多层线性模型简介

合集下载

hlm模型的概念和原理

hlm模型的概念和原理

hlm模型的概念和原理
HLM模型(Hierarchical Linear Model,分层线性模型)是一种用于分析多层数据结构的统计方法,可以用于研究个体差异、群体差异以及群体与个体相互作用等方面的问题。

在社会科学、心理学、医学等领域得到广泛应用。

HLM的原理是基于线性模型的,但它将数据分为多个层次,并对每个层次的变量进行单独分析和建模。

HLM可以解决一些传统线性模型无法解决的问题,例如在研究个体差异时,传统线性模型只能考虑个体内差异,而HLM可以同时考虑个体内和个体间的差异。

在具体实现上,HLM模型涉及到两个重要的专业术语,分别是‘固定效应’和‘随机效应’。

固定效应是指做HLM模型时,不涉及group 干扰时的影响关系研究;随机效应可指在group层面时的影响关系情况。

如果完全不考虑group,即不考虑‘聚集性’问题,那么直接使用线性回归即可,并不需要使用HLM模型;而HLM模型就是处理‘聚集性’问题的一种进阶方法。

如果说使用HLM模型,并且在分析时只考虑个体效应不需要考虑group层面的效应,即只有固定效应项并无随机效应项;如果说使用HLM模型,并且在分析时考虑个体效应的同时还考虑group层面的效应,即包括固定效应项和随机效应项。

分层线性模型

分层线性模型

分层线性模型(hierarchical linear model HLM)的原理及应用一、概念:分层线性模型(hierarchical linear model HLM)又名多层线性模型(Multilevel Linear Model MLM)、层次线性模型(Hierarch Linear Mode1)、多层分析(Multilevel Analysis/Model)。

相对于传统的两种统计方法:一般线性模型(general linear model GLM)和广义线性模型(generalized linear models GLMs),它们又有所不同,HLM中的线性模型指的是线性回归,不过它与一般的分层线性回归(Hierarchical Regression)又是不同的,具体的不同见下面数学模型部分。

HLM又被通俗的称为“回归的回归”。

Wikipedia:“一般线性回归和多重线性回归都是发生在单一层面,HLM相对于更适用于嵌套数据(nest data)。

”在理解HLM之前应了解有关回归分析和嵌套设计(分层设计)的基本知识。

二、模型:1、假设:由于个体行为不仅受个体自身特征的影响,也受到其所处环境(群体/层次)的影响。

相对于不同层次的数据,传统的线性模型在进行变异分解时,对群组效应分离不出,而增大模型的误差项。

而且不同群体的变异来源也可能分布不同,可能满足不了传统回归的方差齐性假设。

在模型应用方面,不同群体(层次)的数据,也不能应用同一模型。

鉴于传统方法的局限性,分层技术则解决了这些生态谬误(Ecological Fallacy)。

它包含了两个层面的假设:a、个体层面:这个与普通的回归分析相同,只考虑自变量X对因变量Y的影响。

b、群组层面:群组因素W分别对个体层面中回归系数和截距的影响。

2、数学模型:a、个体层面:Yij=Β0j+Β1jXij+eijb、群组层面:Β0j=γ00+γ01Wj+U0jΒ1j=γ10+γ11Wj+U1j涉及到多个群组层次的时候原理与之类似,可以把较低级层次的群组,如不同的乡镇层面与不同的县市层面,可以这样理解,乡镇即是一个个体,群组即是不同的县市。

多层线性模型与HLM软件应用概述

多层线性模型与HLM软件应用概述

多层线性模型与HLM软件应用概述
多层线性模型(Hierarchical Linear Model, HLM)是一种多层次的
数据分析方法,可以用于处理分层结构的数据,如学生嵌套在班级中,班
级嵌套在学校中等。

