概率统计 复习题

合集下载

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

概率统计复习习题

概率统计复习习题

概率统计综合练习1 一个不透明的口袋内装有材质、重量、大小相同的7个小球,且每个小球的球面上要么只写有数字“08”,要么只写有文字“奥运”.假定每个小球每一次被取出的机会都相同,又知从中摸出2个球都写着“奥运”的概率是71。

现甲、乙两个小朋友做游戏,方法是:不放回从口袋中轮流摸取一个球,甲先取、乙后取,然后甲再取,直到两个小朋友中有1人取得写着文字“奥运”的球时游戏终止,每个球在每一次被取出的机会均相同. (1)求该口袋内装有写着数字“08”的球的个数; (2)求当游戏终止时总球次数不多于3的概率.2设每门高射炮命中飞机的概率为0.6,试求:(1)两门高射炮同时射击一发炮弹而命中飞机的概率;(2)若今有一飞机来犯,问需要多少门高射炮射击,才能以至少99%的概率命中它?3 已知8人组成的抢险小分队中有3名医务人员,将这8人分为A 、B 两组,每组4人. (1)求A 、B 两组中有一组恰有一名医务人员的概率; (2)求A 组中至少有两名医务人员的概率; (3)求A 组中医务人员人数 的分布列.4 甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m 个球,乙袋中共有2m 个球,从甲袋中摸出1个球为红球的概率为25,从乙袋中摸出1个球为红球的概率为2P . (1)若m =10,求甲袋中红球的个数;(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是13,求2P 的值; (3)设2P =15,从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次,求摸出的3个球中恰有2个红球的概率.5 某工厂为了保障安全生产,每月初组织工人参加一次技能测试。

甲、乙两名工人通过每次测试的概率分别是45和34.假设两人参加测试是否通过相互之间没有影响.(1)求甲连续3个月参加技能测试,至少有1次未通过的概率;(2)求甲、乙两人各连续3个月参加技能测试,甲恰好通过2次且乙恰好通过1次的概率;(3)工厂规定:工人连续2次没通过测试,则被撤销上岗资格.求乙恰好参加4次测试后,被撤销上岗资格的概率.6 已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设ξ为取出的4个球中红球的个数,求ξ的分布列.,,,四个不同的岗位服务,每个岗位至少有一名7甲、乙等五名奥运志愿者被随机地分到A B C D志愿者.(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.8 设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。

概率统计课程复习考试试题及答案卷

概率统计课程复习考试试题及答案卷

《概率统计》复习纲要A一、单项选择题1.对以往数据分析的结果表明,机器在良好状态时,生产的产品合格率为90%,而当机器有故障状态时,产品合格率为30%,每天开机时机器良好的概率为75%。

当某天开机后生产的第一件产品为合格品时,机器是良好状态的概率等于( )。

A 、 B 、 C 、 D 、 2.袋中有5个球(3个新球,2个旧球)。

现每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )。

A 、3/5B 、3/4C 、1/2D 、3/10 3.事件A 与B 相互独立的充要条件为( )。

A 、P(B)P(A)B)P(A +=⋃B 、ΦAB ,ΩB A ==⋃C 、P(A)P(B)P(AB)=D 、P(B)P(A)B)P(A -=- 4.以A 表示事件“零件长度合格且直径不合格”,则A 的对立事件为( )。

A 、零件长度不合格且直径合格B 、零件长度与直径均合格C 、零件长度不合格或直径合格D 、零件长度不合格 5.对于任意两个事件A 与B ,则有P(A-B)为( )。

A 、P(A)-P(B)B 、P(A)-P(B)+P(AB)C 、P(A)-P(AB)D 、P(A)+P(AB) 6.设二维随机变量(X,Y )的分布律为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛41a1b 41010,已知事件{X=0}与{X+Y=1}相互独立,则a ,b 的值是( )。

A 、61b ,31a ==B 、31b ,61a ==C 、103b ,51a ==D 、81b ,83a ==7.设函数⎪⎪⎩⎪⎪⎨⎧>≤<≤=1x ,11x 0,2xx ,0(x)F ,则( )。

A 、F(x)是随机变量的分布函数B 、F(x)不是随机变量的分布函数C 、F(x)是离散型随机变量的分布函数D 、F(x)是连续型随机变量的分布函数 8.设随机变量()2,~σμN ξ,且{}{}c ξP c ξP >=≤,则c =( )。

A 、0 B 、μ C 、μ- D 、σ9.设ξ服从[0,1]的均匀分布,12+=ξη则( )。

概率统计复习题

概率统计复习题

概率统计复习题基本概念题型1.设A ,B 为随机事件,P(A)=0.8,P(A-B)=0.2,求)(AB P .2.设 A 、B 为随机事件, P (A)=0.5,()0.6P B =,P(B A)=0.8,求P(B )A .3. 若()1P B A =,求()P A B -。

4.设工厂A 和工厂B 的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,求该次品属A 生产的概率. 5.设X 和Y 为两个随机变量,且74}0{}0{,73}0,0{=≥=≥=≥≥Y P X P Y X P 求P{max(X, Y)≥0}。

6.已知X~N(150,9),Y~N(100,16), 且X与Y相互独立,设Z=-2X+Y ,求D(Z)。

7. 设DX=16,DY=1,ρXY =0.3,则D (3X- 2Y )。

8.设随机变量X 和Y 独立同分布,记U=X-Y ,V=X+Y ,求UV ρ。

9.设容量n = 10 的样本的观察值为(5,8,7,6,9,8,7,5,9,6),求样本均值和样本方差。

10.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++-有CY ~2(2)χ,求C 。

11.1216,,,X X X 是来自总体),10(N ~X 的一简单随机样本,设:222218916Z X X Y X X =++=++,求YZ服从何种分布。

综合应用题型1. 设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车来的概率分别为0.3、0.2、0.5,如果他乘火车、轮船、汽车来的话,迟到的概率分别为1/4,1/3,1/12。

(1)求此人迟到的概率;(2)现此人迟到,试推断他乘哪一种交通工具的可能性最大? 解(1)设=B {此人迟到 }=1A {此人乘火车来},=2A {此人乘轮船来 },=3A {此人乘汽车来 })|()()|()()|()()(332211A B p A p A B p A p A B p A p B p ++=183.060111215.0312.0413.0==⨯+⨯+⨯=;(2)111110.3()()(|)94(|)11()()2260P A B P A P B A P A B P B P B ⨯====1146011312.0)()|()()()()|(2222=⨯===B P A B P A P B P B A P B A P 333310.5()()(|)512(|)11()()2260P A B P A P B A P A B P B P B ⨯==== 所以,若此人迟到,则他乘坐火车的可能性最大。

