多层线性模型[研究材料]

合集下载

(完整版)多层线性模型介绍

(完整版)多层线性模型介绍

多层线性模型:HLM(hierarchical linear model)计量模型,为解决传统统计方法如回归分析在处理多层嵌套数据时的局限而产生的,是目前国际上较前沿的一套社会科学数据分析的理论和方法,优势体现两个方面:一是解决了数据嵌套问题;二是为追踪研究或重复测量研究引入了新方法。

传统的线性模型,例如,ANOV A或者回归分析,只能对涉及某一层数据的问题进行分析,而不能将涉及两层或多层数据的问题进行综合分析,而多层线性模型对解决这些问题提供了有效的统计方法。

多层线性模型的参数估计方法与进行两次回归的方法在概念上是相似的, 但二者的统计估计和验证方法却是不同的, 并且多层线性模型的参数估计方法更为稳定。

因此多层模型的应用范围也相当广泛,与传统的用于处理多元重复测量数据的方法相比,该模型具有对数据资料要求低、能够明确表示个体在第一层次的变化情况、可以通过定义第一层次和第二层次的随机变异解释个体随时间的复杂变化情况、可以考虑更高一层次的变量对于个体增长的影响等特点。

多层线性模型( multilevel model ) 由Lindley 等于1972 年提出,是用于分析具有嵌套结构数据的一种统计分析技术。

作为传统方差分析模型的有效扩展Korendijk 等和Duncan 等众多的研究者对多层线性模型进行了广泛研究。

20 多年来,该方法在社会科学领域获得了广泛应用。

近年来,有研究者提出使用多层线性模型进行面板研究,并且已在社会科学领域取得较大进展。

面板研究中多层线性模型的应用优势:由上述分析可知,在面板研究中,传统的数据分析方法会遇到很多难以克服的困难,而多层线性模型可以很好地处理上述问题。

近年来,越来越多的面板研究开始采用多层线性模型的分析方法,显示出多层线性模型在面板研究中的独特优势。

首先,多层线性模型通过考察个体水平在不同时间点的差异,明确表达出个体在层次一的变化情况,因而对于数据的解释(个体随时间的增长趋势)是在个体与重复观测交互作用基础上的解释,即不仅包含不同观测时点的差异,也包含个体之间存在的差异。

多层线性模型简介

多层线性模型简介

多层线性模型——零模型

第一层:
Yij 0 j eij
var(eij )
2

第二层:
0 j 00 u0 j
00 uoj eij
var(0 j ) 00

合并模型: Yij
多层线性模型——零模型
0 j指第j个二层单位Y的平均值
多层线性模型简介



(2)组织心理学研究领域 Eg:雇员镶嵌于不同的组织、工厂 (3)发展心理学领域 Eg:纵向研究、重复研究 在一段时间内对儿童进行多次观察,那么不同时间 的观测数据形成了数据结构的第一层,而儿童之间 的个体差异则形成了数据结构的第二层。这样,就 可以探索个体在其发展趋势或发展曲线上的差异。
ij 0j 1j ij ij
var(eij )
2
多层线性模型——完整模型

第二层:
0j
00

W 01
j
u0 j
1 j 10 11W j u1 j
var(0 j ) 00
var(1 j ) 11
cov(0 j , 1 j ) 10
多层线性模型简介

3、多层线性模型分析方法 回归的回归方法 Eg:学生成绩(X) 学习动机(Y) 班级教师教学水平(W) (1)求各个班级学生成绩对学习动机的回归

Yij 0 j 1j X i j rij
多层线性模型简介

(2)求教师教学水平对β 0j和 β
1j
的回归方程
00
eij指第j个二层单位Y的变异
指所有二层单位的Y的总体平均数 0 j 指第二层方程的残差(随机项) 跨级相关:指Y的总体变异中有多大比例是由 第二层的变异引起的。

(完整版)多层线性模型介绍

(完整版)多层线性模型介绍

多层线性模型:HLM(hierarchical linear model)计量模型,为解决传统统计方法如回归分析在处理多层嵌套数据时的局限而产生的,是目前国际上较前沿的一套社会科学数据分析的理论和方法,优势体现两个方面:一是解决了数据嵌套问题;二是为追踪研究或重复测量研究引入了新方法。

传统的线性模型,例如,ANOV A或者回归分析,只能对涉及某一层数据的问题进行分析,而不能将涉及两层或多层数据的问题进行综合分析,而多层线性模型对解决这些问题提供了有效的统计方法。

多层线性模型的参数估计方法与进行两次回归的方法在概念上是相似的, 但二者的统计估计和验证方法却是不同的, 并且多层线性模型的参数估计方法更为稳定。

因此多层模型的应用范围也相当广泛,与传统的用于处理多元重复测量数据的方法相比,该模型具有对数据资料要求低、能够明确表示个体在第一层次的变化情况、可以通过定义第一层次和第二层次的随机变异解释个体随时间的复杂变化情况、可以考虑更高一层次的变量对于个体增长的影响等特点。

