七年级数学上册《有理数的乘法2》课案(教师用) 新人教版
2024年人教版七年级上册教学设计第二章 有理数的运算第二章 有理数的运算
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“有理数的运算”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题.“数与代数”是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.在小学阶段,学生认识了正有理数,掌握了正有理数的四则运算,在初中阶段,学生将认识负数,进一步学习有理数的四则运算.在“数与代数”中,运算是核心内容.“引进一种新的数,就要研究相应的运算;定义一种运算,就要研究相应的运算律”,这是代数的核心思想.在数系、运算法则和运算律(即对任何数都成立的通性)中获得的知识,可以方便地迁移到“以字母表示数”后的学习内容中去.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律,经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题和提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析人教版教材七年级上册第二章“有理数的运算”,本章包括三个小节:2.1有理数的加法与减法;2.2有理数的乘法与除法;2.3有理数的乘方.本单元主要从加、减、乘、除的运算顺序去研究有理数的相关运算及运算律,主要的探究方法是举例验证、归纳总结.在有理数的运算中,加法与乘法着重在探究符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算.减法与除法,则是着重介绍如何向加法与乘法转化,从而利用加法与乘法的运算法则、运算律进行运算.乘方是几个相同因数的乘积,因此可以利用乘法运算.这些运算之间相互联系,最后总结如何利用法则及运算律简化有理数的混合运算并解决实际问题.科学记数法与乘方有关,因而可进一步加以介绍.近似数在实际问题中有广泛的应用,在本单元作进一步的认识.利用计算器计算分两次安排,一次在加减乘除运算之后,一次在乘方运算之后.学会了使用计算器进行有理数的运算,较复杂的计算就可以用计算器完成.本单元重点是有理数的运算和运算法则;难点是在理解运算法则的基础上,养成良好的运算习惯.实际上,运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,这也是在整个“数与代数”领域中需要注意的问题.本单元教学主要是围绕有理数运算这个核心展开的,教学中一定要重视运算技能的训练,包括养成良好的运算习惯等.三、单元学情分析本单元内容是人教版教材数学七年级上册第二章有理数的运算.在“数与代数”中,有理数的运算是重要内容之一.学生之前已经学习了加数的运算和有理数的概念(数轴、相反数、绝对值),所以要有意识地把非负有理数的运算与有理数的运算结合起来.在本单元的学习过程中,有理数的运算的关键是符号法则和绝对值运算.通过新旧知识结合,再利用日常生活经验、数轴的几何直观等,将正数与负数的运算归结到非负数之间的运算,进而定义有理数的运算,得出运算法则,并运用有理数的运算法则解决简单的问题.本单元的知识及其思想方法也是后续学习的基础.四、单元学习目标1.经历有理数加、减、乘、除、乘方运算法则的获得过程,理解乘方的意义,掌握有理数的加、减、乘、除、乘方以及简单的混合运算,让学生体会转化与分类讨论的数学思想方法,培养学生的运算能力与抽象概括能力.2.理解有理数的运算律,并能用运算律进行简便运算,培养学生的运算能力和推理能力.3.能够运用有理数的运算解决简单的实际问题,培养学生的数学建模能力与应用意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难、由浅入深、循序渐进,突出基础知识、基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本单元的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
(最新)人教版七年级数学上册《有理数的乘法》(第2课时) 教案
有理数的乘法(第二课时) 教案[教学目标]知识目标:有理数乘法运算能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算; 情感态度和价值观:体会用计算器给有理数运算带来的方便[教学重点与难点]重点: 有理数乘法运算有理数的乘法运算 你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解]活动一: 从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题. 确定下列积的符号,你能从中发现什么?①()5432⨯⨯⨯- ②()()5432⨯⨯-⨯-③()()()()5432-⨯-⨯-⨯- ④()()()50432-⨯⨯⨯-⨯-学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 巩固练习:判断下列积的符号(口答)①()()1432-⨯⨯⨯- ②()()()6532-⨯-⨯⨯-③()()()222-⨯-⨯- ④()()()()3333-⨯-⨯-⨯-活动二:例3 计算:41)54(6)5()2();41()59(65)3()1(⨯-⨯⨯--⨯-⨯⨯- 几个数相乘,如果其中有因数0,积等于0 课堂练习计算:(1)(-85)×(-25)×(-4);(2)(-87)×15×(-171); (3)(151109-)×30;(4)2524×7. (5)-9×(-11)-12×(-8);课后作业教科书第38页 习题1.4第7题(1)(2)(3)课后选作题1.计算:).8(161571)6(;04.0311843)5(;36187436597)4(;534.265)3();1.0()24.8()10)(2();8(25.12014)1(-⨯⎪⎭⎫ ⎝⎛--⨯-⨯⎪⎭⎫ ⎝⎛-+-⨯⨯--⨯-⨯--⨯⨯⎪⎭⎫ ⎝⎛- 2.2003减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20031,求最后剩下的数。
2024新人教版七年级上册数学教案
2024新人教版七年级上册数学教案——《有理数的乘法》一、教学目标1.理解有理数的乘法法则,掌握有理数乘法的运算规律。