概率统计复习题

概率统计复习题

复习题 (A )备用数据:220.990.9950.9950.0050.9952.326,(99) 2.575,(99)66.510,(99)138.987u t u χχ=≈===一、选择题(20分,每题4分,请将你选的答案填在( )内)1、 下列结论哪一个不正确 ( )设A,B 为任意两个事件,则; )(A A B A B -= 若,则A,B 同时发生或A,B 同时不发生; )(B A B =若,且,则; )(C A B ⊂B A ⊂A B =若,则A-B 是不可能事件.)(D A B ⊂2、 设的联合概率函数为(,)X Y Y X012301/81/41/80101/81/41/8则(1)概率等于(13,0)P Y X ≤<≥( ); ; ; .)(A 58)(B 12)(C 34)(D 78(2)的概率函数为Z X Y =+( ))(A Z01234概率1/83/81/41/81/8()B Z1234概率3/81/41/41/8()C Z1234概率1/81/41/43/8()DZ01234概率1/81/41/41/41/83、 如果,,且X 与Y 满足,则必有 2EX <∞2EY <∞()()D X Y D X Y +=-( )X 与Y 独立; X 与Y 不相关; ; .)(A )(B )(C ()0D Y =)(D ()()0D X D Y =4、若,X 和Y 的相关系数,则的协方差()25,()36D X D Y ==,0.4X Y ρ=,X Y (,)Cov X Y 等于( )5; 10; 12; 36.)(A )(B )(C )(D 二、(12分)设X,Y 为随机变量,且,3(0,0)7P X Y ≥≥=4(0)(0)7P X P Y ≥=≥=求(1);(2).(min(,)0)P X Y <(max(,)0)P X Y ≥三、(10分)一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人.然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,(1)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯确实是黑人的概率是多大?(2)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯是白人的概率是多大?四、(10分)某商业中心有甲、乙两家影城,假设现有1600位观众去这个商业中心的影城看电影,每位观众随机地选择这两家影城中的一家,且各位观众选择哪家影城是相互独立的.问:影城甲至少应该设多少个座位,才能保证因缺少座位而使观众离影城甲而去的概率小于0.01. (要求用中心极限定理求解.)五、(16分)设二维随机变量的联合概率密度函数为),(Y X 2,01(,)0,x y f x y <<<⎧=⎨⎩其它(1)求的边缘密度函数; (2)求条件概率Y X ,(),()X Y f x f y ; 113(0)224P X Y <<<<(3)问:X 与Y 是否相互独立?请说明理由; (4)求的概率密度函数.Z X Y =+()Z f z 六、(14分)某地交通管理部门随机调查了100辆卡车,得到它们在最近一年的行驶里程(单位:100km )的数据,由数据算出,样本标准差.假设卡车12100,,,x x x 145x =24s =一年中行驶里程服从正态分布,分别求出均值和方差的双侧0.99置信区间.),(2σμN μ2σ(请保留小数点后两位有效数字.)七、(18分) 设是取自总体的简单随机样本,总体的密度函数为n X X X ,,,21 X X ,其中为未知参数,.(1),(;)0,e x x ef x θθθθ-+⎧>=⎨⎩其它θ01θ<<(1)求出的极大似然估计;θ(2)记,求参数的极大似然估计;1αθ=α(3)问:在(2)中求到的的极大似然估计是否为的无偏估计?请说明理由.αα复习题(B )备用数据:220.9750.0250.9750.995(2)0.9772,(8) 2.31,(8) 2.18,(8)17.54, 2.575,t u χχΦ=====一、选择题(共20分,每题4分,请将你选的答案填在( )内)1、 下列命题哪一个是正确的?( )若,则;()A ()()0P A P B >>()()P A B P B A <若,则; ()B ()()0P A P B >>()()P A B P B A ≥若,则; )(C ()0P B >()()P A P A B ≥若,则.)(D ()0P B >()()P A B P AB ≤2、已知,,,判断下1()()()2P A P B P C ===1()()()4P AB P AC P BC ===()0P ABC =列结论哪一个是正确的( )事件,,两两不独立,但事件,,相互独立;)(A A B C A B C 事件,,两两独立,同时事件,,相互独立;)(B A B C A B C 事件,,两两独立,但事件,,不相互独立; )(C A B C A B C 事件,,不会同时都发生.)(D A B C 3、 设相互独立,且都服从参数1的指数分布,则当时,的分布12,X X 0x >12min(,)X X函数为()F x ( ); ; ; .)(A 121(1)e ---)(B 21(1)x e ---)(C 2x e )(D 21x e --4、 已知的联合概率函数为(,)X Y Y X12311/61/91/1821/3αβ若,独立,则的值分别为X Y ,αβ( ); ;)(A 12,99αβ==)(B 21,99αβ== ; .)(C 15,1818αβ==)(D 51,1818αβ==5、 设是取自正态总体的样本,已知15,,X X (0,1)N 22212345()()X a X X b X X +-+-服从分布,则这个分布的自由度为(0,0)a b >>2χ2χ ( )5; 4; 3; 2.)(A )(B )(C )(D 二、(12分)已知男性患色盲的概率为0.005,女性患色盲的概率为0.0025,如在某医院参加体检的人群中,有3000个男性,2000个女性,现从这群人中随机地选一人,(1)求此人患有色盲的概率; (2)若经检验此人的确患有色盲,问:此人为男性的概率是多大?三、(12分)设随机变量服从参数为1的指数分布.定义随机变量Y (1)E , 0,1,k Y kX Y k ≤⎧=⎨>⎩1,2.k =(1)求的联合概率函数; (2)分别求的边缘概率函数.12(,)X X 12,X X 四、(10分)有100位学生在实验室测定某种化合物的PH 值,假设各人测量都是独立进行的,每人得到的测定结果服从相同的分布,且这个相同分布的期望为5,方差为4,设表示第ii X 位学生的测定结果,,,求 .(要求用中心极1,,100i = 10011100i i X X ==∑(4.6 5.4)P X <<限定理求解.)五、(16分) 设二维随机变量的联合概率密度函数为),(Y X 1,01,02(,)0,x y x f x y <<<<⎧=⎨⎩且其它求(1)的边缘密度函数; (2)的概率密度函数;Y X ,(),()X Y f x f y 21Z X =+()Z f z (3); (4). (2)(2)E X Y D X Y --和11()22P Y X ≤≤六、(14分)某医生为研究铅中毒患者与正常成年人的脉搏数的关系,他随机调查了9例患者,测得其脉搏数分别为,并由此算出. 设铅中毒患者129,,,x x x 99211675,50657ii i i xx ====∑∑的脉搏数服从正态分布,分别求出均值和标准差的置信水平0.95的双侧置),(2σμN μσ信区间.(请保留小数点后两位有效数字.)七、(16分) 设是取自总体的简单随机样本,总体的概率密度函数为n X X X ,,,21 X X ,其中是未知参数,。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案### 概率统计试题及答案#### 一、选择题1. 题目一:设随机变量X服从正态分布N(0, σ^2),若P(X ≤ 0) = 0.5,则σ的值为多少?- A. 0- B. 1- C. 2- D. 无法确定答案:B2. 题目二:若随机变量Y服从二项分布B(n, p),且已知E(Y) = 5,Var(Y) = 2,求n和p的值。

