最新北师大版八年级上册数学《期末测试卷》带答案解析
最新北师大版八年级数学上册期末试卷及答案【新版】
最新北师大版八年级数学上册期末试卷及答案【新版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列式子中,属于最简二次根式的是()A.9B.7C.20D.1 32.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π4.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0C.k>0,且b<0 D.k<0,且b<05.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b 的面积为()A.8 B.9 C.10 D.116.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2a 的平方根是3±,则a =_________.3.若m+1m =3,则m 2+21m=________. 4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,在□ABCD 中,BE 平分∠ABC ,BC=6,DE=2,则□ABCD 的周长等于__________.6.如图,ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_____.三、解答题(本大题共6小题,共72分)1.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?5.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.6.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B5、C6、B7、B8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、813、74、135°5、206、16三、解答题(本大题共6小题,共72分)1、1.52 xy=-⎧⎨=-⎩2、-33a+,;12-.3、(1)略(2)1或24、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.5、略.6、(1)应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)x>10.。
北师大版数学八年级上学期《期末考试题》附答案
甲
乙
丙
丁
方差(s2)
0.020
0.019
0.021
0.022
A.甲B.乙C.丙D.丁
[答案]B
[解析]
分析]
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
[详解]解:∵s2丁>s2丙>s2甲>s2乙,
方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
(1)求点 的坐标;
(2)点 在直线 上,且位于 轴的上方,将 沿直线 翻折得到 ,若点 恰好落在直线 上,求点 的坐标和直线 的解析式;
(3)设点 在直线 上,点 在直线 上,当 为等边三角形时,求点 坐标.
答案与解析
A卷(100分)
一、选择题.(每小题3分,共30分)
1.下列各数中,是无理数的是()
(1)求证: ;
(2)如图2,若 , ,折叠纸片,使点 与点 重合,折痕为 ,且 .
①求证: ;
②点 是线段 上一点,连接 ,一动点 从点 出发,沿线段 以每秒1个单位的速度运动到点 ,再沿线段 以每秒 个单位的速度运动到 后停止,点 在整个运动过程中用时最少多少秒?
28.如图,点 ,过点 做直线 平行于 轴,点 关于直线 对称点 .
[分析]
平移时k的值不变,只有b发生变化.
[详解]解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.
∴新直线的解析式为y=-3x+5.
故答案为y=-3x+5.
[点睛]求直线平移后的解析式时要注意平移时k和b的值的变化,掌握这点很重要.
最新北师大版八年级数学上册期末考试带答案
最新北师大版八年级数学上册期末考试带答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( ) A .6m <-且2m ≠ B .6m >且2m ≠ C .6m <且2m ≠- D .6m <且2m ≠3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直5.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣98.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为()A.1 B.2 C 3 D.23 39.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.24B.14C.13D.2310.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.已知a、b满足(a﹣1)22b+,则a+b=________.2.分解因式:22a4a2-+=__________.364________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)2153x x =+ (2)3111x x x =-+-2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .5.甲、乙两车分别从A 、B 两地同时出发,甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示(1)求甲车从A 地到达B 地的行驶时间;(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)求乙车到达A 地时甲车距A 地的路程.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、D6、D7、D8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、()22a 1-3、4、85、406、三、解答题(本大题共6小题,共72分)1、(1)x=1(2)x=22、22mm -+ 1. 3、3p =,1q =.4、(1)略(2)略5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
北师大版数学八年级上学期《期末测试卷》及答案
(1)求B,C两点坐标;
(2)①求△OPD的面积S关于t的函数关系式;
A 2.5mB.2mC.1.5mD.1m
[答案]C
[解析]
[分析]
根据图形分别求得二人的速度,相减后即可确定正确的选项.
[详解]观察图象知:甲跑64米用时8秒,速度为8m/s,
①把 向上平移5个单位后得到对应的 ,画出 ,并写出 的坐标;
②以原点 为对称中心,再画出与 关于原点 对称的 ,并写出点 的坐标.
五、本大题共2小题,每小题10分,满分20分.
19.某水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200千克,全部售出后卖了30400元.已知“妃子笑”荔枝每千克售价8元,“无核Ⅰ号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?
=4,故B符合题意,
故选B.
[点睛]本题考查了算术平方根,利用乘方求一个正数的算术平方根,注意一个正数只有一个算术平方根.
2.下列实数中是无理数的是()
A. B.πC.0.141414D.﹣
[答案]B
[解析]
[分析]
根据无理数是无限不循环小数,可得答案.
[详解]A、 =2是有理数,故A错误;
B、π是无理数,故B正确;
七、本题满分12分.
22.直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B 坐标.
最新北师大版八年级数学(上册)期末测试卷含答案