多层线性模型( multilevel model ) 由Lindley 等于1972 年提出,是用于分析具有嵌套结构数据的一种统计分析技术。

作为传统方差分析模型的有效扩展Korendijk 等和Duncan 等众多的研究者对多层线性模型进行了广泛研究。

20 多年来,该方法在社会科学领域获得了广泛应用。

近年来,有研究者提出使用多层线性模型进行面板研究,并且已在社会科学领域取得较大进展。

面板研究中多层线性模型的应用优势:由上述分析可知,在面板研究中,传统的数据分析方法会遇到很多难以克服的困难,而多层线性模型可以很好地处理上述问题。

近年来,越来越多的面板研究开始采用多层线性模型的分析方法,显示出多层线性模型在面板研究中的独特优势。

首先,多层线性模型通过考察个体水平在不同时间点的差异,明确表达出个体在层次一的变化情况,因而对于数据的解释(个体随时间的增长趋势)是在个体与重复观测交互作用基础上的解释,即不仅包含不同观测时点的差异,也包含个体之间存在的差异。

《多层线性模型》课件

《多层线性模型》课件
隐藏层
通过多个神经元(节点)进行非线性变换和特征提取。
输出层
生成最终的预测结果或分类标签。
优势
1 非线性建模
多层线性模型能够捕捉输入变量与输出变量之间的非线性关系,提高模型的拟合能力。
2 自动特征学习
通过隐藏层的非线性变换,模型能够自动学习高级特征,无需手动选择和设计特征。
3 灵活性和可扩展性
多层线性模型可以通过增加隐藏层或调整神经元数量来提升模型的复杂度和性能。
多层线性模型
欢迎来到《多层线性模型》PPT课件。在本课程中,我们将深入探讨多层线性 模型的定义、结构、优势、应用领域、算法和局限性。
定义
多层线性模型是一种统计学中常见的机器学习方法,用于建立输入变量与输出变量之间的多层次关系。通过组 合多个线性模型,可以更好地拟合复杂的数据。
结构
输入层
接收原始数据或特征向量作为模型的输入。
2 训练时间
多层线性模型的训练时间通常较长,尤其在参数较多、数据量较大的情况下,需要充分 利用计算资源进行训练。
3 局部最优解
算法可能陷入局部最优解域
1
计算机视觉
多层线性模型在图像识别、目标检测和人脸识别等计算机视觉任务中取得了显著的成果。
2
自然语言处理
通过多层线性模型的神经网络结构,可以构建用于文本分类、机器翻译和情感分析等自然语 言处理应用。
3
金融预测
多层线性模型可用于股票价格预测、市场趋势分析和信用评级等金融领域的预测和决策。
算法
前向传播
通过输入层、隐藏层和输出 层的逐层计算,将原始数据 映射到最终的预测结果。
反向传播
通过计算损失函数的梯度, 根据反向传播算法更新模型 参数,使其朝着最小化损失 的方向调整。

多层线性模型的解读:原理与应用

多层线性模型的解读:原理与应用

多层线性模型的解读:原理与应用多层线性模型的解读:原理与应用浙江师范大学心理研究所陈海德Chenhaide351@ 一、多层数据结构的普遍性多水平、多层次的数据结构普遍存在,如学生嵌套于班级,班级有嵌套与学校。

传统的线性模型,如方差分析和回归分析,只能涉及一层数据的问题进行分析,不能综合多层数据问题。

在实际研究中,更令人感兴趣的是学生一层的变量与班级一层的变量之间的交互作用,比如,学生之间的个体差异在不同班级之间可能是相同的、也可能是不同的。

学生数据层中,不同变量之间的关系可能因班级的不同而不同。

因此,学生层的差异可以解释为班级层的变量。

另一种类型的两层嵌套数据来自纵向研究数据,不同时间观测数据形成了数据结构的第一层,而被试之间的个体差异形成了第二层。

可以探索个体在发展趋势上的差异。

二、传统技术处理多层数据结构的局限如果把变量分解到个体水平,在个体水平上分析。

但是我们知道这些学生是来自同一班级的,不符合观察独立原则。

导致个体间随机误差相互独立的假设不能满足。

如果把个体变量集中到较高水平,在较高水平上进行分析。

这样丢弃了组内信息,而组内变异可能占了大部分。

三、原理☆水平1的模型与传统的回归模型类似,所不同的是回归方程的截距和斜率不再是一个常数,而是水平2变量水平不同,其回归方程的截距和斜率也不同的,是一个随机变量。