2.能够熟练运用有理数乘法法则进行计算。
3.培养学生的逻辑思维能力和解决问题的能力。
二、教学重难点1.教学重点:有理数乘法法则的理解和运用。
2.教学难点:符号法则的应用。
三、教学过程1.导入新课师:同学们,我们之前学习了有理数的加法和减法,那么大家思考一下,有理数的乘法应该怎么进行呢?生1:我觉得可以参考加法的规则,但是乘法可能会有一些不同。
生2:我觉得乘法可能和符号有关,正数乘以正数,负数乘以负数,可能会有不同的结果。
师:很好,大家提到了符号,这正是我们要学习的重点。
那么今天我们就来学习有理数的乘法。
2.学习有理数乘法法则师:我们来看一下有理数乘法的法则。
当两个有理数相乘时,它们的积的符号由这两个有理数的符号决定。
(1)正数乘以正数,积为正数。
(2)负数乘以负数,积为正数。
(3)正数乘以负数,积为负数。
(4)0乘以任何数,积为0。
师:请大家注意,这里的“符号”指的是正负号,而不是数字本身。
3.练习有理数乘法(1)3×4(2)(-2)×(-3)(3)(-5)×2(4)0×7师:大家完成后,可以相互检查一下答案。
我来选取一位同学来讲解一下自己的解题过程。
生3:我完成了题目,第一题是3×4,因为都是正数,所以积也是正数,答案是12。
师:很好,你的理解很正确。
其他同学的呢?生4:我做了第二题,(-2)×(-3)。
因为两个负数相乘,所以积是正数,答案是6。
师:很好,大家都掌握了有理数乘法的法则。
我们再来做一些更复杂的题目。
4.解决实际问题(1)小华向东走了3米,然后又向西走了4米,求小华现在离起点的距离。
(2)小王从地面开始,每上升1米,他的高度增加1米;每下降1米,他的高度减少2米。
如果小王上升了3米,然后下降了4米,求小王现在的高度。
有理数的乘法教案(精选多篇)
有理数的乘法教案(精选多篇)第一篇:有理数的乘法1教案1.4.1有理数的乘法一、教学内容人教版七年级数学〔上〕第一章第四节《有理数的乘除法》,见课本p28.二、学情分析^p在此之前,本班学生已有探究有理数加法法那么的经历,多数学生能在老师指导下探究问题。
由于学生已理解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。
三、教学目的1、知识与技能目的掌握有理数乘法法那么,能利用乘法法那么正确进展有理数乘法运算。
2、才能与过程目的经历探究、归纳有理数乘法法那么的过程,开展学生观察、归纳、猜测、验证等才能。
3、情感与态度目的通过学生自己探究出法那么,让学生获得成功的喜悦。
四、教学重点、难点重点:运用有理数乘法法那么正确进展计算。
难点:有理数乘法法那么的探究过程,符号法那么及对法那么的理解。
五、教学手段制作幻灯片,采用多媒体的现代课堂教学手段.六、教学方法注意创设问题情景,选择“情景---探究---发现”的教学形式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。
在整个学习过程中,以“自主参与,勇于探究,合作交流”的探究式学法为主,从而到达进步学习才能的目的。
七、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题〔出示蜗牛爬的动画幻灯片〕老师:这涉及有理数乘法运算法那么,正是我们今天需要讨论的问题.2、学生探究、归纳法那么学生分为四个小组活动,进展乘法法那么的探究。
〔1〕老师出示蜗牛在数轴上运动的问题,让学生理解。
蜗牛如今的位置在点o,规定向右的方向为正,向左的方向为负;如今时间后为正,如今时间前为负.a.+ 2 ×〔+3〕+2看作向右运动的速度,×〔+3〕看作运动3分钟后。
结果:3分钟后的位置+2 ×〔+3〕=b. -2 ×〔+3〕-2看作向左运动的速度,×(+3)看作运动3分钟后。
人教版数学七年级上册《有理数的乘法》集体备课教学设计
人教版数学七年级上册《有理数的乘法》集体备课教学设计一. 教材分析《有理数的乘法》是人教版数学七年级上册的重要内容,主要介绍了有理数乘法的基本法则和运算性质。
本节课的内容是学生学习更复杂数学运算的基础,对于培养学生的逻辑思维和数学素养具有重要意义。
二. 学情分析七年级的学生已经掌握了有理数的基本概念和加减法运算,但对乘法运算的理解和运用还不够熟练。
学生在学习过程中需要通过实例和练习来加深对有理数乘法概念的理解,并能够灵活运用乘法法则进行计算。
三. 教学目标1.理解有理数乘法的基本法则和运算性质。
2.能够熟练进行有理数的乘法运算。
3.培养学生的逻辑思维和数学素养。
四. 教学重难点1.有理数乘法的基本法则和运算性质。
2.灵活运用乘法法则进行计算。
五. 教学方法采用问题驱动法和案例教学法,通过实例和练习引导学生理解有理数乘法的基本法则,培养学生运用乘法法则进行计算的能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,如投影仪等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:有理数的乘法。
例如,计算-2乘以3等于多少?引导学生思考有理数乘法的基本法则。
2.呈现(10分钟)呈现有理数乘法的基本法则和运算性质,通过示例和解释让学生理解并掌握。
3.操练(10分钟)学生分组进行练习,运用有理数乘法的基本法则进行计算。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师出示一些有一定难度的题目,让学生独立完成。
通过练习,巩固学生对有理数乘法的理解和运用。
5.拓展(10分钟)引导学生思考有理数乘法的扩展问题,如负数的平方、零的乘法等。
通过讨论和探究,拓展学生的思维。
6.小结(5分钟)教师引导学生总结本节课的学习内容,强调有理数乘法的基本法则和运算性质。
7.家庭作业(5分钟)布置一些有关有理数乘法的练习题,让学生回家后巩固所学内容。
8.板书(5分钟)教师在黑板上板书本节课的主要内容和重点公式,方便学生复习和记忆。
有理数的乘法 第二课时《有理数乘法相关运算律》(教学设计)-初中《数学》七年级上册-人教版
第二课时《有理数乘法相关运算律》教学设计
课题
数学七年级上册
版本
新人教版
执教者
课标要求
掌握多个有理数相乘的符号法则
学情分析
学生前面已经学习了有理数的加法运算和减法运算,并知道了有理数包括正数、负数和零,或正整数、正分数、负整数、负分数和零,“两负数相乘,积的符号为正”与“两负数相加,和为负”容易混淆.
