多层线性模型简介两水平模型
HLM多层线性模型教程

HLM多层线性模型教程:[1]认识多层线性模型••|•浏览:111•|•更新:2014-03-01 09:431.在社会科学研究进行取样时,样本往往来自于不同的层级和单位,由此得到的数据带来了很多跨级(多层)。
多层线性模型又叫做“多层分析(multilevel analysis)”或者是“分层线性模型(hierarchical liner modeling)”。
2.在社会科学中,多层线性的结构非常具有普遍性,如以下图列出四种常见的情况3.拿两层举例子,假如说现在我们考察学生自我效能感对学生成绩的影响,在204.所学校中抽取了1000名学生,那么很有可能的情况就是有些学校学生的自我效能感平均值较高,而这就有可能是因为学校为贵族学校,学生的经济水平很高。
而也可能有民工学校,经济水平较低,自我效能感普遍较低。
那么这就存在一种情况就是学生的成绩受到学生个体的自我效能感影响,而每个学校的自我效能感可能与整个学校的整体经济水平有关。
那么这就是学生嵌套在学校之间的例子。
5.多层线性模型的基本公式6.拿上面的例子我们可以写出对于这个案例的多层线性模型。
第一层:学生成绩=β0+β1*学生自我效能感+r第二层:β0=γ00+γ01*学校社会经济生活水平+μ1β1=γ10+γ11*学校社会经济生活水平+μ27.那么对于这样一类的多层线性的数据,我们该如何进行数据处理呢,小编将持续为大家呈现与讲解。
原delta数据工作室HLM多层线性模型教程:[3]认识HLM6.0界面••|•浏览:186•|•更新:2014-03-04 09:44•••••••分步阅读采用HLM6.0分析多层线性模型能够非常直观的建立方程式,每层变量清晰明了,使用界面友好简洁。
下面我将为大家介绍HLM 6.0的主界面,并告诉大家各界面的主要功能。
工具/原料•HLM6.0方法/步骤1.我们打开HLM的主界面,最上面的工具栏就是我们用到的主要菜单,首先file下面我们可以创建新的hlm/mdtm文件(hlm中最重要的文件),如以下图,假如我们已经建立好了HLM的MDM文件,那么我们在下次打开的时候需要选择"make new mdm from old mdm files",HLM不能直接打开之前的文件,可以从之前的MDM文件中运行。
多层线性模型简介

多层线性模型——零模型
第一层:
Yij 0 j eij
var(eij )
2
第二层:
0 j 00 u0 j
00 uoj eij
var(0 j ) 00
合并模型: Yij
多层线性模型——零模型
0 j指第j个二层单位Y的平均值
多层线性模型简介
(2)组织心理学研究领域 Eg:雇员镶嵌于不同的组织、工厂 (3)发展心理学领域 Eg:纵向研究、重复研究 在一段时间内对儿童进行多次观察,那么不同时间 的观测数据形成了数据结构的第一层,而儿童之间 的个体差异则形成了数据结构的第二层。这样,就 可以探索个体在其发展趋势或发展曲线上的差异。
ij 0j 1j ij ij
var(eij )
2
多层线性模型——完整模型
第二层:
0j
00
W 01
j
u0 j
1 j 10 11W j u1 j
var(0 j ) 00
var(1 j ) 11
cov(0 j , 1 j ) 10
多层线性模型简介
3、多层线性模型分析方法 回归的回归方法 Eg:学生成绩(X) 学习动机(Y) 班级教师教学水平(W) (1)求各个班级学生成绩对学习动机的回归
Yij 0 j 1j X i j rij
多层线性模型简介
(2)求教师教学水平对β 0j和 β
1j
的回归方程
00
eij指第j个二层单位Y的变异
指所有二层单位的Y的总体平均数 0 j 指第二层方程的残差(随机项) 跨级相关:指Y的总体变异中有多大比例是由 第二层的变异引起的。
(完整版)多层线性模型介绍