- A. n = 10, p = 0.5- B. n = 5, p = 0.4- C. n = 2, p = 0.75- D. n = 1, p = 5答案:A#### 二、填空题3. 若随机变量X服从均匀分布U(a, b),其概率密度函数为f(x) = \[ \frac{1}{b-a} \],当a = 0,b = 2时,求X的期望E(X)和方差Var(X)。

- E(X) = \[ \frac{1}{2}(b + a) \] = \[ \frac{2}{2} \] = 1 - Var(X) = \[ \frac{(b - a)^2}{12} \] = \[ \frac{2^2}{12}\] = \[ \frac{4}{12} \]4. 对于一个样本数据集{2, 3, 4, 5, 6},求其样本均值和样本方差。

- 样本均值 \( \bar{x} = \frac{2+3+4+5+6}{5} = 4 \)- 样本方差 \( s^2 = \frac{(2-4)^2 + (3-4)^2 + (4-4)^2 +(5-4)^2 + (6-4)^2}{5-1} = \frac{2+1+0+1+4}{4} = 2 \)#### 三、简答题5. 简述大数定律和中心极限定理的区别和联系。

- 大数定律:随着样本容量的增加,样本均值会越来越接近总体均值。

- 中心极限定理:无论总体分布如何,样本均值的分布会趋近于正态分布,当样本容量足够大时。

#### 四、计算题6. 假设有一批产品,其中次品率为0.1,求:- (a) 随机抽取5件产品,至少有1件次品的概率。

概率与数理统计复习题

概率与数理统计复习题

概率与数理统计复习题一、判断1. 如果随机变量 X ~ N ( μ , σ2 ), 则 (μ -X ) /σ ~ N (0, 1) .2. 对任意事件A 和B ,必有P (AB )=P (A )P (B )3. 如果P (A ) = P (B ) = 0.5, 则P ( AB ) = P (A B ).X 与Y 相互独立,则X 与Y 不相关4. 5. 样本方差()X 222111ni i S X n ==--∑是σ的无偏估计量 6.设样本空间为 Ω = {e 1,e 2,e 3,e 4,e 5},A = {e 1,e 3,e 5},则 P (A ) = 0.6.7.设X 服从参数为λ的泊松分布,则EX DX =8.设 n 次独立重复试验中, 事件 A 出现的次数为X , 则 4 n 次独立重复试验中,A 出现的次数为 4 X .9.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为(1-p )310.二维均匀分布的边缘分布仍是均匀分布.11.若随机变量 X 的数学期望存在,则X 的方差也存在.12.样本二阶中心矩不是总体方差的无偏估计. 13.假设检验中,样本容量确定时,犯弃真错误和取伪错误的概率不能同时减小.14. 在古典概型的随机试验中,0)(=A P 当且仅当是不可能事件.A 15.连续型随机变量的密度函数与其分布函数相互唯一确定)(x f )(x F 16.若随机变量X 与Y 独立,且都服从1.0=p 的 (0,1) 分布,则Y X =17.设X 为离散型随机变量, 且存在正数k 使得0)(=>k X P ,则X 的数学期望未必存在)(X E 18.在一个确定的假设检验中,当样本容量确定时, 犯第一类错误的概率与犯第二类错误的概率不能同时减少19. 设A ,B ,C 为随机事件,则事件“A ,B ,C 都不发生”可表示为C B A20. 对任意事件A 和B ,必有P (A-B )=P(A )-P (B )21. 已知随机变量X 的数学期望E (X )存在,则E (X 2)=[E (X )]2X 与Y 相关,则X 与不相互独立 Y 22.23. 假设检验基本思想的依据是小概率事件原理24.对于任意两个随机变量X 和Y ,若()()(E XY E X E Y )=⋅,则.()()(D XY D X D Y =⋅)25.设随机变量X 的概率密度为()f x ,则()f x 一定满足()0f x 1≤≤ 。

概率统计复习题

概率统计复习题

第 1 页概率统计练习题一、选择题1. 设C B A ,,是三个随机事件,则事件“C B A ,,不多于一个发生”的对立事件是〔 B 〕A .CB A ,,至少有一个发生 B.C B A ,,至少有两个发生 C. C B A ,,都发生 D. C B A ,,不都发生2.如果〔 C 〕成立,则事件A 与B 互为对立事件。

(其中S 为样本空间)A .ABB. AB S C.AB A BSD. 0)(=-B A P3.设,A B 为两个随机事件,则()P A B ⋃=〔 D 〕 A .()()P A P B - B. ()()()P A P B P AB -+C. ()()P A P AB - D. ()()()P A P B P AB +-4.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为〔D 〕。

A .12 B. 23 C. 16 D. 135.设~(1.5,4)X N ,则{24}P X -<<=〔 〕A .0.8543 B. C. D. 6.设)4,1(~N X ,则{0 1.6}P X <<=〔 〕。

A . B. C. D.7.设2~(,)X N μσ则随着2σ的增大,2{}P X μσ≤-=〔 〕A .增大 B. 减小 C. 不变 D. 无法确定8.设随机变量X 的概率密度21()01x x f x x θ-⎧>=⎨≤⎩,则θ=〔 〕。

A .1 B.12 C. -1 D. 329.设随机变量X 的概率密度为21()01tx x f x x -⎧>=⎨≤⎩,则t =〔 〕A .12 B. 1 C. -1 D. 3210.设连续型随机变量X 的分布函数和密度函数分别为()F x 、()f x ,则以下选项中正确的选项是〔 〕 A .0()1F x ≤≤ B.0()1f x ≤≤ C. {}()P X x F x == D. {}()P X x f x ==11.假设随机变量12Y X X =+,且12,X X 相互独立。

概率统计复习题word版.

概率统计复习题word版.