几个数相乘,如果其中有因数为0,积等于0
教
材
分
析
内容分析
在上节课学习有理数乘法的基础上,巩固有理数的乘法法则,探索多个有理数相乘时,积的符号的确定方法.
教
学
目
标
知识与技能目标
掌握有理数相乘的运算顺序及积的符号确定规则
过程与方法目标
发展学生的观察、归纳、猜测、验证等能力.
情感态度与价值观目标
能让学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,能从交流中获益.
教学资源
多媒体、PPT课件
教学重点
应用符号法则正确地进行有理数乘法运算
教学难点多个有理数相乘时积符号的确定方法教学
方
法
教学方法
观察、分析、归纳与练习巩固相结合,两先两后教学法
学习方法
自主探究,先学后教
学
习
新
知
教学环节
教学内容
教师活动
学生活动
设计意图
一、预习导学
二、学习研讨
(1)自学内容:教材第31页的内容.
几个数相乘,如果其中有一个因数为0,积等于0
例3 计算:
(1) (-3)× ×(- )×(- )
(2)(-5)×6×(- )×
2.2.1(1)有理数的乘法(法则)教学设计2024-2025学年人教版数学七年级上册
(1)学生注意力不集中:部分学生在课堂上的注意力不集中,影响学习效果。
(2)课堂练习不足:课堂练习时间不足,导致学生对知识点的掌握程度不够扎实。
(3)教学评价不够全面:教学评价主要关注学生的考试成绩,忽视了对学生学习过程的评价。
3.改进措施
(1)提高课堂趣味性:通过引入生动的故事、案例或视频等方式,激发学生的学习兴趣,提高学生的注意力。
3.数学应用:学生将能够将所学的有理数乘法知识应用到实际生活中,提高解决实际问题的能力。例如,学生能够运用有理数乘法法则计算购物时的折扣、计算利息等。
4.自主学习能力:学生在课前自主探索和课中强化技能环节将培养自主学习能力,能够独立思考和解决问题,提高学习效果。
5.团队合作:学生在小组讨论和课堂活动中培养团队合作意识和沟通能力,能够与同伴合作解决问题,提高解决问题的效率和质量。
-解答疑问:针对学生在学习中产生的疑问,进行及时解答和指导。
学生活动:
-听讲并思考:认真听讲,积极思考老师提出的问题。
-参与课堂活动:积极参与小组讨论、角色扮演、实验等活动,体验有理数的乘法法则的应用。
-提问与讨论:针对不懂的问题或新的想法,勇敢提问并参与讨论。
教学方法/手段/资源:
-讲授法:通过详细讲解,帮助学生理解有理数的乘法法则。
2.课程平台:人教版数学七年级上册教材和相关教学辅导资料,供学生课后复习和练习。
3.信息化资源:网络上的数学教学视频和案例,用于课堂演示和拓展学生的学习视野。
4.教学手段:采用PPT演示、案例分析、小组讨论、课堂练习等多种教学手段,提高学生的学习兴趣和参与度。
结合以上教学资源,教师可以在课堂上进行生动的教学演示,提供丰富的学习资料,引导学生进行自主学习和合作探讨,从而更好地理解和掌握有理数的乘法法则。
人教版七年级数学上册《有理数的乘方(第2课时)》示范教学课件
例3 观察下面三行数:-2,4,-8,16,-32,64,…;① 0,6,-6,18,-30,66,…;②-1,2,-4, 8,-16,32,….③(3)取每行数的第10个数,计算这三个数的和.
例1 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).
有理数混合运算要先观察,再转化.进行有理数的混合运算时,要先观察算式中共含有几种运算,再将除法运算转化为乘法运算、减法运算转化为加法运算,最后按运算顺序计算,这体现了数学中的转化思想.
解:(2)对比①②两行中位置对应的数,可以发现:第②行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…;
例3 观察下面三行数:-2,4,-8,16,-32,64,…;① 0,6,-6,18,-30,66,…;②-1,2,-4, 8,-16,32,….③(2)第②③行数与第①行数分别有什么关系?
(2)-an表示_______________________,底数是___,指数是___,读作“__________________”.
4.看因数,找底数,定指数要找底数和指数就要先去找“相同的因数”,相同的因数是哪个数,______就是哪个数;有几个相同的因数,______就是几.
n个-a相乘
-a
第一级运算
第三级运算
第二级运算
观察:
5+40÷
32×
乘方运算
乘、除运算
加、减运算
问题
-1.
