2016年华师大七年级数学下册第九章《多边形》单元试题含答案

合集下载

2015-2016学年华师大版七年级数学下册第9章多边形单元检测试卷(含答案)

2015-2016学年华师大版七年级数学下册第9章多边形单元检测试卷(含答案)

2015-2016学年华师大版七年级数学下册第9章多边形单元检测试卷(含答案)第9章多边形单元检测(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分)1.一个多边形的边数增加2条,则它的内角和增加( ).A.180° B.90° C.360° D.540°2.在下列长度中的三条线段中,能组成三角形的是( ).A.2 cm,3 cm,4 cm B.2 cm,3 cm,5 cmC.3 cm,5 cm,9 cm D.8 cm,4 cm,4 cm3.如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是( ).A.两点之间线段最短 B.垂线段最短C.两定确定一条直线 D.三角形的稳定性4.多边形每一个内角都等于120°,则从此多边形一个顶点出发可引的对角线的条数是( ).A.5条 B.4条C.3条 D.2条5.张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案中,不能铺满地面的是( ).6.n边形与m边形内角和度数的差为720°,则n与m的差为( ).A.2 B.3 C.4 D.57.如果两个三角形的两条边长分别是2和5,而第三边长为奇数,则第三边长是( ).A.3 B.5 C.7 D.3或5或78.如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是( ).A.63° B.83° C.73° D.53°二、填空题(每小题4分,共16分)9.一个三角形的两个角分别为29°、61°,若按照边分类,它是______三角形;按照角分类,它是________三角形.10.如图所示,已知α=125°,γ=52°,则β=______.11.一个多边形的每一个外角都是36°,则这个多边形是______边形.12.五条线段长分别是1 cm,2 cm,3 cm,4 cm,5 cm,以其中的任意三条为边可构成____个三角形.三、解答题(共52分)13.(12分)一个多边形除一个内角外,其余内角之和是2 570°,求这个角.14.(12分)如图,已知∠ABC=31°,又∠BAC的平分线与∠FCB的平分线CE相交于E点,求∠AEC的度数.15.(14分)如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.16.(14分)如图,在△ABC中,∠ABC,∠ACB的平分线交于O点.1×30°; 21②当∠A=40°时,∠BOC=110°=90°+×40°; 21③当∠A=50°时,∠BOC=115°=90°+×50°;2①当∠A=30°时,∠BOC=105°=90°+当∠A=n°(n为已知数)时,猜测∠BOC的度数,并用所学的三角形的有关知识说明理由.参考答案1. 答案:C2. 解析:只有选项A满足两边之和大于第三边,两边之差小于第三边,故选A. 答案:A3. 答案:D4. 解析:根据多边形的内角等于120°,得该多边形为六边形,所以从一个顶点可引6-3=3条对角线,故选C.答案:C5. 答案:C6. 解析:由题意得(n-2)180°-(m-2)180°=720°,解得n-m=4,故选C. 答案:C7. 答案:B8. 答案:A9. 答案:不等边直角10. 答案:107°11. 答案:1012. 答案:313. 解:设这个多边形为n边形,则内角和为(n-2)·180°.根据题意有:2 570°<(n-2)·180°<2 570°+180°,解不等式得:1655<n<17; 1818从而n=17,(17-2)·180°-2 570°=130°.所以多边形的这个内角为130°.14. 解:因为CE和AE分别平分∠FCB和∠BAC,11∠FCB,∠2=∠BAC. 221所以∠1-∠2=(∠FCB-∠BAC). 2所以∠1=因为∠FCB是△ABC的一个外角,所以∠FCB=∠ABC+∠BAC.所以∠FCB-∠BAC=∠ABC=31°.所以∠1-∠2=15.5°.因为∠1=∠AEC+∠2,所以∠AEC=∠1-∠2=15.5°.15. 解:因为DF⊥AB,所以∠AFG=90°.在△AFG中,∠AGF=180°-∠A-∠AFG=180°-40°-90°=50°,所以∠CGD=∠AGF=50°.所以∠ACB=∠CGD+∠D=50°+50°=100°. 16. 解:∠BOC=90°+1n°, 2理由是:∵OB,OC分别是∠ABC和∠ACB的平分线,∴∠OBC=11∠ABC,∠OCB=∠ACB. 22。

华东师大版七年级数学下册第九章 多边形练习包含答案

华东师大版七年级数学下册第九章 多边形练习包含答案

第九章多边形一、单选题42 1 )和,则第三边的长可能是(.一个三角形的两边长分别是1A42 D BC .7...2, 则图中他所作的线段.王老汉要将一块如图所示的三角形土地平均分配给两个儿子?ABC AD 的应该是DB CA .任意一条线.中线.角平分线.高BCABC? 3 )边上的高是(中,.如图,在CD BH B A EC CD..AF..∥B∥BCE53°∥E25°AB∥DE4)=的度数为(,=,则.如图,,33°C30°D28°25°A B....??ACBABCV ABC o?D5110?BDC角平分线的交点,若是和.如图,在中,点,?(?A)那么.oooo A40BD C.706050...6).下列图形中具有稳定性是(DC A B .直角三角形.平行四边形.正方形.梯形7540°)边形.,则该多边形为(.若一个多边形的内角和为 D A BC.七.四.六.五) 840°( ,则该正多边形的边数是.若正多边形的一个外角是6 C7DA9 B8 ....9).一个四边形截去一个角后,形成新的多边形的内角和是(540°180°360°C540°D A180°B360°540°或.或.或..10).能够铺满地面的正多边形组合是(B A.正方形和正六边形.正三角形和正五边形D C.正五边形和正十边形.正方形和正五边形二、填空题25___________∥ABC11.,则第三边长为的两边长分别为和.等腰24cmSCE ADBCFED∥ABC12=的中点,且、、、分别为、中,已知点.如图,在,∥ABC=_________S则∥BEF.”13__________________. “2??1、?A、排列.如图所示,请将用>∥280°EF∥A60°∥1∥ABC14的度数翻折,叠合后的图形如图.若==.如图,把沿,则,_______.为三、解答题15.如图:______(1)∥ABCBC;中,边上的高是在(2)∥AECAE______;在中,边上的高是CE∥AEC3cmAE2cmCDAB(3)的长.,求,=若==的面积及16∥ABCDBC∥1∥2∥3∥4∥BAC69°∥DAC,求.如图所示,在=中,是,边上一点==,的度数.1171.已知,一个多边形的每一个外角都是它相邻的内角的)这个多边形的(.试求出:2 2)求这个多边形的内角和.(每一个外角的度数;H.∥ABCBDCE18BDCE相交于点,是的两条高,直线.如图,已知,∥DHE(1)∥BAC100°的度数;=若,求____,直接写出∥BAC=50°∥DHE的度数是中若(2)∥ABC答案1C .2B .3D .4B .5A .6D .7B .8A .9D .10D .115 .121 .?2>?1>?A13 .40? 14.15(1)AB(2)CD(3)3cm .32°16.17160°2720°).(()130°或50°)2(80°=∥DHE)1(.18.。

华东师大版七年级数学下册第九章多边形单元测试题【含答案】

华东师大版七年级数学下册第九章多边形单元测试题【含答案】

第九章多边形一、选择题1.下列图形为正多边形的是()图12.三角形的内角和等于()A.90°B.180°C.270°D.360°3.在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cmB.3cm,6cm,6cmC.2cm,2cm,6cmD.5cm,6cm,7cm4.已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.105.如图2,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是()图2A.50°B.60°C.70°D.80°6.如图3,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E.若∠A=60°,则∠BEC的度数是()图3A.15°B.30°C.45°D.60°7.将一副三角尺按图4所示的方式放置,使含30°角的三角尺的一条直角边和含45°角的三角尺的一条直角边在同一条直线上,则∠α的度数是()图4A.45°B.60°C.75°D.85°8.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°9.将三角尺按图5所示的方式放置在一张长方形纸片上,∠EGF=90°,∠FEG=30°,∠1=130°,则∠BFG的度数为()图5A.130°B.120°C.110°D.100°二、填空题10.如图6,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)图611.如图7,直线MN∥PQ,点A,B分别在MN,PQ上,∠MAB=33°.过线段AB上的点C作CD⊥AB 交PQ于点D,则∠CDB的度数为.图712.如图8,直线a,b被直线c,d所截.若a∥b,∠1=130°,∠2=30°,则∠3的度数为.图813.若正多边形的一个外角是60°,则这个正多边形的内角和是.14.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.15.如图9,六边形ABCDEF的内角都相等,AD∥BC,则∠DAB=°.图916.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连结CD,若△ACD为直角三角形,则∠BCD 的度数为.三、解答题17.如图10,点A,B,C,D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,试说明:∠E=∠F.图1018.如图11,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.图1119.已知:如图12,△ABC是任意一个三角形.试说明:∠A+∠B+∠C=180°.图1220.如图13,在直角三角形ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.图13答案1.D2.B3.C4.C5.C6.B7.C8.C9.C10.0.611.57°12.100°13.720°14.515.6016.60°或10°17.解:∵CE∥DF,∴∠ACE=∠D.又∵∠A=∠1,∴180°-∠ACE-∠A=180°-∠D-∠1,即∠E=∠F.18.解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°.∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°.∵∠FHG是△EFH的外角,∴∠EFB=55°-35°=20°.19.解:如图,过点A作DE∥BC.∵DE∥BC,∴∠B=∠DAB,∠C=∠EAC.∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC+∠B+∠C=180°.20.解:(1)∵∠ACB=90°,∠A=40°,∴∠CBD=90°+40°=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=12×130°=65°.(2)在直角三角形CBE中,∠CBE=65°,∴∠CEB=90°-65°=25°.又∵DF∥BE,∴∠F=∠CEB=25°,即∠F=25°.。

