江苏省泰州中学2019_2020学年高一数学下学期期中试题
新高一数学下期中模拟试卷及答案

新高一数学下期中模拟试卷及答案一、选择题1.已知直线l 过点(1,0),且倾斜角为直线0l :220x y --=的倾斜角的2倍,则直线l 的方程为( )A .4330x y --=B .3430x y --=C .3440x y --=D .4340x y --= 2.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 3.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( )A .48πB .24πC .16πD .4.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB 为等边三角形,三棱锥S ABC -的体积为3,则球O 的半径为( )A .3B .1C .2D .45.设α表示平面,a ,b 表示直线,给出下列四个命题:①a α//,a b b α⊥⇒//; ②a b //,a b αα⊥⇒⊥;③a α⊥,a b b α⊥⇒⊂;④a α⊥,b a b α⊥⇒//,其中正确命题的序号是( )A .①②B .②④C .③④D .①③ 6.已知圆()()22:341C x y -+-=和两点(),A m m -,(),B m m -()0m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .B .CD .7.用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形8.在三棱锥P ABC -中,PA ⊥平面1202ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM P ABC -的外接球的表面积是( )A .92πB .C .18πD .40π9.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A.1763B.1603C.1283D.3210.若方程21424x kx k+-=-+有两个相异的实根,则实数k的取值范围是()A.13,34⎛⎤⎥⎝⎦B.13,34⎛⎫⎪⎝⎭C.53,124⎛⎫⎪⎝⎭D.53,12411.如图,平面四边形ABCD中,1AB AD CD===,2BD=,BD CD⊥,将其沿对角线BD折成四面体A BCD'-,使平面A BD'⊥平面BCD,若四面体A BCD'-的顶点在同一个球面上,则该球的表面积为()A.3πB.3πC.4πD.3π12.如图,在三棱柱111ABC A B C-中,1CC⊥平面ABC,ABC是等腰三角形,BA BC=,123AC CC==,,D是AC的中点,点F在侧棱1A上,若要使1C F⊥平面BDF,则1AFFA的值为( )A .1B .12或2C .22或2D .13或3 二、填空题13.已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.14.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,M 为B 1C 1中点,连接A 1B ,D 1M ,则异面直线A 1B 和D 1M 所成角的余弦值为________________________.15.直线与圆交于两点,则________.16.三棱锥P ABC -中,5PA PB ==,2AC BC ==,AC BC ⊥,3PC =,则该三棱锥的外接球面积为________. 17.若直线l :-3y kx =与直线23-60x y +=的交点位于第一象限,则直线l 的倾斜角的取值范围是___________.18.正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上.若163P ABCD V ,则球O 的体积是______. 19.在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,且三棱锥的最长的棱长为2,则此三棱锥的外接球体积为_____________.20.已知四面体ABCD 的外接球球心O 在棱CD 上,AB=3,CD=2,则A 、B 两点在四面体ABCD 的外接球上的球面距离是________.三、解答题21.如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,//AB CD ,且22,22CD AB BC ===,90ABC ∠=︒,M 为BC 的中点.(1)求证:平面PDM ⊥平面PAM ;(2)若二面角P DM A --为30,求直线PC 与平面PDM 所成角的正弦值.22.如图,梯形ABCD 中,AB ∥CD ,,E F 是线段AB 上的两点,且DE AB ⊥,CF AB ⊥,12AB =,5AD =,42BC =,4DE =.现将△ADE ,△CFB 分别沿DE ,CF 折起,使两点,A B 重合于点G ,得到多面体CDEFG (1)求证:平面DEG ⊥平面CFG ;(2)求多面体CDEFG 的体积23.如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24=-l y x ,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.24.在正三棱柱111ABC A B C -中,点D 是BC 的中点.(1)求证:1A C //面1AB D ;(2)设M 是棱1CC 上的点,且满足1BM B D ⊥.求证:面1AB D ⊥面ABM .25.如图,已知四棱锥的底面是菱形,平面,点为的中点.(1)求证:∥平面;(2)求证:. 26.已知以点C (1,﹣2)为圆心的圆与直线x+y ﹣1=0相切.(1)求圆C 的标准方程;(2)求过圆内一点P (2,﹣)的最短弦所在直线的方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】设直线0l 的倾斜角为α,则斜率01tan 2k α==,所以直线l 的倾斜角为2α,斜率22tan 4tan 21tan 3k ααα===-,又经过点(1,0),所以直线方程为4(1)3y x =-,即4340x y --=,选D.2.B解析:B【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内.【考点定位】点线面的位置关系3.D解析:D【解析】【分析】根据球的性质可知球心O 与ABC ∆外接圆圆心O '连线垂直于平面ABC ;在Rt POE ∆和Rt OO A ∆'中利用勾股定理构造出关于半径R 和OO '的方程组,解方程组求得R ,代入球的体积公式可得结果.设O '为ABC ∆的外心,如下图所示:由球的性质可知,球心O 与O '连线垂直于平面ABC ,作OE AD ⊥于E设球的半径为R ,OO x '=ABC ∆为等边三角形,且3AB = 3AO '∴=OO '⊥平面ABC ,AD ⊥平面ABC ,OE AD ⊥OO AE x '∴==,3OE AO '==在Rt POE ∆和Rt OO A ∆'中,由勾股定理得:22222OE PE O O O A R ''+=+=,即()222363x x R +-=+= 解得:3x =,3R =∴球的体积为:343233V R ππ== 本题正确选项:D【点睛】本题考查棱锥外接球的体积求解问题,关键是能够确定棱锥外接球球心的位置,从而在直角三角形中利用勾股定理构造方程求得半径.4.C解析:C【解析】【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题.【详解】解:根据题意作出图形:设球心为O ,球的半径r .SC OA ⊥,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和.2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯=三棱锥三棱锥三棱锥,故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.5.B解析:B【解析】【分析】【详解】①a ∥α,a ⊥b ⇒b 与α平行,相交或b ⊂α,故①错误;②若a ∥b ,a ⊥α,由直线与平面垂直和判定定理得b ⊥α,故②正确;③a ⊥α,a ⊥b ⇒b 与α平行,相交或b ⊂α,故③错误;④若a ⊥α,b ⊥α,则由直线与平面垂直的性质得a ∥b ,故④正确.故选B .6.B解析:B【解析】【分析】根据使得90APB ∠=︒的点P 在以AB 为直径的圆上,再分析轨迹圆与圆C 的关系即可.【详解】由题, 使得90APB ∠=︒的点P 在以AB 为直径的圆上,又两点(),A m m -,(),B m m -, 所以圆心为()0,0.()222m m m +-=.故P 的轨迹方程为2222x y m +=. 又由题意知,当圆()()22:341C x y -+-=内切于222x y m +=时m 取最大值. 2223416m,故32m =故选:B【点睛】本题主要考查了圆与圆的位置关系,重点是根据90APB ∠=︒求出点P 的轨迹.