运算顺序的规定是:
新课标人教版七年级数学上册《有理数的乘法》教学设计
新课标人教版七年级数学上册《有理数的乘法》教学设计新课标人教版七年级数学上册《有理数的乘法》教学设计一、教学目标1、知识与技能目标:经历有理数乘法法则探究的过程,学习两个有理数相乘的法则。
2、能力目标:通过推导两个有理数相乘法则的过程,培养归纳总结的能力,提高由特殊到一般的能力3、情感目标:通过小组合作,培养与他人合作的精神二、教学重点:经历由几组算式推导有理数乘法的法则的过程教学难点:如何观察给定的乘法算式,从哪几个角度概况算式的规律。
三、课前准备:1、复习小学的乘法法则2、出几道小学里已经做过的两数相乘的题目,并计算。
四、教学过程:(一)创设情境,引入新知问题:根据课前准备,小学我们计算的两个数相乘都是正数乘正数或者正数乘零,现在我们知道有理数包括正数、负数和零三类,根据这种分类,你能说出两个有理数相乘会出现哪几种情况?(根据学生回答板书各种类型)预设:学生可能会把正数乘负数、负数乘正数当作一种情况,教师可引导为两种。
(二)观察归纳,学习法则(设计说明:法则的得出分两部分)第一部分分类探究(说明:3组探究重点是探究1)探究1(师生共同活动)问题1、观察下面熟识的算式,你能发现什么规律?3×3=93×2=63×1=33×0=0预设:如果学生有困难,可以提示学生观察两个因数有什么变化规律,积有什么变化规律。
这样会得到规律:左边因数都是3,右边因数依次减1,而积依次减3。
问题2、根据这个规律,你能填写下面的结论吗?3×(-1)=3×(-2)=3×(-3)=问题3这组数据的规律,对其他组类似规律的数据也成立吗?自己根据这个规律构造一组数试一试。
问题4、以上两组数相乘属于正数乘正数、正数乘负数,你能类比加法法则,从符号与绝对值两方面再来观察他们存在什么规律吗?归纳可得:(板书)正数乘正数,结果为正,绝对值相乘;正数乘负数,结果为负,绝对值相乘。
《有理数乘法》说课稿(精选6篇)精选全文
可编辑修改精选全文完整版《有理数乘法》说课稿《有理数乘法》说课稿(精选6篇)作为一名无私奉献的老师,编写说课稿是必不可少的,说课稿可以帮助我们提高教学效果。
我们该怎么去写说课稿呢?下面是小编为大家收集的《有理数乘法》说课稿,欢迎阅读,希望大家能够喜欢。
《有理数乘法》说课稿篇1各位评委、老师:大家上午好,我今天说课的内容是新人教版七年级《数学》上册第一章第四节《有理数的乘法》第一课时。
我将从教材和学情分析、教学目标、教学重点和难点、教学方法与学法指导、教学程序设计等几个方面进行说明。
一、教材和学情分析本课时的主要内容是有理数的乘法运算,教材首先利用数轴通过蜗牛运动的例子引入有理数乘法法则,目的在于使学生对有理数的乘法法则的合理性有所认识和了解,然后通过例子说明如何运用法则进行计算。
学生通过小学阶段的学习,已经熟悉和掌握了正数及0的乘法运算,上初中后,学习有理数的乘法之前,又相继学习了有理数的加法、减法。
有理数的乘法运算与小学学过的乘法运算不同之处是多了符号法则,确定符号之后就化归成了小学的乘法运算。
学习有理数的乘法是进一步学习有理数的除法、乘方及有理数的混合运算的基础。
二、教学目标本课时的教学目标确定如下:1、知识与技能目标:理解有理数的乘法和倒数的意义,掌握有理数乘法法则,能熟练运用有理数乘法法则进行乘法运算。
2、过程与方法目标:通过对实际问题的观察、分析、操作以及归纳概括等活动,经历对有理数乘法法则的探索过程,培养学生的分析概括能力.3、情感态度与价值观:激发学生学习兴趣,培养学生数形结合、化归和分类讨论思想及合作交流、勇于探索的精神.三、教学重点和难点1、教学重点:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2、教学难点:有理数乘法中的符号法则、认识和了解有理数乘法法则规定的合理性。
四、教学方法手段和学法指导要实现上述教学目标、突出重点、突破难点,传统的教学方式和学习方式已难以实现的。
2.7《有理数的乘法第2课时》教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,使用计算器或卡片模拟乘法运算,直观展示乘法规则。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数乘法的基本概念。有理数乘法是指两个有理数相乘的运算,其结果是符号由两数符号决定,绝对值为两数绝对值相乘的结果。它是数学运算的基础,帮助我们解决生活中的许多问题。
2.案例分析:接下来,我们来看一个具体的案例。如果一家商店对商品进行8折促销,我们如何计算打折后的价格?这个案例展示了有理数乘法在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.增强学生的数学建模意识:通过实际问题的引入和解决,使学生学会将现实问题转化为数学模型,感受数学在生活中的应用,提高数学建模能力。
4.培养学生的合作交流意识:在小组讨论和交流中,鼓励学生积极表达自己的观点,倾听他人意见,提高合作解决问题的能力。
5.激发学生的创新意识:鼓励学生尝试不同的解题方法,培养学生的创新思维和解决问题的多样化策略。
七年级数学上册《有理数的乘法2》课案(教师用) 新人教
课案(教师用)1.4.1 有理数的乘法(2)(新授课)【理论支持】有理数的乘法运算律是在学生学完有理数的加法运算律后学习的,它与有理数的加法运算律一样,也是建立在小学算术的基础上.因此,有理数的乘法运算律,实质上是小学算术数的乘法运算律的拓展,思维过程就是如何把中学有理数的乘法运算律化归为小学算术数的乘法运算律.因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识等的基础.学好这部分内容,对增强学习代数的信心具有十分重要的意义.此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强.因此在教学过程中要做好调控.《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.基于以上理念,结合本节课内容及学生情况,教学的设计理念是:遵循“教学、学习、研究”同步协调的原则,依据教材,恰当地创设情境,激发学生对数学的好奇心和求知欲,通过独立思考,不断发现和提出问题,分析并创造性地解决问题,教师为学生构建开放的学习环境引导学生体验探索、研究的过程.让学生在探究合作交流的过程中,展示思维过程.上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的.本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则,学会自主探究、合作的学习方式,培养学生良好的学习品质.