新北师大版八年级数学(上册)期末测试卷含答案八年级数学试卷命题:双柏县教研室 郎绍波 一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.计算- )A .-3B .3C .-9D .9 2.下列几组数能作为直角三角形的三边长的是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,6 3.下列说法正确的是( )A .所有无限小数都是无理数B .所有无理数都是无限小数C .有理数都是有限小数D .不是有限小数的不是有理数 4.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9 B .中位数是9 C .众数是5 D .极差是55.在平面直角坐标系中,已知点P 的坐标是(-1,-2),则点P 关于x 轴对称的点的坐标是( )A .(-1,2)B .(1,-2)C .(1,2)D .(2,1) 6.如图,AB ∥CD,∠D =∠E =35°,则∠B 的度数为( )A .60°B .65°C .70°D .75° 7.一次函数y kx b =-,当k <0,b <0时的图象大致位置是( )B ACD EA .B .C .D .8.下列计算正确的是( )A. BC.2+ D.49-二、填空题(本大题共6个小题,每小题3分,满分18分)9.25的算术平方根是 .10.化简:= . 11.某水池有水15m 3,现打开进水管进水,进水速度5m 3/ h ;x h 后这个水池内有水y m 3,则y 关于x 的关系式为 . 12.命题“对顶角相等”的条件是 ,结论是 .13.如果a 、b 同号,则点P (a ,b )在 象限.14.方程组521x y x y +=⎧⎨-=⎩的解是 .三、解答题(本大题共有9个小题,满分58分)15.(本小题4分)计算:)16.(本小题5分)已知13x y =⎧⎨=⎩ 和02x y =⎧⎨=-⎩都是方程ax -y=b 的解,求a 与b 的值.O ABD F3 4 1 2 C E17.(本小题6分)如图,直线CD 、EF 被直线OA 、OB 所截,∠1 +∠2 =180°.求证:∠3=∠4.18.(本小题5分)长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.19.(本小题5分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.请问榕树和香樟树的单价各多少?20.(本小题6分)已知直线y=2x与y=-x+b的交点为(1,a),试确定方程组2y0+y0xx b-=⎧⎨-=⎩的解和a、b的值.21.(本小题9分)已知一次函数y=kx-3的图象与正比例函数12y x=的图象相交于点(2,a).(1)求a的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.x22.(本小题9分)甲、乙两名工人同时加工同一种零件,现根据两人7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题: 相关统计量表:众数 中位数 平均数 方差甲 2 107 乙11147次品数量统计表: 第1天 第2天 第3天 第4天 第5天 第6天 第7天 甲(件) 2 2 0 3 1 2 4 乙(件)1211(1)补全图、表.(2)判断谁出现次品的波动小.(3)估计乙加工该种零件30天出现次品多少件?甲 乙数量23.(本小题9分)汽车出发前油箱有油50L,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余油量y(L)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70km/h匀速行驶,如果加油站距目的地210km,那么要到达目的地,油箱中的油是否够用?请说明理由.O 2 4 6 8 t/hOABDF342C E1 52013-2014学年上学期末综合素质测评八年级数学 参考答案一、选择题(每小题只有一个正确的选项,每小题3分,共24分)1.A 2.C 3.B 4.D 5.A 6.C 7.C 8.A二、填空题(每小题3分,共18分)9.5 10.2 11.y=5x +15 12.如果两个角是对顶角,那么它们相等13.一或三 14.2y 3x =⎧⎨=⎩ 三、解答题(共58分)15.(每小题4-×(-= -616.(本小题5分)解:因为13x y =⎧⎨=⎩ 和02x y =⎧⎨=-⎩都是方程ax -y=b 的解 所以,35,22a b a b b -==⎧⎧⎨⎨==⎩⎩解得 17.(本小题6分)证明:∵∠2与∠5是对顶角∴∠2=∠5∵∠1 +∠2 =180° ∴∠1 +∠5 =180° ∴CD ∥EF ∴∠3=∠4 18.(本小题5分)解:如图建立直角坐标系, 因为长方形的一个顶点的 坐标为A (-2,-3)所以长方形的另外三个顶点 的坐标分别为:B (2,-3),C (2,3),D (-2,3) (答案不唯一)19.(本小题5分)解:设榕树的单价为x 元/棵,香樟树的单价是y 元/棵,则:y 203+2y 340x x =-⎧⎨=⎩,解得60y 80x =⎧⎨=⎩ 答:榕树和香樟树的单价分别是60元/棵,80元/棵 20.(本小题6分)解:因为直线y=2x 与y=-x +b 的交点为(1,a ),所以221+3a a ab b ==⎧⎧⎨⎨=-=⎩⎩,解得 则有 2y 02y 01,,+y 30+y 3y 2x x x x x -=-==⎧⎧⎧⎨⎨⎨-===⎩⎩⎩即解得 因此,方程组2y 0+y 0x x b -=⎧⎨-=⎩ 的解是1y 2x =⎧⎨=⎩,a 、b21.(本小题9分) 解:(1)∵ 正比例函数12y x =的图象过点(2,a ) ∴ a =1(2)∵一次函数y=kx -3的图象经过点(2,1)∴1=2k -3 ∴k =2∴y=2x -3 (3)函数图像如右图22.(本小题9分)解:(1)补全的图如下.(2)从表(2)可以看出,甲的第一天、第二天、都六天都是是2, 则2出现了3次,出现的次数最多,因此,甲的众数是2,把这组数据从小到大排列为0,1,2,2,2,3,4,最中间的数是2,则甲的中位数是2, 因为乙的平均数是1,则乙的第7天的数量是1×7﹣1﹣0﹣2﹣1﹣1﹣0=2; (2)∵S 甲2=107,S 乙2=47, ∴S 甲2>S 乙2,∴乙出现次品的波动小.(3)∵乙的平均数是1,∴30天出现次品是1×30=30(件).x甲 乙数量23.(本小题9分) 解:(1)从图象中可以看出,汽车行驶3小时后加油,中途加油45-14=31升 (2)因为函数图象过点(0,50)和(3,14) 所以设函数关系式为y=kt +b ,则5012143+50b t t b b ==-⎧⎧⎨⎨==⎩⎩,解得 因此,y= -12t +50(3)油箱中的油够用.因为汽车加油前行驶了3小时,行驶了3×70=210(km ),用去了50-14=36升油,而目的地距加油站还有210 km,所以要达到目的地还需36升油,而中途加油31升后有油45升,即油箱中的剩余油量是45升,所以够用.因此,要到达目的地油箱中的油够用.。
最新北师大版八年级数学上册期末试卷及答案【新版】
最新北师大版八年级数学上册期末试卷及答案【新版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( )A .1、3B .3、5C .6、8D .7、96.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.一次函数y=ax+b 与反比例函数a b y x -=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A .B .C .D .9.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.分解因式:22a 4a 2-+=__________.3.如果22(1)4x m x +-+是一个完全平方式,则m =__________.4.如图,在△ABC 中,∠B =46°,三角形的外角∠DAC 和∠ACF 的平分线交于点E,则∠AEC=________.5.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________ .6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解下列分式方程(1)42122x xx x++=--(2)()()21112xx x x=+++-2.先化简,再求值:(x-1)÷(x-21xx-),其中x2+13.已知11881,2y x x=--22x y x yy x y x+++-.4.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、D6、C7、C8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、()22a 1-3、-1或34、67°.56、6三、解答题(本大题共6小题,共72分)1、(1)3x =;(2)0x =.2、1+23、14、(1)△AEF 、△OEB 、△OFC 、△OBC 、△ABC 共5个,EF=BE+FC ;(2)有,△EOB 、△FOC ,存在;(3)有,EF=BE-FC .5、(1)略;(2)略.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。
北师大版数学八年级上学期《期末检测试题》含答案解析
故选D.
[点睛]此题主要考查三角形的角度求解,解题的关键是熟知三角形的外角定理与等腰三角形的性质.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
故选:C.
[点睛]本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,题目是一道比较好的题目,难度不大.
2.下列实数是无理数的是()
A. B. C. D.0.1010010001
[答案]C
[解析]
[分析]
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
9.下列命题是真命题的是()