如,每个班级的回归方程的截距和斜率都直接依赖于班级教师教学方法。

☆多层线性模型分为“随机截距模型”和“随机截距和随机斜率模型”。

“随机截距模型”假定因变量的截距随着群体的不同而不同,但各群体的回归斜率是固定,因此不同层次因素之间缺乏互动。

“随机截距和随机斜率模型”假定截距和回归斜率都因群体而异,允许不同层次因素之间的互动。

参数估计方法有:迭代广义最小二乘法、限制性的广义最小二乘估计、马尔科夫链蒙特卡罗法。

这些方法代替了传统的最小二乘法估计,更为稳定和精确。

比如,当第二层的某单位只有少量的被试,或不同组样本量不同时,多层线性模型进行了加权估计、迭代计算。

多层线性模型——原理与应用解读

多层线性模型——原理与应用解读
式中,γ10=预测变量X对结果变量的影响效果 γ20=预测变量Z对结果变量的影响效果 γc0为控制变量对结果变量的影响,c=3,4,5 …
三、多层线性模型的应用
第三步,将检验假设2关于组织层面调节变量对因变量直 接影响的跨层次效应,进一步验证截距项的存在是否可由 组织层面加以解释和预测。 截距项预测模式 Level-1: Yij=β0j+β1jXij+β2jZij+ βcj(控制变量) +rij Level-2:β0j=γ00+γ01Wij+ γ02Gij+μ0j β1j=γ10+μ1j β2j=γ20+μ2j βcj=γc0+μcj
一、多层线性模型简介
3、多层线性模型分析方法 回归的回归方法 Eg:个体成就目标导向(X)
ቤተ መጻሕፍቲ ባይዱ
个体创造力(Y)
组织环境(W) (1)求各个组织个体成员的成就目标导向对创造力的回 归 Yij 0 j 1 j X ij rij (2)求组织环境对 0 j 和 1 j 的回归方程 0 j 00 01Wj 0 j
三、多层线性模型的应用
具体检验步骤及多层线性模型构建如下: 第一步,检验跨层次效果是否存在。只有组内与组间的 变异成份显著,才能够进行下一步的截距与斜率项分析。 虚无模式 Level-1:Yij=β0j+rij,式中rij ~N(0,σ2) Level-2:β0j=γ00+μ0j,式中μ0j ~ N(0,τ00)
式中,γ11= Level-2的斜率(用来检验H3a) γ12= Level-2的斜率(用来检验H3b) γ21= Level-2的斜率(用来检验H3c ) γ22= Level-2的斜率(用来检验H3d)

《多层线性模型》课件

《多层线性模型》课件

03
多层线性模型的实例分析
实例一:教育数据分析
总结词
多层线性模型在教育数据分析中应用广泛,主要用于分析学 生成绩、学习行为等变量之间的关系。
详细描述
在教育领域,多层线性模型可以用于分析不同层次的学生数 据,如班级、学校或地区等。通过多层线性模型,可以同时 考虑学生个体特征和班级、学校等环境因素的影响,从而更 准确地估计各个因素的影响程度。
应用领域的拓展
生物医学研究
应用于基因组学、蛋白质组学等 领域,探索生物标志物与疾病之 间的关系。
社会学研究
应用于社会调查、人口统计等领 域,研究社会经济地位、教育程 度等因素对个体发展的影响。
经济学研究
应用于金融市场分析、消费者行 为等领域,探究经济变量之间的 相互关系。
跨学科融合与交叉应用
人工智能与机器学习
06
多层线性模型的未来发展与展望
算法优化与改进
算法并行化
利用多核处理器或分布式计算资源,实现多层线 性模型的快速计算,提高分析效率。
算法收敛性改进
针对现有算法的收敛速度和稳定性进行优化,减 少迭代次数,提高计算精度。
算法自适应调整
根据数据特性自动调整模型参数,减少人工干预, 提高模型的泛化能力。
对初值敏感
对缺失数据敏感
多层线性模型的迭代算法对初值的选择较 为敏感,初值的选择可能会影响模型的收 敛结果。
如果数据中存在大量缺失值,多层线性模 型的估计可能会受到影响。在进行模型拟 合之前,需要对缺失数据进行适当处理。
05
多层线性模型与其他统计模型的比较
与单层线性模型的比较
模型复杂性
多层线性模型比单层线性模型更复杂,因为它同时考虑了组间和 组内的关系,能够更好地拟合数据。

多层线性模型

多层线性模型

违背了传统回归(OLS)中关于残差相互独立的假设
采用经典方法可能失去参数估计的有效性并导致不合理的推断结 论。
经典方法框架下的分析策略
经典的线性模型只对某一层数据的问题进 行分析,而不能将涉及两层或多层数据的问题进 行综合分析。
但有时某个现象既受到水平1变量的影 响,又受到水平2变量的影响,还受到两个水平 变量的交互影响(cross-level interaction)。
间数据,称为组间效应 • 三是忽视组的特性而对所有的数据进行分析,称为总效应。 • 在此基础上,计算组内效应和组间效应在总效应的比例,从
而确定变异来自于组间还是组内。 • 组内分析组间分析的方法较前两种方法更多地考虑到了第一
层数据及第二层数据对变异产生的影响,但无法对组内效应 和组间效应做出具体的解释,也就无法解释为什么在不同的 组变量间的关系存在差异。
• 2、多层数据的传统分析方法 • 个体的行为既受个体自身特征的影响,也受到其所处环境的影响,所
以研究者一直试图将个体效应与组效应(背景效应或环境效应)区分 开来。 • 个体效应:由个体自身特征所造成的变异。 • 组效应:由个体所处环境所造成的变异。
多层线性模型简介
• (1)只关注个体效应,而忽视组效应 • 只在个体这一层数据上考虑变量间的关系,那么导致所观测到的效应
图1:不考虑学校之间差异的回归直线
• 在许多研究中,取样往往来自不同层级和单位,这种 数据带来了很多跨级(多层)的研究问题,解决这些 问题的一种新的数据分析方法——多层模型分析技术。
• 这一方法的开创及发展的主要贡献者之一是英国伦敦 大学的Harvey Goldstein教授及研究者把这种方法称 作“多层分析”。另一主要开拓者美国密歇根大学的 Stephen W.Raudenbush教授和同行把它称为“分层线 性模型结构”。在此,我们按照张雷等人的叫法称其 为“多层线性模型”或“多层模型”。