【教学目标】【教学重难点】1.重点:熟练运用运算律进行计算.2.难点:灵活运用运算律.【课时安排】一课时【教学设计】课前延伸基础知识填空及答案1.计算:(1) (-8)×(-7); (2) (—7)×(-8); (3) (-36)×2;(4) 2×(-36).2.计算:(1) [-2×3]×(-4); (2) -2×[3×(-4)];(3)[])5()2(3-⨯-⨯; (4) [])5()2(3-⨯-⨯.3.计算: (1) )(314112+⨯; (2) )(512120-⨯; 4.当a =-2,b =0,c =-5,d =6时,求下列代数式的值:(1)a +bc ; (2)c =ad ; (3)(a -b )(c -d ); (4)(a -c )(b -d ) .练习答案:1.计算:(1) 56; (2) 56;(3)—72; (4) —72.2.计算:(1)24; (2)24; (3)30; (4)30.3.(1)7; (2)6.4.(1) -2;(2)7;(3)22;(4)-18.课内探究一、导入新课创设情境,引出有理数的乘法运算律.[师]我们来看看课前延伸的第1,2,3题,分别类似于我们小学里学过的那些运算律?[生]第1题运用的是乘法交换律,第2题运用的是乘法结合律,第3题运用的是乘法的分配律.[师]前面所探索的加法交换律、结合律对任意有理数仍然适合,在引入了负数这个新的成员之后,乘法运算律是否还会成立呢?〖设计说明〗温故而知新.通过学生回忆已建立起来乘法交换律、结合律及分配律,以轻松愉快的心情进入了本节课的学习,对新知识的学习有了期待,为后面理解运算律的灵活运用打下基础,为顺利完成教学任务作了思想上的准备.[师]现在,我们再来看这几道题.(1));6(5-⨯ 5)6(⨯- ;(2)[])5()4(3-⨯-⨯ ;[])5()4(3-⨯-⨯ ;(3)[])7(35-+⨯;)7(535-⨯+⨯.[生]讨论与活动.(以同桌两人一组进行讨论,并把它们运算的结果及发现的内容写在黑板上与全班同学分享)[师]很好,刚才几组同学都表现得非常好,当然下面的很多同学也都做得不错.从你们所运算的结果,我们共同发现了有理数也满足了乘法运算律.1.有理数的乘法交换律:两个数相乘,交换因数的位置,积相等.即ba ab =.(a ,b ,c 为任意有理数)2.有理数的乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即()()bc a c ab =.(a ,b ,c 为任意有理数)3.有理数的乘法分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.即a (b +c )=ab +ac (a ,b ,c 为任意有理数)(注意“逆向”问题);也可以这样表示:)(c b a ac ab +=+.注意事项:(1)这里的“和”不再是小学中说的“和”的概念,而是指“代数和”.(2)运用乘法运算律进行计算时,注意符号.(3)几个数直接相乘,有时计算量较大,要适当运用乘法交换律、结合律.(4)有理数乘法运算时,有时可以反向运用分配律,逆用乘法分配律.〖设计说明〗这部分内容,小学里就已经接触过,由师生共同进行适当的小结,有利于学生形成感性认识,进行新旧知识的对比,这为学生解决探索新知,进一步理解乘法运算律打下伏笔.二、例题剖析例1 计算:(1))());((598.4252322130-⨯+-⨯. 分析:(1)中直接运用乘法分配律,注意符号;(2)中可两个数直接相乘,但计算量较大,若稍加变形,把4.98变形为(5-0.02)再利用乘法分配律,计算量就少多了.比较简便.解:(1)原式=7122015523032302130=+-=⨯+⨯-⨯; (2)原式=(5-0.02)⨯(-5)=5 ⨯(-5)+0.02 ⨯(-5)=-25+0.1=-24.9.〖设计说明〗通过这两道题的训练,让学生体会乘法分配律的实际应用,特别是第(2)题训练了学生的思维,灵活进行变形会达到事半功倍的效果.这题主要考察乘法分配律的灵活运用.例2(学生观察后寻找解题方法)312133211331 13⨯-+-⨯-+⨯-)()()()(. (叫学生自己动手,把不同解法的写到黑板上)分析:学生可能有两种不同解法.法(一):直接做题(先乘除,后加减);法(二)用简便方法,有理数乘法运算时,可以反向运用分配律,逆用乘法分配律[生]解:法一:原式=133393653104365391313391365313-=-=+-=+--=-+-)(. .13113]321322[13]32131231[13]31232131[13]2[-=⨯-=-⨯-=-++⨯-=+-+⨯-=)()()()()()()()(解法二:原式生〖设计说明〗通过两种方法的比较,让学生自己总结出反用乘法分配律来解题,要比直接计算简便得多,渗透乘法分配律的灵活应用,进行技巧解题.本题主要考查乘法分配律的逆运用.例3计算:4.3657.13.2328.62.3514.3⨯--⨯+⨯-)(. 4.362114.33.23214.32.3514.3⨯⨯--⨯⨯+⨯-=)(解:原式 )()(2.186.462.3514.32.1814.36.4614.32.3514.3++⨯-=⨯--⨯+⨯-= 31410014.32.188.8114.3-=⨯-=+⨯-=)(.[分析]这是一题较繁的计算题,不能直接进行简便计算,但仔细观察后会发现3.14,6.28,1.57之间加倍关系,可以逆用乘法分配律进行计算.〖设计说明〗这道题主要考察乘法分配律的逆用,是让学生突破自我,挑战自我,看看能不能在已学知识的基础上,仔细地观察题目,找出题中隐含的规律,从而进行灵活解题..因为问题较为复杂,在解决的过程中教师应适当的点拨和启发,使学生能够顺利完成讨论.三、课堂反馈训练计算:(1))71(535-⨯⨯ ; (2)()())25(45-⨯-⨯-;(3))711(1587-⨯⨯⎪⎭⎫ ⎝⎛-;(4)30151109⨯⎪⎭⎫ ⎝⎛-; (5)711615×(-8) ; (6)5.2)56.2(5.3)56.2(456.2⨯-+⨯-+⨯-.说明:解题过程由学生板演,同时说出每步的根据和目的,并强调书写的规范化. 师:纵观这道题的解答过程,你能总结得到什么?小组同学可作交流.四、 学生小组交流,并总结.〖设计说明〗课堂小结可以回顾新知识,加强学生的记忆,并使有关的教学内容系统连贯和相对完整;更使学生感到“言已尽而意无穷”,跨越课堂教学和课后休闲的时空界限,课后学生还会自觉“回味咀嚼”,获得更多教益.课后提升【基础平台】1.计算:(1)(-4201)×1.25×(-8); (2)(-10) ×(-8.24) ×(-0.1); (3)-65×2.4×53; (4)(97-65 +43 -187)×36; (5)-43×(8-131-0.04); (6)711615×(-8) . 2.计算:34.075)13(317234.03213⨯--⨯+⨯-⨯-. 3.已知,032=-++y x 求xy y x 435212+--的值.4.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,求m cd b a 2009)(-+的值.5.判断下列方程的解是正数、负数、还是0.(1)4x =-16; (2)-3x =18; (3)-9x =-36; (4)-5x =0.6.(1)当a >0时,a 与2a 哪个大?(2)当a <0时,a 与2a 哪个大?。
