-CE=4x-12,OD=2OE=8x-24,再根据当G与D重合时,OD+BG=OB列方程,即可得到x的值,进而得出点D的坐标.本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.10.【答案】A【解析】由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2∴等边三角形ABC的高为∴等边三角形ABC的面积为由图2可知,x=1时△EFG的面积y最小此时AE=AG=CG=CF=BG=BE显然△EGF是等边三角形且边长为1第10页,共23页所以△EGF的面积为故选:A.本题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG的长度,求出等边三角形EFG的最小面积.本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.11.【答案】4【解析】解:(-π)0-=1+3=4.故答案为:4.本题涉及三次根式化简、零指数幂2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握三次根式、零指数幂等考点的运算.12.【答案】94【解析】解:由题意可知射线BG是∠ABC的平分线,∴∠ABD=∠CBD而DH∥BC∴∠HDB=∠CBD∴∠ABD=∠HDB∴HB=HD=3又∵DH∥BC∴△AHD∽△ABC∴即:得AH=故答案为.根据题意可知射线BG是∠ABC的平分线,从而可得△HBD是等腰三角形,且HD=HB,再根据相似三角形对应边成比例可求AH的长.本题考查的是相似三角形的判定与性质,利用相似三角形对应边成比例进行解题是关键.13.【答案】a<1【解析】解:当a=0时,两直线y=-2x和y=1只有一个交点,当a≠0时,,由题意得,方程ax2+1=-2x有两个不同的实数根,∴△=4-4a>0,解得:a<1.故答案为:a<1.当a=0时,两直线y=-2x和y=1只有一个交点,则当a≠0时,先联立抛物线与直线的解析式得出关于x的方程,再由直线y=-2x和抛物线有两个不同交点可知△>0,求出a的取值范围.主要考查的是函数图象的交点问题,两函数有两个不同的交点,则△>0.14.【答案】π3-2+√3【解析】解:作CK⊥BD于K.∵AB=AC=3,∴∠B=∠ACB=75°,∴∠BAC=180°-75°-75°=30°,在Rt△ACK中,CK=AC=1,AK=,∴BK=2-,∵CB=CD,CK⊥BD,∴BD=2BK=4-2,∠B=∠CDB=75°,∴ACE=∠BCD=30°,∴S阴=S△ABC+S扇形ACE-S△BCD-S△EDC第12页,共23页=-•(4-2)•1=-2+, 故答案为-2+.作CK ⊥BD 于K .根据S 阴=S △ABC +S 扇形ACE -S △BCD -S △EDC 计算即可. 本题考查旋转变换,扇形的面积,等腰三角形的性质,解直角三角形等知识,解题的关键是学会用分割法求阴影部分面积. 15.【答案】52或178【解析】解:∵折叠 ∴BD=DF ,∵点F 落在AC 的三等分点上 ∴CF=1或CF=2, 若CF=1时,在Rt △CDF 中,DF 2=CD 2+CF 2, ∴BD 2=(4-BD )2+1 ∴BD=当CF=2时,在Rt △CDF 中,DF 2=CD 2+CF 2, ∴BD 2=(4-BD )2+4 ∴BD= 故答案为:或由折叠的性质可得BD=DF ,由勾股定理可求BD 的长.本题考查了翻折变换,勾股定理,利用分类讨论思想解决问题是本题的关键.16.【答案】解:2a−6a −9+a+39÷a 2+6a+96 =2(a−3)(a+3)(a−3)+a+39•6(a+3)2第14页,共23页=2a+3+23(a+3) =83(a+3),当a =√3时,原式=3(√3+3)=12−4√39.【解析】根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入化简可得. 本题主要考查分式的混合运算-化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 17.【答案】48 20% 72【解析】解:(1)a=120×40%=48,m=24÷120=20%. 故答案为:48,20%;(2)如图所示:(3)360°×20%=72°. 故答案为:72; (4)365×=146(天).故答案为:146.(1)用24÷120,即可得到m ;120×40%即可得到a ; (2)根据a 的值,即可补全条形统计图;(3)用级别为“优”的百分比×360°,即可得到所对应的圆心角的度数; (4)根据样本估计总体,即可解答.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.