统计学中的多层次建模与分析方法

统计学中的多层次建模与分析方法

统计学中的多层次建模与分析方法多层次建模与分析是统计学中一个重要的研究领域,它主要用于处理多层次数据,也称为分层数据或层次化数据。

在许多实际问题中,我们会遇到数据存在多层次结构的情况,例如学生在班级中,班级在学校中,学校在地区中的成绩评估,或者员工在部门中,部门在公司中的工作绩效评估等。

在这些情况下,单纯使用传统的单层次统计方法可能无法充分考虑到多层次数据的特点和关系,因此需要使用多层次建模与分析方法来进行研究和分析。

多层次建模与分析方法的基本原理是将数据划分为不同层次,在每个层次上建立适当的模型,并且通过层次之间的联系来推断和解释结果。

下面将介绍一些常用的多层次建模与分析方法。

1. 多层线性模型(Multilevel Linear Models,简称MLM):MLM是多层次分析中最常用的方法之一。

它基于随机效应模型,将观测单元(个体)分类为不同的层次,并通过考虑层次之间的方差和协方差关系来建模。

MLM可以用于解释和预测层次性数据,例如测量学生的成绩差异时,可以考虑班级和学校的影响。

2. 多层Logistic回归模型(Multilevel Logistic Regression Models):该方法在研究二分类或多分类问题时非常有用。

它将随机效应模型应用于逻辑回归模型,用于描述不同层次上的概率差异。

例如,研究不同学校学生的大学录取率时,可以使用多层Logistic回归模型考虑学校和个体因素的影响。

3. 多层生存分析模型(Multilevel Survival Analysis Models):多层生存分析模型是在研究生存数据(例如生命表数据)时常用的方法。

该方法可以考虑不同层次上的时间变化和随机效应,并用于推断不同层次上的生存率和风险。

例如,在研究医院的患者生存时间时,可以考虑医院间的差异和个体特征的影响。

4. 多层次协变量分析(Multilevel Covariate Analysis):该方法用于分析多变量之间的关系,并考虑不同层次上的协变量。

多层线性模型简介两水平模型优秀课件

多层线性模型简介两水平模型优秀课件

Outcome for observation i in unit j
Intercept
Value of X for observation i in unit j
Coefficient
一个简单的多层线性模型
Y ij01Xijujrij
Outcome for observation i in unit j
distributed) 误差方差齐性(homoskedastic) 误差或观测个体之间相互独立
(independent)
什么是多层(多水平)数据?
多层(多水平)数据指的是观测数据在单位上 具有嵌套的关系。如学生嵌套于班级,班级嵌 套于学校等。
同一单位内的观测,具有更大的相似性。同一 个班级的学生由于受相同的班级环境等因素的 影响有tual)特征 的多层数据举例
学生水平特征的观测,嵌套于班级或学校 兄弟姊妹特征的观测,嵌套于家庭 个体之间的观测嵌套于社区 个体不同时间点的重复测量嵌套于个体 病人嵌套于医院 参数的估计嵌套于不同的研究 (元分析,meta-analysis)
对多层数据,我们了解什么...
Y Xur specific to ij 0 1 ij j ij observation i in unit j
Outcome for observation i in unit j
(4)对73所学校分别做回归分析, 得到如图4的结果,如图4所示,从 图中结果可以看出,不同学校回归 直线的截距和斜率均不同,即:不 同学校学生平均高考成绩之间存在 差异,入学学业成绩对高考成绩的 影响强度不同。
图4:考虑不同学校平均成绩差异 和入学对毕业成绩影 响程度差异的回归直线
回归模型中,如何解决残差相关 的问题?

多层线性模型的原理与应用

多层线性模型的原理与应用

多层线性模型的原理与应用1. 简介多层线性模型是一种数据分析和建模方法,适用于解决复杂的非线性关系问题。

本文将介绍多层线性模型的原理和应用,并提供一些实际案例。

2. 原理多层线性模型基于线性回归模型的基本思想,通过添加多个隐藏层来实现对非线性关系的拟合。

具体步骤如下:2.1 数据准备首先,需要准备一组有标签的训练数据作为模型的输入。

训练数据应包括输入特征和对应的输出标签。

2.2 构建模型多层线性模型由输入层、隐藏层和输出层组成。

输入层接受输入特征,将其传递给隐藏层。

隐藏层通过计算加权和并经过一个激活函数得到输出。

输出层将隐藏层的输出进行线性组合得到最终的预测值。

2.3 定义损失函数为了评估模型的准确性,需要定义一个损失函数来衡量预测值与真实值之间的差异。

常用的损失函数包括平方损失和交叉熵损失。

2.4 模型优化使用优化算法,如梯度下降法,来最小化损失函数,找到模型参数的最优解。

通过反复迭代更新参数,逐渐优化模型性能。

3. 应用案例多层线性模型在许多领域都有广泛的应用。

以下是几个常见的应用案例:3.1 信用评分在金融领域,多层线性模型可用于信用评分模型的构建。

通过收集借贷者的相关信息,如年龄、收入、负债情况等,可以预测借贷者的信用风险。

3.2 图像识别多层线性模型也可应用于图像识别任务中。

通过将图像像素作为输入特征,使用多层线性模型可以对图像进行分类。

例如,可以将猫和狗的图像分别作为正样本和负样本,训练模型来识别图像中的动物种类。

3.3 自然语言处理在自然语言处理领域,多层线性模型可用于情感分析和文本分类任务。

通过将文本转换为向量表示,并使用多层线性模型进行分类,可以对文本进行情感判断或分类。

3.4 推荐系统多层线性模型在推荐系统中也有重要应用。

通过分析用户的历史行为和兴趣特征,可以构建个性化的推荐模型,为用户提供个性化的推荐内容。

4. 总结多层线性模型通过添加多个隐藏层,可以有效解决非线性问题。

它在信用评分、图像识别、自然语言处理和推荐系统等领域都有广泛应用。

经济计量研究中的多层线性模型(HLM)