属于中等题型.7.A解析:A【解析】【分析】【详解】画出截面图形如图显然A正三角形C正方形:D正六边形可以画出三角形但不是直角三角形;故选A.用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A.8.C解析:C【分析】首先确定三角形ABC 为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定球的表面积.【详解】解:如图所示:三棱锥P ABC -中,PA ⊥平面2,2ABC AP AB ==,,M 是线段BC 上一动点,线段PM 3则:当AM BC ⊥时,线段PM 达到最小值,由于:PA ⊥平面ABC ,所以:222PA AM PM +=,解得:1AM =, 所以:3BM =,则:60BAM ∠=︒,由于:120BAC ∠=︒,所以:60MAC ∠=︒则:ABC 为等腰三角形. 所以:23BC =在ABC 中,设外接圆的直径为2324r ==, 则:2r =, 所以:外接球的半径2229222R ⎛⎫=+= ⎪ ⎪⎝⎭, 则:94182S ππ=⋅⋅=, 故选:C .【点睛】本题考查的知识要点:三棱锥的外接球的球心的确定及球的表面积公式的应用. 9.B【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是32116042433-⨯⨯=,选B. 点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.10.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点,AD 221k =+,解得512AD k =, 4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦. 故选:D【点睛】本题考查直线与圆的位置关系,属于中档题.11.A解析:A【解析】【分析】设BC 的中点是E ,连接DE ,由四面体A′BCD 的特征可知,DE 即为球体的半径.【详解】设BC 的中点是E ,连接DE ,A′E,因为AB =AD =1,BD 由勾股定理得:BA⊥AD又因为BD⊥CD,即三角形BCD 为直角三角形所以DE 为球体的半径2DE =243S ππ== 故选A【点睛】 求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.12.B解析:B【解析】【分析】易证1BD C F ⊥,故要使1C F ⊥平面BDF ,只需1C F DF ⊥,然后转化到平面11AAC C 中,根据勾股定理计算,即可得结果.【详解】1CC ⊥平面ABC ,BD ⊂平面ABC ,所以1BD CC ⊥,又BA BC =,D 为AC 中点,所以BD AC ⊥,又1AC CC C =,所以BD ⊥平面11AAC C ,1C F 平面11AAC C ,所以1C F BD ⊥,因为DF BD D =,故要使1C F 平面BDF ,只需1C F DF ⊥,在四边形11AAC C 中,1231AC CC AD CD ====,,, 设AF x =,则13FA x =-,由22211C D DF C F =+得()()2219143x x ⎡⎤+=+++-⎣⎦, 即2320x x -+=,解得1x =或2x =,所以112AF FA =或者12AF FA =, 故选:B.【点睛】本题考查了棱柱的结构特征,考查了空间中直线与平面的垂直的性质,勾股定理,考查空间想象能力和推理能力,属于中档题.二、填空题13.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个 解析:相交【解析】【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为222:()(0)M x y a a a +-=>,则圆心为(0,)a ,半径R a =, 圆心到直线0x y +=的距离2d =,圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22222222a a ∴-即24a =,2a =,则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则2MN =3R r +=,1R r -=,R r MN R r ∴-<<+,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.14.【解析】【分析】连接取的中点连接可知且是以为腰的等腰三角形然后利用锐角三角函数可求出的值作为所求的答案【详解】如下图所示:连接取的中点连接在正方体中则四边形为平行四边形所以则异面直线和所成的角为或其 解析:10. 【解析】【分析】 连接1CD 、CM ,取1CD 的中点N ,连接MN ,可知11//A B CD ,且1CD M ∆是以1CD 为腰的等腰三角形,然后利用锐角三角函数可求出1cos CD M ∠的值作为所求的答案.【详解】如下图所示:连接1CD 、CM ,取1CD 的中点N ,连接MN ,在正方体1111ABCD A B C D -中,11//A D BC ,则四边形11A BCD 为平行四边形, 所以11//A B C D ,则异面直线1A B 和1D M 所成的角为1CD M ∠或其补角,易知1111190B C D BC C CDD ∠=∠=∠=,由勾股定理可得15CM D M ==12CDN 为1CD 的中点,则1MN CD ⊥,在1Rt D MN ∆中,11110cos 5D N CD M D M ∠==, 因此,异面直线1A B 和1D M 所成角的余弦值为105,故答案为105.【点睛】本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.15.22【解析】【分析】首先将圆的一般方程转化为标准方程得到圆心坐标和圆的半径的大小之后应用点到直线的距离求得弦心距借助于圆中特殊三角形半弦长弦心距和圆的半径构成直角三角形利用勾股定理求得弦长【详解】根 解析:【解析】【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长.【详解】 根据题意,圆的方程可化为, 所以圆的圆心为,且半径是, 根据点到直线的距离公式可以求得, 结合圆中的特殊三角形,可知,故答案为. 【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.16.【解析】【分析】由已知数据得两两垂直因此三棱锥外接球直径的平方等于这三条棱长的平方和【详解】∵∴∴又以作长方体则长方体的外接球就是三棱锥的外接球设外接球半径为则球表面积为故答案为:【点睛】本题考查球 解析:7π【解析】【分析】由已知数据得,,CA CB CP 两两垂直,因此三棱锥外接球直径的平方等于这三条棱长的平方和.【详解】 ∵5PA PB ==2AC BC ==3PC =,∴222222,PC CB PB PC CA PA +=+=,∴,PC CB PC CA ⊥⊥,又CA CB ⊥,以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球.设外接球半径为R ,则2222(2)7R CA CB CP =++=,7R =,球表面积为22744()7.2S R πππ==⨯= 故答案为:7π.【点睛】 本题考查球的表面积,解题关键是确定,,CA CB CP 两两垂直,以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球. 17.【解析】若直线与直线的交点位于第一象限如图所示:则两直线的交点应在线段上(不包含点)当交点为时直线的倾斜角为当交点为时斜率直线的倾斜角为∴直线的倾斜角的取值范围是故答案为解析:(,)62ππ 【解析】 若直线:3l y kx =-与直线2360x y +-=的交点位于第一象限,如图所示:则两直线的交点应在线段AB 上(不包含,A B 点), 当交点为()0,2A 时,直线l 的倾斜角为2π,当交点为()3,0B 时,斜率(03330k -==-l 的倾斜角为6π ∴直线的倾斜角的取值范围是,62ππ⎛⎫⎪⎝⎭. 故答案为,62ππ⎛⎫ ⎪⎝⎭ 18.【解析】【分析】正四棱锥底面的四个顶点在球的同一个大圆上则棱锥的高等于球的半径由此可由棱锥体积求得球的半径从而得球体积【详解】∵正四棱锥底面的四个顶点在球的同一个大圆上∴球心是正方形对角线交点是棱锥 解析:323π 【解析】【分析】正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,则棱锥的高等于球的半径,由此可由棱锥体积求得球的半径,从而得球体积.【详解】∵正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,∴球心O 是正方形ABCD 对角线交点,PO 是棱锥的高,设球半径为R ,则AB =,22)2ABCD S R ==,211162333P ABCD ABCD V S PO R R -==⨯⨯=,2R =, ∴3344322333V R πππ==⨯=球. 故答案为:323π. 【点睛】本题考查球的体积,考查正四棱锥与半球的截接问题.解题关键是确定球半径与正四棱锥中的线段长之间的关系.19.