HLM软件是用于实施多层线性模型分析的统计软件,
其中常用的有HLM7、HLM6和MLwiN等。

HLM软件是专门用于多层线性模型分析的工具,主要有以下几个常见
的应用:
1.教育研究:HLM软件可以用于教育研究中的学校和班级层次的分析。

例如,可以通过学生嵌套在班级和学校中,分析学校和班级对学生成绩的
影响,从而得出不同层次间的差异。

2.医学研究:HLM软件可以用于医学研究中的多层次数据分析。

例如,可以分析患者嵌套在医院和地区中,探究医院和地区对患者健康指标的影响。

3.组织行为研究:HLM软件可以应用于组织行为研究中的多层次数据
分析。

例如,可以分析员工嵌套在团队和组织中,探究团队和组织特征对
员工绩效的影响。

4.社会科学研究:HLM软件可以用于社会科学研究中的多层次数据分析,如家庭、社区和城市等不同层次的分析。

例如,可以分析个体嵌套在
家庭和社区中,研究家庭和社区对个体幸福感的影响。

总之,多层线性模型和HLM软件可以用于处理分层结构的数据,帮助
研究者深入分析不同层次间的差异。

在教育、医学、组织行为和社会科学
等领域具有广泛的应用前景,能够提供更准确和全面的研究结果。

(完整版)多层线性模型介绍

(完整版)多层线性模型介绍

多层线性模型:HLM(hierarchical linear model)计量模型,为解决传统统计方法如回归分析在处理多层嵌套数据时的局限而产生的,是目前国际上较前沿的一套社会科学数据分析的理论和方法,优势体现两个方面:一是解决了数据嵌套问题;二是为追踪研究或重复测量研究引入了新方法。

传统的线性模型,例如,ANOV A或者回归分析,只能对涉及某一层数据的问题进行分析,而不能将涉及两层或多层数据的问题进行综合分析,而多层线性模型对解决这些问题提供了有效的统计方法。

多层线性模型的参数估计方法与进行两次回归的方法在概念上是相似的, 但二者的统计估计和验证方法却是不同的, 并且多层线性模型的参数估计方法更为稳定。

因此多层模型的应用范围也相当广泛,与传统的用于处理多元重复测量数据的方法相比,该模型具有对数据资料要求低、能够明确表示个体在第一层次的变化情况、可以通过定义第一层次和第二层次的随机变异解释个体随时间的复杂变化情况、可以考虑更高一层次的变量对于个体增长的影响等特点。

多层线性模型( multilevel model ) 由Lindley 等于1972 年提出,是用于分析具有嵌套结构数据的一种统计分析技术。

作为传统方差分析模型的有效扩展Korendijk 等和Duncan 等众多的研究者对多层线性模型进行了广泛研究。

20 多年来,该方法在社会科学领域获得了广泛应用。

近年来,有研究者提出使用多层线性模型进行面板研究,并且已在社会科学领域取得较大进展。

面板研究中多层线性模型的应用优势:由上述分析可知,在面板研究中,传统的数据分析方法会遇到很多难以克服的困难,而多层线性模型可以很好地处理上述问题。

近年来,越来越多的面板研究开始采用多层线性模型的分析方法,显示出多层线性模型在面板研究中的独特优势。

首先,多层线性模型通过考察个体水平在不同时间点的差异,明确表达出个体在层次一的变化情况,因而对于数据的解释(个体随时间的增长趋势)是在个体与重复观测交互作用基础上的解释,即不仅包含不同观测时点的差异,也包含个体之间存在的差异。