经济计量研究中的多层线性模型(HLM)
对于分层线性模型中 ,水平 2 随机效应的检验 ,还可以通过比较两个模型 (如果这两个模型只差一个水平 2 的随机项) 估计计算得到的 - 2log - likelihood 值的差异 ,通过查自由度为 1 的来χ2 分布表检验这一水平 2 的随机项的差异是否显著 。
同样用这种方法可以从整体上比较所定义的两个模型是否存在显著差异或两个模型中差异项的效应是否显著 。
们的检验方法 。
(2) 水平 1 的随机系数的假设检验
水平
1
的随机系数的假设检验对应的原假设为
: H0∶βq1
=
0
,检验方法类似于固定系数的检验
,统计量为
:Z

3 q1
。所
不同的是β
3 q1
表示由经验贝叶斯估计得到的参数估计值
。) st
d

3 q1
)
表示估计参数β
3 q1
的标准差
。在正态分布的假设下
参 考 文 献:
[ 1 ] (美) 约翰·奈斯比特. 大趋势 ———改变我们生活的十个方 向[ M ] . 梅艳译. 北京 :中国社会科学出版社 ,1984.
[ 2 ]京特·弗里德里奇. 微电子学与社会 [ M ] . 李宝恒译. 北 京 :三联书店. 1984.
[ 3 ]李砚祖. 大趋势 ———改变我们生活的十个方向. 工艺美术 概论[ M ] . 吉林. 美术出版社 ,1991. 【责任编辑 刘学生】
值得说明的是这与莫里斯的主张是不同的 ,他采取以手
工制品抗衡工业制品的态度 ,因那时处于工业生产的初级阶 段 ,而今天的工业化已在科学的理想主义中徜徉了一百多 年 ,不仅改变了人对世界的认识 ,也改变了人们对自身的认 识 ,生活方式也与传统生存方式背离 ,作为工业化基础的科 学技术主导人类整体命运的地位不可动摇 ,我们已承认并且 接受了工业化的趋势 ,故此 ,我们对手工艺原汁原味的体现 , 只作为大工业中失掉的感性部分文化的补偿 ,来满足人们高 情感的需要 ,并且是从健全人类心智的立场 ,将手和手的直 接制造物的价值 ,渗透到社会进步与人类成长的进程之中 。

多层线性模型简介

多层线性模型简介
房价受到多种因素的影响,例如地理位置 、社区设施、房屋类型和建筑年代等。
结果分析
通过模型估计参数,分析各因素对房价的 直接影响以及与其他因素的交互作用,为 房地产投资和决策提供参考。
数据收集
收集包含上述因素以及房价的数据集。
模型建立
建立多层线性模型,探究各因素对房价的 影响。
变量处理
将地理位置、社区设施、房屋类型和建筑 年代作为自变量,将房价作为因变量。
意义
多层线性模型(Hierarchical Linear Model, HLM)可以更 好地处理具有复杂关系的多层次数据,为研究提供更准确的 估计和更丰富的信息。
多层线性模型概述
定义
多层线性模型是一种统计方法, 适用于处理具有嵌套结构的数据 ,例如学校中班级的学生成绩、 公司中部门员工的工作表现等。
需要专业知识
使用多层线性模型需要一定的 统计学和编程知识,以便正确 地构建、估计和解释模型。
高计算成本
对于非常大的数据集,多层线 性模型的计算成本可能变得非
常高。
06
CATALOGUE
研究展望与挑战
研究展望
拓展应用领域
随着数据科学和机器学习技术的不断发展,多层线性模型 的应用领域不断拓展,包括但不限于医学、生物学、社会 科学、金融等领域。
03
变量处理
将教育程度、工作经验和职业类型作 为自变量,将收入作为因变量。
结果分析
通过模型估计参数,分析教育程度对 收入的直接影响以及与其他变量的交 互作用。
05
04
模型建立
建立多层线性模型,探究教育程度对 收入的影响,同时考虑工作经验和职 业类型等其他因素的影响。
案例二:房价影响因素分析
研究背景

高级心理统计13-多层线性模型简介

高级心理统计13-多层线性模型简介

3. 多层线性分析中的模型及假设
一、两水平线性分析的数学模型
3. 多层线性分析中的模型及假设
一、两水平线性分析的数学模型
3. 多层线性分析中的模型及假设
二、扩展的两水平线性分析的数学模型
3. 多层线性分析中的模型及假设
二、扩展的两水平线性分析的数学模型
3. 多层线性分析中的模型及假设
三、多水平分析常用的简化模型类型 1、随机效应一元方差分析模型
3. 多层线性分析中的模型及假设
三、多水平分析常用的简化模型类型 2、随机效应单因素协方差分析模型
3. 多层线性分析中的模型及假设
三、多水平分析常用的简化模型类型 3、一般线性回归模型
3. 多层线性分析中的模型及假设
三、多水平分析常用的简化模型类型 4、随机系数回归模型
3. 多层线性分析中的模型及假设
四、多层线性模型中的参数估计
一般常用的层次模型的参数估计方法有:
1.迭代广义最小二乘法、 2.限制性的广义最小二乘估计 3.马尔科夫链蒙特卡洛法
4. 多元线性分析中一些值得注意的问题
一、预测变量Xij和Wj的中心化 1.对Xij的中心化 2.对Wj的中心化
二、多层线性模型预测变量解释率的计算
三、样本量、多重共线性、缺失值的问题
内容小结
1. 随机效应一元方差分析模型又称零模型,模型中没有考虑任何预 测变量对因变量的影响,可以计算跨级相关,即组间方差占总方 差的比例,或者说在总的变异中由水平2解释的方差的比例。
2. 随机效应单因素协方差分析模型与传统协方差模型的区别在于将 组间效应定义为随机效应而不是固定效应。
3. 在随机系数回归模型中,模型的截距是随机的,自变量对因变量 影响的斜率也是随机的。多层线性分析模型,可以通过对参数进 行不同的限定的都不同的模型形式,逐渐加一些参数,考虑较复 杂的模型,最终得到与数据拟合较优的模型。