多层线性模型:HLM(hierarchical linear model)计量模型,为解决传统统计方法如回归分析在处理多层嵌套数据时的局限而产生的,是目前国际上较前沿的一套社会科学数据分析的理论和方法,优势体现两个方面:一是解决了数据嵌套问题;二是为追踪研究或重复测量研究引入了新方法。
传统的线性模型,例如,ANOV A或者回归分析,只能对涉及某一层数据的问题进行分析,而不能将涉及两层或多层数据的问题进行综合分析,而多层线性模型对解决这些问题提供了有效的统计方法。
多层线性模型的参数估计方法与进行两次回归的方法在概念上是相似的, 但二者的统计估计和验证方法却是不同的, 并且多层线性模型的参数估计方法更为稳定。
因此多层模型的应用范围也相当广泛,与传统的用于处理多元重复测量数据的方法相比,该模型具有对数据资料要求低、能够明确表示个体在第一层次的变化情况、可以通过定义第一层次和第二层次的随机变异解释个体随时间的复杂变化情况、可以考虑更高一层次的变量对于个体增长的影响等特点。
多层线性模型( multilevel model ) 由Lindley 等于1972 年提出,是用于分析具有嵌套结构数据的一种统计分析技术。
作为传统方差分析模型的有效扩展Korendijk 等和Duncan 等众多的研究者对多层线性模型进行了广泛研究。
20 多年来,该方法在社会科学领域获得了广泛应用。
近年来,有研究者提出使用多层线性模型进行面板研究,并且已在社会科学领域取得较大进展。
面板研究中多层线性模型的应用优势:由上述分析可知,在面板研究中,传统的数据分析方法会遇到很多难以克服的困难,而多层线性模型可以很好地处理上述问题。
近年来,越来越多的面板研究开始采用多层线性模型的分析方法,显示出多层线性模型在面板研究中的独特优势。
首先,多层线性模型通过考察个体水平在不同时间点的差异,明确表达出个体在层次一的变化情况,因而对于数据的解释(个体随时间的增长趋势)是在个体与重复观测交互作用基础上的解释,即不仅包含不同观测时点的差异,也包含个体之间存在的差异。
(完整版)多层线性模型介绍

(完整版)多层线性模型介绍多层线性模型:HLM(hierarchical linear model)计量模型,为解决传统统计方法如回归分析在处理多层嵌套数据时的局限而产生的,是目前国际上较前沿的一套社会科学数据分析的理论和方法,优势体现两个方面:一是解决了数据嵌套问题;二是为追踪研究或重复测量研究引入了新方法。
传统的线性模型,例如,ANOV A或者回归分析,只能对涉及某一层数据的问题进行分析,而不能将涉及两层或多层数据的问题进行综合分析,而多层线性模型对解决这些问题提供了有效的统计方法。
多层线性模型的参数估计方法与进行两次回归的方法在概念上是相似的, 但二者的统计估计和验证方法却是不同的, 并且多层线性模型的参数估计方法更为稳定。
因此多层模型的应用范围也相当广泛,与传统的用于处理多元重复测量数据的方法相比,该模型具有对数据资料要求低、能够明确表示个体在第一层次的变化情况、可以通过定义第一层次和第二层次的随机变异解释个体随时间的复杂变化情况、可以考虑更高一层次的变量对于个体增长的影响等特点。
多层线性模型( multilevel model ) 由Lindley 等于1972 年提出,是用于分析具有嵌套结构数据的一种统计分析技术。
作为传统方差分析模型的有效扩展Korendijk 等和Duncan 等众多的研究者对多层线性模型进行了广泛研究。
20 多年来,该方法在社会科学领域获得了广泛应用。
近年来,有研究者提出使用多层线性模型进行面板研究,并且已在社会科学领域取得较大进展。
面板研究中多层线性模型的应用优势:由上述分析可知,在面板研究中,传统的数据分析方法会遇到很多难以克服的困难,而多层线性模型可以很好地处理上述问题。
近年来,越来越多的面板研究开始采用多层线性模型的分析方法,显示出多层线性模型在面板研究中的独特优势。
首先,多层线性模型通过考察个体水平在不同时间点的差异,明确表达出个体在层次一的变化情况,因而对于数据的解释(个体随时间的增长趋势)是在个体与重复观测交互作用基础上的解释,即不仅包含不同观测时点的差异,也包含个体之间存在的差异。