综合解析华东师大版七年级数学下册第9章多边形章节测试试题(含解析)

综合解析华东师大版七年级数学下册第9章多边形章节测试试题(含解析)

七年级数学下册第9章多边形章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是()A.1个B.2个C.3个D.4个2、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,133、如图,∠A =α,∠DBC =3∠DBA ,∠DCB =3∠DCA ,则∠BDC 的大小为( )A .3454a ︒+B .2603a ︒+C .3454a ︒-D .2603a ︒- 4、已知三角形的两边长分别为4cm 和10cm ,则下列长度的四条线段中能作为第三边的是( )A .15cmB .6cmC .7cmD .5cm5、如图,在ABC 中,D 是BC 延长线上一点,50B ∠=︒,80A ∠=︒,则ACD ∠的度数为( )A .140︒B .130︒C .120︒D .110︒6、如图,123456∠+∠+∠+∠+∠+∠=( )度.A .180B .270C .360D .5407、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则α∠的度数是( )A .45°B .60°C .75°D .85°8、如图,在△ABC 中,∠C =50°,∠BAC =60°,AD ⊥BC 于D ,AE 平分∠BAC ,∠DAE =( )A .10°B .15°C .20°D .25°9、一把直尺和一块三角板ABC (含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且45CDE ∠=︒,那么BAF ∠的大小为( )A .35°B .20°C .15°D .10°10、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )A .5或6B .6或7C .5或6或7D .6或7或8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个多边形内角和1800度,则这个多边形的边数_____.2、等腰三角形中,一条边长是2cm ,另一条边长是3cm ,这个等腰三角形的周长是________.3、已知一个多边形的内角和比外角和多180°,则它的边数为______.4、过五边形一个顶点的对角线共有________条.5、如图,已知AB ∥CD ,ABE ∠和CDE ∠的平分线相交于F ,140E ∠=︒,求BFD ∠的度数_____.三、解答题(5小题,每小题10分,共计50分)1、一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?2、如图:是一个大型模板,设计要求BA 与CD 相交成26︒角,DA 与CB 相交成37︒角,现小燕测得151,66,88,55A B C D ∠=︒∠=︒∠=︒∠=︒,她就断定这块模板是合格的,这是为什么?3、如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如下图所示就是一组正多边形.(1)观察上面每个正多边形中的∠a ,填写下表:(2)是否存在正n 边形使得∠a =12°?若存在,请求出n 的值;若不存在,请说明理由.4、完成下面推理填空:如图,已知:AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠.求证:AD 平分BAC ∠.解:∵AD BC ⊥于D ,EG BC ⊥(已知),∴90ADC EGC ∠=∠=︒(____①_____),∴EG AD ∥(同位角相等,两直线平行),∴_____②___(两直线平行,同位角相等)∠1=∠2(____③_____),又∵1E ∠=∠(已知),∴∠2=∠3(_____④______),∴AD 平分BAC ∠(角平分线的定义).5、两个直角三角板如图摆放,其中∠BAC =∠EDF =90°,∠E =45°,∠C =30°,AB 与DF 交于点M ,BC ∥EF ,求∠BMD 的度数.-参考答案-一、单选题1、D【解析】【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.2、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.3、A【解析】【分析】根据题意设,ABD ACD βθ∠=∠=,根据三角形内角和公式定理βθ+,进而表示出α,进而根据三角形内角和定理根据()1803BDC βθ∠=︒-+即可求解【详解】解:∵∠A =α,∠DBC =3∠DBA ,∠DCB =3∠DCA ,设,ABD ACD βθ∠=∠=,∴3,3DBC DCB βθ∠=∠=180A ABC ACB ∠+∠+∠=︒即44180αβθ++=︒454αβθ∴+=︒-∴()1803BDC βθ∠=︒-+31803454544αα⎛⎫=︒-⨯︒-=︒+ ⎪⎝⎭故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.4、C【解析】【分析】根据三角形的三边关系可得104104x -<<+,再解不等式可得答案.【详解】解:设三角形的第三边为xcm ,由题意可得:104104x -<<+,即614x <<,故选:C .【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.5、B【解析】【分析】根据三角形外角的性质可直接进行求解.【详解】解:∵50B ∠=︒,80A ∠=︒,∴130ACD A B ∠=∠+∠=︒;故选B .【点睛】本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.6、C【解析】【分析】根据三角形外角的性质,可得946,1015∠=∠+∠∠=∠+∠ ,再由四边形的内角和等于360°,即可求解.【详解】解:如图,∠=∠+∠∠=∠+∠,根据题意得:946,1015∠+∠+∠+∠=︒,∵23910360∴123456360∠+∠+∠+∠+∠+∠=︒.故选:C【点睛】本题主要考查了三角形外角的性质,多边形的内角和,熟练掌握三角形外角的一个外角等于与它不相邻的两个内角的和,四边形的内角和等于360°是解题的关键.7、C【解析】【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【详解】解:如图:∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,∴∠α=∠D+∠DGB=30°+45°=75°.故选C.【点睛】本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.8、A【解析】【分析】先由∠BAC和∠C求出∠B,然后由AE平分∠BAC求∠BAE,再结合AD⊥BC求∠BAD,最后求得∠EAD.【详解】解答:解:∵∠C=50°,∠BAC=60°,∴∠B=180°﹣∠BAC﹣∠C=70°.∵AE平分∠BAC,∠BAC=60°,∴∠BAE=12∠BAC=160=302⨯︒︒,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠EAD=∠BAE﹣∠BAD=30°﹣20°=10°.故选:A.本题考查了三角形的内角和、角平分线的定义和高线的定义,通过角平分线和高线的定义求得∠BAE 和∠BAD 的度数是解题的关键.9、C【解析】【分析】先根据直角三角形两锐角互余求出45DEC ∠=︒ ,由DE ∥AF 即可得到∠CAF =45°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】解:∵45CDE ∠=︒,90C ∠=︒,∴45CED ∠=︒,∵DE ∥AF ,∴∠CAF =∠CED =45°,∵∠BAC =60°,∴∠BAF =60°-45°=15°,故选:C【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.10、C【解析】【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.解:如图,原来多边形的边数可能是5,6,7.故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.二、填空题1、12【解析】【分析】n-⨯︒=︒,然后解方程即可.设这个多边形的边数为n,根据多边形的内角和定理得到()21801800【详解】解:设这个多边形的边数是n,n-⨯︒=︒,依题意得()21801800n-=,∴210n=.∴12故答案为:12.【点睛】n-⨯︒解答.考查了多边形的内角和定理,关键是根据n边形的内角和为()21802、8cm或7cm##7cm或8cm【解析】【分析】因为已知长度为2cm和3cm两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【详解】解:①当2cm为底时,其它两边都为3cm,2cm、3cm、3cm可以构成三角形,周长为8cm;②当3cm为底时,其它两边都为2cm,2cm、2cm、3cm可以构成三角形,周长为7cm;故答案为:8cm或7cm.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.3、5【解析】【分析】n-⨯︒=︒计算求解即可.设边数为n,由题意知多边形的内角和为540︒,用边数表示为()2180540【详解】解:设边数为n∵多边形的外角和为360︒︒+︒=︒∴多边形的内角和为360180540n-⨯︒=︒∴()2180540n=解得5故答案为:5.【点睛】本题考查了多边形的内角和与外角和.解题的关键在于求解多边形的内角和.4、2【解析】【分析】画出图形,直接观察即可解答.【详解】解:如图所示,过五边形一个顶点的对角线共有2条;故答案为:2.【点睛】本题考查了多边形对角线的条数,解题关键是明确过n边形的顶点可引出(n-3)条对角线.5、110°【解析】【分析】过点E作EH∥AB,然后由AB∥CD,可得AB∥EH∥CD,然后根据两直线平行内错角相等可得∠ABE=∠BEH,∠CDE=∠DEH,然后根据周角的定义可求∠ABE+∠CDE的度数;再根据角平分线的定义求出∠EBF+∠EDF的度数,然后根据四边形的内角和定理即可求∠BFD的度数.【详解】解:过点E作EH∥AB,如图所示,∵AB∥CD,∴AB∥EH∥CD,∴∠ABE=∠BEH,∠CDE=∠DEH,∵∠BEH+∠DEH+∠BED=360°,∠BED=140°,∴∠BEH+∠DEH=220°,∴∠ABE+∠CDE=220°,∵∠ABE和∠CDE的平分线相交于F,∴∠EBF+∠EDF=12(∠ABE+∠CDE)=110°,∵∠BFD+∠BED+∠EBF+∠EDF=360°,∴∠BFD=110°.故答案为:110°.【点睛】本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.另外过点E作EH∥AB,也是解题的关键.三、解答题1、这个多边形的边数为7.【解析】【分析】设这个多边形的边数为n,根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,求解即可.【详解】解:设这个多边形的边数为n,根据题意,得(n-2)×180°=3×360°-180°,解得n=7.答:这个多边形的边数为7.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.2、合格,理由见解析【解析】【分析】延长DA,CB相交于点F,延长BA,CD相交于点E,然后根据三角形内角和定理求解即可.【详解】解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E,∵8855143C ADC ∠+∠=︒+︒=︒,∴18037F C ADC ∠=︒--=︒∠∠,∵8866154C ABC ∠+∠=︒+︒=︒,∴18026E C ABC ∠=︒--=︒∠∠,∴这块模板是合格的.【点睛】本题主要考查了三角形内角和定理,解题的关键在于能够熟练掌握三角形内角和定理.3、(1)18045,3630,(),n︒︒︒︒;(2)存在,15 【解析】【分析】(1)根据正多边形的外角和,求得内角的度数,根据等腰三角形性质和三角形内角和定理即可求得α∠的度数;(2)根据(1)的结论,将12α∠=︒代入求得n 的值即可【详解】解:(1)正多边形的每一个外角都相等,且等于360n ︒ 则正多边形的每个内角为360180n ︒︒-,根据题意,正多边形的每一条边都相等,则α∠所在的等腰三角形的顶角为:360180n︒︒-,另一个底角为α∠,1360180=1801802n n α⎡︒⎤⎛⎫⎛⎫∴∠︒-︒-=︒ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 当4n =时,45α∠=︒当5n =时,α∠=36︒当6n =时,α∠=30 故答案为:18045,3630,(),n︒︒︒︒ (2)存在.设存在正n 边形使得12a ∠=︒, ∴180()12n︒=︒,解得15n =. 【点睛】本题考查了正多边形的外角和与内角的关系,等腰三角形的性质和三角形内角和定理,根据正多边形的外角与内角互补求得内角是解题的关键.4、垂直的定义;∠E =∠3;两直线平行,内错角相等;等量代换【解析】【分析】根据平行线的判定与性质进行解答即可.【详解】解:∵AD ⊥BC 于D ,EG ⊥BC (已知),∴∠ADC =∠EGC =90°(垂直的定义),∴EG ∥AD (同位角相等,两直线平行),∴∠E =∠3(两直线平行,同位角相等)∠1=∠2(两直线平行,内错角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD平分∠BAC(角平分线的定义).故答案为:垂直的定义;∠E=∠3;两直线平行,内错角相等;等量代换.【点睛】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.5、75°【解析】【分析】首先根据直角三角形两锐角互余可算出∠F和∠B的度数,再由“两直线平行,内错角相等”,可求出∠MDB的度数,在△BMD中,利用三角形内角和可求出∠BMD的度数.【详解】解:如图,在△ABC和△DEF中,∠BAC=∠EDF=90°,∠E=45°,∠C=30°,∴∠B=90°−∠C=60°,∠F=90°−∠E=45°,∵BC∥EF,∴∠MDB=∠F=45°,在△BMD中,∠BMD=180°−∠B−∠MDB=75°.【点睛】本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.。