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接 解析:43π 【解析】【分析】根据题意可得,BC ⊥平面PAC ,所以BC PC ⊥,得出PB 为三棱锥的最长边,PA AB ⊥,根据直角三角形的性质,PB 边的中点到三棱锥的各顶点距离都相等,所以为球心,球直径即为PB .【详解】PA ⊥平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,,,AC BC PA AC A BC ⊥=∴⊥平面PAC ,BC PC ⊥,,,,,PB BC PB PC PA AC PC AC PC PA ∴>>⊥∴>>,所以三棱锥中最长边为2PB =,设PB 中点为O ,在,Rt PAB Pt PBC ∆∆中,12AO CO PB ==,所以三棱锥的外接球的球心为O , 半径为41,3V π∴=. 故答案为:43π. 【点睛】 本题考查几何体的“切”“接”球问题,确定球心是解题的关键,考查空间垂直的应用,属于中档题.20.【解析】【分析】根据球心到四个顶点距离相等可推断出O 为CD 的中点且OA =OB =OC =OD 进而在△A0B 中利用余弦定理求得cos ∠AOB 的值则∠AOB 可求进而根据弧长的计算方法求得答案【详解】解:球心 解析:23π 【解析】【分析】根据球心到四个顶点距离相等可推断出O 为CD 的中点,且OA =OB =OC =OD ,进而在△A 0B 中,利用余弦定理求得cos ∠AOB 的值,则∠AOB 可求,进而根据弧长的计算方法求得答案.【详解】解:球心到四个顶点距离相等,故球心O 在CD 中点,则OA =OB =OC =OD =1,再由AB =A 0B 中,利用余弦定理cos ∠AOB 11312112+-==-⨯⨯, 则∠AOB 23π=,则弧AB 23π=•123π=. 故答案为:23π. 【点睛】本题主要考查了余弦定理的应用、四面体外接球的性质等,考查了学生观察分析和基本的运算能力. 三、解答题21.(1)详见解析;(2. 【解析】【分析】(1)在直角梯形ABCD 中,由条件可得222AD AM DM =+,即DM AM ⊥.再由PA ⊥面ABCD ,得DM PA ⊥,利用线面垂直的判定可得DM ⊥平面PAM ,进一步得到平面PDM ⊥平面PAM ;(2)由(1)知,,PM DM AM DM ⊥⊥,则PMA ∠为二面角P DM A --的平面角为30,求得tan301PA AM =⋅︒=.以A 为坐标原点,分别以,,AE AB AP 所在直线为,,x y z 轴建立空间直角坐标系,求出PC 的坐标及平面PDM 的一个法向量,由PC 与n 所成角的余弦值可得直线PC 与平面PDM 所成角的正弦值.【详解】(1)证明:在直角梯形ABCD 中,由已知可得,1,2,2AB CD BM CM ==== 可得223,6AM DM ==,过A 作AE CD ⊥,垂足为E ,则1,22DE AE ==29AD =,则222AD AM DM =+,∴DM AM ⊥.∵PA ⊥面ABCD ,∴DM PA ⊥,又PA AM A =,∴DM ⊥平面PAM ,∵DM ⊂平面PDM ,∴平面PDM ⊥平面PAM ;(2)解:由(1)知,,PM DM AM DM ⊥⊥,则PMA ∠为二面角P DM A --的平面角为30,则tan301PA AM =⋅︒=.以A 为坐标原点,分别以,,AE AB AP 所在直线为,,x y z 轴建立空间直角坐标系, 则()0,0,1P ,(22,1,0)D -,(22,1,0)C ,(2,1,0)M ,(22,1,1),(22,1,1),(2,1,1)PC PD PM =-=--=-. 设平面PDM 的一个法向量为(,,)n x y z =, 由22020n PD y z n PM x y z ⎧⋅=--=⎪⎨⋅=+-=⎪⎩,取1x =,得2321,,22n ⎛= ⎝⎭. ∴直线PC 与平面PDM 所成角的正弦值为:||230|cos ,|30||||106PC n PC n PC n ⋅<>===⋅⋅. 【点睛】 向量法是求立体几何中的线线角、线面角、面面角时常用方法.22.:(Ⅰ)见解析(Ⅱ)16【解析】【分析】【详解】(Ⅰ)证明:因为,DE EF CF EF ⊥⊥,所以四边形平面CDEF 为矩形,由5,4GD DE ==,42,4GC CF==得223GE GD CF =-=224GF GC CF =-=,所以5EF =,在EFG 中 ,有222EF GE FG =+,所以EG GF ⊥又因为,CF EF CF FG ⊥⊥,得CF ⊥平面EFG , 所以CF EG ⊥,所以EG ⊥平面CFG ,即平面DEG ⊥平面CFG ;(Ⅱ):在平面EGF 中,过点G 作GH EF ⊥于点H ,则125EG GF GH EF ⋅== 因为平面CDEF ⊥平面EFG , 得GH ⊥平面CDEF ,1163CDEF CDEF V S GH =⋅=23.(1)3y =或34120x y +-=;(2)12[0,]5. 【解析】 【分析】 (1)两直线方程联立可解得圆心坐标,又知圆C 的半径为1,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆C 的圆心在直线l :24y x =-上可设圆C 的方程为[]22()(24)1x a y a -+--=,由2MA MO =,可得M 的轨迹方程为22(1)4x y ++=,若圆C 上存在点M ,使2MA MO =,只需两圆有公共点即可.【详解】 (1)由24,{1,y x y x =-=-得圆心()3,2C , ∵圆C 的半径为1,∴圆C 的方程为:22(3)(2)1x y -+-=,显然切线的斜率一定存在,设所求圆C 的切线方程为3y kx =+,即30kx y -+=. 232311k k -+=+,∴2(43)0k k +=,∴0k =或34k =-. ∴所求圆C 的切线方程为3y =或34120x y +-=. (2)∵圆C 的圆心在直线l :24y x =-上,所以,设圆心C 为(,24)a a -, 则圆C 的方程为[]22()(24)1x a y a -+--=.又∵2MA MO =,∴设M 为(,)x y =22(1)4x y ++=,设为圆D . 所以点M 应该既在圆C 上又在圆D 上,即圆C 和圆D 有交点,∴2121-≤+,由251280a a -+≥,得a R ∈, 由25120a a -≤,得1205a ≤≤. 综上所述,a 的取值范围为120,5⎡⎤⎢⎥⎣⎦. 考点:1、圆的标准方程及切线的方程;2、圆与圆的位置关系及转化与划归思想的应用.【方法点睛】本题主要考查圆的标准方程及切线的方程、圆与圆的位置关系及转化与划归思想的应用.属于难题.转化与划归思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题(2)巧妙地将圆C 上存在点M ,使2MA MO =问题转化为,两圆有公共点问题是解决问题的关键所在.24.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)记1A B 与1B A 交于O ,先证明OD //1A C ,根据线面平行的判定定理即可证明A 1C ∥平面AB 1D ;(2)先证明BM ⊥面1AB D ,即可根据面面垂直的判定定理进行证明即可.【详解】(1)设11A B AB O ⋂=,连OD .因为四边形11AA B B 是矩形,∴O 是1A B 的中点. 又D 是BC 的中点,∴1A C //OD .又1AC ⊄面1AB D ,OD ⊂面1AB D , ∴1A C //面1AB D .(2)因为ABC ∆是正三角形,D 是BC 的中点,∴AD BC ⊥.∵平面ABC ⊥面11BB C C ,又平面ABC ⊥面11BB C C BC =,AD ⊂面ABC . ∴AD ⊥面11BB C C ,∵BM ⊂面11BB C C ,∴AD BM ⊥. 又∵1BM B D ⊥,1AD B D D ⋂=,AD ,1B D ⊂面1AB D , ∴BM ⊥面1AB D ,又BM ⊂面ABM , ∴面1AB D ⊥面ABM . 【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直. 25.(1)详见解析;(2)详见解析。
江苏省泰州市民兴实验中学2023-2024学年高一下学期期中调研测试数学试题