A.如果 ,那么
B.0的平方根是0
C.如果 与 是内错角,那么
D.三角形 一个外角等于它的两个内角之和
10.如图,在△ 中, 为 边上一点,以点 为圆心, 为半径画弧,交 的延长线于点 ,连接 .若 , ,则 的度数为()
A. B. C. D.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
2022-2023学年北师大数学八年级上册 期末测试卷(解析版)
2022-2023学年北师大数学八年级上册期末测试卷参考答案与试题解析一.选择题(共8小题)1.如图,在△ABC中,AB=AC=10,BC=12,AD是△ABC的中线,则AD长为()A.2B.6C.8D.2【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质可求得BD=6,AD⊥BC,再利用勾股定理可求解.【解答】解:∵BC=12,AD是△ABC的中线,∴BD=CD=6,∵AB=AC=10,∴AD⊥BC,∴AD=.故选:C.2.如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是()A.76B.57C.38D.19【考点】勾股定理的证明.【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:设AC=AD=x,则BD=30﹣5﹣2x=25﹣2x,∵BD2=BC2+CD2,∴52+(2x)2=(25﹣2x)2,∴x=6,∴AB=25﹣2x=13,AD=6,∴这个风车的外围周长是:(13+6)×4=76.故选:A.3.下列等式成立的是()A.÷=3B.C.D.2+=2【考点】二次根式的混合运算;平方根.【分析】根据二次根式的乘除运算法则、加减运算法则以及二次根式的性质即可求出答案.【解答】解:A、原式=,故A不符合题意.B、原式=±0.4,故B符合题意.C、原式=6,故C不符合题意.D、2与不是同类项,不能合并,故D不符合题意.故选:B.4.已知两点M(﹣1,﹣2)和N关于x轴对称,则点N的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(1,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点M(﹣1,﹣2)关于x轴对称的点的坐标为(﹣1,2).故选:A.5.一次函数y=kx﹣2(k>0)的图象可能是()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数y=kx﹣2,k>0,b=﹣2<0,可知图象一定经过第一、三,四象限,不经过第二象限.【解答】解:∵一次函数y=kx﹣2(k>0),b=﹣2<0,∴一次函数y=kx﹣2(k>0)的图象一定经过第一、三,四象限,不经过第二象限.故选:B.6.下列图形中,不能表示y是x函数的是()A.B.C.D.【考点】函数的概念.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,C选项中一个x值对应多个y值,与函数的概念不一致,由此即可求解.【解答】解:A图形中,一个x值对应唯一的y值,符合函数的定义,故不符合题意;B图形中,一个x值对应唯一的y值,符合函数的定义,故不符合题意;C图形中,一个x值对应多个y值,不符合函数的定义,故符合题意;D图形中,一个x值对应唯一的y值,符合函数的定义,故不符合题意;故选:C.7.用代入消元法解二元一次方程组时,将②代入①,正确的是()A.5x+3(x﹣2)=22B.5x+(x﹣2)=22C.5x+3(x﹣2)=66D.5x+(x﹣2)=66【考点】解二元一次方程组.【分析】利用代入消元法进行分析即可.【解答】解:,把②代入①得:5x+3(x﹣2)=22,故选:A.8.在长方形ABCD中,放入5个形状大小相同的小长方形(空白部分),其中AB=7cm,BC=11cm,则阴影部分图形的总面积为()cm2A.27B.29C.34D.36【考点】二元一次方程组的应用;一元一次方程的应用.【分析】设小长方形的长为xcm,宽为ycm,根据图形中大长方形的长和宽列二元一次方程组,求出x和y的值,即可解决问题.【解答】解:设小长方形的长为xcm,宽为ycm,根据题意,得:,解得:,∴每个小长方形的面积为2×5=10(cm2),∴阴影部分的面积=7×11﹣5×10=27(cm2),故选:A.二.填空题(共8小题)9.如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点,动点Q从点B出发沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发,连接PQ.当动点P、Q运动2s时,PQ=13cm.【考点】勾股定理的应用;勾股定理的逆定理.【分析】由勾股定理的逆定理得△ABC是直角三角形且∠B=90°,再由勾股定理求出PQ的长即可.【解答】解:∵AB=7cm,AC=25cm,BC=24cm,∴AB2+BC2=625=AC2,∴△ABC是直角三角形且∠B=90°,当动点P、Q运动2s时,AP=1×2=2(cm),BQ=2×6=12(cm),∴BP=AB﹣AP=7﹣2=5(cm),在Rt△BPQ中,由勾股定理得:PQ===13(cm),故答案为:13cm.10.已知△ABC的三边长分别为5、12、13,则△ABC的面积为30.【考点】勾股定理的逆定理;三角形的面积.【分析】根据三边长度可利用勾股定理的逆定理判断三角形为直角三角形.再求面积.【解答】解:∵△ABC的三边长分别为5,12,13,∴52+122=(13)2,∴△ABC是直角三角形,两直角边是5,12,∴△ABC的面积为:×5×12=30,故答案为:30.11.已知实数x,y满足|x﹣3|+=0,则x y的值是9.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据绝对值以及算术平方根的非负性解决此题.【解答】解:∵|x﹣3|≥0,,∴当|x﹣3|+=0,则x=3,y=2.∴x y=32=9.故答案为:9.12.甲、乙两人在一条长400米的直线跑道上同起点、终点、同方向匀速跑步,先到终点的人原地休息,已知甲先出发3秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,甲、乙两人相距的最大距离68米.【考点】一次函数的应用.【分析】根据甲先出发2秒求出甲的速度,再根据题意,80秒时乙到达终点求出乙的速度,然后根据乙出发80秒时两人的距离等于两人行驶的路程的差列式计算即可得解.【解答】解:根据题意,t=0时,甲出发3秒行驶的路程为12米,所以,甲的速度=12÷3=4(米/秒),∵先到终点的人原地休息,∴80秒时,乙先到达终点,∴乙的速度=400÷80=5(米/秒),∴c=400﹣4×(80+3)=68(米).故答案为:68.13.甲、乙两车都从A地出发匀速行驶到B地,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的关系如图所示,则下列结论中正确的有①②④(直接填序号).①AB两地相距480km;②乙车比甲车晚出发1小时,却比甲车早到1小时;③乙车出发后4小时追上甲车;④甲、乙两车相距50km时,t的值为、、、.【考点】一次函数的应用.【分析】根据函数图象,可以直接判断①②;根据图象中的数据,可以计算出甲、乙两车的速度,然后即可计算出乙车出发后几小时追上甲车,从而可以判断③;再根据分类讨论的方法,可以判断④.【解答】解:由图象可得,AB两地相距480km,故①正确,符合题意;乙车比甲车晚出发1小时,却比甲车早到1小时,故②正确;甲车的速度为:480÷8=60(km/h),乙车的速度为:480÷(7﹣1)=480÷6=80(km/h),设乙车出发a小时追上甲车,则80a=60(a+1),解得a=3,即车出发后3小时追上甲车,故③错误,不符合题意;当甲、乙两车相距50km时,乙车出发前:60t=50,得t=;乙车出发到两车相遇前:60t﹣80(t﹣1)=50,得t=;两车相遇后,乙车未到达B地,80(t﹣1)﹣60t=50,得t=;乙车到达B地后,480﹣60t=50,得t=;由上可得,甲、乙两车相距50km时,t的值为、、、,故④正确,符合题意;故答案为:①②④.14.青团是清明节的一道极具特色的美食,据调查,广受消费者喜欢的口味分别是:红豆青团、肉松青团、水果青团,故批发商大量采购红豆青团、肉松青团、水果青团,为了获得最大利润,批发商需要统计数据,更好地进货.3月份批发商统计销量后发现,红豆青团、肉松青团、水果青团销量之比为2:3:4,随着市场的扩大,预计4月份青团总销量将在3月份基础上有所增加,其中水果青团增加的销量占总增加的销量的,则水果青团销量将达到4月份总销量的,为使红豆青团、肉松青团4月份的销量相等,则4月份肉松青团还需要增加的销量与4月份总销量之比为.【考点】三元一次方程组的应用.【分析】设3月份红豆青团、肉松青团、水果青团销量分别为:2x,3x,4x,4月份增加的销量为a,4月份红豆青团销量增加y,则肉松青团4月份增加的销量为:y﹣x,根据题意列方程组求解.【解答】解:设3月份红豆青团、肉松青团、水果青团销量分别为:2x,3x,4x,4月份增加的销量为a,4月份红豆青团销量增加y,则肉松青团4月份增加的销量为:y ﹣x,由题意得:,解得:,∴=,故答案为:,15.