【最新】人教版七年级数学上册导学案:有理数乘法(2)
授课 课 主 新授 时间 型 备 1、 体会有理数 乘法的实际 意义; 一自学达标(学生自主完成) 2、 掌握有理数的乘 法法则 1.计算: 和符号法则, 灵活地运算. 有理数乘法(2)
1、经历探索多个有理数相乘 的符号确定法则. 2、会进行有理数的乘法运算
班 级 师
学生姓名 生 活 动
第( )课时 总第 ( )课时
授课人
审 核
科 目
数学
札 记
三、课堂检测: (学生自主完成) 一、选择 1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理 数的积( ) A.一定为正 可能为负 B. 一定为负 C.为零 D. 可能为正,也
(教师二次备课或学生课堂 记录)
教 学 目 标
过程 与 方法 情感 态度 价值 观
5 8 1 2 ( ) ( ) 3 2) 、 12 15 2 5 8 3 2 (1) ( ) ( ) 0 (1) 4 15 2 3 3)
1 1 1 1 1 1 1 1 1 1 1 1 3、 2 3 4 5 6 7 ;
通过对问题的探索,培养 观察、 分析和概括的能力. 积 的符号的确定 体会有理数乘法的实际意 义;
2.若干个不等于 0 的有理数相乘,积的符号( A.由因数的个数决定 归纳:(1)几个不是 0 的数相乘,负因数的个数是_____时,积是正数; 负因数的个数是__________时,积是负数.乘积的绝对值等于各 乘数绝对值的___. (2)几个数相乘,如果其中有因数为 0,积等于_______. 二导学达标(小组活动) 例题: 计算 1) 、—5×8×(—7 )×(—0.25) C.由负因数的个数决定 3.下列运算结果为负值的是( A.(-7)× (-6) 二、计算 B .(-6)+(-4);
人教版七年级数学上册1.4.1.2《有理数的乘法(2)》说课稿
人教版七年级数学上册1.4.1.2《有理数的乘法(2)》说课稿一. 教材分析人教版七年级数学上册1.4.1.2《有理数的乘法(2)》这一节内容,是在学生已经掌握了有理数乘法的基本法则的基础上进行进一步的拓展和深化。
本节课主要讲解有理数乘法的特殊情况,包括括号的去除,乘法的分配律,以及绝对值的运算等。
这些内容在学生的日常生活中应用广泛,对于培养学生的逻辑思维能力和解决实际问题的能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的乘法已经有了一定的了解。
但是,学生在之前的学习中,可能更多地关注于有理数的乘法法则,而对于乘法的特殊情况进行深入理解的可能不多。
因此,在教学过程中,教师需要引导学生从实际例子出发,去发现和总结乘法的特殊规律。
三. 说教学目标1.让学生掌握有理数乘法的特殊情况的运算方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 说教学重难点1.教学重点:有理数乘法的特殊情况的运算方法。
2.教学难点:乘法分配律的理解和应用,绝对值的运算。
五. 说教学方法与手段在教学过程中,我将采用讲授法,引导法,实践法,讨论法等多种教学方法。
通过生动的例子,引导学生去发现和总结乘法的特殊规律。
利用多媒体教学手段,帮助学生直观地理解乘法分配律和绝对值的运算。
六. 说教学过程1.导入:通过一些生活中的实际例子,引导学生复习有理数的乘法,为新课的学习做好铺垫。
2.讲解:讲解有理数乘法的特殊情况,包括括号的去除,乘法的分配律,以及绝对值的运算等。
3.实践:让学生通过实际操作,运用所学的知识解决实际问题。
4.讨论:引导学生分组讨论,分享各自的解题思路和方法。
5.总结:对本节课的主要内容进行总结,强调重点和难点。
6.作业:布置一些相关的练习题,让学生巩固所学知识。
七. 说板书设计板书设计将有理数乘法的特殊情况,包括括号的去除,乘法的分配律,以及绝对值的运算等,用清晰的图表和简洁的文字展现出来,帮助学生理解和记忆。
《有理数的乘法 第2课时》示范公开课教学设计【部编新人教版七年级数学上册】
有理数的乘法第2课时一.教学目标1.学会利用有理数的乘法运算律和有理数的乘法法则进行简单的计算;2.经历观察、推理、总结归纳等过程,理解有理数的乘法运算律;3.通过多种方法解决数学问题,揭示学习有理数的乘法运算律的方便性;4.通过有理数乘法运算律和有理数乘法运算法则的综合运用,不断提升学生的数学运算能力.二.教学重难点重点:有理数的乘法运算律;难点:有理数的乘法运算律.三.教学工具多媒体5914125665454)(-)(-);()(-)(-)59165459165498)(-)(-);416544156546)(-)先确定积的符号,然后再把它们的绝对值相乘-5)×89.2×(-2)的过程能否使用简便方法?这样做有没思考并积极回答最后归纳总1-12122341342222333)(-))(-)(-);)(-)(-)(-);)(-)(-)(-).)-120(3)16(4)81870.25581212152358320141523)(-)(-);)(-);)(-)(-)(-).2)227(3)025413015115172617353)(-););)(-))(-)+(-)(+).2)25(3)15(4)-6结的脉络,有助于学生对法则的理解与掌握. 环节六布置作业教材习题1.4第7(1)~(3)、14题.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
原七年级数学上册1.4.1有理数的乘法第2课时多个有理数的乘法习题课件(新版)新人教版
第七页,共8页。
方法技能: 多个有理数相乘(xiānɡ chénɡ)的一般步骤:①观察因数中有没有0,若有则积 为0;②若因数都不为0,则应先确定积的符号,再计算积的绝对值. 易错提示: 多个不为0的有理数相乘(xiānɡ chénɡ)时易忽视符号法则而出错.