华师大版初中数学七年级下册《第9章 多边形》单元测试卷(含答案解析

华师大版初中数学七年级下册《第9章 多边形》单元测试卷(含答案解析

华师大新版七年级下学期《第9章多边形》单元测试卷一.选择题(共50小题)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形.下列四个图中,能正确表示它们之间关系的是()A.B.C.D.3.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()A.399B.401C.405D.4074.已知三角形ABC三边a、b、c满足(a﹣b)2+|b﹣c|=0,则△ABC的形状是()A.钝角三角形B.直角三角形C.等边三角形D.以上都不对5.三角形按角分类可以分为()A.锐角三角形、直角三角形、钝角三角形B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等边直角三角形D.以上答案都不正确6.三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形7.如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG 8.如图,在△ABC中,BC边上的高是()A.AF B.BH C.CD D.EC9.如图所示,AD,BE,CF分别是△ABC的角平分线,高线和中线,则下列求△ABC的面积正确的公式是()A.B.C.D.S△ABC=BE•CE10.在△ABC中,AC=4,AB=5,则△ABC面积的最大值为()A.6B.10C.12D.2011.能将一个三角形分成面积相等的两个三角形的一条线段是()A.中线B.角的平分线C.高线D.三角形的角平分线12.如图所示,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4cm2,则阴影部分面积等于()A.2cm2B.1cm2C.0.25cm2D.0.5cm213.下列图形中具有稳定性的是()A.平行四边形B.等腰三角形C.长方形D.梯形14.三角形的重心是()A.三角形三边垂直平分线的交点B.三角形三边上高所在直线的交点C.三角形三边上中线的交点D.三角形三个内角平分线的交点15.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm16.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5 17.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.1118.在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()19.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC 于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°20.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°21.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°22.如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是()23.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β24.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°25.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A.80°B.100°C.120°D.140°26.如图所示,设M表示平行四边形,N表示矩形,P表示菱形,Q表示正方形,则下列四个图形中,能表示它们之间关系的是()A.B.C.D.27.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形28.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角29.下列判断错误的是()A.对角线相互垂直且相等的平行四边形是正方形B.对角线相互垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互平分的四边形是平行四边形30.从某多边形的一个顶点引出的所有对角线把这个多边形分成了6个三角形,则此多边形的形状是()A.六边形B.七边形C.八边形D.九边形31.六边形的对角线共有()A.6条B.8条C.9条D.18条32.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m、n的值分别为()A.4,3B.3,3C.3,4D.4,433.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°34.一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.735.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°36.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形37.已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.938.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8B.9C.10D.1139.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°40.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变41.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.正四边形C.正六边形D.正八边形42.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块43.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.长方形C.正八边形D.正六边形44.如图,将直角三角形ABC折叠,使点A与点B重合,折痕为DE,若∠C=90°,∠A=35°,则∠DBC的度数为()A.40°B.30°C.20°D.10°45.一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°46.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°47.如图,△ABC纸片中,∠A=56°,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD、则∠EDB的度数为()A.76°B.74°C.72°D.70°48.一副三角板如图放置,若∠1=90°,则∠2的度数为()A.45°B.60°C.75°D.90°49.如果将一副三角板按如图方式叠放,那么∠1=()A.90°B.100°C.105°D.135°50.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则∠1的度数为()A.45°B.60°C.75°D.85°华师大新版七年级下学期《第9章多边形》单元测试卷参考答案与试题解析一.选择题(共50小题)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形.下列四个图中,能正确表示它们之间关系的是()A.B.C.D.【分析】根据它们的概念:有一个角是直角的三角形是直角三角形;有两条边相等的三角形是等腰三角形;有三条边相等的三角形是等边三角形;有一个角是直角且有两条边相等的三角形是等腰直角三角形.根据概念就可找到它们之间的关系.【解答】解:根据各类三角形的概念可知,C可以表示它们彼此之间的包含关系.故选:C.【点评】考查了三角形中各类三角形的概念,根据定义就能够找到它们彼此之间的包含关系.3.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()A.399B.401C.405D.407【分析】根据题意可以得到当三角形纸片内有1个点时,有3个小三角形;当有2个点时,有5个小三角形;当n=3时,有7个三角形,因而若有n个点时,一定是有2n+1个三角形.【解答】解:根据题意有这样的三角形的个数为:2n+1=2×200+1=401,故选:B.【点评】此题主要考查了利用平面内点的个数确定三角形个数,根据n取比较小的数值时得到的数值,找出规律,再利用规律解决问题.4.已知三角形ABC三边a、b、c满足(a﹣b)2+|b﹣c|=0,则△ABC的形状是()A.钝角三角形B.直角三角形C.等边三角形D.以上都不对【分析】根据非负数的性质列式求解得到a=b=c,然后选择答案即可.【解答】解:根据非负数的性质,a﹣b=0,b﹣c=0,解得a=b,b=c,所以,a=b=c,所以,△ABC是等边三角形.故选:C.【点评】本题考查了三角形的形状判定,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.5.三角形按角分类可以分为()A.锐角三角形、直角三角形、钝角三角形B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等边直角三角形D.以上答案都不正确【分析】根据三角形的分类情况可得答案.【解答】解:三角形按角分类可以分为锐角三角形、直角三角形、钝角三角形,故选:A.【点评】此题主要考查了三角形的分类,关键是掌握三角形的分类一种是按边分类,另一种是按角分类.6.三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形【分析】根据三角形按边的分类方法即可确定.【解答】解:三角形按边分类可分为不等边三角形、等腰三角形,故选:D.【点评】本题考查了三角形的分类,要注意等腰三角形与等边三角形两个概念的区别.7.如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【解答】解:根据三角形中线的定义知线段BE是△ABC的中线,故选:B.【点评】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.8.如图,在△ABC中,BC边上的高是()A.AF B.BH C.CD D.EC【分析】根据三角形的高线的定义解答.【解答】解:根据高的定义,AF为△ABC中BC边上的高.故选:A.【点评】本题主要考查了三角形的高的定义,熟记概念是解题的关键.9.如图所示,AD,BE,CF分别是△ABC的角平分线,高线和中线,则下列求△ABC的面积正确的公式是()A.B.C.D.S△ABC=BE•CE【分析】根据三角形面积公式即可求解.【解答】解:∵BE是△ABC的高线,=CA•BE.∴求△ABC的面积正确的公式是S△ABC故选:B.【点评】考查了三角形的角平分线、中线和高,三角形的面积,关键是熟练掌握三角形面积公式.10.在△ABC中,AC=4,AB=5,则△ABC面积的最大值为()A.6B.10C.12D.20【分析】把AB边作为底边,则AB边上的高的最大值为AC的长度,同理把AC边作为底边,则AC边上的高的最大值为AB的长度,即三角形为直角三角形时面积最大,求出即可.【解答】解:把AB边作为底边,则AB边上的高的最大值为AC的长度,同理把AC边作为底边,则AC边上的高的最大值为AB的长度,即三角形为直角三角形时面积最大;所以,在△ABC中,AC=4,AB=5,则△ABC面积的最大值为×AC×AB=10,故选:B.