已知关于x,y的二元一次方程组的解满足x+y=﹣4,则k的值为7.【考点】二元一次方程组的解.【分析】现将二元一次方程组的两个方程直接相加,得到5(x+y)+4k=8,再将x+y=﹣4整体代入,得到关于k的一元一次方程,求出k的值即可.【解答】解:,①+②得,5(x+y)+4k=8,∵x+y=﹣4,∴﹣20+4k=8,解得k=7,故答案为:7.16.如图,若AB∥CD,CD∥EF,∠2﹣∠1=30°,那么∠BCE=150°.【考点】平行线的性质;平行公理及推论.【分析】延长EC交AB于点G,利用平行线的性质可得∠2=∠GCD,∠1=∠BCD,然后根据已知∠2﹣∠1=30°,从而可得∠GCB=30°,最后利用平角定义进行计算即可解答.【解答】解:延长EC交AB于点G,∵CD∥EF,∴∠2=∠GCD,∵AB∥CD,∴∠1=∠BCD,∵∠2﹣∠1=30°,∴∠GCB=∠GCD﹣∠BCD=30°,∴∠BCE=180°﹣∠GCB=150°,故答案为:150°.三.解答题(共8小题)17.如图,在Rt△AOB和Rt△COD中,AB=CD=25,OB=7,AC=4.求BD的长.【考点】勾股定理.【分析】(1)在Rt△AOB中,利用勾股定理求出OA=24,在Rt△COD中,利用勾股定理求出OD=15,可得答案.【解答】解:(1)在Rt△AOB中,由勾股定理得,OA===24,∵AC=4.∴OC=OA﹣AC=24﹣4=20;在Rt△COD中,由勾股定理得,OD===15,∴BD=OD﹣OB=15﹣7=8.18.如图所示,一个梯子AB长2.5米,顶端A靠在墙AB上,这时梯子下端B与墙角C距离为0.7米.如果梯子的顶端A下滑0.4米到了点E的位置,那么梯子的底端B在水平方向滑动了0.4米吗?为什么?【考点】勾股定理的应用.【分析】在直角三角形ABC中,根据勾股定理得:AC=2.4米,由于梯子的长度不变,在直角三角形CDE中,根据勾股定理得CD=1.5米,进而得出答案.【解答】解:不是.理由如下:在Rt△ABC中,AB=2.5米,BC=0.7米,故AC===2.4(米),∵AE=0.4米,∴CE=AC﹣AE=2.4﹣0.4=2(米),在Rt△ECD中,AB=DE=2.5米,∴CD===1.5(米),故BD=CD﹣CB=1.5﹣0.7=0.8(米).答:梯子的底端B在水平方向滑动了0.8米.19.计算:(1);(2)﹣+;(3);(4)++|﹣2|.【考点】实数的运算;平方根.【分析】(1)根据算术平方根,零指数幂的运算法则进行计算即可得出答案;(2)应用算术平方根,立方根的运算法则进行计算即可得出答案;(3)应用平方根的定义进行计算即可得出答案;(4)应用算术平方根,立方根及绝对值的性质进行计算即可得出答案.【解答】解:(1)原式=12﹣1+3=14;(2)原式=30﹣3+9=36;(3)x=,x1=,x2=﹣;(4)原式=﹣+(2﹣)=2﹣.20.如图所示,直线分别与x轴、y轴分别交于点A和点B,C是OB上一点,若将△ABC沿AC折叠,点B恰好落在x轴上的点B′处.(1)求:点A,点B的坐标;(2)点B′,点C的坐标.(3)若P在x轴上运动且△PB'C是等腰三角形,直接写出所有符合条件的点P的坐标.【考点】一次函数综合题.【分析】(1)分别令x=0,y=0,求点A、B的坐标即可;(2)设C(0,t),由折叠的性质可知AB=AB'=5,可求B'的坐标,再由BC=B'C,列出方程3﹣t=,求出t的值即可.(3)设P(x,0),分别求出PC=,B'P=|x+1|,B'C=,再根据等腰三角形的边的关系分类讨论即可求解.【解答】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x=4,∴A(4,0);(2)由折叠可知,BC=B'C,AB=AB',∵AB=5,∴AB'=5,∴B'(﹣1,0),设C(0,t),∴BC=3﹣t,∴3﹣t=,解得t=,∴C(0,);(3)设P(x,0),∴PC=,B'P=|x+1|,B'C=,当PC=B'P时,=|x+1|,解得x=,∴P(,0);当PC=B'C时,=,解得x=±1,∴P(1,0);当B'P=B'C时,|x+1|=,解得x=或x=﹣,∴P(,0)或(﹣,0);综上所述:P点坐标为(,0)或(1,0)或(,0)或(﹣,0).21.已知如图,直线y1=x+3与两坐标轴分别交于点A、B,点B关于x轴的对称点是点D,直线y2=﹣x+b经过点B,且与x轴相交于点C,点P是直线y2上一动点,过点P 作y轴的平行线交直线y1于点E,再以PE为边向右边作正方形PEFG.(1)①求b的值;②判断△ABD的形状,并说明理由;(2)连接OP、DP,当△POD的周长最短时,求点F的坐标;(3)在(2)的条件下,在x轴上是否存在一点Q,使得△AEQ是等腰三角形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)①求出B点坐标,再将B点坐标代入y2=﹣x+b,即可求b的值;②求出点A、D、B的坐标,再求出△ABD的三边长即可判断;(2)设O点关于直线y=﹣x+3的对称点为O',由对称性得∠O'CO=90°,则O'(3,3),连接DO',则DO'与直线y=﹣x+3的交点为P点,当O'、D、P三点共线时,△OPD 的周长最小,求出直线DO'与直线BC的交点,可知P点坐标,再由正方形的性质求出点F(4+,3+);(3)设Q(x,0),分别AQ=|x+3|,AE==6+,EQ=,再由等腰三角形的性质,根据边的情况,分三种情况讨论即可.【解答】解:(1)①令x=0,则y=3,∴B(0,3),∵直线y2=﹣x+b经过点B,∴b=3;②△ABD是等边三角形,理由如下:令y=0,则x+3=0,解得x=﹣3,∴A(﹣3,0),∵点B关于x轴的对称点是点D,∴D(0,﹣3),∴AB=6,AD=6,BD=6,∴△ABD是等边三角形;(2)∵b=3,∴直线y2=﹣x+3,令y=0,则x=3,∴C(3,0),设O点关于直线y=﹣x+3的对称点为O',∵OB=OC=3,∴∠BCO=45°,∴∠OO'C=45°,∴∠O'CO=90°,∴O'(3,3),连接DO',则DO'与直线y=﹣x+3的交点为P点,∵OP=O'P,∴△OPD的周长=OD+OP+PD=OD+O'P+PD≥OD+O'D,∴当O'、D、P三点共线时,△OPD的周长最小,设直线DO'的解析式为y=mx+n,∴,解得,∴y=2x﹣3,联立方程组,解得,∴P(2,1),∵PE∥y轴,∴E(2,3+),∴PE=2+,∵四边形PEFG是正方形,∴F(4+,3+);(3)在x轴上存在一点Q,使得△AEQ是等腰三角形,理由如下:设Q(x,0),∴AQ=|x+3|,AE==6+,EQ=,当AQ=AE时,|x+3|=6+,解得x=6﹣或x=﹣6﹣,∴Q(6﹣,0)或(﹣6﹣,0);当AQ=EQ时,|x+3|=,解得x=﹣,∴Q(﹣,0);当AE=EQ时,6+=,解得x=4+3或x=﹣3(舍),∴Q(4+3,0);综上所述:Q点坐标为(6﹣,0)或(﹣6﹣,0)或(4+3,0)或(﹣,0).22.若正比例函数y1=﹣x的图象与一次函数y2=2x+m的图象交于点A,且点A的横坐标为﹣2.(1)求该一次函数的表达式;(2)直接写出方程组的解;(3)在一次函数y2=2x+m的图象上是否存在点B,使得△AOB的面积为9,若存在,求出点B坐标;若不存在,请说明理由.【考点】一次函数与二元一次方程(组);一次函数的性质;待定系数法求一次函数解析式.【分析】(1)先求出A点的纵坐标,把A点的坐标代入y=2x+m,求出m即可;(2)根据方程组的特点和A点的坐标得出答案即可;(3)设直线y=2x+6与y轴的交点为C,与x轴的交点为D,则C(0,6),D(﹣3,0),求出△AOC和△AOD的面积,分为两种情况当B点在第三或第一象限时,根据三角形的面积求出B点的纵坐标或横坐标,即可求出答案.【解答】解:(1)将x=﹣2代入y=﹣x,得y=2,则点A坐标为(﹣2,2),将A(﹣2,2)代入y=2x+m,得m=6,所以一次函数的解析式为y=2x+6;(2)∵正比例函数y1=﹣x的图象与一次函数y2=2x+m的图象交于点A(﹣2,2)∴方程组的解是;(3)设直线y=2x+6与y轴的交点为C,与x轴的交点为D,则C(0,6),D(﹣3,0),∵A(﹣2,2),∴S△AOC=6×2=6,S△AOD=3×2=3;∴B点不可能在第一象限;当B点在第三象限时,∵S△AOB==9,则S△BOD=6,设B的纵坐标为n,∴S△BOD=3×(﹣n)=6,解得:n=﹣4,即点B的纵坐标是﹣4,把y=﹣4代入y=2x+6得:x=﹣5,∴B(﹣5,﹣4);当B点在第一象限时,S△AOB=S△AOC+S△BOC=9,则S△BOC=3,设B的横坐标为m,∴S△BOC=6×m=3,∴m=1,即B点的横坐标是1,把,x=1,代入y=2x+6得,y=8,∴B(1,8);综上,点B的坐标为(1,8)或(﹣5,﹣4).23.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数;(2)并补全条形统计图;(3)求扇形统计图中“在线讨论”对应的扇形圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据在线听课的人数和所占的百分比即可求得本次调查的人数;(2)根据总人数求出在线答题的人数,即可将条形统计图补充完整;(2)用“在线讨论”的人数除以总人数,再城60°即可求得扇形统计图中“在线讨论”对应的扇形圆心角的度数.