概率统计复习题word版.概率论与数理统计1.从⼀批产品中随机抽两次,每次抽1件.以A 表⽰事件“两次都抽得正品”,B 表⽰事件“⾄少抽得⼀件次品”,则下列关系式中正确的是().A.A B ? B.B A ? C.A B=D.A B =2.设1()()2P A P B ==,则下列结论⼀定正确的是().A.1()4P AB =B.()1P A B +=C.1()2P AB =D.()(P A B P AB =3.抛掷3枚均匀对称的硬币,恰好有两枚正⾯向上的概率是().A.0.125B.0.25C.0.375D.0.54.某⼈连续向⼀⽬标射击,每次命中⽬标的概率为34,他连续射击直到命中为⽌,则射击次数为5的概率是。

5.设某试验成功的概率为p,独⽴地做5次该试验,成功3次的概率为6.设()0.4,P A =()0.3,P B =()0.5,P(A-B)=?P A B ?=求7.每次试验成功率为p(010.⼈们为了解⼀只股票未来⼀定时期内的价格变化,往往会去分析影响股票价格的基本因素,⽐如利率的变化。

现假设⼈们经分析估计利率下调的概率为60%,利率不变的概率为40%。

根据经验,⼈们估计,在利率下调的情况下,该只股票的价格上涨的概率为80%,在利率不变的情况下,其价格上涨的概率为40%,求该只股票将上涨的概率。

11.盒中有3个新球、1个旧球,第⼀次使⽤时从中随机取⼀个,⽤后放回,第⼆次使⽤时从中随机取两个,事件A表⽰“第⼆次取到的全是新球”,求P(A).12.随机地掷⼀颗骰⼦,连续6次,求:(1)恰有⼀次出现“6点”的概率;(2)⾄少有⼀次出现“6点”的概率。

13.设⼀本书的各页的印刷错误个数X服从泊松分布,已知有⼀个和两个印刷错误的页数相同,求随意抽查3页中⽆印刷错误的概率.14.设A、B为两个随机事件,0()1P B<<(|)(|)P A B P A B=且证明事件A与B相互独⽴.15.已知:1234,,,A A A A (1,2,3,4)i A A i ?=三个事件都满⾜证明:1234()()()()()3P A P A P A P A P A ≥+++-第⼆章随机变量及其概率分布1.设随机变量1~(3,3X B 则{1}P X ≥=2.任何⼀个连续型随机变量的概率密度()f x ⼀定满⾜()A.在定义域内单调不减B.0()1f x ≤≤C.()1f x dx +∞-∞=?D.lim ()1x f x →+∞=3.设离散型随机变量X 的概率分布为求C ?4.若(),2,1~2N X 求()()().4 ;1 ;30>≤<≤X P X P X P 5.设随机变量X的的概率密度为2(3)(),()x f x x +-=-∞<<+∞则Y =()~(0,1)N 6.设随机变量X 的分布律为{},1,2,3,4,515k{}3()P X >=X -101P2C0.4C7.设⼀本书的各页的印刷错误个数X 服从泊松分布,已知有⼀个和两个印刷错误的页数相同,求随意抽查3页中⽆印刷错误的概率p.8.已知随机变量X 的概率密度函数为2,01()0,x x f x <其他求:{1},P X =-{0.5},P X<{3}.P X ≤9.某地抽样调查结果表明,某次统考中,考⽣的数学成绩2σ(百分制)X 服从正态分布N(72,2σ),且96分以上的考⽣占考⽣总数的2.3%。

概率统计 复习题

概率统计 复习题

概率统计习题1.设 A 、B 为随机事件,P (A)=0.5,P(B)=0.6,P(B A)=0.8.则P(B )A .2. 三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是= .3. 设随机变量2(,)X μσN ,XY e =,则Y 的分布密度函数为 .4. 设随机变量2(,)X μσN ,且二次方程240y y X ++=无实根的概率等于0.5, 则μ= .5. 设()16,()25D X D Y ==,0.3X Y ρ=,则()D X Y += .6. 掷硬币n 次,正面出现次数的数学期望为 .7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两. 则100个该型号螺丝钉重量不超过10.2斤的概率近似为 (答案用标准正态分布函数表示).8. 设125,,X X X 是来自总体(0,1)X N的简单随机样本,统计量12()/~()C X X t n +,则常数C = ,自由度n = .1.(10分)设袋中有m 只正品硬币,n 只次品硬币(次品硬币的两面均有国徽),从袋中任取一只硬币,将它投掷r 次,已知每次都得到国徽.问这只硬币是正品的概率是多少?2.(10分)设顾客在某银行窗口等待服务的时间(以分计)X 服从指数分布,其概率密度函数为/5(1/5)0()0x e x f x -⎧>=⎨⎩其它某顾客在窗口等待服务,若超过10分钟,他就离开. 他一个月到银行5次.以Y 表示一个月内他未等到服务而离开窗口的次数,写出Y 的分布律,并求{1}P Y ≥.3.(10分)设二维随机变量(,)X Y 在边长为a 的正方形内服从均匀分布,该正方形的对角线为坐标轴,求: (1) 求随机变量X ,Y 的边缘概率密度; (2) 求条件概率密度|(|)X Y f x y . .4.(10分)某型号电子管寿命(以小时计)近似地服从2(160,20)N 分布,随机的选取四只,求其中没有一只寿命小于180小时的概率(答案用标准正态分布函数表示).5.(10分)某车间生产的圆盘其直径在区间(,)a b 服从均匀分布, 试求圆盘面积的数学期望.三. (10分)设12,,n X X X 是取自双参数指数分布总体的一组样本,密度函数为1,(;,)0,x ex f x μθμθμθ--⎧>⎪=⎨⎪⎩其它其中,0μθ>是未知参数,12,,,n x x x 是一组样本值,求: (1),μθ的矩法估计; (2),μθ的极大似然估计.四. (8分)假设ˆθ是θ的无偏估计,且有ˆ()0D θ>试证2ˆθ2ˆ()θ=不是2θ的无偏估计.五. (8分)设112,,,n X X X 是来自总体211~(,)X N μσ的一组样本,212,,,n Y Y Y 是来自总体222~(,)Y N μσ的一组样本,两组样本独立.其样本方差分别为2212,S S ,且设221212,,,μμσσ均为未知. 欲检验假设22012:H σσ=,22112:H σσ<,显著性水平α事先给定. 试构造适当检验统计量并给出拒绝域(临界点由分位点给出).1.设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P .2. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 .3. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为 .4. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 .5. 设随机变量22~()n χχ,则2()E χ ,2()D χ .6. 设()3D X =,31Y X =+,则,||X Y ρ= .7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两.则100个该型号螺丝钉重量不超过10.2斤的概率近似为(答案用标准正态分布函数表示).8. 设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++-则当C = 时,CY ~2(2)χ.1.将一枚均匀硬币掷四次,则四次中恰好出现两次正面朝上的概率为 。