多层线性分析模型

多层线性分析模型:集体层面结构的类型:集体层面结构的类型是很重要的,因为结构的类型体现了结构的性质,而结构的性质会影响其组合方式和测量方法。
Kozlowski和Klein(2000)[2]认为,集体层面的结构可分为3种:整体(global)结构、共享(shared)结构和生成(configural)结构。
整体结构是那些相对客观的、容易观察到的、源自于集体层面的集体的特征。
整体结构没有低层面的对应物,所以它不依赖于个体的知觉、经验、行为或个体的交互作用而存在。
团队大小就是一个整体结构,它不依赖于个体的特点和交互作用,但它会影响团队内成员的工作。
(我认为如“团队绩效”这种整体变量就属于这种类型,属于直接测量)共享结构是集体成员的共享(共同具有的)特征,只有当集体内的个体共享相似知觉时它才存在。
共享结构来自于集体成员个体的经验、认知和行为,并且在集体成员中发挥某种作用。
共享结构假设结构在不同层面上的有相似的表现,在不同层面上有相似的内容、意义和结构,是以突现(emergence)中的“组合”(composition)方式结合而成的。
James等(1974)就认为,个体可以产生对环境的知觉以形成某种心理气氛,但只有当这些知觉被共享时才会形成某种组织气氛。
因此,当研究者探讨共享结构时,需要阐明个体特征的组内一致性或可信性,以及集体成员之间的交互作用过程。
(本人认为我们课题同属于这种心理感知,个体层面属于个人心理感知,集体层面属于团队成员的一致感知。
属于团队层面和个体层面在测量结构上相似,我认为我们课题的研究应该采用此种结构。
)生成结构则描绘了集体中个体特征的排列方式或组合模式。
尽管生成结构(configural)与共享结构一样也产生于个体特征,但不同的是生成结构并没有假设集体中个体成员之间的相似性结合,个体在生成结构中的地位和作用是不同的。
共享结构假设单位成员有某种相似知觉,而生成结构中个体的特征却不是同质的,它体现了个体特征在集体层面上的另一种结合方式:个体特征以间断、复杂而非线形的突现中的“合成”(compilation)方式结合为集体特征。
多水平模型及其在经济分析中的应用

多水平模型及其在经济分析中的应用 (模型研究与案例分析)石磊云南财经大学统计与数学学院,昆明,6502211. 多水平线性模型理论 1.1 两水平线性分析模型无条件两水平模型假设数据具有两个层次,表示第个个体(subject,第二层次)的第i 次(第一层次)观测变量,此时表示2水平,而代表1水平。
首先考虑最简单的无条件两水平模型,又称为截距模型(intercept -only model)或空模型(empty model),是两水平模型建模的基础。
其模型形式为:ij y i i j 水平1: 0ij i ij y e β=+ (2.3.1) 水平2: 000i u 0i βγ=+ (2.3.2) 将(2.3.2) 式代入(2.3.1)可得总模型为:000ij i ij y u e γ=++ (2.3.3)在总模型中,00γ可称为固定效应部分,0i u e ij +称为随机效应部分,该模型的水平1和水平2均没有解释变量,因此称其为无条件两水平模型。
其中(2.3.1)式中,0i β别表示第i组的平均值,2~(0,ij e N )σ为相互独立的水平1残差;在(2.3.2)式中,00γ表示总截距(即的总平均水平),ij y 20~(0,)i u N 0u σ为相互独立的截距项水平2残差,且。
0cov(,)0i ij u e =通过截距模型可以计算组内相关系数ICC ,根据经典定义(Shrout & Fleiss,1979),ICC被定义为组间方差与总方差之比。
对于截距模型而言,其ICC定义为:22200()u u ICC σσσ=+,其中20u σ表示组间方差或组水平方差,2σ则表示为组内方差或个体水平方差。