【解答】解:(1)本次调查的学生总人数为:36÷40%=90(人).(2)在线答题的人数为:90﹣24﹣36﹣12=18(人),补全的条形统计图如图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°.24.如图,在△ABC中,BE平分∠ABC,∠2=∠1+∠C.(1)求证:AD⊥BE;(2)若∠ABC=2∠1,证明:∠BAC=90°.【考点】三角形内角和定理;三角形的外角性质;角平分线的定义.【分析】(1)利用角平分线的定义,可得出∠ABE=∠CBE=∠ABC,由三角形的外角性质,可得出∠ADB=∠1+∠C+∠ABE,结合∠2=∠1+∠C,可得出∠ADB=∠2+∠ABD,在△ABD中,利用三角形内角和定理,可求出∠ADB=90°,进而可证出AD⊥BE;(2)利用角平分线的定义,可得出∠ABE=∠CBE=∠ABC,结合∠ABC=2∠1,可得出∠ABE=∠1,由(1)可得出∠2+∠ABD=90°,即∠2+∠1=90°,进而可证出∠BAC=90°.【解答】(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC.∵∠AED是△BCE的外角,∠ADB是△ADE的外角,∴∠AED=∠CBE+∠C,∠ADB=∠1+∠AED,∴∠ADB=∠1+∠C+∠ABE.又∵∠2=∠1+∠C,∴∠ADB=∠2+∠ABD.在△ABD中,∠ABD+∠2+∠ADB=180°,∴∠ADB=×180°=90°,∴AD⊥BE.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC.∵∠ABC=2∠1,∴∠ABE=∠1.由(1)可知:∠2+∠ABD=90°,即∠2+∠1=90°,∴∠BAC=90°.。
最新北师大版八年级数学上册期末考试及完整答案
最新北师大版八年级数学上册期末考试及完整答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角5.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或36.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB7是一个很奇妙的数,大量应用于艺术、建筑和统计决策等1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .69.如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,若添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,则这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF10.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A .45°B .60°C .75°D .85°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.已知2x +3y -5=0,则9x •27y 的值为__________.3.若m+1m =3,则m 2+21m=________. 4.如图所示的网格是正方形网格,则PAB PBA ∠∠+=________°(点A ,B ,P 是网格线交点).5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,已知直线y =ax +b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b =⎧⎨=+⎩的解是________.三、解答题(本大题共6小题,共72分)1.解分式方程: 2216124x x x --=+-2.先化简:221-21-11a a a a a a ⎛⎫++÷ ⎪++⎝⎭,再从-1,0,1中选取一个数并代入求值.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.5.在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、A6、C7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、2433、74、45.5、26、12 xy=⎧⎨=⎩.三、解答题(本大题共6小题,共72分)1、原方程无解2、13、±34、(1)略(25、(12m6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
北师大版2022-2023学年八年级数学上册期末测试卷(附答案)
2022-2023学年八年级数学上册期末测试卷(附答案)一、选择题:(共24分)1.的平方根是()A.2B.﹣2C.±2D.±42.下列实数﹣,,|﹣3|,,,,0.4040404…(每相邻两个4之间一个0)中,无理数有()A.1个B.2个C.3个D.4个3.已知△ABC中,∠A=50°,则图中∠1+∠2的度数为()A.180°B.220°C.230°D.240°4.下列说法中正确的有()A.(﹣1,﹣x2)位于第三象限B.点A(2,a)和点B(b,﹣3)关于x轴对称,则a+b的值为5C.点N(1,n)到x轴的距离为nD.平面内,过一点有且只有一条直线与已知直线平行5.在解关于x,y的方程组时,小明由于将方程①的“﹣”,看成了“+”,因而得到的解为,则原方程组的解为()A.B.C.D.6.将一副三角板按如图所示的位置摆放,∠C=∠EDF=90°,∠E=45°,∠B=60°,点D在边BC上,边DE,AB交于点G.若EF∥AB,则∠CDE的度数为()A.105°B.100°C.95°D.75°7.如图,在Rt△ABC中,∠ACB=90°,AB=6,若以AC边和BC边向外作等腰直角三角形AFC和等腰直角三角形BEC.若△BEC的面积为S1,△AFC的面积为S2,则S1+S2=()A.36B.18C.9D.48.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.二、填空题:(共18分)9.将一根长9m的铁丝截成2m和1m两种长度的铁丝(两种都有)如果没有剩余,那么截法有种.10.一次函数y1=k1x+b和y2=k2x的图象上一部分点的坐标见表:则方程组的解为x=,y=.x……210﹣1……y1……0369……y2……630﹣3……11.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把n个纸杯整齐叠放在一起时,当n为11时h的值是.12.如图,已知圆柱底面的周长为8dm,圆柱高为4dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值的平方为dm.13.如图,把△ABC纸片沿DE折叠,使点A落在图中的A'处,若∠A=29°,∠BDA'=90°,则∠A'EC的大小为.14.如图,∠ABC=∠ACB,△ABC的内角∠ABC的角平分线BD与∠ACB的外角平分线交于点D,△ABC的外角∠MBC的角平分线与CD的反向延长线交于点E,以下结论:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④BD平分∠ADC;⑤∠BAC+2∠BEC=180°.其中正确的结论有.(填序号)三、作图题:(本题6分)15.如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(﹣4,4),(﹣1,3),并写出点B的坐标为;(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△P AB的周长最小,并直接写出点P的坐标.四、解答题:(共72分)16.计算(1);(2).17.解方程组.(1).(2).18.为了解八年级学生的体质健康状况,某校对八年级(10)班43名同学进行了体质检测(满分10分,最低5分),并按照男女把成绩整理如图:八年级(10)班体质检测成绩分析表平均数中位数众数方差男生7.488c 1.99女生a b7 1.74(1)求八年级(10)班的女生人数;(2)根据统计图可知,a=,b=,c=;(3)若该校八年级一共有430人,则估计得分在8分及8分以上的人数共有多少人?19.如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°()又,∵∠1=∠B(已知)∴(同位角相等,两直线平行)∴∠AFB=∠AOE()∴∠AFB=90°()又,∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=()°又∵∠A+∠2=90°(已知)∴∠A=∠AFC()∴AB∥CD.(内错角相等,两直线平行)20.如图,已知:点A、B、C在一条直线上.(1)请从三个论断①AD∥BE;②∠1=∠2;③∠A=∠E中,选两个作为条件,另一个作为结论构成一个真命题:条件:.结论:.(2)证明你所构建的是真命题.21.