概率统计复习题

概率统计复习题

概率统计复习题1. 设A,B,C为三个事件,试用A,B,C的运算关系式表示以下事件: (1)A 发生,B,C都不发生; (2) A与B发生,C不发生; (3)A,B,C都发生; (4) A,B,C至少有一个发生; (5)A,B,C都不发生; (6) A,B,C不都发生;(7)A,B,C至多有2个发生; (8) A,B,C至少有2个发生.2. 设A,B是两事件,且P〔A〕=0.6,P(B)=0.7,求:〔1〕在什么条件下P〔AB〕取到最大值?〔2〕在什么条件下P〔AB〕取到最小值?3. 设A,B,C为三事件,且P〔A〕=P〔B〕=1/4,P〔C〕=1/3且P〔AB〕=P 〔BC〕=0,P〔AC〕=1/12,求A,B,C至少有一事件发生的概率.4. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:〔1〕两粒都发芽的概率;〔2〕至少有一粒发芽的概率;〔3〕恰有一粒发芽的概率.15. 一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率〔小孩为男为女是等可能的〕6. 5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率〔假设男人和女人各占人数的一半〕7. 设P〔A〕=0.3,P(B)=0.4,P(AB)=0.5,求P〔B|A∪B〕8. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.9. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:〔1〕考试及格的学生有多大可能是不努力学习的人?〔2〕考试不及格的学生有多大可能是努力学习的人?210. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.11. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.12. 证明:假设P〔A|B〕=P(A|B),那么A,B相互独立.13. n个朋友随机地围绕圆桌而坐,求以下事件的概率:〔1〕甲、乙两人坐在一起,且乙坐在甲的左边的概率;〔2〕甲、乙、丙三人坐在一起的概率;〔3〕如果n个人并排坐在长桌的一边,求上述事件的概率.14. 设两两相互独立的三事件,A,B和C满足条件:3ABC=?,P(A)=P(B)=P(C)0,P(A|B)=1,试比拟P(A∪B)与P(A)的大小.16. 〔1〕设随机变量X的分布律为P?X?k??a?kk!,其中k=0,1,2,…,λ>0为常数,试确定常数a. 〔2〕设随机变量X的分布律为P{X=k}=a/N, k=1,2,…,N,试确定常数a.中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:〔1〕保险公司亏本的概率;〔2〕保险公司获利分别不少于10000元、20000元的概率.418. 随机变量X的密度函数为f(x)=Aexp{-|x|}, -∞。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

大学概率统计复习题(答案)

大学概率统计复习题(答案)

⼤学概率统计复习题(答案)第⼀章1.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=____61_______.2. 设P (A )=31,P (A ∪B )=21,且A 与B 相互独⽴,则P (B )=______41_____.3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A )=___0.5_____.4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独⽴,则P (A B )=________1/3________.5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________.6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______.7.⼀⼝袋装有3只红球,2只⿊球,今从中任意取出2只球,则这两只恰为⼀红⼀⿊的概率是________ 0.6________.8.设袋中装有6只红球、4只⽩球,每次从袋中取⼀球观其颜⾊后放回,并再放⼊1只同颜⾊的球,若连取两次,则第⼀次取得红球且第⼆次取得⽩球的概率等于____12/55____.9.⼀袋中有7个红球和3个⽩球,从袋中有放回地取两次球,每次取⼀个,则第⼀次取得红球且第⼆次取得⽩球的概率p=___0.21_____.10.设⼯⼚甲、⼄、丙三个车间⽣产同⼀种产品,产量依次占全⼚产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该⼚⽣产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间⽣产的概率. 35 18第⼆章1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413)2.设连续型随机变量X 的分布函数为≤>-=-,0,0;0,1)(3x x e x F x则当x >0时,X 的概率密度f (x )=___ xe 33-_____.3.设随机变量X 的分布函数为F (x )=?≤>--,0,0;0,2x x e a x 则常数a =____1____.4.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X5.抛⼀枚均匀硬币5次,记正⾯向上的次数为X ,则P{X ≥1}=_____3231_______.6.X 表⽰4次独⽴重复射击命中⽬标的次数,每次命中⽬标的概率为0.5,则X~ _B(4, 0.5)____7.设随机变量X 服从区间[0,5]上的均匀分布,则P {}3≤X = ____0.6_______.8.设随机变量X 的分布律为Y =X 2,记随机变量Y 的分布函数为F Y (y ),则F Y (3)=_____1____________.9.设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 110.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞求:(1)A 值;(2)P {021 21(1-e -1)≤>-=-0210211)(x e x e x F x x11.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(1)求常数A ,B ;(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ). A=1 B=-1 P {X ≤2}=λ21--e P {X >3}=λ3-e≤>=-0)(x x e x f xλλ 12.设随机变量X 的概率密度为f (x )=,01,2,12,0,.x x x x ≤-≤其他求X 的分布函数F (x ).≥≤<-+-≤<≤=21211221102100)(22x x x x x x x x F求(1)X 的分布函数,(2)Y =X 2的分布律.≥<≤<≤<≤--<≤--<=313130/191030/170130/11125/120)(x x x x x x x F 14.设随机变量X ~U (0,1),试求:(1) Y =e X 的分布函数及密度函数;(2) Z =-2ln X 的分布函数及密度函数. <<=others e y y y f Y 011)(>=-othersz ez f zZ 0021)(2第三章1.设⼆维随机变量(X ,Y )的概率密度为 >>=+-,,0;0,0,),()(其他y x ey x f y x(1)求边缘概率密度f X (x)和f Y (y ),(2)问X 与Y 是否相互独⽴,并说明理由.≤>=-00)(x x e x f xX ≤>=-00)(y y e y f yY因为 )()(),(y f x f y x f Y X = ,所以X 与Y 相互独⽴2.设⼆维随机变量221212(,)~(,, ,,)X Y N µµσσρ,且X 与Y 相互独⽴,则ρ=____0______.3.设X~N (-1,4),Y~N (1,9)且X 与Y 相互独⽴,则2X-Y~___ N (-3,25)____.4.设随机变量X 和Y 相互独⽴,它们的分布律分别为,则{}==+1Y X P _____516_______. 5.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三⾓形区域,则(X,Y)的概率密度101()2y x f x y others≤<≤=,.6,Y(2)随机变量Z=XY 的分布律.7求:(1)a 的值;(2)(X ,Y )分别关于X 和Y 的边缘分布列;(3)X 与Y 是否独⽴?为什么?(4)X+Y 的分布列.因为{0,1}{0}{1}P X Y P X P Y ==≠==,所以X 与Y 不相互独⽴。

概率统计复习

概率统计复习

仅供参考概率统计复习1.2例题四 ,1.3例题二、四,1.4例题一、六、七,1.5例题四,2.2例题四、五,2.3例题二,2.4例题一、三、四,2.5例题一、二、三,3.1例题一、二,3.2例题二,4.1例题一、三、五、六,4.2例题一、五、七、八,4.3例题一、六,4.3例题四、六,4.4例题一、二、五,5.2例题一、四,5.3例题一、二,6.1例题一,6.2例题一、五1.2习题四已知P (A )=P (B )=P (C )=41,()()161BC P AC P ==,()0AB P =,求事件A ,B ,C 全不发生的概率。