ICC既能反映组间变异,也能表示组内个体间的相关,其范围在0到1之间,当ICC值趋于1时表示组间方差相对于组内方差非常大,相反当ICC值趋于0时表示没有组群效应,此时两水平模型可简化为固定效应模型。
多层线性模型——原理与应用解读

三、多层线性模型的应用
第三步,将检验假设2关于组织层面调节变量对因变量直 接影响的跨层次效应,进一步验证截距项的存在是否可由 组织层面加以解释和预测。 截距项预测模式 Level-1: Yij=β0j+β1jXij+β2jZij+ βcj(控制变量) +rij Level-2:β0j=γ00+γ01Wij+ γ02Gij+μ0j β1j=γ10+μ1j β2j=γ20+μ2j βcj=γc0+μcj
一、多层线性模型简介
3、多层线性模型分析方法 回归的回归方法 Eg:个体成就目标导向(X)
ቤተ መጻሕፍቲ ባይዱ
个体创造力(Y)
组织环境(W) (1)求各个组织个体成员的成就目标导向对创造力的回 归 Yij 0 j 1 j X ij rij (2)求组织环境对 0 j 和 1 j 的回归方程 0 j 00 01Wj 0 j
三、多层线性模型的应用
具体检验步骤及多层线性模型构建如下: 第一步,检验跨层次效果是否存在。只有组内与组间的 变异成份显著,才能够进行下一步的截距与斜率项分析。 虚无模式 Level-1:Yij=β0j+rij,式中rij ~N(0,σ2) Level-2:β0j=γ00+μ0j,式中μ0j ~ N(0,τ00)
式中,γ11= Level-2的斜率(用来检验H3a) γ12= Level-2的斜率(用来检验H3b) γ21= Level-2的斜率(用来检验H3c ) γ22= Level-2的斜率(用来检验H3d)
多层线性模型作业--

多层线性模型摘要在社会科学研究中,调查得来的数据往往具有层次结构(嵌套结构)的特点。
在层次结构数据中,不仅有描述个体的变量,而且有个体组成的更高一层的变量。
如研究学生的学术成绩,要考虑学生的社会经济地位(SES)即个体水平的变量,同时可能还要考虑不同学校间学生/老师比例的差异对学生学术成绩的影响也就是学校层次的预测变量。
这种数据带来了很多跨级(多层)的研究问题,为了解决这些问题,出现了一种新的数据分析方法——多层线性模型。
本文第一部分介绍多层线性模型以及多层模型的类型。
第二部分传统统计技术的局限性及多层线性模型的优势。
第三部分说明多层线性模型的基本原理以及两个应用(直接来自篇文献)。
第四部分是总结和拓展。
1、多层线性模型以及多层模型的类型多水平、多层次的数据结构普遍存在,如学生嵌套于班级,班级有嵌套与学校。
传统的线性模型,如方差分析和回归分析,只能涉及一层数据的问题进行分析,不能综合多层数据问题。
在实际研究中,更令人感兴趣的是学生一层的变量与班级一层的变量之间的交互作用,比如,学生之间的个体差异在不同班级之间可能是相同的、也可能是不同的。
学生数据层中,不同变量之间的关系可能因班级的不同而不同。
因此,学生层的差异可以解释为班级层的变量。
另一种类型的两层嵌套数据来自纵向研究数据,多层(多水平)数据指的是观测数据在单位上具有嵌套的关系。
比如在教育研究中,学生镶嵌于班级,在此,学生代表了数据结构的第一层,而班级代表了数据结构的第二层。
对于第一层的学生数据,研究者可以提出一系列的研究问题,也可以针对第二层的班级又提出一系列的研究问题。
在教育研究中,更为重要和令人感兴趣的正是关于学生层的变量与班级层变量之间的交互作用问题。
比如,学生之间的个体差异在不同班级之间可能是相同的,也可能是不同的;在学生层数据中,不同变量之间的关系也可能因班级的不同而不同,这些学生层的差异可以解释为班级层的变量的函数。
多层线性模型由Lindley等于1972年提出,是用于分析具有嵌套结构数据的一种统计分析技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g
0j
00
u0 j
1 j g 10
u1 j
何谓多层线性模型?