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y 2(km ),慢车离乙地的距离为y 1(km ),慢车行驶时间为x (h ),两车之间的距离为S (km ),y 1,y 2与x 的函数关系图象如图1所示,S 与x 的函数关系图象如图2所示.请根据条件解答以下问题:(1)图中的a = ,C 点坐标为 ; (2)当x 何值时两车相遇? (3)当x 何值时两车相距200千米?22.已知:现有A 型车和B 型车载满货物一次可运货情况如表:A 型车(辆)B 型车(辆) 共运货(吨) 3 2 17 2318某物流公司现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金300元/次,B 型车每辆需租金320元/次,请选出最省钱的租车方案,并求出最少租车费.23.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)直接写出点A,B,C的坐标;(2)设OD的长度为m,求m的值和直线CD的解析式;(3)直线AB与直线CD相交于点E,求△ADE的面积.24.【数学模型】如图(1),AD,BC交于O点,根据“三角形内角和是180°”,不难得出两个三角形中的角存在以下关系:①∠DOC=∠AOB;②∠D+∠C=∠A+∠B.【提出问题】分别作出∠BAD和∠BCD的平分线,两条角平分线交于点E,如图(2),∠E与∠D、∠B之间是否存在某种数量关系呢?【解决问题】为了解决上面的问题,我们先从几个特殊情况开始探究.已知∠BAD的平分线与∠BCD 的平分线交于点E.(1)如图(3),若AB∥CD,∠D=30°,∠B=40°,则∠E=.(2)如图(4),若AB不平行CD,∠D=30°,∠B=50°,则∠E的度数是多少呢?易证∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,请你完成接下来的推理过程:∴∠D+∠1+∠B+∠4=,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=,又∵∠D=30°,∠B=50°,∴∠E=度.(3)在总结前两问的基础上,借助图(2),直接写出∠E与∠D、∠B之间的数量关系是:.【类比应用】如图(5),∠BAD的平分线AE与∠BCD的平分线CE交于点E.已知:∠D=α、∠B=β,(α<β)则∠E=(用α、β表示).参考答案一、选择题:(共24分)1.解:∵=4,∴的平方根是±=±2.故选:C.2.解:是分数,属于有理数;|﹣3|=3,=2,=﹣2,是整数,属于有理数;0.4040404…(每相邻两个4之间一个0)是循环小数,属于有理数;故在实数﹣,,|﹣3|,,,,0.4040404…(每相邻两个4之间一个0)中,无理数有﹣,,共2个.故选:B.3.解:∵∠A=50°,∴∠B+∠C=130°.∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°.故选:C.4.解:A、(﹣1,﹣x2)当x≠0时位于第三象限,原说法错误,不符合题意;B、点A(2,a)和点B(b,﹣3)关于x轴对称,则b=2,a=3,,则a+b的值为5,符合题意;C、点N(1,n)到x轴的距离为|n|,原说法错误,不符合题意;D、平面内,过直线外一点有且只有一条直线与已知直线平行,原说法错误,不符合题意.故选:B.5.解:把代入中可得:,解得:,把代入中可得,,解得:,故选:C.6.解:∵EF∥AB,∠E=45°,∴∠BGD=∠E=45°,∵∠CDE是△BDG的外角,∠B=60°,∴∠CDE=∠B+∠BGD=105°.故选:A.7.解:在Rt△ABC中,由勾股定理得:AC2+BC2=AB2=36,∵△AFC和△CBE是等腰直角三角形,∴S1+S2=AC2+BC2=(AC2+BC2)=×36=18,故选:B.8.解:A、一次函数y=kx+b的图象经过第二、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的图象与y轴交于正半轴,则kb>0,kb>0与kb<0相矛盾,不符合题意;B、一次函数y=kx+b的图象经过第一、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的一次项系数为正,与题干图形相矛盾,不符合题意;C、一次函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,则kb<0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb<0与kb<0相一致,符合题意;D、一次函数y=kx+b的图象经过第二、三、四象限,则k<0,b<0,则kb>0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb>0与kb<0相矛盾,不符合题意;故选:C.二、填空题:(共18分)9.解:设截成2m的有x段,1m的有y段,且x≠0,y≠0,根据题意可列方程得:2x+y=9,则y=9﹣2x,∵x、y均为正整数,∴当x=1时,y=7;当x=2时,y=5;当x=3时,y=3;当x=4时,y=1;∴方程的正整数解有4组,即截法有4种,故答案为:4.10.解:由表中数据得到x=1时,y1=y2=3,所以一次函数y1=k1x+b的图象和y2=k2x的图象的交点坐标为(1,3),所以方程组的解为x=1,y=3.故答案为:1,3.11.解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则n个纸杯叠放在一起时的高度为:(n﹣1)x+y=n﹣1+7=(n+6)cm,当n=11时,其高度为:11+6=17(cm).故答案为:17cm.12.解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为8dm,圆柱高为4dm,∴AB=4dm,BC=BC′=4dm,∴AC2=42+42=32,∴AC=4.∴这圈金属丝的周长最小为2AC=8(dm),则这圈金属丝的周长的最小值的平方为128dm.故答案为:128.13.解:如图,∵∠BDA'=90°,∴∠ADA'=90°,∵△ABC纸片沿DE折叠,使点A落在图中的A'处,∴∠ADE=∠A′DE=45°,∠AED=∠A′ED,∵∠CED=∠A+∠ADE=29°+45°=74°,∴∠AED=106°,∴∠A′ED=106°,∴∠A′EC=∠A′ED﹣∠CED=106°﹣74°=32°.故答案为32°.14.解:如图,过点D作DG⊥BF于G,DH⊥AB交BA的延长线于点H,DP⊥AC于P,过点A作AQ⊥BC于Q,∵BD是∠ABC的平分线,∴DH=DG,∵CD是∠ACF的平分线,∴DG=DP,∴DH=DP,∴AD是∠CAH的平分线,即∠CAD=∠HAD=∠CAH,∵AB=AC,∴∠ABC=∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∠CAD+∠HAD+∠BAC=180°,∴∠CAD=∠ACB,∴AD∥BC,因此①正确;∵BE平分∠CBM,BD平分∠ABC,∠CBM+∠ABC=180°,∴∠DBE=∠ABC+∠CBM=×180°=90°,即BD⊥BE,因此②正确;∵BD是∠ABC的平分线,∴∠ABD=∠DBC,∵CD是∠ACF的平分线,∴∠ACD=∠FCD,∵∠ACF=∠BAC+∠ABC,∠DCF=∠BDC+∠DBC,∴∠BDC=∠BAC,∵AQ⊥BC,AB=AC,∴∠BAQ=∠CAQ=∠BAC,∵∠BAQ+∠ABC=90°,∴∠BDC+∠ABC=90°,因此③正确;∵∠ADB=∠ABC=×()=45,而∠BAC ∴∠ADB与∠BDC不一定相等,因此④不正确;∵BE⊥BD,∴∠E+∠BDC=90°,∵∠BDC=∠BAC,∴∠E+∠BAC=90°,∴2∠E+∠ABC=180°,因此⑤正确;综上所述,正确的结论有:①②③⑤,故答案为:①②③⑤.三、作图题:(本题6分)15.解:(1)所作图形如图所示:B(﹣2,1);(2)所作图形如图所示:B1(2,1);(3)所作的点如图所示,P(0,2).故答案为:(﹣2,1).四、解答题:(共72分)16.解:(1)原式=﹣3+4+12=﹣3+16;(2)原式=﹣=3﹣=3﹣=.17.解:(1),①×2,得2x﹣2y=8③,③+②,得6x=7,解得x=,将x=代入①,得y=﹣,∴方程组的解为;(2),①﹣②得,y=3,解得,y=9,将y=9代入①,得x=6,∴方程组的解为.18.解:(1)∵八年级(10)班男生人数为2+4+6+5+4+2=23(人),∴女生人数为43﹣23=20(人);(2)由条形统计图知,男生体质监测成绩的众数c=7,女生体质监测成绩的平均数a=5×5%+6×15%+7×30%+8×25%+9×15%+10×10%=7.6,中位数b==7.5,故答案为:7.6、7.5、7;(3)430×=210(人),答:得分在8分及8分以上的人数共有210人.19.证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),∴∠AFC+∠2=90°.又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;CE∥BF;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.20.