解: ()()()C B A P -1C B A P C B A P ⋃⋃=⋃⋃=()()()()()()()[]ABC P BC P -AC P -AB P -C P B P A P -1+++= 830161-161-0-414141-1=⎥⎦⎤⎢⎣⎡+++= 1.3习题一袋中装有5个白球,3个黑球,从中一次任取两个,求()1求取到的两个球颜色不同的概率;()2求取到的两个球有黑球的概率。

解: ()1 设A={取到的两个球颜色不同},则()2815C C C A P 281315==. ()2}{()}{,则由题意有球取到黑,球个黑取到设===B 2,1i i A i()()()()2121A P A P A A P B P +=+=149C C C C C C 282305281315=+= 1.4习题二假设一批产品中一、二、三等品各占60%,30%,10%,从中任1件,结果不是三等品,求取到的是一等品的概率。

解: 令A 为“取到的是i 等品”,i=1,2,3, ()()()()()329.06.0A P A P A PA A P A A P 3133131====.1.4习题三设10件产品中有4件不合格产品,从中任取2件,已知所取2件产品中有1件不合格品,求另一件也是不合格品的概率。

概率论与数理统计复习

概率论与数理统计复习

概率统计综合复习一一、填空:1.已知()0.3,()0.5,(/)0.2P A P B P A B ===,则()P A B ⋃= _ ___。

2.设某批产品有4%是废品,而合格品中的75%是一等品,则任取一件产品是一等品的概率是 。

3.设1231()()()3P A P A P A ===,且三事件123,,A A A 相互独立,则三事件中至少发生一个的概率为 ,三事件中恰好发生一个的概率为 。

4.袋中装有1个黑球和2个白球,从中任取2个,则取得的黑球数X 的分布函数()F x = ,()E X = 。

5.设X (4,0.5),b Y 在区间[0,2] 上服从均匀分布,已知X 与Y 相互独立,则(3)D X Y -= _ _。

6.设2(2,)X N σ ,且{0}0.2P X ≤=,那么{24}P X <<= _ ___。

7.设随机变量X 服从参数为2的泊松分布,用切比雪夫不等式估计:{24}P X -≥≤ 。

8.设一批产品的某一指标2(,)X N μσ ,从中随机抽取容量为25的样本,测得样本方差的观测值2100s =,则总体方差2σ的95%的置信区间为 。

二、单项选择:1.甲、乙二人射击,A 、B 分别表示甲、乙击中目标,则AB 表示( )。

A.两人都没击中B.至少一人没击中C.两人都击中D.至少一人击中2.设,A B 为两个随机事件,且,则下列式子正确的是( )A.()()P A B P A ⋃=B.()()P AB P A =C.(/)()P B A P B =D.()()()P B A P B P A -=- 3.设123,(,4)X X X N μμ,是来自总体的样本,未知参数的下列无偏估计量中最有效的是 ( ).A.123111424X X X ++ B. 131122X X + C. 123122555X X X ++ D. 123111333X X X ++ 4.设某种电子管的寿命X ,方差为()D X a =,则10个电子管的平均寿命X 的方差()D X 是( ) A .a B. 10a C. 0.1a D. 0.2a5.在假设检验问题中,犯第一类错误是指( )A .原假设0H 成立,经检验接受0HB .原假设0H 成立,经检验拒绝0HC .原假设0H 不成立,经检验接受0HD .原假设0H 不成立,经检验拒绝0H 三、设一批混合麦种中一、二、三、四等品分别占60%、20%、15%、5%,,四个等级的发芽率依次为,0.98,0.95,0.9,0.85 求:1.这批麦种的发芽率;2.若取一粒能发芽,它是二等品的概率是多少?四、已知随机变量X 的概率密度函数为,01()0,cx x f x ⎧≤<=⎨⎩其它,求:1.常数c ; 2.{0.40.7}P X <≤; 3.方差()D X五、设二维随机变量(,)X Y 的联合密度函数(2)2,0,0(,)0x y e x y f x y -+⎧>>=⎨⎩,其它 ,1.求,X Y 的边缘密度函数;2.判断,X Y 是否相互独立、是否不相关;3.求概率{1}P X Y +≤六、设总体X 的密度函数为(1),01()0,x x f x θθ⎧+<<=⎨⎩其它,其中0θ>是未知参数,12,,,n X X X 是从该总体中抽取的一个样本,12,,,n x x x 是其样本观测值,试求参数θ 的最大似然估计量。

概率统计期末复习题

概率统计期末复习题

概率统计期末复习一、填空题1、完成一件事情有n 种方法,第一种有m 1种方法,第二种有m 2种方法,…,第n 种有m n 种方法,则完成这件事有: 方法,这种方法则称为 法则。

2、概率的公理化定义: 、 、 。

3、掷两枚骰子,出现点数之和大于9的概率为: 。

4、若事件A 、B 相互独立,且P(A)=0.3,P(B)=0.2,则P(A+B)= 。

5、设随机变量X 的数学期望E(X)=μ,方差D(X)=σ2,由切比雪夫不等式有P{|X -μ|≥36}≤ 。

6、随机变量X 的K 阶原点矩为 。

7、随机变量X 服从指数分布,则X 的期望是: ,方差是 。

8、(x 1,x 2,…,x n )是取自总体的一个样本,称 为样本均值。

9、已知随机变量T~t(n),则t 0.01(12)= ,已知t 0.99(12)=2.681010、已知X 服从正态分布N(1,4),则Y=3x+5,Y 服从 。

11、随机变量(x,y)不相关的等价条件是: 。

12、D(x+y)= 。

13、随机变量x ,期望E(x)=μ,方差D(x)=σ2,中心化随机变量是: ,标准化随机变量是: 。

二、解答题1、某年级有甲、乙、丙三个班级,各班人数分别占年纪总人数的14 ,13 ,512。

已知甲、乙、丙三个班级中集邮人数分别占该班总人数的12 ,14 ,15,试求: (1) 从该年级中随机地选取一个人,此人为集邮者的概率;(2) 从该年级中随机的选取一个人,发现此人为集邮者,此人属于乙班的概率。