江苏省泰州市民兴实验中学2023-2024学年高一下学期期中调研测试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设复数z 满足()1i 12i z +=+,则复数z =( )A .1i2-+ B .3i2+ C .1i2+-D .3i2+-2.在ABC V 中,点D 是AB 的中点,且2AE EC =u u u r u u u r ,用向量,AB AC u u u r u u u r 表示向量DE u u u r为( )A .1123AB AC +u u u r u u u r B .1123AB AC -+u u ur u u u r C .1223AB AC +u u ur u u u rD .1223AB AC -+u u ur u u u r3.已知223cos 2sin 122x x-=,则cos x =( ) A .15B .0C .14-D .15-4.如图,在一个圆心为O ,半径为R 的半圆形钢板上截取一块矩形材料,使矩形的一边落在半圆的直径上,则这个矩形的面积最大时,AOD ∠的大小是( )A .π6B .π4C .π3D .5π125.在ABC V 中,4B π=,BC 边上的高等于13BC ,则cos A =( )A B C .D .6.已知ABC V 的内角,,A B C 的对边分别为,,a b c ,若30,1,c o s o s A a a C c A ==+=o B 的大小是( )A .30oB .60oC .30o 或150oD .60o 或120o7.已知点()()()2,1,3,2,7,5A B C --,则点B 到直线AC 的距离为( )ABCD8.在平面直角坐标系xOy 中,圆P 和圆O 的半径都为1,,P Q 两点分别在圆O 和圆P 上以相同的角速度1rad /s 按逆时针方向运动.,P Q 两点的初始位置如图(1)所示,π3ϕ=,经过s t 后,P Q 两点的位置如图(2)所示,则点Q 纵坐标的取值范围是( )A.⎡⎣B .[]22-,C.⎡⎤⎣⎦ D.⎡-⎣二、多选题9.已知复数12,z z ,以下四个说法中错误的是( ) A .复数12,z z 不能比较大小B .若22120z z +=,则120z z == C .2211z z = D .1122z z z z = 10.已知π02αβ<<<,且tan ,tan αβ是方程2211010x x -+=的两根,下列选项中正确的是( )A .()1tan 2αβ+=B .()()sin 6cos 11αβαβ+=- C .()4tan 11αβ-=-D .π24αβ+=11.长江某处的南北两岸平行,江面宽度为2km ,一艘船从江南岸边的A 处出发到江北岸.已知如图,船在静水中的速度1v u r 的大小为110km/h v =u r ,水流方向自西向东,且速度2v u u r 的大小为26km /h v =u u r .设1v u r 和2v u u r的夹角为()0πθθ<<,北岸的点A '在A 的正北方向,则( )A .当船的航行距离最短时,2cos 5θ=-B .当船的航行时间最短时,π2θ= C .当2π3θ=时,船航行到达北岸的位置在A '的左侧D .当2π3θ=.三、填空题12.已知||2a →=,||3b →=,a →与b →的夹角为60︒,则||a b →→+=.13.sin 40(tan10=o o ;14.如图所示,某人在O /分钟,开始时刻物体位于P 点,一分钟后其位置在Q 点,且90POQ ∠=o ,再过一分钟,该物体位于R 点,且30QOR ∠=o ,此时OR =.四、解答题15.已知向量()()()1,2,2,1,3,OA OB OC m =-==u u u r u u u r u u u r.(1)若向量//OA OC u u u r u u u r ,求向量AB u u u r与向量OC u u u r 的夹角的大小;(2)若向量OB OC ⊥u u u r u u u r ,求向量AB u u u r在向量OC u u u r 上投影向量的坐标.16.已知复数()2032i(i z a a =-+为虚数单位,R)a ∈为纯虚数. (1)求a 的值;(2)在复平面内,复数1z 满足10112,z z z ≤≤+对应的点1Z 组成集合U ,求集合U 对应图形的面积;(3)已知201z z =+,若2z 是关于x 的实系数方程20x px q -+=的一个根,求实数p ,q 的值.17.设()2πcos 6f x x x ⎛⎫=+ ⎪⎝⎭.(1)求π6f ⎛⎫⎪⎝⎭的值及()f x 的单调递减区间;(2)若()π20,,23f αα⎛⎫∈= ⎪⎝⎭,求πsin 3α⎛⎫+ ⎪⎝⎭的值.18.在ABC V 中,角,,A B C 的对边分别为,,a b c cos sin A a B =.(1)若ABC V 的面积为,,a b c 为边长的三个正三角形的面积分别为123,,S S S . (i )求231S S S +-的值;(ii )若a =cos cos B C ⋅的值;(2)设AC 的中点为D ,且6BD =,求2b c +的取值范围.19.在平面四边形ABCD 中,对角线AC 和BD 交于点E ,分别延长BA 和CD 交于点P ,连接PE 并延长交BC 于点F .(1)如图(1),若四边形ABCD 为圆的内接四边形,3,4,AB BC CD DA === (i )求BD 的长;(ii )求BFFC的值; (2)如图(2),若2,,,PA AB BF FC CD DP PBC λμ===u u u r u u u r u u u r u u u r u u u r uV u ur 的面积等于3,当2λμ+取最小值时,求ADF △的面积.。
2023-2024学年江苏省泰州市姜堰中学高一(上)期中数学试卷【答案版】

2023-2024学年江苏省泰州市姜堰中学高一(上)期中数学试卷一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合A ={x |0<x <2},B ={x |1<x <4},则A ∪B =( ) A .{x |0<x <2}B .{x |2<x <4}C .{x |0<x <4}D .{x |x <2或x >4}2.命题“∀x ∈R ,x 2+2x +2>0”的否定是( ) A .∀x ∈R ,x 2+2x +2≤0 B .∃x ∈R ,x 2+2x +2≤0 C .∀x ∈R ,x 2+2x +2<0D .∃x ∈R ,x 2+2x +2>03.“﹣2<x <4”是“x 2﹣x ﹣6<0”的( ) A .必要而不充分条件 B .充分而不必要条件C .充要条件D .既不充分也不必要条件4.已知a =log 1.80.8,b =1.80.8,c =0.80.8,则a 、b 、c 的大小关系为( ) A .a >b >cB .c >a >bC .c >b >aD .b >c >a5.函数y =1−x +√1−2x 的值域为( ) A .(−∞,12]B .[0,+∞)C .[12,+∞)D .(12,+∞)6.设函数f(x)={2−x −1,x ≤0x 12,x >0,若f (x 0)<3,则x 0的取值范围是( )A .(﹣2,+∞)B .(﹣2,9)C .(﹣∞,﹣2)∪(9,+∞)D .(﹣2,0)∪(9,+∞)7.牛奶的保鲜时间因储藏温度的不同而不同,假定保鲜时长t (单位:h )与储藏温度x (单位:℃)之间的关系为t =192×(732)x 22,若要使牛奶保鲜时长超过96h ,则应储藏在温度低于( )℃的环境中.(附:lg 2≈0.301,lg 7≈0.845,答案采取四舍五入精确到0.1) A .10.0B .10.3C .10.5D .10.78.若函数f (x )是定义在(0,+∞)上的增函数,且对一切x >0,y >0,满足f(x)−f(y)=f(x y),则不等式f(x +3)−f(1x )<2f(2)的解集为( ) A .(﹣1,4)B .(﹣4,1)C .(0,1)D .(0,4)二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.若函数y =e x 的图象上存在不同的两点A ,B 到直线l 的距离均为e ,则l 的解析式可以是( )A .y =﹣eB .y =eC .x =eD .y =x10.下列说法正确的是( ) A .不等式2x+1≥1的解集是(﹣1,1]B .若函数f (x )的定义域为[1,4],则函数f (x +1)的定义域为[0,3]C .函数y =2x+1在单调递减区间为(﹣∞,﹣1)∪(﹣1,+∞)D .函数f(x)=√−x 2+2x 的单调递增区间为[0,1] 11.已知a >0,b >0,a +b =1,则( ) A .ab ≤14B .log 2a +log 2b ≥﹣2C .1a +1b ≥4D .(12)a−b <212.用C (A )表示非空集合A 中元素的个数,定义A ∗B ={C(A)−C(B),C(A)≥C(B)C(B)−C(A),C(A)<C(B),已知集合A ={x |x 2+x =0},B ={x ∈R |(x 2+ax )(x 2+ax +1)=0},则下面正确结论正确的是( ) A .∃a ∈R ,C (B )=3 B .∀a ∈R ,C (B )≥2C .“a =0”是“A *B =1”的必要不充分条件D .若S ={a ∈R |A *B =1},则C (S )=3三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.函数y =√2−x +log 2(x −1)的定义域为 .14.已知幂函数f (x )=(a 2﹣a ﹣1)x a 在区间(0,+∞)上单调递减,则函数g (x )=b x +a ﹣1(b >1)的图象过定点 .15.若函数f (x )的值域为(0,1],且满足f (x )=f (﹣x ),则f (x )的解析式可以是f (x )= . 16.已知函数f (x )=x 2,g (x )=a |x ﹣1|,a 为常数,若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),则实数a 的取值范围为 .