《多层线性模型》课件

《多层线性模型》课件
隐藏层
通过多个神经元(节点)进行非线性变换和特征提取。
输出层
生成最终的预测结果或分类标签。
优势
1 非线性建模
多层线性模型能够捕捉输入变量与输出变量之间的非线性关系,提高模型的拟合能力。
2 自动特征学习
通过隐藏层的非线性变换,模型能够自动学习高级特征,无需手动选择和设计特征。
3 灵活性和可扩展性
多层线性模型可以通过增加隐藏层或调整神经元数量来提升模型的复杂度和性能。
多层线性模型
欢迎来到《多层线性模型》PPT课件。在本课程中,我们将深入探讨多层线性 模型的定义、结构、优势、应用领域、算法和局限性。
定义
多层线性模型是一种统计学中常见的机器学习方法,用于建立输入变量与输出变量之间的多层次关系。通过组 合多个线性模型,可以更好地拟合复杂的数据。
结构
输入层
接收原始数据或特征向量作为模型的输入。
2 训练时间
多层线性模型的训练时间通常较长,尤其在参数较多、数据量较大的情况下,需要充分 利用计算资源进行训练。
3 局部最优解
算法可能陷入局部最优解域
1
计算机视觉
多层线性模型在图像识别、目标检测和人脸识别等计算机视觉任务中取得了显著的成果。
2
自然语言处理
通过多层线性模型的神经网络结构,可以构建用于文本分类、机器翻译和情感分析等自然语 言处理应用。
3
金融预测
多层线性模型可用于股票价格预测、市场趋势分析和信用评级等金融领域的预测和决策。
算法
前向传播
通过输入层、隐藏层和输出 层的逐层计算,将原始数据 映射到最终的预测结果。
反向传播
通过计算损失函数的梯度, 根据反向传播算法更新模型 参数,使其朝着最小化损失 的方向调整。

多层线性模型——原理与应用解读

多层线性模型——原理与应用解读
式中,γ10=预测变量X对结果变量的影响效果 γ20=预测变量Z对结果变量的影响效果 γc0为控制变量对结果变量的影响,c=3,4,5 …
三、多层线性模型的应用
第三步,将检验假设2关于组织层面调节变量对因变量直 接影响的跨层次效应,进一步验证截距项的存在是否可由 组织层面加以解释和预测。 截距项预测模式 Level-1: Yij=β0j+β1jXij+β2jZij+ βcj(控制变量) +rij Level-2:β0j=γ00+γ01Wij+ γ02Gij+μ0j β1j=γ10+μ1j β2j=γ20+μ2j βcj=γc0+μcj
一、多层线性模型简介
3、多层线性模型分析方法 回归的回归方法 Eg:个体成就目标导向(X)
ቤተ መጻሕፍቲ ባይዱ
个体创造力(Y)
组织环境(W) (1)求各个组织个体成员的成就目标导向对创造力的回 归 Yij 0 j 1 j X ij rij (2)求组织环境对 0 j 和 1 j 的回归方程 0 j 00 01Wj 0 j
三、多层线性模型的应用
具体检验步骤及多层线性模型构建如下: 第一步,检验跨层次效果是否存在。只有组内与组间的 变异成份显著,才能够进行下一步的截距与斜率项分析。 虚无模式 Level-1:Yij=β0j+rij,式中rij ~N(0,σ2) Level-2:β0j=γ00+μ0j,式中μ0j ~ N(0,τ00)
式中,γ11= Level-2的斜率(用来检验H3a) γ12= Level-2的斜率(用来检验H3b) γ21= Level-2的斜率(用来检验H3c ) γ22= Level-2的斜率(用来检验H3d)

HLM多层线性模型教程

HLM多层线性模型教程

HLM多层线性模型教程HLM(Hierarchical Linear Modeling)是一种多层线性模型,常用于分析层级结构的数据。

相比于传统的线性模型,HLM能够更好地处理多层数据的结构,并考虑到不同层级之间的相关性。

HLM模型由两个部分组成:固定效应和随机效应。

固定效应表示不同的自变量对因变量的影响,而随机效应则表示不同层级之间的方差和协方差。

通过区分这两种效应,HLM能够更准确地估计模型参数。

首先,我们来看一下HLM的基本模型。

假设我们有一个层级结构的数据集,其中个体(比如学生)位于组(比如班级)之中。

我们可以建立以下的多层线性模型:Level 1: Y = β0 + β1*X + rLevel 2: β0 = γ00 + u0β1=γ10+u1在Level 1中,Y表示因变量(比如学生成绩),X表示一个或多个自变量(比如学生的背景信息),β0和β1表示固定效应,r表示误差项。