多层线性模型又称为:
多水平分析( Multilevel Analysis ) 混合模型(Mixed Models) 随机系数模型(Random Coefficient Models)
HLM的发展
快速发展与应用 HLM(Bryk,Randenbush,Seltzer& Congdon,1988); Mlwin(Rabash,Prosser&Goldstein, 1989); VARCL(Longford,1988); MPLUS(Muthen,1992); SAS, SPSS
i ~N0,2
回归分析模型的假设
线性(Linearity) 误差正态分布( normally
distributed) 误差方差齐性(homoskedastic) 误差或观测个体之间相互独立
(independent)
什么是多层(多水平)数据?
多层(多水平)数据指的是观测数据在单位上 具有嵌套的关系。如学生嵌套于班级,班级嵌 套于学校等。
同一单位内的观测,具有更大的相似性。同一 个班级的学生由于受相同的班级环境等因素的 影响有更大的相似性。
嵌套于背景(contextual)特征 的多层数据举例
学生水平特征的观测,嵌套于班级或学校 兄弟姊妹特征的观测,嵌套于家庭 个体之间的观测嵌套于社区 个体不同时间点的重复测量嵌套于个体 病人嵌套于医院 参数的估计嵌套于不同的研究 (元分析,meta-analysis)
对多层数据,我们了解什么...
随机选取两个观测,同一组内的观测之间的相似性要 比不同组观测之间的相似性大;
如果回归模型不能解释所有的组间的差异(事实上传 统回归不可能做到这一点),那么同一组内的观测之间 的误差可能相关;
这就违背了传统回归(OLS)中关于残差相互独立的 假设;
至少,传统回归分析得到的标准误的估计不正确(太 小)。
多层线性模型简介
Introduction to HLM
北京师范大学心理学院 刘红云
主要内容
为什么要用多层线性模型?
回归分析模型回顾 多层(多水平)数据特点
什么是多层线性模型?
HLM发展 HLM数学模型 HLM常见简化模型
两水平模型应用举例 应该注意的问题
回归分析模型
Yi 01Xii
模型的另一种表达
Yij 0 1 X ij u j rij
0 u j 1 X ij rij
0 j 1 X ij rij
这里
0j 0 uj
多层线性模型
水平1(如:学生)
Y ij0j1jXijeij
水平2(如:学校)
Yij---第j个 学校的第i 个学生
(1)如果用传统的线性回归分析,直接在 学生水平上进行分析,得出入学学业成 绩对高考成绩之间的一条回归直线,如 下图1所示,从图1的结果可以看出,传 统回归分析没有区分不同的学校之间的 差异。
图1:不考虑学校之间差异的回归直线
HLM数学模型
(2)如果将数据进行简单合并,用每个学校 学生的平均成绩代替这个学校的成绩,直接在 学校水平上估计入学成绩对高考成绩的影响, 得到一条回归直线,如图2所示,这种方法忽 略了不同学生之间的差异;
0 j g 00 1 j g 10
HLM常用模型类型
随机系数回归模型(Random-Coefficients Regression Model)
第一水平 :
第二水平:
Yij0j1jXijeij
0 j g 00 u0 j 1j g 10 u1j
HLM应用举例
hsb1.sav和hsb2.sav 在水平一的数据文件hsb1.sav中,有7185个观测 样本和四个第一水平的变量(不包含第二水平 指标变量:学校编号ID),这四个变量所表示 的含义如下: minority,学生的种族(1=少数民族,0=其他) female:学生性别(1=女,0=男) ses:学生的社经地位,由学生父母受教育程度、 职业和收入合成,变量已被标准化 mathach:学生的数学学业成绩
Intercept
Residual term specific to unit j
Value of X for observation i in unit j
Coefficient
一个简单的多层线性模型
Residual term
Y Xur specific to ij 0 1 ij j ij observation i in unit j
Outcome for observation i in unit j
Intercept
Residual term specific to unit j
Value of X for observation i in unit j
Coefficient
一个简单的多层线性模型
Residual term
Coefficient
uj表示什么?