四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分)计算求值:(1)(√23×√3)6−3235−√23×(4−13)﹣1+(5+2√6)0(2)e 2ln 3+ln (e √e )﹣log 49•log 278﹣log 2(log 216)+lg √2+lg √518.(12分)已知全集U =R ,集合M ={x |(x +4)(x ﹣6)<0},N ={x |x ﹣5<0}. (1)求M ∪N ,∁R N ;(2)设P={x||x|=t},若P⊆M,求t的取值范围.19.(12分)已知函数f(x)={x+4,x≤1x+kx,x>1,其中k>0(1)若k=1,f(m)=174,求实数m的值;(2)若函数f(x)的值域为R,求k的取值范围.20.(12分)已知定义域为R的函数f(x)=1−a⋅2x2x+1是奇函数.(1)求实数a的值.(2)试判断f(x)的单调性,并用定义证明.(3)解关于x的不等式f(4x)+f(8﹣9×2x)>0.21.(12分)函数y=f(x)的图象关于坐标原点成中心对称图形的充要条件是函数y=f(x)为奇函数,可以将其推广为:函数y=f(x)的图象关于点P(a,b)成中心对称图形的充要条件是函数y=f(x+a)﹣b为y关于x的奇函数,给定函数f(x)=13x+1.(1)求f(x)的对称中心;(2)已知函数g(x)=﹣x2+mx,若对任意的x1∈[﹣1,1],总存在x2∈[1,+∞),使得g(x1)≤f(x2),求实数m的取值范围.22.(12分)已知函数f(x)=x(m|x|﹣1),m∈R.(1)若m=1,写出函数f(x)在[﹣1,1]上的单调区间,并求f(x)在[﹣1,1]内的最小值;(2)设关于对x的不等式f(x+m)>f(x)的解集为A,且[﹣1,1]⊆A,求实数m的取值范围.2023-2024学年江苏省泰州市姜堰中学高一(上)期中数学试卷参考答案与试题解析一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合A={x|0<x<2},B={x|1<x<4},则A∪B=()A.{x|0<x<2}B.{x|2<x<4}C.{x|0<x<4}D.{x|x<2或x>4}解:集合A={x|0<x<2},B={x|1<x<4},则A∪B={x|0<x<4}.故选:C.2.命题“∀x∈R,x2+2x+2>0”的否定是()A.∀x∈R,x2+2x+2≤0B.∃x∈R,x2+2x+2≤0C.∀x∈R,x2+2x+2<0D.∃x∈R,x2+2x+2>0解:原命题为:∀x∈R,x2+2x+2>0,∵原命题为全称命题,∴其否定为存在性命题,且不等号须改变,∴原命题的否定为:∃x∈R,x2+2x+2≤0.故选:B.3.“﹣2<x<4”是“x2﹣x﹣6<0”的()A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件解:不等式x2﹣x﹣6<0,即(x+2)(x﹣3)<0,可得﹣2<x<3,因为条件“﹣2<x<4”对应的集合包含“﹣2<x<3”对应的集合,所以“﹣2<x<4”是“x2﹣x﹣6<0”的必要而不充分条件.故选:A.4.已知a=log1.80.8,b=1.80.8,c=0.80.8,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.c>b>a D.b>c>a解:∵a=log1.80.8<log1.81=0,b=1.80.8>1.80=1,0<c=0.80.6<0.80=1,故b>c>a.故选:D.5.函数y =1−x +√1−2x 的值域为( ) A .(−∞,12]B .[0,+∞)C .[12,+∞)D .(12,+∞)解:易知函数的定义域为(−∞,12],由于y =1﹣x 在(−∞,12]上单调递减,y =√1−2x 在(−∞,12]上单调递减, 则函数y =1−x +√1−2x 在(−∞,12]上单调递减, 故y ≥1−12+√1−2×12=12, 即函数的值域为[12,+∞). 故选:C .6.设函数f(x)={2−x −1,x ≤0x 12,x >0,若f (x 0)<3,则x 0的取值范围是( )A .(﹣2,+∞)B .(﹣2,9)C .(﹣∞,﹣2)∪(9,+∞)D .(﹣2,0)∪(9,+∞)解:函数f(x)={2−x −1,x ≤0x 12,x >0,由f (x 0)<3,可得①{x 0≤02−x 0−1<3,解得﹣2<x 0≤0,②{x 0>0x 012<3,解得0<x 0<9;则x 0的取值范围是:(﹣2,9). 故选:B .7.牛奶的保鲜时间因储藏温度的不同而不同,假定保鲜时长t (单位:h )与储藏温度x (单位:℃)之间的关系为t =192×(732)x22,若要使牛奶保鲜时长超过96h ,则应储藏在温度低于( )℃的环境中.(附:lg 2≈0.301,lg 7≈0.845,答案采取四舍五入精确到0.1) A .10.0B .10.3C .10.5D .10.7解:由题意得t =192×(732)x 22>96, ∴(732)x 22>12,∴x 22<log 73212=−log 7322,∴x 22<−log 7322=−lg2lg7−5lg2≈0.456,解得x <10.032,∴应储藏在温度低于10.0℃的环境中.故选:A .8.若函数f (x )是定义在(0,+∞)上的增函数,且对一切x >0,y >0,满足f(x)−f(y)=f(x y),则不等式f(x +3)−f(1x)<2f(2)的解集为( ) A .(﹣1,4)B .(﹣4,1)C .(0,1)D .(0,4)解:因为对一切x >0,y >0,满足f(x)−f(y)=f(xy ),所以令x =4,y =2,得f (4)﹣f (2)=f (2),即f (4)=2f (2), 则不等式f (x +3)﹣f (1x )<2f (2)可化为f ((x +3)x )<f (4),又因为函数f (x )是定义在(0,+∞)上的增函数,所以{x +3>0x >0(x +3)x <4,即{x >−3x >0x 2+3x −4<0,解得0<x <1.故选:C .二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.若函数y =e x 的图象上存在不同的两点A ,B 到直线l 的距离均为e ,则l 的解析式可以是( ) A .y =﹣e B .y =eC .x =eD .y =x解:如图所示:函数y =e x 的图象上的点到直线y =﹣e 的距离都大于e ,故A 错误; 当x <1时,函数y =e x 的图象上的点到直线y =e 的距离都小于e ,当x >1时,函数y =e x 的图象上存在一个点到直线y =e 的距离等于e ,故B 错误;当x<e时,函数y=e x的图象上存在一个点到直线x=e的距离等于e,当x>e时,函数y=e x的图象上存在一个点到直线x=e的距离等于e,故C正确;点A(0,1)到直线x﹣y=0的距离|AB|=√22<e,则点A(0,1)两边各存在一点到直线x﹣y=0的距离等于e,故D正确.故选:CD.10.下列说法正确的是()A.不等式2x+1≥1的解集是(﹣1,1]B.若函数f(x)的定义域为[1,4],则函数f(x+1)的定义域为[0,3]C.函数y=2x+1在单调递减区间为(﹣∞,﹣1)∪(﹣1,+∞)D.函数f(x)=√−x2+2x的单调递增区间为[0,1]解:根据题意,依次分析选项:对于A,不等式2x+1≥1,变形可得1−xx+1≥0,解可得﹣1<x≤1,即不等式的解集为(﹣1,1],A正确;对于B,若函数f(x)的定义域为[1,4],对于函数f(x+1),有1≤x+1≤4,解可得0≤x≤3,即函数f(x+1)的定义域为[0,3],B正确;对于C,函数y=2x+1由函数y=2x向左平移1个单位得到,则函数y=2x+1在单调递减区间为(﹣∞,﹣1)和(﹣1,+∞),C错误对于D,对于f(x)=√−x2+2x,有﹣x2+2x≥0,解可得0≤x≤2,即函数的定义域为[0,2],设t=﹣x2+2x,则y=√t,t=﹣x2+2x在区间[0,1]上为增函数,在区间[1,2]上为减函数,y=√t在[0,+∞)上为增函数,故函数f(x)=√−x2+2x的单调递增区间为[0,1],D正确.故选:ABD.11.已知a>0,b>0,a+b=1,则()A.ab≤14B.log2a+log2b≥﹣2C.1a +1b≥4D.(12)a−b<2解:对选项A,因为a>0,b>0,且a+b=1,所以ab≤(a+b)24=14,当且仅当a=b=12时,等号成立,故A正确.对选项B,log2a+log2b=log2ab≤log214=−2,当且仅当a =b =12时,等号成立,故B 错误. 对选项C ,因为a >0,b >0,a +b =1,1a+1b=(1a+1b )(a +b)=2+b a+a b≥2+2√b a ⋅ab=4,当且仅当ba=a b时,即a =b =12时等号成立,故C 正确.对选项D ,因为a >0,a +b =1,所以b =1﹣a ,2a ﹣1>﹣1, 所以(12)a−b =(12)2a−1<(12)−1=2,故D 正确. 故选:ACD .12.用C (A )表示非空集合A 中元素的个数,定义A ∗B ={C(A)−C(B),C(A)≥C(B)C(B)−C(A),C(A)<C(B),已知集合A ={x |x 2+x =0},B ={x ∈R |(x 2+ax )(x 2+ax +1)=0},则下面正确结论正确的是( ) A .