【点评】此题考查了三角形的面积,解题的关键是弄清三角形面积最大时的条件.11.能将一个三角形分成面积相等的两个三角形的一条线段是()A.中线B.角的平分线C.高线D.三角形的角平分线【分析】观察各选项可知,只有三角形的中线把三角形分成等底同高的两个三角形,再根据三角形的面积公式,这两个三角形的面积相等.【解答】解:∵三角形的中线把三角形分成的两个三角形,底边相等,高是同一条高,∴分成的两三角形的面积相等.故选:A.【点评】本题考查了等底等高的两个三角形的面积相等的性质,根据此性质,可以解决很多利用三角形的面积进行计算的题目,需熟练掌握并灵活运用.12.如图所示,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4cm2,则阴影部分面积等于()A.2cm2B.1cm2C.0.25cm2D.0.5cm2【分析】如图,因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,△EBC与△ABC 同底,△EBC的高是△ABC高的一半;利用三角形的等积变换可解答.【解答】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,高相等;=S△BEC,∴S△BEF同理得,S△EBC=S△ABC,=S△ABC,且S△ABC=4,∴S△BEF=1,∴S△BEF即阴影部分的面积为1.故选:B.【点评】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.结合图形直观解答.13.下列图形中具有稳定性的是()A.平行四边形B.等腰三角形C.长方形D.梯形【分析】三角形不容易产生变化,因此三角形是最稳定的.【解答】解:根据三角形具有稳定性,可知四个选项中只有等腰三角形具有稳定性的.故选:B.【点评】此题考查的是对三角形稳定性的知识的理解,属于基础题,比较简单.14.三角形的重心是()A.三角形三边垂直平分线的交点B.三角形三边上高所在直线的交点C.三角形三边上中线的交点D.三角形三个内角平分线的交点【分析】由三角形的重心的定义可得:三角形的重心是三条中线的交点.【解答】解:三角形的重心是三条中线的交点.故选:C.【点评】本题考查的是三角形的重心的概念,掌握三角形的重心是三条中线的交点是解题的关键.15.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm【分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中的三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.【点评】本题考查了三角形的三边关系,解题的关键是:用较短的两边长相加与第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.16.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.【点评】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.17.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.18.在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90°B.95°C.100°D.120°【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.【解答】解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.【点评】本题主要考查了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.19.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC 于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.【点评】此题考查三角形内角和问题,关键是根据三角形内角和、角平分线的定义和平行线的性质解答.20.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.【点评】本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.21.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB 可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.【点评】本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.22.如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是()A.24°B.59°C.60°D.69°【分析】根据三角形外角性质求出∠DBC,根据平行线的性质得出即可.【解答】解:∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=59°,∵DE∥BC,∴∠D=∠DBC=59°,故选:B.【点评】本题考查了三角形外角性质和平行线的性质,能熟练地运用性质进行推理是解此题的关键.23.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.24.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.【点评】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.25.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A.80°B.100°C.120°D.140°【分析】延长BC交AD于点E,根据三角形的一个外角等于与它不相邻的两个内角的和先求出∠CED的度数,再次利用三角形的一个外角等于与它不相邻的两个内角的和即可求出∠BCD的度数.【解答】解:如图所示,延长BC交AD于点E,∵∠A=50°,∠B=20°,∴∠CED=∠A+∠B=50°+20°=70°,∴∠BCD=∠CED+∠D=70°+30°=100°.故选:B.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,作出辅助线是解题的关键.26.如图所示,设M表示平行四边形,N表示矩形,P表示菱形,Q表示正方形,则下列四个图形中,能表示它们之间关系的是()A.B.C.D.【分析】根据正方形、平行四边形、菱形和矩形的定义进行解答即可.【解答】解:∵四个边都相等的矩形是正方形,有一个角是直角的菱形是正方形,∴正方形应是N的一部分,也是P的一部分,∵矩形形、正方形、菱形都属于平行四边形,∴它们之间的关系是:.故选:A.【点评】本题考查的是正方形、平行四边形、菱形和矩形的定义,熟练掌握这些多边形的定义与性质是解答此题的关键.27.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【分析】利用多边形对角线的性质,分析四个选项即可得出结论.【解答】解:利用排除法分析四个选项:A、菱形的对角线互相垂直且平分,故A错误;B、对角线互相平分的四边形式应该是平行四边形,故B错误;C、对角线互相垂直的四边形并不能断定为平行四边形,故C错误;D、对角线相等且互相平分的四边形是矩形,故D正确.故选:D.【点评】本题考查了多变形对角线的性质,解题的关键是牢记各特殊图形对角线的性质即可解决该题.28.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角【分析】利用特殊四边形的性质进而得出符合题意的答案.【解答】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:B.【点评】此题主要考查了多边形,正确掌握多边形的性质是解题关键.29.下列判断错误的是()A.对角线相互垂直且相等的平行四边形是正方形B.对角线相互垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互平分的四边形是平行四边形【分析】根据平行四边形的判定方法、正方形的判定方法、矩形的判定方法以及菱形的判定方法逐项分析即可.【解答】解:A、对角线相互垂直且相等的平行四边形是正方形,正确;B、对角线相互垂直平分的四边形是菱形,正确;C、对角线相等平分的四边形是矩形,错误;D、对角线相互平分的四边形是平行四边形,正确;故选:C.【点评】本题考查了平行四边形、矩形、菱形、正方形的判定等内容,要求学生对这些基本的图形熟练掌握.30.从某多边形的一个顶点引出的所有对角线把这个多边形分成了6个三角形,则此多边形的形状是()A.六边形B.七边形C.八边形D.九边形【分析】根据从n边形的一个顶点引出的所有对角线把这个n边形分成了(n﹣2)个三角形进行计算.【解答】解:从某多边形的一个顶点引出的所有对角线把这个多边形分成了6个三角形,则此多边形的边数为:6+2=8.故选:C.【点评】从n边形的一个顶点引出的所有对角线有(n﹣3)条,把这个n边形分成了(n﹣2)个三角形.31.六边形的对角线共有()A.6条B.8条C.9条D.18条【分析】直接运用多边形的边数与对角线的条数的关系式求解.【解答】解:六边形的对角线的条数==9.故选:C.【点评】本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).32.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m、n的值分别为()A.4,3B.3,3C.3,4D.4,4【分析】从一个n边形一个顶点出发,可以连的对角线的条数是n﹣3,分成的三角形数是n﹣2.【解答】解:对角线的数量=6﹣3=3条;分成的三角形的数量为n﹣2=4个.故选:C.【点评】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n﹣3,分成的三角形数是n﹣2.33.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和;根据一个外角得60°,可知对应内角为120°,很明显内角和是外角和的2倍即720.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.34.一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.7【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.35.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.【点评】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360度.多边形的内角与它的外角互为邻补角.36.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.37.已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.9【分析】根据正多边形的外角和以及一个外角的度数,求得边数.【解答】解:正多边形的一个外角等于40°,且外角和为360°,则这个正多边形的边数是:360°÷40°=9.故选:D.【点评】本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的。

华师大版数学七年级下册第9章多边形 达标测试卷(含答案)

华师大版数学七年级下册第9章多边形 达标测试卷(含答案)