残差项 定义第 j 组(第二水平) 对于第 j组的所有观测都相同 只有下标 j, 没有下标 i 解释: 总截距和第 j组的截距之间的差异
rij表示什么?
残差项 定义第 j 组第i 个观测 均值为0
模型的特征
注意到: 我们有:
ij = uj + rij
多层线性模型
合并模型:
gg g g Y i j0 0 1 X i0 j0 W j 1 1 X i W 1 j j u 0 j u 1 j X i j e ij
其中:yij表示因变量(如三年后的 高考成绩),xij表示第一水平(学 生)的预测变量,Wj表示第二水平 (学校)的预测变量。
多层线性模型
多层线性模型
回归模型的一种 常用来回答背景变量(如班级环境等)与个体
变量(如学生特征)之间的关系 常用来估计组内(如班级内)和组间(如班级
间)变量间的关系 以及跨水平的交互作用。 例如, 学校组织气氛对学生学业成绩的影响;
学校组织气氛与学生社会经济地位的交互作 用。
多层线性模型简介
多层线性模型--一种处理嵌套数据的 统计方法。通过定义不同水平(层)的 模型,将随机变异分解为两个部分,其 一是第一水平个体间差异带来的误差, 另一个是第二水平班级的差异带来的误 差。可以假设第一水平个体间的测量误 差相互独立,第二水平班级带来的误差 在不同班级之间相互独立。多水平分析 法同时考虑到不同水平的变异 。
Y ij01Xijujrij
Outcome for observation i in unit j
一个简单的多层线性模型
Y ij01Xijujrij
Outcome for observation i in unit j
Intercept
一个简单的多层线性模型
Y ij01Xijujrij
多层线性模型
截距与斜率之间的相关系数:
r(0j,1j )
01
1
(0011)2
截距与斜率之间的相关系数大小表示了不同学 校平均高考成绩与入学成绩对高考成绩影响强 度之间的关系,如果相关系数大于零,表示平 均成绩越高,入学成绩对期末成绩的影响越大。
HLM常用模型类型
随机效应一元方差分析模型(one-way Anova with Random Effect)
Y Xur specific to ij 0 1 ij j ij observation i in unit j
Outcome for observation i in unit j
Intercept
Residual term specific to unit j
Value of X for observation i in unit j
多层线性模型
多层分析方法提供了解决嵌套数据关系 的合理的正确的统计方法。下面结合上 面提到的例子,介绍两水平模型的一般 数学表示:
多层线性模型
水平1(如:学生)
Y ij0j1jXijeij
水平2(如:学校)
Yij---第j个 学校的第i 个学生
0j
g 00
g 01 W j
u0j
g g 1j 10 1W ห้องสมุดไป่ตู้ju 1j
HLM常用模型类型
随机效应单因素协方差分析(One-way ANCOVA with Random Effects)
水平1: 水平2:
Y ij0j1jX ijeij
0 j g 00 u0 j 1 j g 10
HLM常用模型类型
一般的线性回归模型 第一水平 :
第二水平:
Yij0j1jXijeij
模型的假设条件为:
( 1 ) eij~ N (0 ,2), eij间 相 互 独 立 ; ( 2 ) u u 1 0jj ~ N (0 , ), V u u a 1 0jj r 1 00 0 1 0 1 1
( 3 ) C(u o 0j,eiv )jC(u o 1j,eiv )j0, C(u o i1j,uiv 2j)0 ,j1j2
Outcome for observation i in unit j
Intercept
Value of X for observation i in unit j
Coefficient
一个简单的多层线性模型
Y ij01Xijujrij
Outcome for observation i in unit j
独立性不满足带来的问题
传统回归系数估计的标准误依赖于 相互独立的假设;
如果独立性的假设不满足,得到的 标准误的估计往往偏小,因此所犯 第一类错误的概率往往偏大。
表1 当组内相关存在时,第一类错误限定 为0.05时,实际所犯第一类错误的概率
HLM数学模型