∃a ∈R ,C (B )=3 B .∀a ∈R ,C (B )≥2C .“a =0”是“A *B =1”的必要不充分条件D .若S ={a ∈R |A *B =1},则C (S )=3解:对于A ,当a =2时,B ={0,﹣2,﹣1},此时C (B )=3,故A 正确; 对于B ,当a =0时,B ={0},此时C (B )=1,故B 错误;对于C ,当a =0时,B ={0},所以C (B )=1,A ={0,﹣1},所以C (A )=2,所以A *B =1; 当A *B =1时,因为C (A )=2,所以C (B )=1或3, 若C (B )=1,满足{a =0Δ=a 2−4=0,解得a =0;若C (B )=3,因为方程x 2+ax =0的两个根x 1=0,x 2=﹣a 都不是方程x 2+ax +1=0的根,所以需满足{a ≠0Δ=a 2−4=0,解得a =±2, 所以“a =0“是“A *B =1”的充分不必要条件,故C 错误;对于D ,因为C (A )=2,要得A *B =1,所以C (B )=1或3,由C 可知:a =0或a =±2, 所以S ={0,2,﹣2},所以C (S )=3,故D 正确; 故选:AD .三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.函数y =√2−x +log 2(x −1)的定义域为 . 解:要使函数有意义则{2−x ≥0x −1>0,∴{x ≤2x >1,即1<x ≤2, 即函数的定义域为{x |1<x ≤2}. 故答案为:{x |1<x ≤2}.14.已知幂函数f (x )=(a 2﹣a ﹣1)x a 在区间(0,+∞)上单调递减,则函数g (x )=b x +a ﹣1(b >1)的图象过定点 .解:∵幂函数f (x )=(a 2﹣a ﹣1)x a 在区间(0,+∞)上单调递减, ∴{a 2−a −1=1a <0,解得a =﹣1, ∴g (x )过定点(1,0). 故答案为:(1,0).15.若函数f (x )的值域为(0,1],且满足f (x )=f (﹣x ),则f (x )的解析式可以是f (x )= . 解:由题意可知,函数的值域为(0,1],且函数为偶函数,满足条件的其中一个函数为f(x)=(12)|x|. 故答案为:(12)|x|(答案不唯一).16.已知函数f (x )=x 2,g (x )=a |x ﹣1|,a 为常数,若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),则实数a 的取值范围为 .解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f (x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可, 当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =a2≤1,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =−a2≤0,即a ≥0, 故a ∈[0,2], 故答案为:[0,2]四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分)计算求值: (1)(√23×√3)6−3235−√23×(4−13)﹣1+(5+2√6)0(2)e 2ln 3+ln (e √e )﹣log 49•log 278﹣log 2(log 216)+lg √2+lg √5 解:(1)(√23×√3)6−3235−√23×(4−13)−1+(5+2√6)0=108−8−2+1=99;(2)e 2ln 3+ln (e √e )﹣log 49•log 278﹣log 2(log 216)+lg √2+lg √5 =9+32−2lg32lg2•3lg23lg3−2+lg √10 =9+32−1﹣2+12 =8.18.(12分)已知全集U =R ,集合M ={x |(x +4)(x ﹣6)<0},N ={x |x ﹣5<0}. (1)求M ∪N ,∁R N ;(2)设P ={x ||x |=t },若P ⊆M ,求t 的取值范围.解:(1)因为M ={x |﹣4<x <6},N ={x |x <5},所以M ∪N ={x |x <6},∁R N ={x |x ≥5}. (2)当P =∅时,t <0;当P ≠∅时,{t ≥0−4<t <6−4<−t <6,解得0≤t <4.综上所述,t <4,即t 的取值范围为(﹣∞,4). 19.(12分)已知函数f (x )={x +4,x ≤1x +kx,x >1,其中k >0(1)若k =1,f(m)=174,求实数m 的值; (2)若函数f (x )的值域为R ,求k 的取值范围. 解:(1)当k =1时,f(x)={x +4,x ≤1x +1x ,x >1, 由f(m)=174,得{m +4=174m ≤1或{m +1m =174m >1, 解得m =14或m =4, 所以实数m 的值为14或4.(2)当x ≤1时,f (x )=x +4,值域为(﹣∞,5]. 分以下两种情形来讨论:若0<k ≤1,此时√k ≤1,则f(x)=x +kx 在区间(1,+∞)上单调递增,此时f (x )的值域为(k +1,+∞),所以函数f (x )的值域为(﹣∞,4]∪(k +1,+∞)=R ,满足题意. 所以0<k ≤1满足题意.若k>1,此时√k>1,则f(x)=x+kx在区间(1,√k]上单调递减,在区间(√k,+∞)上单调递增,此时f(x)的值域为[2√k,+∞),所以f(x)的值域为(−∞,5]∪[2√k,+∞),由题意可得2√k≤5,解得k≤254,所以1<k≤254.综上:k的取值范围是{k|0<k≤254 }.20.(12分)已知定义域为R的函数f(x)=1−a⋅2x2x+1是奇函数.(1)求实数a的值.(2)试判断f(x)的单调性,并用定义证明.(3)解关于x的不等式f(4x)+f(8﹣9×2x)>0.解:(1)∵函数f(x)是定义域为R的奇函数,∴f(﹣x)+f(x)=0,即f(x)+f(−x)=1−a⋅2x2x+1+1−a⋅2−x2−x+1=(a−1)(2x+1)2x+1=0恒成立,∴a=1.(2)f(x)在R上为减函数,证明如下:由于f(x)=1−2x2x+1=−1+22x+1,任取x1,x2∈R且x1<x2,则f(x1)−f(x2)=(−1+22x1+1)−(−1+22x2+1)=22x1+1−22x2+1=2(2x2−2x1)(2x1+1)(2x2+1).∵x1<x2,∴2x2−2x1>0,又(2x1+1)(2x2+1)>0,∴f(x1)>f(x2),∴函数f(x)在R上为减函数.(3)由(2)得,奇函数f(x)在R上为减函数,∴f(4x)>f(9×2x﹣8),即22x<9•2x﹣8,令2x=t(t>0),则t2﹣9t+8<0,可得1<t<8,即20=1<2x<23,可得不等式的解集为(0,3).21.(12分)函数y=f(x)的图象关于坐标原点成中心对称图形的充要条件是函数y=f(x)为奇函数,可以将其推广为:函数y=f(x)的图象关于点P(a,b)成中心对称图形的充要条件是函数y=f(x+a)﹣b为y关于x的奇函数,给定函数f(x)=13x+1.(1)求f(x)的对称中心;(2)已知函数g(x)=﹣x2+mx,若对任意的x1∈[﹣1,1],总存在x2∈[1,+∞),使得g(x1)≤f(x2),求实数m的取值范围.解:(1)假设f (x )的图像存在对称中心(a ,b ),则h (x )=f (x +a )﹣b 的图像关于原点成中心对称,因为h (x )的定义域为R ,所以ℎ(−x)+ℎ(x)=13a−x −b +13x+a −b =0恒成立, 即(1﹣2b )(3a ﹣x +3a +x )+2﹣2b ﹣2b •32a =0恒成立,所以{1−2b =02−2b −2b32a =0, 解得{a =0b =12, 所以 f (x )的图像存在对称中心(0,12);(2)因为 f (x )在区间[1,+∞)上递减,可得f (x )的最大值为f (1)=14,由题意可得﹣x 2+mx ≤14在x ∈[﹣1,1]上恒成立,当x =0时,不等式化为0≤14恒成立;当0<x ≤1时,可得m ≤(x +14x )min , 由y =x +14x ≥2√14=1(当且仅当x =12∈(0,1]时,取得等号), 则m ≤1;当﹣1≤x <0时,可得m ≥(x +14x )max, 由y =x +14x ≤−2√14=−1(当且仅当x =−12∈[﹣1,0)时,取得等号),则m ≥﹣1;所以m 的取值范围是[﹣1,1].22.(12分)已知函数f (x )=x (m |x |﹣1),m ∈R .(1)若m =1,写出函数f (x )在[﹣1,1]上的单调区间,并求f (x )在[﹣1,1]内的最小值;(2)设关于对x 的不等式f (x +m )>f (x )的解集为A ,且[﹣1,1]⊆A ,求实数m 的取值范围. 解:(1)若m =1,f (x )=x (|x |﹣1)={x 2−x ,x ≥0−x 2−x ,x <0, 所以f (x )的单调增区间为[﹣1,−12],[12,1],递减区间为[−12,12],又f (﹣1)=0,f (12)=−14, 所以f (x )在[﹣1,1]内的最小值为−14.(2)因为关于对x的不等式f(x+m)>f(x)的解集为A,且[﹣1,1]⊆A,所以f(x+m)>f(x)在[﹣1,1]上恒成立,当m=0时,不符合题意,当m<0时,f(x)在[﹣1,1]上单调递减,符合题意,当m>0时,令x=0得f(m)>f(0),所以m(m2﹣1)>0,解得m>1,当x∈[﹣1,0),x+m∈[m﹣1,m),则f(x+m)=(x+m)(mx+m2﹣1),f(x)=x(﹣mx﹣1),又f(x+m)>f(x),所以2x2+2mx+m2﹣1>0,令h(x)=2x2+2mx+m2﹣1,x∈[﹣1,0),当−m2<−1,即m>2时,h(x)在[﹣1,0)上单调递增,所以h(x)min=h(﹣1)=m2﹣2m+1>0,所以m>2;当−m2≥−1,即1<m≤2时,h(x)在[﹣1,−m2)上单调递减,(−m2,0)单调递增,所以h(x)min=h(−m2)>0,所以m>√2,所以√2<m≤2,所以m>√2时恒成立,当x∈(0,1],x+m∈(m,m+1],则f(x+m)=(x+m)(mx+m2﹣1),f(x)=x(mx﹣1),又f(x+m)>f(x),所以2mx+m2﹣1>0恒成立,令h(x)=2x2+2mx+m2﹣1,x∈[﹣1,0),综上:实数m的取值范围为(﹣∞,0)∪(√2,+∞).。