在Level 2中,β0和β1被分解为γ00和γ10(固定效应)以及u0和u1(随机效应)。

通过HLM模型,我们可以估计出固定效应和随机效应的值。

HLM模型的建模过程主要包括以下几个步骤:1.数据准备:将多层数据按照层级结构整理,确保每个样本都有相应的层级信息。

2.模型设定:根据研究问题和数据特点,确定模型的层级结构、因变量、自变量以及需要考虑的随机效应。

3. 模型估计:使用统计软件(如HLM软件)进行模型估计。

HLM模型的估计通常使用迭代加权最小二乘(Iterative Weighted Least Squares, IWLS)方法。

4.参数解释和效应分析:根据估计结果,解释固定效应和随机效应的含义,并进行效应分析。

在解释HLM模型的结果时,需要特别注意几点。

首先,固定效应代表在不同层级上,自变量对因变量的影响。

例如,在学生的层级上,自变量X对学生成绩Y的影响是β1、其次,随机效应代表不同层级之间的方差和协方差。

多层线性模型

多层线性模型

违背了传统回归(OLS)中关于残差相互独立的假设
采用经典方法可能失去参数估计的有效性并导致不合理的推断结 论。
经典方法框架下的分析策略
经典的线性模型只对某一层数据的问题进 行分析,而不能将涉及两层或多层数据的问题进 行综合分析。
但有时某个现象既受到水平1变量的影 响,又受到水平2变量的影响,还受到两个水平 变量的交互影响(cross-level interaction)。
间数据,称为组间效应 • 三是忽视组的特性而对所有的数据进行分析,称为总效应。 • 在此基础上,计算组内效应和组间效应在总效应的比例,从
而确定变异来自于组间还是组内。 • 组内分析组间分析的方法较前两种方法更多地考虑到了第一
层数据及第二层数据对变异产生的影响,但无法对组内效应 和组间效应做出具体的解释,也就无法解释为什么在不同的 组变量间的关系存在差异。
• 2、多层数据的传统分析方法 • 个体的行为既受个体自身特征的影响,也受到其所处环境的影响,所
以研究者一直试图将个体效应与组效应(背景效应或环境效应)区分 开来。 • 个体效应:由个体自身特征所造成的变异。 • 组效应:由个体所处环境所造成的变异。
多层线性模型简介
• (1)只关注个体效应,而忽视组效应 • 只在个体这一层数据上考虑变量间的关系,那么导致所观测到的效应
图1:不考虑学校之间差异的回归直线
• 在许多研究中,取样往往来自不同层级和单位,这种 数据带来了很多跨级(多层)的研究问题,解决这些 问题的一种新的数据分析方法——多层模型分析技术。
• 这一方法的开创及发展的主要贡献者之一是英国伦敦 大学的Harvey Goldstein教授及研究者把这种方法称 作“多层分析”。另一主要开拓者美国密歇根大学的 Stephen W.Raudenbush教授和同行把它称为“分层线 性模型结构”。在此,我们按照张雷等人的叫法称其 为“多层线性模型”或“多层模型”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多层线性模型——零模型

第一层:
Yij 0 j eij
var(eij )
2

第二层:
0 j 00 u0 j
00 uoj eij
var(0 j ) 00

合并模型: Yij
多层线性模型——零模型
0 j指第j个二层单位Y的平均值
多层线性模型简介



(2)组织心理学研究领域 Eg:雇员镶嵌于不同的组织、工厂 (3)发展心理学领域 Eg:纵向研究、重复研究 在一段时间内对儿童进行多次观察,那么不同时间 的观测数据形成了数据结构的第一层,而儿童之间 的个体差异则形成了数据结构的第二层。这样,就 可以探索个体在其发展趋势或发展曲线上的差异。
ij 0j 1j ij ij
var(eij )
2
多层线性模型——完整模型