【答案】8 4【解析】证明:(1)如图1,连AE,∵AB为⊙O的直径,∴∠AEB=90°,∵PA=AB,∴E为PB的中点,∵AO=OB,∴OE∥PA,∴∠ADO=∠DOE,∠A=∠EOB∵OD=OA,∴∠A=∠ADO,∴∠EOB=∠DOE,∵OD=OE=OB,∴∠EDO=∠EBO;(2)①∵AB=8,∴OA=4,当OA边上的高最大时,△AOD的面积最大(如图2),此时点D是的中点,∴OD⊥AB,∴;②如图3,当DE=4时,四边形OBED为菱形,理由如下:∵OD=DE=OE=4,∴△ODE是等边三角形,∴∠EDO=60°,由(1)知∠EBO=∠EDO=60°,∴OB=BE=OE,∴四边形OBED为菱形,故答案为:8;4.(1)如图1,连AE,由等腰三角形的性质可知E为PB中点,则OE是△PAB的中位线,OE∥PA,可证得∠DOE=∠EOB,则∠EDO=∠EBO可证;(2)如图2,由条件知OA=4,当OA边上的高最大时,△AOD的面积最大,可知点D 是的中点时满足题意,此时最大面积为8;(3)如图3,当DE=4时,四边形ODEB是菱形.只要证明△ODE是等边三角形即可解决问题.本题考查了圆周角定理、等腰三角形的性质、中位线定理、菱形的判定等知识,解题的关键是找准动点D在圆上的位置,灵活运用所学知识解决问题,第16页,共23页19.【答案】解:作AE ⊥CD 于E .则四边形ABCE 是矩形.在Rt △BCD 中,CD =BC •tan60°=50×√3≈87(米),在Rt △ADE 中,∵DE =AE •tan37°=50×0.75≈38(米), ∴AB =CE =CD -DE =87-38=49(米).答:甲、乙两楼的高度分别为87米,38米. 【解析】作AE ⊥CD 于E .则四边形ABCE 是矩形.解直角三角形分别求出CD ,DE 即可解决问题.本题考查解直角三角形的应用-仰角俯角问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【答案】解:(1)设直线AB 的解析式为y =k 'x +b ,将点A (√3,0)和B (0,1)代入y =k 'x +b 中,得{√3k′+b =0b =1,解得,{k′=−√33b =1,∴直线AB 的解析式为y =-√33x +1,∵A (√3,0)和B (0,1),∴OA =√3,OB =1,AB =√(√3)2+12=2, ∵AC =AB =2,在Rt △AOB 中,tan ∠OAB =OBOA =√33,∴∠OAB =30°, ∵AC =BC =AB ,∴△ABC 是等边三角形, ∴∠BAC =60°,∴∠OAC =∠OAB +∠BAC =90°, ∴AC ⊥x 轴, ∴C (√3,2),将点C 坐标代入y =kx 中,得k =2×√3=2√3, ∴反比例函数解析式为y =2√3x;第18页,共23页(2)由(1)知,OA =√3,OB =1, ∵点D 坐标为(2√3,0), ∴OD =2√3,∴AD =OD -OA =√3, ∵PD ⊥x 轴,∴∠ADP =90°=∠AOB , ∵当△PAD 与△OAB 相似时, ∴①当△ADP ∽△AOB 时,∴ADAO =DPOB , ∴√3√3=DP 1,∴DP =1,∴P (2√3,1), 当x =2√3时,y =1,∴点P (2√3,1),在反比例函数解析式为y =2√3x上;②当△ADP ∽△BOA 时,∴AD BO =DPOA , ∴√31=√3,∴DP =3,∴P (2√3,3),当x =2√3时,y =1≠3,∴点P (2√3,3),不在反比例函数解析式为y =2√3x上. 【解析】(1)将点A ,B 坐标代入y=k'x+b 中,求出k',b ,得出直线AB 解析式,再判断出∠AOC=90°,求出AC 的长,得出点C 坐标,即可得出结论;(2)分两种情况求出点P 坐标,代入反比例函数解析式中,判断即可得出结论. 此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,等边三角形的性质,锐角三角函数,用分类讨论的思想解决问题是解本题的关键.21.【答案】解:(1)设购进A 品牌文具袋的单价为x 元,购进B 品牌文具袋的单价为y 元,根据题意得, {3x +4y =905x+5y=125, 解得{y =15x=10,所以购进A 品牌文具袋的单价为10元,购进B 品牌文具袋的单价为15元;(2)①由题意可得,y=(12-10)x+(23-15)(100-x)=800-6x;②由题意可得,-6x+800≤40%[10x+15(100-x)],解得:x≥50,又由(1)得:w=-6x+800,k=-6<0,∴w随x的增大而减小,∴当x=50时,w达到最大值,即最大利润w=-50×6+800=500元,此时100-x=100-50=50个,答:购进A品牌文具袋50个,B品牌文具袋50个时所获利润最大,利润最大为500元.