多层线性模型介绍

多层线性模型介绍

多层线性模型介绍多层线性模型(Multilayer Linear Model)是一种机器学习模型,也是人工神经网络(Artificial Neural Network)的一种特例。

它由多个线性层组成,每个线性层之间通过非线性函数进行连接,以实现更强大的模型学习能力。

多层线性模型的基本结构如下:输入层(Input Layer)接收原始数据,中间层(Hidden Layer)进行特征转换,输出层(Output Layer)给出预测结果。

输入层、中间层和输出层的每个节点都是线性层,由多个输入值和对应的权重相加,并加上一个偏置项得到输出值。

而输入层、中间层和输出层之间的节点通过非线性函数激活,得到非线性模型输出。

多层线性模型的每一层都可以看作是特征提取器,通过学习不同的权重和偏置,每一层都能够将输入数据进行非线性映射。

中间层的节点数可以根据需要自定义,而层数一般较深。

模型的输出结果通过输出层的节点给出,可以是一个标量或向量,用于分类、回归等任务。

多层线性模型的训练过程非常重要。

通常使用反向传播算法进行训练,即通过计算损失函数对模型参数的偏导数,根据梯度下降法来迭代调整模型参数,使损失函数最小化。

训练过程中还会选择合适的学习率、正则化方法、优化算法等来提高模型的泛化能力和学习效率。

然而,多层线性模型也存在一些缺点。

首先,模型的结构较为复杂,参数较多,训练时间较长。

其次,模型的训练过程容易受到梯度消失和梯度爆炸等问题的影响,需要选择合适的激活函数和优化算法来解决。

此外,模型的解释性较弱,很难解释每个特征对结果的具体影响。

针对多层线性模型的缺点,研究人员提出了一系列的改进方法。

如引入卷积层、循环层等特殊层结构,可以更好地处理时空信息和序列数据;使用批标准化等技术,可以提高模型的训练效率和鲁棒性;引入残差连接、注意力机制等技术,可以提高模型的学习能力和泛化能力。

总而言之,多层线性模型作为一种机器学习模型,具有一定的应用价值和研究前景。

多层线性分析模型

多层线性分析模型

多层线性分析模型:集体层面结构的类型:集体层面结构的类型是很重要的,因为结构的类型体现了结构的性质,而结构的性质会影响其组合方式和测量方法。

Kozlowski和Klein(2000)[2]认为,集体层面的结构可分为3种:整体(global)结构、共享(shared)结构和生成(configural)结构。

整体结构是那些相对客观的、容易观察到的、源自于集体层面的集体的特征。

整体结构没有低层面的对应物,所以它不依赖于个体的知觉、经验、行为或个体的交互作用而存在。

团队大小就是一个整体结构,它不依赖于个体的特点和交互作用,但它会影响团队内成员的工作。

(我认为如“团队绩效”这种整体变量就属于这种类型,属于直接测量)共享结构是集体成员的共享(共同具有的)特征,只有当集体内的个体共享相似知觉时它才存在。

共享结构来自于集体成员个体的经验、认知和行为,并且在集体成员中发挥某种作用。

共享结构假设结构在不同层面上的有相似的表现,在不同层面上有相似的内容、意义和结构,是以突现(emergence)中的“组合”(composition)方式结合而成的。

James等(1974)就认为,个体可以产生对环境的知觉以形成某种心理气氛,但只有当这些知觉被共享时才会形成某种组织气氛。

因此,当研究者探讨共享结构时,需要阐明个体特征的组内一致性或可信性,以及集体成员之间的交互作用过程。

(本人认为我们课题同属于这种心理感知,个体层面属于个人心理感知,集体层面属于团队成员的一致感知。

属于团队层面和个体层面在测量结构上相似,我认为我们课题的研究应该采用此种结构。

)生成结构则描绘了集体中个体特征的排列方式或组合模式。

尽管生成结构(configural)与共享结构一样也产生于个体特征,但不同的是生成结构并没有假设集体中个体成员之间的相似性结合,个体在生成结构中的地位和作用是不同的。

共享结构假设单位成员有某种相似知觉,而生成结构中个体的特征却不是同质的,它体现了个体特征在集体层面上的另一种结合方式:个体特征以间断、复杂而非线形的突现中的“合成”(compilation)方式结合为集体特征。