高一数学期中考试试题及答案

1.已知全集 U={0, 1 , 2, 3, 4},2.设集合M x 0 x 2 , N高一数学期中考试试题第I 卷选择题(共60 分)、选择题:(本大题共12小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合 题目要求的) M={0 , 1, 2} , N={2 , 3},则(C u M )n N =A • 2,3,4B • 2C • 3D •0,1,2,3,4y 0 y 2 ,给出如下四个图形,其中能表示从集合 M 到集合N 的A.[ 4, )B. [0,5]C. [ 4,5] 25. 3log342733lg0.01 lneA. 14B. 0C. 1 6.在映射f : AB 中,A B{(x,y)|x, y 在集合B 中的像为A. ( 1, 3)B. (1,3)C. (3,1)D. [ 4,0]D. 6R},且 f : (x, y) (x y, x y),则 A 中的元素(1,2)D. ( 3,1)7.三个数a 0.312, b log 20.31 , c 2。
31之间的大小关系为函数关系的是3.设 f x 3x 3x 8,用二分法求方程 3x 3x 8 1,2内近似解的过程中得 f 1 0, f 1.5 0, f 1.25 0 ,则方程的根落在区间 A. (1,1.25) B. (1.25,1.5) C.(1.5,2) D. 不能确定 4.二次函数f (x ) x 24x (x [0,5])的值域为12.若函数f (x)为定义在R 上的奇函数,且在(0,)内是增函数,又f(2) 0,则不等式xf(x) 0的解集为-A . ( 2,0) U(2,)B. ( , 2)U(0,2) 一已知函数y f (x)在R 上为奇 函数,且当 x 0时, f(x) x 22x ,贝析式为A . f(x) x(x 2)B .f(x) x(x 2) C. f(x) x(x 2)D.f(x)x(x 2)函数y a x 与ylog a x(a 0,且a 1)在同一坐标系中的图像只可能是8. x 0时,函数f(x)的解10.设 log a 2 2 0,则9. A. 0 B. D.11.函数 f(x) 4x 5在区间[0, m ]上的最大值为5, 最小值为1,则实数m 的取值范围是A.[2,B.[2,4] C. [0,4] D.(2,4] C. ( , 2)U(2,) D. ( 2,0) (0,2)13.函数 f(X )2x 3 (x Xz2(x 2),则f [f( 3)]的值为2)x 0在区间 a, b 上高一数学期中考试答题卷、选择题:(本大题小共12题,每小题5分,共60分•在每小题给出的四 第II 卷非选择题(共90分)、填空题:(本大题共4小题,每小题4分,共16 分)14.计算: log 4 3 log 9 815. 二次函数y kx 24x 8在区间[5,20]上是减少的,则实数 k 的取值范围为 _____________________ 16. 给出下列四个命题:① 函数y |x|与函数y c x)2表示同一个函数;② 奇函数的图像一定通过直角坐标系的原点;2 2③ 函数y 3(x 1)的图像可由y 3x 的图像向右平移1个单位得到; ④若函数f (x)的定义域为[0,2],则函数f(2x)的定义域为[0,4]; ⑤设函数f x 是在区间a,b 上图像连续的函数,且 f a f b 0 ,则方程 至少有一实根;个选项中,只有一项是符合题目要求的)其中正确命题的序号是________________ •(填上所有正确命题的序号)已知函数f(x) 2x1 2x 1 .三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17. (本题满分12分)已知全集U R,集合A XX 4,或x 1,B x 3 x 1 2,(1)求AB、(C U A) (QB);(2)若集合M x2k 1 x 2k 1是集合A的子集,求实数k的取值范围.18. (本题满分12分)⑴判断函数f(x)的奇偶性,并证明;⑵利用函数单调性的定义证明: f (x)是其定义域上的增函数19. (本题满分12分)已知二次函数f(x) x2 2ax 1 a在区间0,1上有最大值2,求实数a的值20. (本题满分12分)函数f (x) log a(3 ax)(a 0,a 1)(1)当a 2时,求函数f (x)的定义域;(2)是否存在实数a,使函数f (x)在[1,2]递减,并且最大值为1,若存在,求出a的值;若不存在,请说明理由21. (本题满分13分)广州亚运会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向广州亚组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售 400枚,而每增加一元则减少销售 100 枚,现设每枚纪念章的销售价格为X元.(1) 写出该专营店一年内销售这种纪念章所获利润y(元)与每枚纪念章的销售价格x(元)的函数关系式(并写出这个函数的定义域);(2) 当每枚纪念章销售价格x为多少元时,该特许专营店一年内利润y(元)最大,并求出最大值.22. (本题满分13分)设f(X)是定义在R上的奇函数,且对任意 a、b R,当a b 0时,都有丄® 理0. a b(1)若a b,试比较f (a)与f (b)的大小关系;(2)若f(9X2 3X) f (2 9X k) 0对任意x [0,)恒成立,求实数k的取值范围题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDBCBDCAABBD• 2分 • 4分6分 10分12分 • 1分x 1 x 22x1参考答案131 13.15・(,0)(0, ] 16.8 410三、解答题: 17.(1)B x 3 x 1 2 x 2 x 3ABx1x 3 ,(C U A) (C U B) xx1,或x 3(2)由题意:2k 11 或 2k 14 ,5解得:k 1或k 5.218.(1) f (x)为奇函数.2x2, 2x1 2x20,又 2x11 0,2x210,又 f( x)2 %1 1 2x2X1 f (x)2 x 1 1 2x2X 1f (x)为奇 :函数(2) f(x) 1 22x 1任取 x 1、 x 2 R , 设x 1 X 2 ,2x 1 0, f (x)的定义域为R , 2f(xj f(X 2)(1 J J(1 X 21)2(11)2(2x1 2x2) 0 1)(2x21)f(xj f(X 2)0, f(xjf(X 2).f (x)在其定义域R 上是增函数12分、选择题: 、填空题:③⑤19.函数f (x)的对称轴为:x a ,当a 0时,f(x)在[0,1]上递减, f (0) 2,即1 a 2, a 1 ;当0 a 1时,f(x)在[0,a ]递增,在[a,1]上递减, 与0 a 1矛盾;综上:a 1或a 2 20. ( 1 )由题意:f(x) log 2(3 2x), 3 2x f (a)2,即 a 2a 12,解得:a12分0,即 卩 x所以函数f(x)的定义域为( (2)令 u 3 ax ,则 u 3 ax 在[1,2]上恒正, a 0, a 3 a 2 0,即卩 a (0,1) (%)又函数f(x)在[1,2]递减, u 3 ax 在[1,2]上单调递减, 1,即 又 函数f (x)在[1,2]的最大值为 1, f(1) 即 f (1) log a (3 a 1) 1,3 ax 在[1,2]上单调递减,a d,|)11分 3 3 a 2与a (1,2)矛盾,12分依题意y[2000 400(20 x)](x 7), 7 x 20, x N [2000 100(x 20)](x 7), 20 x 40, x N400[(x 2佝281],7 x20, x Ny47 21089100[(x 2)4 ], 20 x 40, x N定义域为x N 7 x 40400[(x 16)2 81], 7 x 20, x Na 不存在. ⑵•- y 2 100[(x 21. (1) •••当 0 当20 综上:当x 16时, x 20时,则x ^089], 20 x 40,x N ' 4 16 , Y max 32400 (元)47 2 , Y max该特许专营店获得的利润最大为 x 40时,则x 27225 (元) 32400 元. 10分13分22. (1)因为a b ,所以a b 0 ,由题意得: ―0,所以 f(a) f( b) 0 , a b又f (x)是定义在R 上的奇函数,f (9x 2 3x ) f (2 9x k) 0对任意x[0, )恒成立,f (9x 2 3x )f (2 9x k) ,即 f(9x 2 3x)f(k 2 9x ),.....9分9x 2 3xk 2 9x,k x3 92 3 x对任意 x [0,)恒成立,即k 小于函数u 3 9X2 3X,x [0,)的最小值...... 11分xxx21 2 1令 t 3x,则 t [1,) u 3 9x 2 3x 3t 22t 3(t- 1, 3 3k 1..... 13 分。