解:(1)条件:①AD∥BE;②∠1=∠2;结论:③∠A=∠E,故答案为:①AD∥BE,②∠1=∠2;③∠A=∠E;(2)证明:∵AD∥BE,∴∠A=∠EBC,∵∠1=∠2,∴DE∥BC,∴∠E=∠EBC,∴∠A=∠E.21.解:(1)由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,∴快车的速度为300÷3=100(km/h),由图可得,慢车5h行驶300km,∴慢车的速度为300÷5=60(km/h),∵3×60=180(km),∴快车到达乙地时,慢车行驶了180km,即两车相距180km,∴C(3,180),故答案为:3,(3,180);(2)由(1)可知,快车的速度为100km/h,慢车的速度为60km/h,∴两车相遇所需时间为300÷(100+60)=(h),∴当x为时两车相遇;(3)①当两车行驶的路程之和为300﹣200=100(km)时,两车相距200km,此时x=100÷(100+60)=;②当两车行驶的路程和为300+200=500(km)时,两车相距200km,∵x=3时,快车到达乙地,即快车行驶了300km,∴当慢车行驶200km时,两车相距200km,此时x=200÷60=,综上所述,x为或时,两车相距200km.22.解:(1)设l辆A型车载满货物一次可运货x吨,l辆B型车载满货物一次可运货y吨,依题意得:,解得:.答:l辆A型车载满货物一次可运货3吨,l辆B型车载满货物一次可运货4吨.(2)依题意得:3a+4b=35,∴b=,又∵a,b均为自然数,∴或或,∴共有3种租车方案,方案1:租用A型车1辆,B型车8辆;方案2:租用A型车5辆,B型车5辆;方案3:租用A型车9辆,B型车2辆.(3)选择方案1所需租车费为1×300+8×320=2860(元);选择方案2所需租车费为5×300+5×320=3100(元);选择方案3所需租车费为9×300+2×320=3340(元).∵2860<3100<3340,∴最省钱的租车方案是方案1:租用A型车1辆,B型车8辆,最少租车费为2860元.23.解:(1)在直线y=﹣x+8中,令x=0,则y=8;令y=0,则x=6,∴A(6,0),B(0,8),∴AO=6,BO=8,∴AB=10=AC,∴OC=6+10=16,即C(16,0);(2)∵A(6,0),B(0,8),C(16,0),∴OB=8,OC=16,∵OD=m,∴BD=8+m,∵将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,∴DC=BD=8+m,在Rt△ODC中,m2+162=(m+8)2,解得m=12,∴D(0,﹣12),设CD的解析式为y=kx+b,则,解得,∴CD的解析式为y=x﹣12;(3)由方程组,解得,∴点E坐标为(,﹣),∴S△ADE=×10×12﹣×10×=36.24.解:【解决问题】(1)如图3,∵∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,∴∠D+∠DCE+∠B+∠EAB=2∠E+∠DAE+∠ECB,∵EC平分∠ECB,AE平分∠BAD,∴∠DCE=∠ECB,∠DAE=∠BAE,∴2∠E=∠B+∠D,∴∠E=∴∠E=(30°+40°)=×70°=35°;故答案为:35°;(2)如图(4),∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,∴∠D+∠1+∠B+∠4=2∠E+∠3+∠2,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=∠D+∠B,∴∠E=,又∵∠D=30°,∠B=50°,∴∠E=40度.故答案为:2∠E+∠3+∠2,∠D+∠B,40°;(3)由(1)和(2)得:∠E=,故答案为:∠E=;【类比应用】如图(5),延长BC交AD于F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB﹣∠ECB=∠B+∠BAE﹣∠BCD=∠B+∠BAE﹣(∠B+∠BAD+∠D)=(∠B﹣∠D),∵∠D=α°、∠B=β°,即∠E=(β﹣α)°.。
最新北师大版八年级上册数学期末测试试题以及答案
最新八年级上册数学期末考试试题
本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页,第II卷3至8页.共150分.考试时间120分钟.
第I卷(选择题共48分)
注意事项:
1.数学考试中不允许使用计算器.
2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.
3.选择题为四选一题目,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.不能答在考试卷上.
4.考试结束后,监考教师将本试卷和答题卡一并收回.
一、选择题。
第Ⅱ卷(非选择题共72分)
注意事项:
1.第Ⅱ卷共6页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.2.答卷前将密封线内的项目填写清楚.
二、填空题。
三、解答题。
北师大版八年级上学期数学《期末考试试卷》含答案
①两条直线被第三条直线所截,内错角相等.
②如果∠1和∠2是对顶角,那么∠1=∠2.
③三角形的一个外角大于任何一个内角.
④如果x2>0,那么x>0.
A.1个B.2个3个D.4个
[答案]A
[解析]
[分析]
利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.
(1) 分别写出当0≤x≤100和x>100时,y与x的函数关系式
(2) 利用函数关系式,说明电力公司采取的收费标准
(3) 若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?
25.如图,直线L:y=﹣ x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.
(1)点A 坐标:;点B的坐标:;
(2)求△NOM的面积S与M的移动时间t之间的函数关系式;
(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;
(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.
答案与解析
一、选择题(本大题共10小题,共30.0分)
11.已知一组数据x,1,2,3,5,它的平均数是3,则这组数据的方差是__.
12.若点M(a,﹣1)与点N(2,b)关于y轴对称,则a+b的值是_____
13.当m=_______时,函数y=(2m-1)X 是正比例函数.
14.如图,BD与CD分别平分∠ABC、∠ACB的外角∠EBC、∠FCB,若∠A=80°,则∠BDC=_______.
8.已知 和 是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b(a≠0)的解析式为
北师大版数学八年级上学期《期末检测题》含答案解析
A. B. C. D.
[答案]A
[解析]
[分析]
根据一次函数y=kx+b的图象可知k>0,b<0,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.
[详解]解:∵一次函数y=kx+b的图象可知k>0,b<0,
如图,直线 的函数关系式为 ,且 与 轴交于点A,直线 经过点B(2,0),C(-1,3),直线 与 交于点D.
(1)求直线 的函数关系式;
(2)求△ABD的面积.
(3)点P是 轴上一动点,问是否存在一点P,恰好使△ADP为直角三角形?若存在,直接写出点P 坐标;若不存在,请说明理由.
答案与解析
一、选择题(每小题3分,共30分)
C.因为62+82=102,故是勾股数.故此选项正确;
D.因为52+62≠72,故不是勾股数,故此选项错误.
故选C.
[点睛]本题考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合较小两边的平方和=最大边的平方.
2.在下列各数: 、0.2、-π、 、 、 中无理数的个数是()
A. B. C. D.
6.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )
A.平均数B.中位数C.众数D.方差
7.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )
1.下列各组数中,属于勾股数的是()
A.1, ,2B.1.5,2,2.5C.6,8,10D.5,6,7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)如图①,若 ,且 ,求 的度数;
(2)如图②,若 ,当点 在射线 上运动时, 与 之间有怎样的数量关系?请写出你的结论,并加以证明.
(3)如图③,在(2)的条件下,连接 ,设 与射线 的交点为 , , ,当点 在射线 上运动时, 与 之间有怎样的数量关系?请写出你的结论,并加以证明.
【答案】D
【解析】
【分析】
根据三角形 外角性质,平行线的判定和直角三角形的性质对各选项分析判断后利用排除法求解.