【解析】(1)设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为y元,列出方程组求解即可;(2)①把(1)得出的数据代入即可解答;②根据题意可以得到x的取值范围,然后根据一次函数的性质即可求得w的最大值和相应的进货方案.本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.22.【答案】45°NF=√2MN 4【解析】解:(1)如图1中,连接DB,MF,CE,延长BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠ABD+∠ADB=90°,∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.故答案为:45°(2):如图2中,连接MF,EC,BD.设EC交AB于O,BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠AOC+∠ACO=90°,∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.(3):如图3中,如图以A为圆心AD为半径作⊙A.第20页,共23页当直线PB与⊙A相切时,△BCP的面积最小,∵AD=AE,AB=AC,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD,BD=EC,∵∠ABD+∠AOB=90°,∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2,BD=EC==2,∴PC=2-2,PB=2+2,∴S△BCP的最小值=×PC×PB=(2-2)(2+2)=4.(1)如图1,连接DB,MF,CE,延长BD交EC于H.证明△BAD≌△CAE(SAS),推出BD=EC,∠ACE=∠ABD,再根据三角形中位线定理即可解决问题.(2)如图2,连接MF,EC,BD.设EC交AB于O,BD交EC于H.证明△BAD≌△CAE(SAS),推出BD=EC,∠ACE=∠ABD,再利用三角形中位线定理即可解决问题.(3)如图3中,如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A 相切时,△BCP的面积最小.第22页,共23页本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质和判定,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.【答案】解:(1)将点E 代入直线解析式中, 0=-34×4+m , 解得m =3,∴解析式为y =-34x +3,∴C (0,3),∵B (3,0),则有{0=−9+3b +c c=3解得{c =3b=2∴抛物线的解析式为:y =-x 2+2x +3.(2)∵y =-x 2+2x +3=-(x -1)2+4,∴D (1,4),设直线BD 的解析式为y =kx +b ,代入点B 、D ,{k +b =43k+b=0解得{b =6k=−2∴直线BD 的解析式为y =-2x +6,则点M 的坐标为(x ,-2x +6),∴S =(3+6-2x )•x •12=-(x -94)2+8116,∴当x =94时,S 有最大值,最大值为8116.(3)存在如图所示,设点P 的坐标为(t ,0),则点G (t ,-34t +3),H (t ,-t 2+2t +3),∴HG =|-t 2+2t +3-(-34t +3)|=|t 2-114t |CG =√t 2+(−34t +3−3)2=54t , ∵△CGH 沿GH 翻折,G 的对应点为点F ,F 落在y 轴上,而HG ∥y 轴,∴HG ∥CF ,HG =HF ,CG =CF ,∠GHC =∠CHF ,∴∠FCH =∠CHG ,∴∠FCH =∠FHC ,∴∠GCH =∠GHC ,∴CG =HG ,∴|t 2-114t |=54t ,当t 2-114t =54t 时,解得t 1=0(舍),t 2=4,此时点P (4,0).当t 2-114t =-54t 时,解得t 1=0(舍),t 2=32,此时点P (32,0).综上,点P 的坐标为(4,0)或(32,0).【解析】(1)将点E 代入直线解析式中,可求出点C 的坐标,将点C 、B 代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D 的坐标,设直线BD 的解析式,代入点B 、D ,可求出直线BD 的解析式,则MN 可表示,则S 可表示.(3)设点P 的坐标,则点G 的坐标可表示,点H 的坐标可表示,HG 长度可表示,利用翻折推出CG=HG ,列等式求解即可.此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG 为解题关键.。