第9章多边形达标测试卷一、选择题(每题3分,共24分)1.下列图形中,具有稳定性的是()2.如图所示,∠B=35°,∠C=y°,∠BAD=x°,y与x的关系式为() A.y=145-x B.y=x-35C.y=x+55 D.y=x+35(第2题)(第4题)(第5题)3.下列长度的三条线段,能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.6,6,13 4.如图,在六边形ABCDEF中,若∠1+∠2=90°,则∠3+∠4+∠5+∠6=() A.180°B.240°C.270°D.360°5.如图,BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=()A.30°B.40°C.50°D.60°6.如图所示,图中共有三角形()A.5个B.6个C.7个D.8个(第6题)(第7题)7.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积为6 cm2,则阴影部分的面积为()A.1 cm2 B.32cm2C.2 cm2 D.52cm28.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉他,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种地砖的形状是()A.正三角形B.正方形C.正五边形D.正六边形二、填空题(每题3分,共18分)9.如果一个三角形的一个内角等于相邻的外角,这个三角形是________三角形.10.△ABC中,∠A比∠B大10°,∠C=50°,则∠A=________.11.一个多边形外角和是内角和的29,则这个多边形的边数为________.12.△ABC中,∠A=x,∠B、∠C的角平分线的夹角为y,则y与x之间的关系可以表示为________.13.如图,直线AB∥CD,∠B=70°,∠D=30°,则∠E的度数是________.(第13题)14.在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC=________°.三、解答题(共58分)15.(8分)如图,试说明“三角形的外角和等于360°”.(第15题)16.(9分)已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a-b)2+(b-c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.17.(9分)看对话答题:小梅:“这个多边形的内角和等于1125°.”小红:“不对,你少加了一个角.”问题:她们在求几边形的内角和?少加的那个内角是多少度?18.(9分)如图,△ABC中,AE,CD是△ABC的两条高,AB=4,CD=2.(第18题)3(1)请画出AE,CD;(2)求△ABC的面积;(3)若AE=3,求BC的长.19.(11分)如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E,∠ABC=∠ACE.(第19题)(1)试说明:AB∥CE;(2)若∠A=50°,求∠E的度数.20.(12分)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下空隙,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格.正多边形边数3456…n正多边形每个内角的度数…(2)如图所示,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)不能用正五边形的材料铺满地面的理由是什么?(4)从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.(第20题)5答案一、1.D 2.B 3.A 4.C 5.A 6.A7.B8.B二、9.直角10.70°11.1112.y=90°+12x13.40°14.80或40点拨:当△ABC为锐角三角形时,如图①,(第14题)∠BAD=180°-∠B-∠ADB=180°-30°-90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°;当△ABC为钝角三角形时,如图②,∠BAD=180°-∠B-∠ADB=180°-30°-90°=60°,∠BAC=∠BAD-∠CAD=60°-20°=40°.综上所述,∠BAC=80°或40°.三、15.解:∵∠BAE+∠1=180°,∠CBF+∠2=180°,∠ACD+∠3=180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°.∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3),∵在△ABC中,∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.16.解:(1)∵(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC是等边三角形.(2)∵a=5,b=2,且c为整数,∴5-2<c<5+2,即3<c<7,∴c=4,5,6,∴△ABC周长的最小值为5+2+4=11;△ABC周长的最大值为5+2+6=13.17.解:设少加的那个内角为x°,多边形的边数为n,则1125+x=(n-2)180,x=(n-2)180-1 125,7 ∵0<x <180,∴0<(n -2)180-1 125<180, 解得8.25<n <9.25,∵n 为整数,∴n =9, 所以x =(9-2)×180-1 125=135,∴她们在求九边形的内角和,少加的那个内角为135度. 18.解:(1)如图.(第18题)(2)∵AB =4,CD =2,∴S △ABC =12 AB ·CD =12×4×2=4; (3)∵S △ABC =12AB ·CD =12 BC ·AE , ∴12BC ×3=4,∴BC =83.19.解:(1)∵CE 平分∠ACD ,∴∠ECD =∠ACE ,∵∠ABC =∠ACE ,∴∠ABC =∠ECD ,∴AB ∥CE . (2)∵∠ACD 是△ABC 的一个外角, ∴∠ACD =∠ABC +∠A ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠E =∠ECD -∠EBC =12∠ACD -12∠ABC =12∠A =25°. 20.解:(1)60°;90°;108°;120°;(n -2)·180°n(2)设这个正多边形的边数为n , 当360°÷(n -2)·180°n为正整数时,求出的n 值符合题意.360°÷(n -2)·180°n =2n n -2=2+4n -2,要使2+4n -2为正整数,则4为n -2的倍数 因此,n -2=1或2或4,即n =3或4或6.故如果限于用一种正多边形镶嵌,正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形.(3)由(2)知,当n =5时,360°÷(5-2)×180°5=103不为整数,故不能用正五边形的材料铺满地面.(4)(答案不唯一)选正方形和正八边形,画图结果如下所示:(第20题)设在一个顶点周围有m 个正方形,n 个正八边形,则m ,n 应是方程m ·90+n ·135=360即2m +3n =8的正整数解,解只有⎩⎨⎧m =1,n =2一组,故符合条件的图形只有一种.。

【完整版】华师大版七年级下册数学第9章 多边形含答案

【完整版】华师大版七年级下册数学第9章 多边形含答案

华师大版七年级下册数学第9章多边形含答案一、单选题(共15题,共计45分)1、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.32、如图,在△ABC 中,∠BAC = 90°,将△ABP 绕点 A 逆时针旋转后,能与△ACP'重合.如果 AP=3,那么PP’的长等于( )A.3B.C.D.不能确定3、在△ABC中,∠BCA=90∘,AC=6,BC=8,D是AB的中点,将△ACD沿直线CD折叠得到△ECD,连接BE,则线段BE的长等于()A.5B.C.D.4、一个三角形三个内角的度数之比为4:5:6,这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形5、如果一个正多边形的中心角等于,那么这个多边形的内角和为()A. B. C. D.6、在△ABC中,∠A=70°,∠B=55°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7、如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB 为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠AB.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A8、如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=;再过点P1作P 1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为()A. B. C. D.9、如图,内接于,,过点A作平行于,交的延长线于点D,则的度数()A. B. C. D.10、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.311、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.312、三角形两边的长分别是 8 和 6,第三边的长是方程 x2﹣12x+20=0 的一个实数根,则三角形的外接圆半径是( )A.4B.5C.6D.813、如图,四边形中,,,,点,分别为线段,上的动点(含端点,但点不与点重合),点,分别为,的中点,则长度的最大值为A.8B.6C.4D.514、如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB 为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠AB.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A15、如图所示,在△ABC中,AB=AC,DE垂直平分腰AB,若AC=CD,AB∥CD,则∠A的度数为()A.36°B.72°C.120°D.44°二、填空题(共10题,共计30分)16、如图,等边△ABC中,BC=6,D、E分别在BC、AB上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为________.17、如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是________.18、如图,在平行四边形ABCD中,BE⊥AC,AC=24,BE=5,AD=8,则两平行线AD与BC间的距离是________.19、如果三角形的两边长为2和6,第三边为偶数,那么三角形的周长为________.20、如图,等边△ABC中,BC=6,D、E分别在BC、AB上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为________.21、如图,等边△ABC中,BC=6,D、E分别在BC、AB上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为________.22、若一个多边形的内角和等于外角和,那么这个多边形的边数是________.23、一个n边形的内角和是900 ,那么n=________.24、在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为________.25、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是________.三、解答题(共5题,共计25分)26、如图所示,已知∠A=48°,∠D=25°,FD⊥BC于E,求∠B的度数.27、如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC的值.28、正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一实线上;②连结三个格点,使之构成直角三角形,小华在下边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在下面的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.29、一个等腰三角形的一个外角为150°,求这个等腰三角形的其中一个底角的度数.30、如图,在等边△ABC中,点P在△ABC内,点Q在△ABC外,B,P,Q三点在一条直线上,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、C5、B6、B7、B8、D9、C10、B11、B12、B13、D14、B15、C二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

华东师大版七年级数学下册《第九章多边形》单元检测试题(含答案)

华东师大版七年级数学下册《第九章多边形》单元检测试题(含答案)