数的有_②___,积为 0 的是__③__.(填序号)
2.计算:
(1)(-2)×(-3)×5×(-1)= -30 ;
1
(2)(-3)×61×(-25)×53=
3
;
(3)(-2)×919×(-1100)×0×1101=_0___.
第二页,共8页。
3.已知abc<0,a>c,ac<0,则下列结论正确的是( )B A.a<0,b>0,c>0 B.a>0,b>0,c<0 C.a<0,b<0,c<0 D.a>0,b>0,c>0 4.若五个有理数的积为负数,那么(nàme)这五个数中负因数的个数D是( ) A.1 B.3 C.5 D.1或3或5
(1100+1)×(1101-1)=__1__.
第五页,共8页。
9.计算: (1)(-3)×2×4×(-1);
解:24
(2)(-152)×145×(-23)×(-6);
解:-1 (3)(-1)×(-45)×185×0×43×(-43).
解:0
第六页,共8页。
10.有A四个互不相等的整数(zhěngshù)a,b,c,d,如果abcd=9,那么a+b +c+d等于( )
第三页,共8页。
5.有2000个有理数相乘,如果积为0,那么在2000个有理数中( )C A.全部为0 B.只有一个(yī ɡè)为0 C.至少有一个(yī ɡè)为0 D.有两个互为相反数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课案(教师用)
1.4.1 有理数的乘法(2)
(新授课)
【理论支持】
有理数的乘法运算律是在学生学完有理数的加法运算律后学习的,它与有理数的加法运算律一样,也是建立在小学算术的基础上.因此,有理数的乘法运算律,实质上是小学算术数的乘法运算律的拓展,思维过程就是如何把中学有理数的乘法运算律化归为小学算术数的乘法运算律.因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识等的基础.学好这部分内容,对增强学习代数的信心具有十分重要的意义.
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强.因此在教学过程中要做好调控.
《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.基于以上理念,结合本节课内容及学生情况,教学的设计理念是:遵循“教学、学习、研究”同步协调的原则,依据教材,恰当地创设情境,激发学生对数学的好奇心和求知欲,通过独立思考,不断发现和提出问题,分析并创造性地解决问题,教师为学生构建开放的学习环境引导学生体验探索、研究的过程.让学生在探究合作交流的过程中,展示思维过程.上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的.本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则,学会自主探究、合作的学习方式,培养学生良好的学习品质.
【教学目标】
【教学重难点】
1.重点:熟练运用运算律进行计算.
2.难点:灵活运用运算律.
【课时安排】
一课时
【教学设计】
课前延伸
基础知识填空及答案
1.计算:
(1) (-8)×(-7); (2) (—7)×(-8); (3) (-36)×2;
(4) 2×(-36).
2.计算:
(1) [-2×3]×(-4); (2) -2×[3×(-4)];
(3)[])5()2(3-⨯-⨯; (4) [])5()2(3-⨯-⨯.
3.计算: (1) )(314112+⨯; (2) )(5
12120-⨯; 4.当a =-2,b =0,c =-5,d =6时,求下列代数式的值:
(1)a +bc ; (2)c =ad ; (3)(a -b )(c -d ); (4)(a -c )(b -d ) .
练习答案:
1.计算:
(1) 56; (2) 56;(3)—72; (4) —72.
2.计算:
(1)24; (2)24; (3)30; (4)30.
3.(1)7; (2)6.
4.(1) -2;(2)7;(3)22;(4)-18.
课内探究
一、导入新课
创设情境,引出有理数的乘法运算律.
[师]我们来看看课前延伸的第1,2,3题,分别类似于我们小学里学过的那些运算律?
[生]第1题运用的是乘法交换律,第2题运用的是乘法结合律,第3题运用的是乘法的分配律.
[师]前面所探索的加法交换律、结合律对任意有理数仍然适合,在引入了负数这个新的成员之后,乘法运算律是否还会成立呢?
〖设计说明〗温故而知新.通过学生回忆已建立起来乘法交换律、结合律及分配律,以轻松愉快的心情进入了本节课的学习,对新知识的学习有了期待,为后面理解运算律的灵活运用打下基础,为顺利完成教学任务作了思想上的准备.
[师]现在,我们再来看这几道题.