多层线性模型在班级环境与学生行为问题研究中的应用

多层线性模型在班级环境与学生行为问题研究中的应用
抑郁 、 交 问题 、 维 问题 、 意 问题 、 纪性 行 为 、 社 思 注 违 攻
3 = 0 l 1i 1+ i 1
3 = 0 2 1 j 2 + i 2
() 3
() 4
击性行 为 8个 维 度共 18个 条 目, 有条 目分数 求 和 1 所
得到行为总分。分数越高表 明行为问题越严重。该量 表在 国内外 已被广 泛使 用 , 有较 好 的 信 度 和效度 。本
的 8个 维 度及行 为 总分 为 因变 量 , 级环 境 5个 维 度 班
2 调查 内容 .
为预测 变 量 , 成 以下 二层 H M 方程 : 构 L
班级环境的测量采用江光荣编制 的《 的班级》 我 问卷 。问卷 包括 师生 关 系 、 同学关 系 、 秩序 纪 律 、 竞争 和学 习负担 5个维 度 , 3 共 8个条 目。本次 测量 的克隆
1. 8岁 ( D=10 ) 42 S .5 。
存 在统 计 学 意 义 ( P<00 ) 并 且 班级 水平 的变 异 可 .1 ,
以解 释行 为 问题 总 变 异 的 1 . % 。 因此 建 立 多层 线 8 性模 型是 十 分必要 的 。
2 完 整模 型的构 建 . 根据 多层线 性模 型 的分析 原 理 , 分别 以行 为 问题
对 象和 方法
注 : } P<0 01 .
I 对象 .
以吉林 省 四平市 的 2所 小学 和 3所初 中
从零 模 型可 以看 出不 同班级 学生 的行为 问题差 异
为研究 对象 , 用 分层 随机 抽 样 的方 法 抽 取 10个 班 采 0 级, 每个 班 随机抽 取 3 5个 学 生 , 发放 35 0份 问卷 , 共 0 收 回问卷 32 0份 , 效 问卷 29 6份 , 中包括 男 生 6 有 1 其 13 6人 , 生 1 3 8 女 0人 , 学 16 7人 , 中 1 0 5 小 0 初 9人 。 3 小学 生 平 均 年 龄 1 . 16岁 ( D =10 ) 初 中 生 平 均 S .2 ,

多层线性模型学习报告

多层线性模型学习报告
在许多研究中,取样往往来自不同层级和单位,例如学生嵌套于班级或学校,员工嵌套 于公司或行业中,或者个人嵌套于家庭,家庭嵌套于社区(村庄)等,因而搜集的数据具有 分层嵌套的特点,这种数据带来了很多跨级(多层)的研究问题。
多层数据:多层(多水平)数据指的是观测数据在单位上具有嵌套的关系。引入多层数 据后,我们可以发现之前我们常用的传统线性回归模型已不再适用。原因如下:
到底何为显著?在这个问题上我阅读了一些书籍和文献,一些文献上指出,只要ρ(也 即 ICC)不为零即可。对于这一观点,我个人认为这种表述是不全面的。在一些情况下, 第一层次的组内差异(r ij)很小,甚至小到可以忽略不计,但是第二层次所代表的组间差 异(μ0j)很大,同样满足 ICC 不为零。以上面提到的教育研究为例,如果每个班级内部 个体差异不明显但是班级之间却有很大的差异,我们就可以将第一水平的观测直接合并为 第二水平的观测,然后直接对班级作分析,直接运用传统线性回归即可。为了表述的科学 性,我比较认同 James(1982)的看法:ICC 的范围在 0.00~0.50 之间。这样既满足了单 位内部个体之间有一定的变异性,也能保证单位之间存在变异性,适合建立多层线性模型。
二、多层线性模型的适用范围 1、横向研究: (1)教育研究领域:正如上文中所举的例子,传统的线性回归模型只能对涉及一层
数据的研究问题进行分析。按照传统建模的做法,要么将所有的更高一层的变量都看做是第 一水平的变量,直接在学生个体水平上对数据进行分析。这样做存在的问题是,班级变量对 同一个班级内的学生有相同的影响,不同班级学生对应不同的班级变量,而不区分班级对学 生的影响,假设同一班级的学生间相互独立是不合理的,同样对不同班级的学生和相同班级 的学生作同一假设也是不合理的。 要么将第一水平的观测直接合并为第二水平的观测,然 后直接对班级作分析,这样做的主要问题是丢失了班级内学生个体间的差异的信息,而在实 际中,这一部分的变异有可能占总变异中很大的一部分。 既然以上两种传统建模方法都行 不通,那么就有必要进行多层线性建模。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ (1)教育研究领域 ❖ EG:学生镶嵌于班级,班级镶嵌于学校,或者学生
简单地镶嵌于学校,这时学生代表了数据结构的第 一层,而班级或学校代表的是数据结构的第二层; 如果数据是学生镶嵌于班级,而班级又是镶嵌于学 校,那么就是三层数据结构。
调研学习
3
多层线性模型简介
❖ (2)组织心理学研究领域 ❖ Eg:雇员镶嵌于不同的组织、工厂 ❖ (3)发展心理学领域 ❖ Eg:纵向研究、重复研究 ❖ 在一段时间内对儿童进行多次观察,那么不同时间
例如,来自同一家庭的子女,其生理和心理 特征较从一般总体中随机抽取的个体趋向于更为 相似,即子女特征在家庭中具有相似性,数据是 非独立的。
调研学习
6
违背了传统回归(OLS)中关于残差相互 独立的假设
采用经典方法可能失去参数估计的有效性 并导致不合理的推断结论。
调研学习
7
经典方法框架下的分析策略
经典的线性模型只对某一层数据的问题进行 分析,而不能将涉及两层或多层数据的问题进行 综合分析。
但有时某个现象既受到水平1变量的影响, 又受到水平2变量的影响,还受到两个水平变量 的交互影响(cross-level interaction)。
调研学习
8
个体的某事件既受到其自身特征的影响,也受 到其生活环境的影响,即既有个体效应,也有环 境或背景效应(context effect)。
例如,学生(个体)的学习成绩与学生的勤 奋程度有关,还与学校的师资配备有关。
多层线性模型简介
Hierarchical Linear Model (HLM)
调研学习
1
主要内容
❖ 一、多层线性模型简介 ❖ 二、多层线性模型基本原理 ❖ 三、多层线性模型HLM软件的应用
调研学习
2
多层线性模型简介
❖ 1、多层数据结构的普遍性
❖ 多层(多水平)数据指的是观测数据在单位上具有 嵌套的关系。
调研学习
15
图2:只考虑学校差异忽略学生差异回归直线
调研学习
16
HLM数学模型
❖ (3)如果假设不同学校入学成绩对高考 成绩的回归直线截距不同,斜率相同 (平均学习成绩之间存在差异),得到 如图3的结果,从图中结果可以看出,不 同学校学生平均高考成绩之间存在差异。
调研学习
17
图3:考虑不同学校平均成绩差异的回归直线
调研学习
18
HLM数学模型
❖ (4)对73所学校分别做回归分析,得到 如图4的结果,如图4所示,从图中结果 可以看出,不同学校回归直线的截距和 斜率均不同,即:不同学校学生平均高 考成绩之间存在差异,入学学业成绩对 高考成绩的影响强度不同。
调研学习
19
图4:考虑不同学校平均成绩差异 和入学对毕业成绩影响程 度差异的回归直线
考虑方法:
(1)如果用传统的线性回归分析,直接在学生
水平上进行分析,得出入学学业成绩对高考
成绩之间结果可以看出,传统回归分析没有区分
不同的学校之间的差调研异学习。
13
图1:不考虑学校之间差异的回归直线
调研学习
14
HLM数学模型
❖ (2)如果将数据进行简单合并,用每个学校 学生的平均成绩代替这个学校的成绩,直接 在学校水平上估计入学成绩对高考成绩的影 响,得到一条回归直线,如图2所示,这种方 法忽略了不同学生(个体)之间的差异;
调研学习
20
❖ 在许多研究中,取样往往来自不同层级和单位,这 种数据带来了很多跨级(多层)的研究问题,解决 这些问题的一种新的数据分析方法——多层模型分 析技术。
❖ 这一方法的开创及发展的主要贡献者之一是英国伦 敦大学的Harvey Goldstein教授及研究者把这种方 法称作“多层分析”。另一主要开拓者美国密歇根 大学的Stephen W.Raudenbush教授和同行把它称为 “分层线性模型结构”。在此,我们按照张雷等人 的叫法称其为“多层线性模型”或“多层模型”。
调研学习
21
多层线性模型简介
❖ 3、多层线性模型分析方法
❖ 回归的回归方法
❖ Eg:学生成绩(X)
学习动机(Y)