江苏省泰州中学2023-2024学年高一下学期期末考试化学试题(含答案)

江苏省泰州中学2023~2024学年度第二学期期末考试高一化学试题(考试时间:75分钟,考试总分:100分)可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 Cl-35.5 Fe-56 Cu-64一、单项选择题:本题共13小题,每小题3分,共39分。
每小题只有一个选项最符合题意。
1. 下列措施不利于实现碳达峰、碳中和的是A. 光伏发电、风力发电代替燃煤发电 B. 氢氧燃料电池汽车代替燃油汽车C. 利用和合成淀粉 D. 开采可燃冰代替煤作燃料2. 下列化学用语表示正确的是A. 系统名称:甲基戊烷B. 丙烷的空间填充模型:C. 甲基的电子式:D. 乙醇的结构简式:3. 下列实验原理与装置能达到实验目的的是A. 用装置①灼烧蓝矾晶体B. 用装置②分离苯和溴苯C. 用装置③分离固体和溶液D. 用装置④分离乙醇和水4. 可用作净水剂、媒染剂等。
下列说法正确的是A. 离子半径:Al 3+>N 3- B. 电负性:O >SC. 第一电离能:O >ND. 热稳定性:H 2S(g)>H 2O(g)5. 下列除去物质中混有少量杂质的方法正确的是的2CO 2H ()4CH 3232CH CH(CH CH )3-23OHCH CH 2MnO 2MnCl 4422NH Al(SO )12H O ⋅选项物质(杂质)除杂试剂或方法A 乙烷(乙烯)酸性高锰酸钾溶液B 乙烯(乙醇)浓硫酸,加热C 乙炔(硫化氢)氢氧化钠溶液D苯(苯酚)饱和溴水A. AB. BC. CD. D氧元素及其化合物应用广泛。
氧元素存在多种核素,游离态的氧主要有。
氧能与大部分元素形成氧化物,如等。
过氧化物如是优秀的氧化剂,可作潜艇供氧剂。
气体均可用溶液吸收尾气。
高温下,燃煤时加入适量石灰石能够将转化为,同时放出。
根据以上材料,回答下列问题。
6. 下列说法正确的是A.互为同素异形体B. 固态和均为共价晶体C. 和中的杂化类型均为D. 键角:7. 下列化学反应表示正确的是A. 吸收B. 工业上用足量氨水吸收C. 燃煤脱硫:D. 吸收8. 下列物质的性质与用途具有对应关系的是A. 具有强氧化性,可用于自来水消毒 B. 熔点高,可用作潜艇供氧剂C. 是两性氧化物,可用作耐火材料D. 能和酸反应,可用作磁性材料9. 物质转化在工业生产中有重要作用。
高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},求A∪B的值。
A. {1,2,3}B. {1,2,3,4}C. {2,3}D. {1,4}2. 函数f(x)=2x^2-3x+1在区间[-1,2]上的最大值是多少?A. 1B. 5C. 7D. 93. 已知等差数列的首项a1=3,公差d=2,求第10项的值。
A. 23B. 25C. 27D. 294. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π5. 已知直线y=-3x+5与x轴的交点坐标是什么?A. (0, 5)B. (1, 2)C. (5/3, 0)D. (0, 0)6. 已知sin(α)=3/5,α∈(0,π),求cos(α)的值。
A. 4/5B. -4/5C. √(1-(3/5)^2)D. -√(1-(3/5)^2)7. 一个函数f(x)是奇函数,且f(1)=2,求f(-1)的值。
A. 2B. -2C. 0D. 18. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 7C. 8D. 99. 已知一个函数f(x)=x^3-6x^2+11x-6,求f(2)的值。
A. -2B. 0C. 2D. 410. 已知一个等比数列的首项a1=2,公比q=3,求第5项的值。
A. 162B. 243C. 486D. 729二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求对称轴的方程。
___________________________12. 已知等比数列的前n项和为S_n=3^n-1,求首项a1。
___________________________13. 已知正弦定理公式为a/sinA=b/sinB=c/sinC,求三角形ABC的面积,已知a=5,sinA=3/5。
___________________________14. 已知某函数的导数f'(x)=6x^2-4x+1,求f'(1)的值。
高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 函数f(x) = 2x^2 - 3x + 1在区间[0, 2]上的最大值是:A. 1B. 5C. 7D. 93. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的元素个数。
A. 1B. 2C. 3D. 44. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正B. 负C. 零D. 不确定5. 下列哪个不等式是正确的?A. √2 < πB. e < 2.72C. √3 > √2D. log2(3) > log3(2)6. 已知等差数列的首项为a1 = 3,公差为d = 2,第5项a5的值是:A. 9B. 11C. 13D. 157. 函数y = x^3 - 6x^2 + 9x + 2的零点个数是:A. 0B. 1C. 2D. 38. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。
A. 0B. 4C. 8D. 169. 抛物线y = x^2 - 2x - 3与x轴的交点个数是:A. 0B. 1C. 2D. 310. 已知等比数列的首项为a1 = 2,公比为r = 3,求第4项a4的值。
A. 162B. 486C. 729D. 1458二、填空题(每题2分,共20分)11. 圆的一般方程为x^2 + y^2 + dx + ey + f = 0,其中d^2 + e^2 - 4f > 0时,表示______。
12. 若函数f(x) = 3x - 2在区间[1, 4]上是增函数,则f(1) =______。
13. 已知集合M = {x | x^2 - 5x + 6 = 0},则M的补集∁_R M = {x | ______ }。
14. 函数y = log_2(x)的定义域是{x | x > ______ }。
高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = x^2 - 2x + 1的零点是:A. 1B. -1C. 0D. 23. 集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}4. 已知数列{a_n}的通项公式为a_n = 2n + 1,那么a_5等于:A. 11B. 9C. 13D. 155. 若函数f(x) = 3x - 5,则f(2)等于:A. 1B. -1C. 7D. 36. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (3/2, 0)7. 圆的一般方程为x^2 + y^2 + 2x - 4y + 5 = 0,其圆心坐标是:A. (-1, 2)B. (1, -2)C. (-1, -2)D. (1, 2)8. 函数y = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 39. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 函数y = √(x - 2)的定义域是:A. x ≥ 2B. x > 2C. x < 2D. x ≠ 2二、填空题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的最大值为2,则x的值为______。
2. 已知数列{a_n}满足a_1 = 1,a_n = 2a_{n-1} + 1,那么a_3等于______。
3. 函数f(x) = 2x^2 - 3x + 1的对称轴方程是______。
4. 集合A = {x | x^2 - 5x + 6 = 0},则A的元素个数为______。