第二层:
0j
00

W 01
j
u0 j
1 j 10 11W j u1 j
var(0 j ) 00
var(1 j ) 11
cov(0 j , 1 j ) 10
多层线性模型简介

3、多层线性模型分析方法 回归的回归方法 Eg:学生成绩(X) 学习动机(Y) 班级教师教学水平(W) (1)求各个班级学生成绩对学习动机的回归

Yij 0 j 1j X i j rij
多层线性模型简介

(2)求教师教学水平对β 0j和 β
1j
的回归方程
00
eij指第j个二层单位Y的变异
指所有二层单位的Y的总体平均数 0 j 指第二层方程的残差(随机项) 跨级相关:指Y的总体变异中有多大比例是由 第二层的变异引起的。

00 / 00
2

多层线性模型——完整模型


完整模型(The Full Model) 既包含了第一层的预测变量,又包含了第二层的 预测变量,可通过理论建构来说明解释Y的总体 变异是怎样受第一层和第二层因素的影响。 第一层: Y X e
多层线性模型——三层模型
模型2:完整模型 第一层: Y ijk 0 j k 1 j k x jk eijk

var(eijk ) 2

第二层: 0 j k 00k 01k w1 jk 0 jk
1 j k 10 k 11k w1 jk 1 jk
多层线性模型简介
王 鹏


在许多研究中,取样往往来自不同层级和单位,这 种数据带来了很多跨级(多层)的研究问题,解决 这些问题的一种新的数据分析方法——多层模型分 析技术。 这一方法的开创及发展的主要贡献者之一是英国伦 敦大学的Harvey Goldstein教授及研究者把这种方 法称作“多层分析”。另一主要开拓者美国密歇根 大学的StephenW.Raudenbush教授和同行把它称 为“分层线性模型结构”。在此,我们按照张雷等 人的叫法称其为“多层线性模型”或“多层模型”。
多层线性模型——随机效应回归模型
随机效应回归模型(Radom Eeffect Regression Model) 第一层: Y X e

ij 0j 1j ij ij

第二层:
0j
00

u0 j
1 j 10
u1 j
多层线性模型——随机效应回归模型

此模型与完整模型的区别在于第二层没有预 测变量;与传统OLS回归区别在于第一层的 β 0j和β 1j是随机的而非固定的,其目的是寻 找第一层的截据、斜率在第二层单位上的变 异。

多层线性模型基本原理

因此,多层数据并不满足传统OLS回归分析 关于残差项的诸多假设。而多层线性模型将 残差项进行了分解,更符合实际情况,所以 对于多层数据使用多层线性模型进行分析更 为合理。
多层线性模型基本模型
2、多层线性模型的基本模型 零模型(The Null Model) 第一层和第二层均没有预测变量,只是将方 程分解为由个体差异造成的部分及由组差异 造成的部分,这种方法为方差成分分析。
0 j 00 01W j 0 j 1 j 10 11W j 1 j
多层线性模型简介


4、多层线性模型的优点 (1)使用收缩估计的参数估计方法,使得估计结 果更为稳定、精确 收缩估计:使用两个估计的加权综合作为最后的估 计。其一是来自第一层数据的OLS估计,另一个是 来自第二层数据的加权最小二乘法估计,最后的估 计是对以上两个估计的加权。 (2)可以处理样本不等的数据 eg:当某些第二层单位在第一层的取样甚少时,可以 借助于其他二层单位和二层预测变量,对取样较少 的一层单位进行回归分析。第一层单位3个及以上。
多层线性模型简介
2、多层数据的传统分析方法 多层数据一直困扰着研究者大概半个世纪之 久。由于个体的行为既受个体自身特征的影 响,也受到其所处环境的影响,所以研究者 一直试图将个体效应与组效应(背景效应或 环境效应)区分开来。 个体效应:由个体自身特征所造成的变异。 组效应:由个体所处环境所造成的变异。
多层线性模型——发展模型