班级教师教学水平(W)
调研学习
11
多层线性模型简介
❖ (3)组内分析组间分析
❖ 对相同的数据进行三次计算:
❖ 一是在组内的个体层上进行的分析,称为组内效应
❖ 二是通过平均或整合第一层中的个体数据,得到第二层的组 间数据,称为组间效应
❖ 三是忽视组的特性而对所有的数据进行分析,称为总效应。
❖ 在此基础上,计算组内效应和组间效应在总效应的比例,从 而确定变异来自于组间还是组内。
调研学习
10
多层线性模型简介
❖ (1)只关注个体效应,而忽视组效应
❖ 只在个体这一层数据上考虑变量间的关系, 那么导致所观测到的效应既包含个体效应, 又包含组效应,从而增大了犯一类错误的概 率,夸大了变量间的关系。
❖ (2)在组水平上进行分析
❖ 把数据集中起来, 使其仅在第二层的组间发 挥作用,从而丢失了重要的个体信息。
❖ 组内分析组间分析的方法较前两种方法更多地考虑到了第一 层数据及第二层数据对变异产生的影响,但无法对组内效应 和组间效应做出具体的解释,也就无法解释为什么在不同的 组变量间的关系存在差异。
调研学习
12
HLM数学模型
❖ 例如:对73个学校1905名学生进行调查,目 的是考虑其刚上高中时的入学成绩与三年后 高考成绩之间的关系。
企业的创新能力与企业自身的创新投入、学 习能力有关,还与企业所属产业的R&D强度有关。
调研学习
9
多层线性模型简介
❖ 2、多层数据的传统分析方法 ❖ 个体的行为既受个体自身特征的影响,也受
到其所处环境的影响,所以研究者一直试图 将个体效应与组效应(背景效应或环境效应) 区分开来。 ❖ 个体效应:由个体自身特征所造成的变异。 ❖ 组效应:由个体所处环境所造成的变异。
的观测数据形成了数据结构的第一层,而儿童之间 的个体差异则形成了数据结构的第二层。这样,就 可以探索个体在其发展趋势或发展曲线上的差异。
调研学习
4
层次结构数据的普遍性
水平2
水平1
两水平层次结构数据
调研学习
5
层次结构数据为一种非独立数据,即某观察值 在观察单位间(或同一观察单位的各次观察间) 不独立或不完全独立,其大小常用组内相关(intraclass correlation,ICC)度量。
相关文档
最新文档