(1));6(5-⨯ 5)6(⨯- ;
(2)[])5()4(3-⨯-⨯ ;[])5()4(3-⨯-⨯ ;
(3)[])7(35-+⨯;)7(535-⨯+⨯.
[生]讨论与活动.
(以同桌两人一组进行讨论,并把它们运算的结果及发现的内容写在黑板上与全班同学分享)
[师]很好,刚才几组同学都表现得非常好,当然下面的很多同学也都做得不错.从你们所运算的结果,我们共同发现了有理数也满足了乘法运算律.
1.有理数的乘法交换律:
两个数相乘,交换因数的位置,积相等.即ba ab =.(a ,b ,c 为任意有理数)
2.有理数的乘法结合律:
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
即()()bc a c ab =.(a ,b ,c 为任意有理数)
3.有理数的乘法分配律:
一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.
即a (b +c )=ab +ac (a ,b ,c 为任意有理数)
(注意“逆向”问题);也可以这样表示:)(c b a ac ab +=+.
注意事项:
(1)这里的“和”不再是小学中说的“和”的概念,而是指“代数和”.
(2)运用乘法运算律进行计算时,注意符号.
(3)几个数直接相乘,有时计算量较大,要适当运用乘法交换律、结合律.
(4)有理数乘法运算时,有时可以反向运用分配律,逆用乘法分配律.
〖设计说明〗这部分内容,小学里就已经接触过,由师生共同进行适当的小结,有利于学生形成感性认识,进行新旧知识的对比,这为学生解决探索新知,进一步理解乘法运算律打下伏笔.
二、例题剖析
例1 计算:
(1))());((598.425
2322130-⨯+-⨯. 分析:(1)中直接运用乘法分配律,注意符号;(2)中可两个数直接相乘,但计算量较大,若稍加变形,把4.98变形为(5-0.02)再利用乘法分配律,计算量就少多了.比较简便.
解:(1)原式=71220155
23032302130=+-=⨯+⨯-⨯
; (2)原式=(5-0.02)⨯(-5)=5 ⨯(-5)+0.02 ⨯(-5)=-25+0.1=-24.9. 〖设计说明〗通过这两道题的训练,让学生体会乘法分配律的实际应用,特别是第(2)题训练了学生的思维,灵活进行变形会达到事半功倍的效果.这题主要考察乘法分配律的灵活运用.
例2(学生观察后寻找解题方法)
3
12133211331 13⨯-+-⨯-+⨯-)()()()(. (叫学生自己动手,把不同解法的写到黑板上)
分析:学生可能有两种不同解法.法(一):直接做题(先乘除,后加减);法(二)用简便方法,有理数乘法运算时,可以反向运用分配律,逆用乘法分配律
[生]解:
法一:原式=133
393653104365391313391365313-=-=+-=+--=-+-)(. .13113]3
21322[13]32131231[13]31232131[13]2[-=⨯-=-⨯-=-++⨯-=+-+⨯-=)()()()()()()()(解法二:原式生〖设计说明〗通过两种方法的比较,让学生自己总结出反用乘法分配律来解题,要比直接计算简便得多,渗透乘法分配律的灵活应用,进行技巧解题.本题主要考查乘法分配律的逆运用.
例3计算:4.3657.13.2328.62.3514.3⨯--⨯
+⨯-)(.
4.362
114.33.23214.32.3514.3⨯⨯--⨯⨯+⨯-=)(解:原式 )()(2.186.462.3514.32.1814.36.4614.32.3514.3++⨯-=⨯--⨯+⨯-=
31410014.32.188.8114.3-=⨯-=+⨯-=)(.
[分析]这是一题较繁的计算题,不能直接进行简便计算,但仔细观察后会发现3.14,6.28,
1.57之间加倍关系,可以逆用乘法分配律进行计算.
〖设计说明〗这道题主要考察乘法分配律的逆用,是让学生突破自我,挑战自我,看看能不能在已学知识的基础上,仔细地观察题目,找出题中隐含的规律,从而进行灵活解题..因为问题较为复杂,在解决的过程中教师应适当的点拨和启发,使学生能够顺利完成讨论.
三、课堂反馈训练
计算:(1))71(535-⨯⨯ ; (2)()())25(45-⨯-⨯-;
(3))711(1587-⨯⨯⎪⎭
⎫ ⎝⎛-;(4)30151109⨯⎪⎭⎫ ⎝⎛-; (5)71
1615×(-8) ; (6)5.2)56.2(5.3)56.2(456.2⨯-+⨯-+⨯-. 说明:解题过程由学生板演,同时说出每步的根据和目的,并强调书写的规范化. 师:纵观这道题的解答过程,你能总结得到什么?小组同学可作交流.
四、 学生小组交流,并总结.
〖设计说明〗课堂小结可以回顾新知识,加强学生的记忆,并使有关的教学内容系统连贯和相对完整;更使学生感到“言已尽而意无穷”,跨越课堂教学和课后休闲的时空界限,课后学生还会自觉“回味咀嚼”,获得更多教益.
课后提升
【基础平台】
1.计算:
(1)(-4
20
1)×1.25×(-8); (2)(-10) ×(-8.24) ×(-0.1); (3)-65×2.4×53; (4)(97-65 +43 -18
7)×36; (5)-43×(8-131-0.04); (6)7116
15×(-8) . 2.计算:34.07
5)13(317234.03213⨯--⨯+⨯-⨯-. 3.已知,032=-++y x 求xy y x 435212+--的值. 4.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,求m cd b a 2009
)(-+的值. 5.判断下列方程的解是正数、负数、还是0.
(1)4x =-16; (2)-3x =18; (3)-9x =-36; (4)-5x =0.
6.(1)当a >0时,a 与2a 哪个大?
(2)当a <0时,a 与2a 哪个大?。