“确定发展变异”的第二层:
线性发展斜率 的总体平均值
0j
00

u0 j
1 j 10
var(0 j ) 00
cov(0 j , 1 j ) 10
指个体j与平均 截据的离差
u1 j
var(1 j ) 11
指个体j与平 均发展斜率 的离差

多层线性模型简介
(1)只关注个体效应,而忽视组效应 只在个体这一层数据上考虑变量间的关系, 那么导致所观测到的效应既包含个体效应, 又包含组效应,从而增大了犯一类错误的概 率,夸大了变量间的关系。 (2)在组水平上进行分析 把数据集中起来, 使其仅在第二层的组间发 挥作用,从而丢失了重要的个体信息。
多层线性模型——发展模型
发展模型 发展模型是把多次观测结果作为时间的某种 数学函数来建构模型。它多用于发展研究、 纵向研究或者追踪研究。 在这种模型中,第一层数据为不同时间的观 察结果,第二层数据为个体的特征。

多层线性模型——发展模型

第一层:线性发展模型
Yij 0 j 1 j TIME eij

ij 0j 1j

ij

ij

第二层: 0 j 00 u 0 j 1 j 10
多层线性模型——协方差模型


第一层方程中,预测变量采用总体平均数为参 照的离差,与传统协方差分析的区别是β 0j被 进一步分解为 00和 0 j β 1j没有随机项,反映了协方差分析的一个重 要前提,协变量对因变量的回归系数的组间一 致性。检验这种假设的方法是把 1 j 纳入到方 程中,并检验 11 0 是否成立。
多层线性模型——完整模型
在第一层方程中,0代表截据,1代表斜率 在第二层方程中,第一个下标代表第一层参 数的类型;第二个下标代表第二层参数的类 型。 β 0j和β 1j的预测变量可以相同,也可以不同。

多层线性模型——协方差模型
在零模型与完整模型之间,可通过向各层方 程中增加不同的变量,设定不同的随机成分 与固定成分来建构各种分析模型。 协方差模型(ANCOVA Model) _ 第一层: Y x x e


Time:一般用编码的形式来反映增量 Eg: 0、1、2、3、4、5 -5、-4、-3、-2、-1、0 线性发展模型的第一层方程并不一定为线性方程,也可以 为非线性方程。 Eg:
Yij 0 j 1 j TIME 2 j TIME eij
2
时间变量编码为0 时Y的总体平均数
多层线性模型——发展模型

“预测发展变异”的第二层:
代表第二层的变量W 对第一层截据的效应
0j
00

W 01
j
u0 j
考虑第二层的预测 变量W后第一层的 截据和第一层的斜 率在第二层单位间 的残差方差
1 j 10 11W j u1 j
var(0 j ) 00
var(0 j ) 00
var(1 j ) 11
cov(0 j , 1 j ) 10
多层线性模型基本原理

把第一层和第二层方程整合如下:
Yij 00 10 xij 0 j 1 j xij eij
残差项
误差项间是相关的:同一第二层单位的个体 有相同的 0 j 和1 j 误差项间方差不等:相同第二层单位内的个 体间相似性比不同单位内个体相似性高 误差项与自变量有关:残差项包含 xij

多层线性模型简介



(3)组内分析组间分析 对相同的数据进行三次计算: 一是在组内的个体层上进行的分析,称为组内效应 二是通过平均或整合第一层中的个体数据,得到第二层的组 间数据,称为组间效应 三是忽视组的特性而对所有的数据进行分析,称为总效应。 在此基础上,计算组内效应和组间效应在总效应的比例,从 而确定变异来自于组间还是组内。 组内分析组间分析的方法较前两种方法更多的考虑到了第一 层数据及第二层数据对变异产生的影响,但并无法对组内效 应和组间效应做出具体的解释,也就无法解释为什么在不同 的组变量间的关系存在差异。

第二层: 第三层:
0 j k 00k 0 jk
00 k 000 e00 k
var(0 jk ) 00

var(e00k ) 00
相关文档
最新文档