七年级数学下册第九章多边形单元检测试题姓名:__________班级:__________一、单项选择题〔共10题;共30分〕.△ABC中,∠B是∠A的2倍,∠C比∠A大20°,那么∠A等于()A.40°B.60C.80°D°.90°2.如图,在△ABC中,BC边上的高是〔〕A.CEB.ADC.CFD.AB3.假如一个正多边形的一个外角为30°,那么这个正多边形的边数是〔〕A.6B.11C.12D.184.〕如图,矩形 ABCD,一条直线将该矩形 ABCD切割成两个多边形,那么所得任一多边形内角和度数不行能是〔〕A.720°B.540°C.360°D.180°5.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为〔〕A.5B.5或6C.5或7D.5或6或76.以下列图方格纸中的三角形是〔〕A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形7.如图,在△ABC中,E是BC上的一点,EC2BE D是AC的中点,设△ABC△ADF△BEF=,点,,的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,那么S△ADF-S△BEF=()A.1B.2C.3D.4,BD是AC边上的高,8.如图,在△ABC中,AB=AC,∠A=36那么∠DBC的度数是〔〕°°°°9.AD是△ABC的中线,BE是△ABD的中线,假定△ABC的面积为20,那么△ABE的面积为〔〕A.5B.10C.15D.1810.如图,那么∠A+∠B+∠C+∠D+∠E=〔〕度A.90B.180C.200D.360二、填空题〔共8题;共24分〕11.如图,在△ABC中,AB=AC,AD⊥BC于点D,假定AB=6,CD=4,那么△ABC的周长是________12.如图,墙上钉了根木条,小明想查验这根木条能否水平,他拿来一个以下列图的测平仪,再这个测平仪中,AB=AC,BC边的中点D处有一个重锤,小明建BC边与木条重合,察看此重锤能否经过A点,如经过A点,那么是水平的,此中的道理是________.113.三角形片ABC中,∠A=55°,∠B=75°,将片的一角折叠,使点C落在△ABC内〔如〕,∠1+∠2的度数________度.14.在△ABC中,AB=13cm,AC=20cm,BC上的高12cm,△ABC的面________cm2.15.在△ABC中,AB=AC=17,BC=16,AD⊥BC于点D,AD=________.16.假定一个四形的四个内角度数的比3∶4∶5∶6,个四形的四个内角的度数分________.17.假定+=0,以的等腰三角形的周.18.如,∠MON=30°,点A1,A2,A3,⋯在射ON上,点B1,B2,B3,⋯在射OM上,△A1B1A2,△A2B2A3,△A3B3A4,⋯均等三角形,假定OA1=2,△A5B5A6的________.三、计算题〔共4题;共24分〕19.如,假定∠B=28°,∠C=22°,∠A=60°,求∠BDC.20.如,AB⊥BC,DC⊥BC,假定∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.21.如,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=152°,求∠A的度数.22.如所示,在△ABC中,D是BC上一点,∠1=∠2,∠3=∠4,∠BAC=78°,求∠DAC的度数.2((((((((((((((四、解答题〔共4题;共34分〕(23.以下列图,AD,AE是三角形A BC的高和角均分线,∠B=36°,∠C=76°,求∠DAE的度数.((((((((((((24.如图,在△ABC中,BD是∠ABC的均分线,CD是外角∠ACE的均分线.求证:∠D=∠A.(((((((((((((〔1〕等腰三角形的一边长等于8cm,一边长等于9cm,求它的周长;〔2〕等腰三角形的一边长等于6cm,周(长等于28cm,求其余两边的长.((((((((((((26.如图,AD为△ABC的中线,BE为△ABD的中线.(1〕∠ABE=15°,∠BAD=40°,求∠BED的度数;(2〕作图:在△BED中作出BD边上的高EF;BE边上的高DG;3〔3〕假定△ABC的面积为40,BD=5,那么△BDE中BD边上的高EF为多少?假定BE=6,求△BED中BE边上的高DG为多少?答案分析局部一、单项选择题1.【答案】A2.【答案】B3.【答案】C4.【答案】A5.【答案】D6.【答案】A7.【答案】B 8.【答案】A 9.【答案】A 10.【答案】B二、填空题2021.等腰三角形底边上的中线与底边上的高相互重合13.100 14.126或66 15.15 16.60o,80o,100o,18.32.三、计算题19.解:以下列图:连接BC.∵∠A=60°,∴∠ABC+ACB=120°.∵∠B=28°,∠C=22°,∴∠DBC+∠DCB=70°.∴∠BDC=180°﹣70°=110°.20.解:∵DC⊥BC,∠DBC=45°,∴∠D=90°﹣∠DBC=90°﹣45°=45°;AB⊥BC,DC⊥BC,∴AB∥CD,∴∠AED=∠A=70°;在△DEF中,∠BFE=∠D+∠AED=45°+70°=115°.21.解:∵DF⊥BC,∴∠FDC=90°,∵∠AFD=152°,∴∠C=∠AFD﹣∠FDC=152°﹣90°=62°,4∵∠B=∠C,∴∠A=180°﹣∠B﹣∠C=180°﹣62°﹣62°=56°22.解:∠3=∠1+∠2,∠1=∠2,∴∠3=2∠1,∵∠3=∠4,∴∠4=2∠1,∴180°﹣4∠1+∠1=78°,解得,∠1=34°,∴∠DAC=78°﹣∠1=44°.四、解答题23.解:∵∠B=36°,∠C=76°∴∠BAC=68°∵AE均分∠BAC∴∠EAC=68°÷2=34°∵AD是高线∴∠DAC=90°-76°=14°∴∠DAE=∠EAC-∠DAC=34°-14°=20°24证明:依据三角形外角性质有∠3+∠4=∠1+∠2+∠A.由于BD、CD是∠ABC和∠ACE的均分线,因此∠1=∠2,∠3=∠4.进而2∠4=2∠1+∠A,即∠4=∠1+∠A①在△BCD中,∠4是一个外角,因此∠4=∠1+∠D,②由①、②即得∠D=∠A.25.〔1〕解:8cm是腰长时,三角形的三边分别为8cm、8cm、9cm,能构成三角形,周长=8+8+9=25cm,8cm是底边时,三角形的三边分别为8cm、9cm、9cm,能构成三角形,周长=8+9+9=26cm,综上所述,周长为25cm或26cm〔2〕解:6cm是腰长时,其余两边分别为6cm,16cm,6+6=12<16,∴不可以构成三角形,6cm是底边时,腰长为〔28-6〕=11cm,三边分别为6cm、11cm、11cm,能构成三角形,因此,其余两边的长为11cm、11cm26.〔1〕解:∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°2〕解:绘图以下:3〕解:∵AD为△ABC的中线,BE为△ABD的中线,∴△ABD的面积=△ABC的面积=20,△BDE的面积=△ABD的面积=10,BD·EF=10,×5EF=10,解得EF=4,BE·DG=10,×6DG=10,5华东师大版七年级数学下册《第九章多边形》单元检测试题(含答案) EF=6。

华师大版七年级下册数学第9章 多边形含答案

华师大版七年级下册数学第9章 多边形含答案

华师大版七年级下册数学第9章多边形含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BCB.CEC.ADD.AC2、在△ABC中,∠A=70°,∠B=55°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形3、在△ABC中,∠A=70°,∠B=55°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形4、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.35、ABCD是边长为1的正方形,△BPC是等边三角形,则△BPD的面积为()A. B. C. D.6、如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=( )A.3:4B.4:3C.16:9D.9:167、如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC 的延长线于点E,则CE的长为()A. B. C. D.28、如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处9、在Rt△ABC中,若∠C=90°,AC=4,AB=5,则tanB=()A. B. C. D.10、从4条长度分别为4,6,8,10的线段中,任取三条能围成直角三角形的概率是()A. B. C. D.011、如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1, l2, l3上,且l1, l2之间的距离为1,l2, l3之间的距离为3,则AC的长是()A. B.5 C. D.12、在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB的度数是()A.65°B.55°C.45°D.35°13、如图,都是等边三角形,且B,C,D在一条直线上,连结,点M,N分别是线段BE,AD上的两点,且,则的形状是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形14、将一副直角三角扳如图放置,使含30°角的三角板的直角边和含45°角的三角扳的一条直角边重合,则∠1的度数为()A.55°B.50°C.65°D.75°15、如图,,,≌,与交于点D.若,,则的面积为().A.6B.12C.18D.36二、填空题(共10题,共计30分)16、如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE的面积为________.17、矩形两条对角线的夹角是60°,一条边长为4cm,则此矩形的对角线最长________.18、如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是________.19、已知三角形两边的长分别是3和7,如果此三角形第三边的长取最大的整数,则这个数是________.20、如图①,一张四边形纸片ABCD,∠A=50°,∠C=150°.若将其按照图②所示方式折叠后,恰好MD′∥AB,ND′∥BC,则∠D的度数为________.21、已知:如图,AD、BE分别是△ABC的高和角平分线,∠BAC=80°,∠C=60°,则∠AOB=________.22、一个直角三角形,一边长5cm,另一边长4cm,则该直角三角形面积为________23、如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是________.24、我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为 4 的正方形ABCD的边AB在轴x上,AB的中点是坐标原点O固定点A,B,把正方形沿箭头方向推,使点 D落在y 轴正半轴上点 D′处,则点C的对应点C′的坐标为________25、如图,是的角平分线,点在边的垂直平分线上,,则________度.三、解答题(共5题,共计25分)26、如图,已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=37°,∠C=67°,求∠DAE的度数.27、已知:Rt△ABC,C=90°,三边长分别为, ,,两直角边,满足:.求斜边.28、在平面直角坐标系中,若抛物线与直线交于点和点,其中,点为原点,求的面积.29、如图,将矩形ABCD沿EF折叠,使点C恰好落在AB边的中点C'上,点D 落在D'处,C'D'交AE于点M.若AB=6,BC=9,求线段ED.30、如图,在△ABC中,已知∠B=40°,∠C=60°,AE⊥BC于E,AD平分∠BAC,求∠DAE的度数.参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、B5、B6、B7、B8、C9、A10、B11、D12、D13、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。