2、已知事件A,B,P(A)=0.5,P(B)=0.7,P(A ∪B)=0.8,试求P(A-B),P(B-A)。

3、已知随机变量X 与Y 独立同分布,且都服从0-1分布,B(1,P),记随机变量:(1) 试求Z 的概率函数。

(2) 试求X 与Z 的联合概率函数。

4、设(X,Y )服从如图区域D 上的均匀分布,求关于X 的和关于Y 的边缘概率密度。

5、设(X,Y)服从区域D:0<X<1,0<Y<X上的均匀分布,求X与Y的相关系数。

概率统计总复习题

概率统计总复习题
1.设 A、 B 为随机事件, P( A) 0.7, 则 P( AB)
P( A B) 0.3
0 .6

2、设 P( A) 0.4, P( AB) 0.3 ,则 P( A B) 4.P(A)=0.5,P(B)=0.3,(1) B A, P ( A B) (2)A,B 独立,P(A-B)= 5.已知 P( A) 0.5,
2 1
B . P{ X 1 X 2 } 1
8 . X ~ N μ1 , σ ,Y ~ N μ2 , σ ,
2 2
D. 以上都不正确
那么 X 和 Y
C 的联合分布为_____. A.二维正态分布,且 ρ 0 B.二维正态分布,且 ρ 不定
A.0.16 ; B.0.18 ; C.0.21 ; D.0.23 2.设事件 A 和 B 满足 PB A 1,则 A. A 是必然事件 C. P( A B) 0
C
B、 A 包含事件 B D
PBA 0

3、F1 ( x ) , F2 ( x ) 都是分布函数,为使 C1F1 ( x ) C2 F2 ( x ) 是分布 函数, C1 , C2 应取下列哪组值(
1 1 (5 U , 5 U ) 3 2 3 2

2 21.设 X1 , X 2 ,, X n 是来自正态总体 N ( , ) 的样本,其中
2 未知。对假设检验 H0 : 1, H1 : 1,则当 H 0 成立时,常
X 1
选用的统计量是
S/ n
,它服从的分布为
(用 (·)表示) 。
X E( X ) N (0,1) D( X ) 服从
12.设服从正态分布的随机变量 X 的期望 E ( X ) ,方差 D( X ) 均存在, 且 D( X ) 0 ,则标准化随机变量

概率统计复习题

概率统计复习题

.
27. 在假设检验中, 把符合 H0 的总体判为不符合 H0 加以拒绝,
这类错误称为
错误, 把不符合 H0 的总体当做 H0 而
接受, 这类错误称为
错误. 显著性水平 是用来控
制犯第
错误的概率.
28. 设X1, X2 ,L , Xn是来自总体N (, 2 )的样本, 2已知, 要检验
H0 : 0 应用
6. 已知X
~
a bx2 , f (x)
0,
(1)a, b的值;
(2)P(0.5 X 1.5);
(3)E(2X 1), DX .
0 x 其他

1,且EX

3 5
,求:
7. 已知X ~ E(2), 求Y 3X 2的密度函数.
8. 设X ~ E(5),求EX , DX .
ˆ 2

1 5
5 i 1
Xi,
ˆ 3

1 10
10 i 1
Xi中, 最有效的

.
23. 某批产品的次品率为未知参数p(0 p 1),从整批产品中
中抽取n件样本,用最大似然法估计p, 似然函数为
,
p的最大似然估计为
.
24. 设总体X ~ N(,1),根据容量为100的样本测得x 5,则
X 1 2 3
4. 设X的分布列为:
1 1 1 ,求:
P
4 24
(1)P

X

1 2

,P

1 2

X

5 2

,P(2

X

3);
(2)EX , DX .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设 A 、B 为随机事件,P (A)=0.5,P(B)=0.6,P(B A )=0.8.则P(B )A . 2. 三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是= .3. 设随机变量2(,)X μσN ,XY e =,则Y 的分布密度函数为 . 4. 设随机变量2(,)X μσN ,且二次方程240y y X ++=无实根的概率等于0.5, 则μ= .5. 设()16,()25D X D Y ==,0.3X Y ρ=,则()D X Y += .6. 掷硬币n 次,正面出现次数的数学期望为 .7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两. 则100个该型号螺丝钉重量不超过10.2斤的概率近似为(答案用标准正态分布函数表示).8. 设1,,X X X 是来自总体(0,1)X N 的简单随机样本,统计量12()~()C X X t n +,则常数C = ,自由度n = .1.(10分)设袋中有m 只正品硬币,n 只次品硬币(次品硬币的两面均有国徽),从袋中任取一只硬币,将它投掷r 次,已知每次都得到国徽.问这只硬币是正品的概率是多少?2.(10分)设顾客在某银行窗口等待服务的时间(以分计)X 服从指数分布,其概率密度函数为/5(1/5)0()0x e x f x -⎧>=⎨⎩其它某顾客在窗口等待服务,若超过10分钟,他就离开. 他一个月到银行5次.以Y 表示一个月内他未等到服务而离开窗口的次数,写出Y 的分布律,并求{1}P Y ≥.3.(10分)设二维随机变量(,)X Y 在边长为a 的正方形内服从均匀分布,该正方形的对角线为坐标轴,求:(1) 求随机变量X ,Y 的边缘概率密度; (2) 求条件概率密度|(|)X Y f x y . .4.(10分)某型号电子管寿命(以小时计)近似地服从2(160,20)N 分布,随机的选取四只,求其中没有一只寿命小于180小时的概率(答案用标准正态分布函数表示).5.(10分)某车间生产的圆盘其直径在区间(,)a b 服从均匀分布, 试求圆盘面积的数学期望.三. (10分)设12,,n X X X 是取自双参数指数分布总体的一组样本,密度函数为1,(;,)0,x ex f x μθμθμθ--⎧>⎪=⎨⎪⎩其它其中,0μθ>是未知参数,12,,,n x x x 是一组样本值,求: (1),μθ的矩法估计; (2),μθ的极大似然估计.1.设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P .2. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 .3. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为 .4. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 .5. 设随机变量22~()n χχ,则2()E χ ,2()D χ . 6. 设()3D X =,31Y X =+,则,||X Y ρ= .7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两.则100个该型号螺丝钉重量不超过10.2斤的概率近似为(答案用标准正态分布函数表示).8. 设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++-则当C = 时,CY ~2(2)χ.1.将一枚均匀硬币掷四次,则四次中恰好出现两次正面朝上的概率为 。

2. 已知41)(,21)|(,31)(===B P A B P A P ,则=)|(B A P _________________。

3.设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为_________ 。

4.设随机变量X 的数学期望EX=4,方差DX=20,则EX 2= 。

5.设二维随机变量(X,Y)的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P _________ 。