【详解】A、因为三角形的外角大于任何一个与它不相邻的内角,故本选项错误;
B.如果两个角相等,那么它们不一定是内错角,故选项B错误;
C.如果两个直角三角形的面积相等,那么它们的斜边不一定相等,故选项C错误;
A.5,9,12B.5,9,13C.5,12,13D.9,12,13
【答案】C
【解析】
【分析】
当一个三角形中,两个较小边的平方和等于较大边的平方,则这个三角形是直角三角形.据此进行求解即可.
【详解】A、52+92=106≠122=144,故不能构成直角三角形;
B、52+92=106≠132=169,故不能构成直角三角形;
故选:B.
【点睛】本题考查一次函数的应用,解题关键是将函数解析式与事情情况对应起来.
二、填空题:
13.比较大小: ________ .(填“>”,“<”或“=”号)
【答案】<
【解析】
【分析】
根据5<9可得 即 ,进而可得 ,两边同时除以2即可得到答案.
【详解】解:∵5<9,
∴ ,
即 ,
∴ ,
∴ ,
故答案为:<.
D.直角三角形的两锐角互余.正确.
故选:D.
【点睛】本题考查点较多,熟练掌握概念,定理和性质是解题的关键.
9.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是( )
A. B. C. D.
【答案】B
【解析】
∵正比例函数y=kx(k≠0)的图像经过第二、四象限,
∴k<0,
甲
乙
丙
丁
平均数(cm)
方差
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )
A.甲B.乙C.丙D.丁
8.下列命题是真命题的是( )
A. 三角形 一个外角大于任何一个内角
B. 如果两个角相等,那么它们 内错角
C. 如果两个直角三角形 面积相等,那么它14.点 在第四象限内,点 到 轴的距离是1,到 轴的距离是2,那么点 的坐标为_______.
15.已知 是关于 的二元一次方程 的一个解,则 的值为_____.
16.如图,在 中, , , ,则 的长是_______.
17.如图,已知一次函数 和 的图象相交于点 ,则根据图象可得二元一次方程组 的解是________.
6.直角坐标系中,点 在一次函数 的图象上,则 的值是( )
A. B. C. D.
【答案】A
【解析】
【分析】
直接把点的坐标代入解析式得到a的一元一次方程,解方程即可.
【详解】∵点 在一次函数 的图象上,
∴3a+1=4
解得,a=1,
故选:A.
【点睛】本题主要考查一次函数图象上点的坐标特征,把点的坐标代入求解一元一次方程即可.
A.4B.2C. D.
【答案】B
【解析】
【分析】
直接利用算术平方根的定义得出答案.
【详解】解:4的算术平方根是:2.
故选:B.
【点睛】此题主要考查了实数的相关性质,正确把握相关定义是解题关键.
4.四根小棒的长分别是5,9,12,13,从中选择三根小棒首尾相接,搭成边长如下的四个三角形,其中是直角三角形的是( )
北师大版八年级上学期期末考试
数 学试 卷
一、选择题:
1.下列各数中为无理数的是()
A. B. C. D.
2.点P的坐标为(﹣1,2),则点P位于()
A.第一象限B.第二象限C.第三象限D.第四象限
3.4的算术平方根是()
A.4B.2C. D.
4.四根小棒的长分别是5,9,12,13,从中选择三根小棒首尾相接,搭成边长如下的四个三角形,其中是直角三角形的是( )
答案与解析
一、选择题:
1.下列各数中为无理数的是()
A. B. C. D.
【答案】C
【解析】
【分析】
无理数就是无限循环小数,依据定义即可作出判断.
【详解】A. 是有理数,不符合题意;
B. 是有理数,不符合题意;
C. 是无限不循环小数,是无理数,正确;
D. =2是整数,不符合题意;
故选:C.
【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.
∴从甲和丙中选择一人参加比赛,
∵ ,
∴选择甲参赛,
故选:A.
【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
8.下列命题是真命题的是( )
A. 三角形的一个外角大于任何一个内角
B. 如果两个角相等,那么它们是内错角
C. 如果两个直角三角形的面积相等,那么它们的斜边相等
D. 直角三角形的两锐角互余
7.如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩 平均数与方差:
甲
乙
丙
丁
平均数(cm)
方差
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )
A. 甲B. 乙C. 丙D. 丁
【答案】A
【解析】
【分析】
先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】∵ ,
76
综合知识
88
45
67
(1)若按三项的平均值取第一名,谁是第一名;
(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,谁是第一名?
四、解答题:
21.化简
①
②( + )( )+ 2
22.如图, 三个顶点的坐标分别为 , , .
(1)画出 关于 轴对称的图形 ,并写出 三个顶点的坐标;
(2)在 轴上作出一点 ,使 的值最小,求出该最小值.(保留作图痕迹)
D. “ ”表示每小时行驶 千米,“ ”表示甲乙两地的距离为 千米
【答案】B
【解析】
【分析】
将一次函数与实际情况结合,能快速得出-6.5和23的实际意义.
【详解】一次函数表示的是汽车行驶时间t与油箱中剩余油量的关系
生活中,行驶时间越久,则剩余油量应该越少
可知:-6.5表示每小时耗油6.5升,23表示出发时油箱剩余油23升
12.张师傅驾车从甲地到乙地匀速行驶,行驶中油箱剩余油量 (升)与行驶时间 (小时)之间的关系式为 ,这里的常数“ ”,“ ”表示的实际意义分别是( )
A. “ ”表示每小时耗油 升,“ ”表示到达乙地时油箱剩余油 升
B. “ ”表示每小时耗油 升,“ ”表示出发时油箱原有油 升
C. “ ”表示每小时耗油 升,“ ”表示每小时行驶 千米
(1)直接写出y甲、y乙(米)与x(天)之间 函数关系式.
①当0<x≤6时,y甲=;
②当0<x≤2时,y乙=;当2<x≤6时,y乙=;
(2)求图中点M的坐标,并说明M的横、纵坐标表示的实际意义;
(3)施工过程中,甲队的施工速度始终不变,而乙队在施工6天后,每天的施工速度提高到120米/天,预计两队将同时完成任务.两队还需要多少天完成任务?
9.正比例函数y=kx(k≠0) 图象经过第二、四象限,则一次函数y=x+k的图象大致是( )
A. B. C. D.
10.如图, 是 的角平分线, ,交 于点 .已知 ,则 的度数为( )
A. B.
C. D.
11.如图,在四边形 中, , , , ,则四边形 的面积是( )
A. B.
C. D.
12.张师傅驾车从甲地到乙地匀速行驶,行驶中油箱剩余油量 (升)与行驶时间 (小时)之间的关系式为 ,这里的常数“ ”,“ ”表示的实际意义分别是( )
18.如图, 中, , 的平分线 与边 的垂直平分线 相交于 , 交 的延长线于 , 于 ,现有下列结论:
① ;② ;③ 平分 ;④ .其中正确的有________.(填写序号)
三、解答题:
19.解下列方程组:
20.某次歌唱比赛,三名选手的成绩如下:
测试项目
测试成绩
甲
乙
丙
创新
72
85
67
唱功
62
77
A. 5,9,12B. 5,9,13C. 5,12,13D. 9,12,13
5.估计 的值在( )
A. 和 之间B. 和 之间C. 和 之间D. 和 之间
6.直角坐标系中,点 在一次函数 的图象上,则 的值是( )
A. B. C. D.
7.如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
2. 点P的坐标为(﹣1,2),则点P位于( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
【答案】B
【解析】
【分析】
根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.
【详解】P的坐标为(﹣1,2),则点P位于第二象限,
故选B.
3.4的算术平方根是()
∴一次函数y=x+k的图像与y轴交于负半轴,且经过第一、三象限.