华师大七级数学下第九章《多边形》单元试题含答案

华师大七级数学下第九章《多边形》单元试题含答案

七年级数学下册第九章《多边形》单元测试题一.选择题(每小题3分,共30分)1.一个三角形的内角中,至少有()A、一个锐角B、两个锐角C 、一个钝角D、一个直角2.三角形中,最大角α的取值范围是()A、0°<α<90°B、60°<α<180°C、60°≤α<90°D、60°≤α<180°3.下列长度的各组线段中,能作为一个三角形三边的是()A、1、2、3B、2、4、4、C、2、2、4D、a, 11 (a是自然数)4.已知4条线段的长度分别为2、3、4、5,若三条线段可以组成一个三角形,则这四条线段可以组成( )个三角形A、1 B、2 C、3 D、45.已知a>b>c>0,则以a、b、c为三边组成三角形的条件是()A、>aB、>bC、>cD、以上都不对6.下列正多边形的组合中,能够铺满地面不留缝隙的是()A、正八边形和正三角形;B、正五边形和正八边形;C、正六边形和正三角形;D、正六边形和正五边形7.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是()A、锐角三角形B、直角三角形C、钝角三角形D、任意三角形8.下面的说法正确的是()A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外那么9.如果一个多边形的边数增加1倍,它的内角和是2160 o,那么原来多边形的边数是()A、5B、6C、7D、810.用一种正多边形能进行平面图形铺设的条件是()A、内角都是整数度数B、边数是3的整数倍C、内角整除360oD、内角整除180o二.填空题(每空2分,共34分)11.n边形有一个外角是600,其它各外角都是750,则。

12. 从n边形一个顶点出发共可作5条对角线,则这个n边形的内角和=13.n边形的内角和与外角和相等,则14.三角形中,∠B和∠C的平分线交于O,若∠400,则∠15.用同一种正多边形能铺满地面的有;能够铺满地面的任意多边形有,。

华师大版七年级下册数学第9章 多边形含答案

华师大版七年级下册数学第9章 多边形含答案

华师大版七年级下册数学第9章多边形含答案一、单选题(共15题,共计45分)1、下列命题中,不正确的是()A.n边形的内角和等于(n﹣2)•180°B.两组对边分别相等的四边形是矩形C.垂直于弦的直径平分弦所对的两条弧D.直角三角形斜边上的中线等于斜边的一半2、等边三角形的两条高线相交成钝角的度数是()A.105°B.120°C.135°D.150°3、如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处4、等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14B.23C.19D.19或235、一个凸多边形的每一个内角都等于150°,则这个多边形所有对角线的条数共有()A.42条B.54条C.66条D.78条6、如图,E为ABC的边AB上一点,AC=BC=BE,AE=EC,BD⊥AC的延长线于点D,则∠CBD的度数为()A.18°B.28°C.36°D.15°7、已知一个多边形的内角和等于900º,则这个多边形是()A.五边形B.六边形C.七边形D.八边形8、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.39、如图,在△ABC中,D是CA延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A.36°B.116°C.26°D.104°10、如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F.若∠BAC=35°,则∠BFC的大小是()A.105°B.110°C.100°D.120°11、如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④12、如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB 为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠AB.∠1=2∠A+∠2C.∠1=2∠2+2∠AD.2∠1=∠2+∠A13、如图,从一块半径为的圆形铁皮上剪出一个圆心角是的扇形,则此扇形围成的圆锥底面圆的半径为()A. B. C. D.14、等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A.25cmB.20cmC.15cmD.20cm或25cm15、如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为( )A.10﹣B.14﹣πC.12D.14二、填空题(共10题,共计30分)16、如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是________.17、如图,平面直角坐标系中,点,的坐标分别为,,连接.请从A,B两题中任选一题作答.我选择________题A.若点是轴负半轴上的一点,且,则点的坐标为________.B.若点是轴上的一点,且,则点的坐标为________.18、如图,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF,展开后再折叠-一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,若AD=2,则MN=________。

华东师大版七年级数学下册第九章多边形单元测试题含答案

华东师大版七年级数学下册第九章多边形单元测试题含答案

华东师大版七年级数学下册第九章多边形单元测试一、选择题(本大题共8小题,每小题3分,共24分;在每小题给出的四个选项中,只有一项符合题意)1.下列各组线段中,能组成三角形的是()A.a=3 cm,b=8 cm,c=5 cmB.a=5 cm,b=5 cm,c=10 cmC.a=12 cm,b=5 cm,c=6 cmD.a=15 cm,b=10 cm,c=7 cm2.下列说法正确的是()A.所有的等腰三角形都是锐角三角形B.等边三角形属于等腰三角形C.不存在既是钝角三角形又是等腰三角形的三角形D.一个三角形里有两个锐角,则一定是锐角三角形图13.如图1,若∠1=100°,∠C=70°,则∠A的度数是()A.10°B.20°C.30°D.80°4.在△ABC中,AD是BC边上的中线,下列五种说法:①AD把∠BAC分成相等的两部分;②AD 将线段BC分成相等的两部分;③AD把△ABC分成形状相同的两个三角形;④AD把△ABC分成周长相等的两个三角形;⑤AD把△ABC分成面积相等的两个三角形.其中正确的说法有() A.2个B.3个C.4个D.5个5.在△ABC中,若∠B是∠A的2倍,∠C比∠A大20°,则∠A等于()A.40°B.60°C.80°D.90°6.如图2中三角形的个数是()图2A.6 B.7 C.8 D.97.已知三角形两边的长分别是6和12,则此三角形第三边的长可能是()A.5 B.6 C.12 D.198.若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10 B.9 C.8 D.6二、填空题(本大题共10题,每小题4分,共40分)9.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数为________.10.已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|-|2b|的结果是________.11.如图3,自行车的三角形支架利用的是三角形的________.图3 图412.如图4,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=________°.13.如图5,在△ABC中,AD是BC边上的中线,若AB=6 cm,AC=4 cm,则△ABD和△ACD 的周长之差为________.图5 图614.如图6,在△ABC中,P是△ABC三个内角平分线的交点,则∠PBC+∠PCA+∠P AB=________度.图715.如图7,直角三角形ABC的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.16.若等腰三角形的周长为16,其一边长为6,则另外两边长为________.17.用边长相等的正三角形和正六边形地砖拼地板,在每个顶点周围有a块正三角形和b块正六边形的地砖(ab≠0),则a-b的值为________.18.如图8,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线相交于点A1,得∠A1;∠A1BC 和∠A1CD的平分线相交于点A2,得∠A2;…;∠A2018BC和∠A2018CD的平分线交于点A2019,则∠A2019=________度.图8三、解答题(本大题共3小题,共36分)19.(10分)用两种方法证明“三角形的外角和等于360°”.已知:如图9,∠BAE,∠CBF,∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.证法1:∵________________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵______________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.请把证法1补充完整,并用不同的方法完成证法2.图920.(12分)如图10,在△ABC中,BD是角平分线,CE是高,且∠ACB=60°,∠ADB=97°,求∠A和∠ACE的度数.图1021.(14分)如图11,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)图①中,作∠BAC的平分线AD,分别交CB,BE于D,F两点,求证:∠EFD=∠ADC;(2)图②中,作△ABC的外角∠BAG的平分线AD,分别交CB,BE的延长线于D,F两点,试探究(1)中的结论是否仍成立?为什么?图11教师详解详析1.[解析] D根据三角形三边的关系:任意两边之和大于第三边.2.[解析] B等腰三角形的顶角可以是钝角,因此等腰三角形可以是钝角三角形;等边三角形属于等腰三角形,内角为30°,30°,120°的三角形既是钝角三角形又是等腰三角形;有三个内角是锐角的三角形才是锐角三角形.3.[解析] C根据三角形外角的性质知∠1=∠A+∠C,∴100°=∠A+70°,∴∠A=30°.4.[解析] A D只是BC的中点,不平分角,故①错误;②正确;AD把△ABC分成的两个三角形的形状不一定相同,故③错误;AD把△ABC分成的两个三角形的周长不一定相等,面积相等,故④错误,⑤正确.5.[解析] A由题意得∠B=2∠A,∠C=∠A+20°,所以∠A+∠B+∠C=∠A+2∠A+∠A +20°=180°,解得∠A=40°.6.[解析] C确定两个顶点,找第三个顶点,比如:确定A,B,可找F,D,确定A,E,可找C,D,确定B,E,可找D,确定A,F,可找D,确定A,C,可找D,确定F,C,可找D.7.[答案] C8.[答案] C9.[答案] 10[解析] 设这个多边形的边数为n,根据题意,得(n-2)×180°=360°×4,解得n=10.10.[答案] -2c[解析] 根据三角形的三边关系得a+b>c,a+c>b,∴|a+b-c|-|b-a-c|-|2b|=|a+b-c|-|b-(a +c)|-|2b|=a+b-c-(a+c-b)-2b=a+b-c-a-c+b-2b=-2c.11.[答案] 稳定性12.[答案] 8013.[答案] 2 cm[解析] 根据三角形中线的定义可得BD=CD,△ABD和△ACD的周长的差就是AB和AC的差,计算即可.14.[答案] 90[解析] 因为P是△ABC三个内角平分线的交点,所以∠PBC+∠PCA+∠PAB的和是三角形内角和的一半.15.[答案] 190°[解析] 如图,正九边形的一个内角为(9-2)×180°9=140°,∠3+∠4=90°,两个正九边形的内角减去∠3+∠4即得∠1+∠2=280°-90°=190°.16.[答案] 6,4或5,5[解析] 当腰长是6时,则另外两边长是4,6,4+6>6,满足三边关系定理;当底边长是6时,另外两边长是5,5,5+5>6,满足三边关系定理,故该等腰三角形的另外两边长为6,4或5,5.17.[答案] 0或318.[答案]m22019 [解析] 利用角平分线性质、三角形外角性质,易证∠A 1=12∠A ,进而可求∠A 1,由于∠A 1=12∠A ,∠A 2=12∠A 1=122∠A ,…,以此类推,可知∠A 2019=122019∠A.19.解:∠BAE +∠1=∠CBF +∠2=∠ACD +∠3=180° ∠1+∠2+∠3=180° 证法2:如图,过点A 作射线AP ,使AP ∥BD.∵AP ∥BD ,∴∠CBF =∠PAB ,∠ACD =∠EAP. ∵∠BAE +∠PAB +∠EAP =360°, ∴∠BAE +∠CBF +∠ACD =360°. 20.解:∵∠ADB =∠DBC +∠ACB ,∴∠DBC =∠ADB -∠ACB =97°-60°=37°. ∵BD 是角平分线,∴∠ABC =74°, ∴∠A =180°-∠ABC -∠ACB =46°. ∵CE 是高,∴∠AEC =90°, ∴∠ACE =90°-∠A =44°.21.解:(1)证明:∵AD 平分∠BAC , ∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,∠AEB =∠ABC , ∴∠EFD =∠ADC.(2)(1)中的结论仍成立. 理由:∵AD 平分∠BAG , ∴∠BAD =∠GAD. ∵∠FAE =∠GAD , ∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,∠AEB =∠ABC , ∴∠EFD =∠ADC.。