1.(10分)已知男人中有5%是色盲,女人中有0.25%是色盲. 今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?2.(10分)一篮球运动员的投篮命准率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.3.(10分)某型号电子管寿命(以小时计)近似地服从2(160,20)N 分布,随机的选取四只,求其中没有一只寿命小于180小时的概率(答案用标准正态分布函数表示).4.(10分)设二维随机变量(,)X Y 的密度函数为2211(,)0x y f x y π⎧+≤⎪=⎨⎪⎩其它(1) 求随机变量X ,Y 的边缘密度及,X Y 的相关系数,X Y ρ;(2) 判定,X Y 是否相关是否独立.5.(10分) 假定一条生产流水线一天内发生故障的概率为0.1,流水线发生故障时全天停止工作. 若一周5个工作日中无故障这条生产线可产生利润20万元,一周内如果发生一次故障仍可产生利润6万元,发生两次或两次以上故障就要亏损两万元,求一周内这条流水线产生利润的数学期望.三. (10分)设12,,n X X X 是取自双参数指数分布总体的一组样本,密度函数为.1,(;,)0,x ex f x μθμθμθ--⎧>⎪=⎨⎪⎩其它其中,0μθ>是未知参数, 12,,,n x x x 是一组样本值,求: (1),μθ的矩法估计; (2),μθ的极大似然估计.四. (8分)设随机变量X 与Y 相互独立,且都服从参数为0λ>的泊松(Poisson)分布,证明X Y +仍服从泊松分布,参数为2λ.六、盒子中有4个红球,2个白球。

(1) 从中任取3个,至少一个白球的概率。

(2) 有放回地取3次,每次取一球,以X 表示取出的白球数,求X 的概率分布以及期望EX 和方差DX 。

(10分)1.设P(A)=0.8, P(B)=0.7, P(A|B)=0.8,则下列结论正确的是( )。

A. 事件A 与B 相互独立B. 事件A 与B 互斥 C .B A D. P(A+B)=P(A)+P(B)2. 一批产品共50个,其中45个是合格品,5个是次品,从这些产品中任取3个,其中有次品的概率有( )。

A35035CC B35035350CC C - C350345CC D350345350CC C -3.若随机变量X 的概率密度为244221)(-+-=x X ex f π, 则E(X)=( )。

A. 0B. 1C. 2D. 34. 设两个相互独立的随机变量X 和Y 分别服从正态分布N (0,1)和N (1,1),则以下结论成立的是( )。

A. 1{0}2P X Y +≤=; B. 1{1}2P X Y +≤= C. 1{0}2P X Y -≤= D. 1{1}2P X Y -≤=5. 对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。

A. X 和Y 独立 B. X 和Y 不独立 C. D(X+Y)=D(X)+D(Y) D. D(XY)=D(X)D(Y)1.设A,B,C 是三个随机事件,事件:“A,B,C 中至少有两个发生”,可以用A,B,C 表示为 .2. 已知事件A,B 相互独立且互不相容,{}min P(A),P(B)= .3. 设随机变量ξ服从泊松分布,且(1)(2),p p ξξ===则(4)p ξ= .4. 设二维随机变量(,)ξη的联合分布函数为(,)F x y ,概率(,)p a b d ξη≤<<可以用(,)F x y 表示为 .5. 掷硬币n 次,正面出现次数的数学期望为 .6. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两。

则100个该型号螺丝钉重量不超过10.2斤的概率近似为 (答案用标准正态分布函数表示).1.(8分)设有甲乙两袋,甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球.今从甲袋中任取一只球放入乙袋中,再从乙袋中任取一球.问从乙袋中取到白球的概率是多少?2.(8分)二维随机变量),(ηξ的联合分布律为22(,)(1)2,3,,1,2,1,01j P i j p p j i j p ξη-===-==-<<(1).求边际分布律i P 和P j ;(2).求条件分布律ξ|ηP (|)i j3.(8分)设(,)ξη的联合密度函数为1,01,02(,)20,x y f x y ⎧≤≤≤≤⎪=⎨⎪⎩求(1)ξ与η中至少有一个小于1/2的概率;(2)ξη+大于1的概率.4.(8分)设随机变量),X Nμσ 2(,),Y N μσ 2(,且设X 与Y 相互独立,试求1Z X Y αβ=+与2Z X Y αβ=-的相关系数(其中α、β是不为零的常数).5.(8分)某商品一周的需要量是一个随机变量,其概率密度为,0()0,x e x f x x λλ-⎧≥=⎨<⎩设各周的需要量是相互独立的,试求两周需要量的密度函数. 三. (15分)设总体X 的分布密度为1,0(,)0,x f x θθθ⎧≤≤⎪=⎨⎪⎩其它其中0θ>是未知参数, 12(,,,)n X X X =X 是来自总体X 的样本,求:(1)θ的矩法估计量1ˆθ;(2)验证 1θ、2ˆ[(1)/]n n M θ=+都是θ的无偏估计量(其中1max{,}n M X X = ); (3)比较 1θ、2ˆθ两个无偏估计量的有效性.四. (7分)假设总体的分布密度为2222exp(),0(;)00x x x f x x θθθ⎧->⎪=⎨⎪≤⎩其中0θ>是未知参数,试求参数θ的极大似然估计量.五. (8分)设总体20~(,)X N μσ分布, 12(,,,)n X X X =X 为一组样本。

欲检验假设00:H μμ=,10:H μμ≠,显著性水平α事先给定,(,)μ∈-∞+∞未知,200σ>已知. 试构造适当检验统计量并给出拒绝域(临界点由分位点给出).六、某公司在第一和第二个厂生产电视机显象管,每周产量共3000个,其中第一厂生产1800个有1%为次品,第二厂生产1200个有2%为次品。

现从每周生产的产品中任选一个,求下列事件的概率:(1)选出的产品为次品;(2)已知选出的产品为次品,它是第一厂生产的概率。

(10分)一、填空题(本大题共6小题,每小题3分,总计18分)1. 设,A B 为随机事件,()()0.7P A P B +=,()0.3P AB =,则()()P AB P AB += 2.10件产品中有4件次品,从中任意取2件,则第2件为次品的概率为 3.设随机变量X 在区间[0,2]上服从均匀分布,则2Y X =的概率密度函数为4.设随机变量X 的期望()3E X =,方差()5D X =,则期望()24E X ⎡⎤+=⎣⎦5. 设随机变量X 服从参数为2的泊松分布,则应用切比雪夫不等式估计得{}22P X -≥≤ .6. 设1234,,,X X X X 是来自正态总体X ~()0,4N 的样本,则当a = 时,()()22123422Y a X X a X X =++-~()22χ.三、甲袋中3个球的编号分别为1,2,3,乙袋中3个球的编号分别为4,5,6, 今从甲袋中任取一球放入乙袋,再从乙袋中任取一球,问该球为偶数号球的 概率为多少?四 设随机变量X 与Y 的联合概率密度为()2221,0,0x y y f x y π⎧+<>⎪=⎨⎪⎩其它试证:随机变量X 与Y 不独立,而且X 与Y 不相关。

相关文档
最新文档