华东师大版七年级数学下册 第九章 多边形 单元检测试题(有答案)

华东师大版七年级数学下册  第九章  多边形  单元检测试题(有答案)
17.如图,在 中, , ,图中与 互余的角有________个.
18.已知在 中, = , = ,如果边 的长为正整数,那么 的长可以是________(只需填写一个正确答案).
19.如图, 是 两个外角 与 平分线的交点, ,则 ________.
20.如图, 是 的外角 的平分线,若 , ,则 ________度.
②外角和大于内角和的多边形只有三角形,故正确;
③多边形外角和= ,
设这个多边形是 边形,根据题意得
= ,
解得 = .
故错误.
2.
【答案】
D
【解答】
解:设 ,
∴ , ,
∵ ,
∴ ,
∴ ,
∴ ,
∴该三角形是等腰直角三角形.
故选 .
3.
【答案】
B
【解答】
解:∵在 中, , ,
∴ ,
解得 ,
∴ 是直角三角形.
B.任意五边形、任意六边形
C.任意三角形、任意六边形
D.任意四边形、任意六边形
6.已知直角三角形一个内角 ,则另一个内角是()
A. B. C. D.
7.下列叙述中错误的一项是 .
A.三角形的中线、角平分线、高都是线段.
B.三角形的三条高线中至少存在一条在三角形内部.
C.只有一条高在三角形内部的三角形一定是钝角三角形.
故选 .
4.
【答案】
C
【解答】
解:如图,根据三角板的特点可知:

故选: .
5.
【答案】
A
【解答】
解:任意三角形的内角和是 ,放在同一顶点处 个即能密铺;
任意四边形的内角和是 ,放在同一顶点处 个即能密铺;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册第九章《多边形》单元测试题
一.选择题(每小题3分,共30分)
1.一个三角形的内角中,至少有()
A、一个锐角
B、两个锐角 C 、一个钝角D、一个直角
2.三角形中,最大角α的取值范围是()
A、0°<α<90°
B、60°<α<180°
C、60°≤α<90°
D、60°≤α<180°3.下列长度的各组线段中,能作为一个三角形三边的是()
A、1、2、3
B、2、4、4、
C、2、2、4
D、a, a-1,a+1 (a是自然数) 4.已知4条线段的长度分别为2、3、4、5,若三条线段可以组成一个三角形,则这四条线段可以组成( )个
三角形A、1 B、2 C、3 D、4
5.已知a>b>c>0,则以a、b、c为三边组成三角形的条件是()
A、b+c>a
B、a+c>b
C、a+b>c
D、以上都不对
6.下列正多边形的组合中,能够铺满地面不留缝隙的是()
A、正八边形和正三角形;
B、正五边形和正八边形;
C、正六边形和正三角形;
D、正六边
形和正五边形
7.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是()
A、锐角三角形
B、直角三角形
C、钝角三角形
D、任意三角形
8.下面的说法正确的是()
A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条
C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外那么9.如果一个多边形的边数增加1倍,它的内角和是2160 o,那么原来多边形的边数是()
A、5
B、6
C、7
D、8
10.用一种正多边形能进行平面图形铺设的条件是()
A、内角都是整数度数
B、边数是3的整数倍
C、内角整除360 o
D、内角整除180 o 二.填空题(每空2分,共34分)
11.n边形有一个外角是600,其它各外角都是750,则n= 。

12. 从n边形一个顶点出发共可作5条对角线,则这个n边形的内角和=
13.n边形的内角和与外角和相等,则n=
14.三角形ABC中,∠B和∠C的平分线交于O,若∠A=400,则∠BOC=
15.用同一种正多边形能铺满地面的有;能够铺满地面的任意多边形有______,_______。

16.三角形一边上的中线把原三角形分成两个相等的三角形
17.八边形的内角和为,外角和为。

18.(n+1)边形的内角和比n边形的内角和大。

19.已知等腰三角形一边的长是4cm,另一边的长是7cm,则这个三角形的周长是____________。

20.三角形中至少有______个锐角;在一个多边形中,最多只有_____个锐角。

21.如果多边形的____________________________________,那么就称它为正多边形。

22.一个多边形对角线的条数与它的边数相等,这个多边形的边数是__________。

23.三角形中______两边之和________第三边,两边的差_________第三边。

24.任意n边形的外角和是__________;内角和是__________.
25三角形外角的性质是;.
26.用正方形和正八边形铺地板,有_____种方法。

27.一个多边形的外角和是内角和的2
7
,多边形的边数是____________.
三.解答题
28.(6分)在各个内角都相等的多边形中,一个外角等于一个内角的
5
2
,求这个多边形的每一个内角的度数和它的边数。

29.(6分)△ABC中,∠B=38°,∠C=76°,AD为∠BAC的平分线,AF为BC边上的高,求∠DAF的度数
.
30.若多边形的所有内角与它的一个外角的和为600
31.如图,D在AC上,E点在BC的延长线上,试说明∠ADB >∠CDE的理由。

32.任意画一个钝角△ABC,使∠A为钝角,再画出∠B的平分线,AB边上的中线和AC边上的高,并用字母表示。

33、一个零件如图所示,按规定∠A等于90°,∠B和∠C应分别等于32和21°,检验工人量得∠BDC等于148°,就断定这个零件不合格,这是为什么?
34、过四边形一个顶点的对角线可以把四边形分成两个三角形;过五边形一个顶点的对角线把五边形分成个三角形;过六边形一个顶点的对角线把六边形分成个三角形。

经过上面的探究,你可以归纳出过n边形一个顶点的对角线可以把n边形分成多少个三角形吗?(用含n的代数式表示)?并请画出一个五边形,以特殊代替一般来证明n边形内角和的度数?
A
B C
D
1.B;
2.B;
3.B;
4.C,
5.A;
6.C;
7.C;
8.C;
9.C;10.C;11.5,12.1080;13.4;14.110;15.正六边形、正四边形、正三角形,三角形、四边形;16.面积;17.1080、360;18.180;19.18或15;
20.2、3;
21.
如果多边形的边长相等,且内角都相等,那么就称为正多边形
22.5;23.任意、大于、小于;24.360、(n-2)180;
25.
三角形的一个外角等于与它不相邻的两个内角和;
三角形的一个外角大于任何一个与它不相邻的内角.
27.9;
28.7、
7
900
29.
∵∠BAC+∠B+∠C=180°,
又∵∠B=38°,∠C=76°,
∴∠BAC=66°.
∵AD为∠BAC的平分线,
∴∠BAD=33°,
∴∠ADC=∠BAD+∠B=71°.
又∵AF为BC边上的高,
∴∠DAF=90°-∠ADC=19°.
30.
设这个多边形的边数为n,那个外角的度数为α
根据题意得:(n-2)×180°+α=600°
则α=600°-(n-2)×180°
又∵0°≤α≤180°
∴0°≤600°-(n-2)×180°≤180°
解得:4.33≤n≤5.33
又∵n为正整数
∴符合条件的n为5
∴这个多边形为五边形,内角和为:(5-2)×180°=540°
而α=600°-540°=60°
答:这个多边形边数为5,内角和为540°,他多加的那个外角是60°.
31. ∵∠ADB>∠BCD,∠BCD>∠CDE,
∴∠ADB>∠CDE.
32.
33.
延长CD交AB于E.
∵∠BED=∠A+∠C,∠BDC=∠BED+∠B,∠A=90°,∠B=21°,∠C=32°,∴∠BDC=∠A+∠C+∠B=90°+21°+32°=143°.
故当检验工人量得∠BDC≠143°时,就可判定此零件不合格.
34.
4、5、n-2。

相关文档
最新文档