整式加减培优题

合集下载

整式的加减(培优篇)

整式的加减(培优篇)

初一(上)数学整式的加减(培优篇)关卡一:单项式、多项式1.(1)单项式是关于的五次单项式,则 ;z yx n 123-z y x ,,,=n (2)关于的多项式是二次三项式,则 , ;x b x x x a b-+--3)4(=a =b (3)如果是关于的五次四项式,那么 。

52)2(4232+---+-x x q x xp x =+q p 2.如果关于的多项式与是次数相同的多项式,求的值x 21424-+x ax x x b53+4322123-+-b b b 3.已知是关于的三次三项式,求的值.5)1(3||2+--y m yx m y x ,1322+-m m 4.若多项式是关于的五次二项式,求的值()22532mx y n y +--x y ,222m mn n -+5.如果为四次三项式,则________。

()1233m xy m xy x ---+m =关卡二:同类项1.my x 22与是同类项,则=_____,=_____.y x n3-m n 2.单项式与是同类项,则的值为( ) 1-+-a b a b x y x 23b a -A .2 B . C .0 D .12-3.如果与的和是单项式,那么与取值为( )2522+-n m b a23-n ab m n A . B . C . D .3,2==n m 2,3==n m 2,3=-=n m 2,3-==n m 4.已知与是同类项,则的值是( )y xn 72001+y x m 322002+-2)2(n m -A .16 B .4×2001 C .-4×2002 D .5关卡三:去括号、添括号法则去括号法则: (1)括号前面是”+”号,去掉”+”号和括号,括号里的各项不变号;(2)括号前面是”-”号,去掉”-”号和括号,括号里的各项都变号.添括号法则: (1)添括号时,括号前添“+”号,括到括号里的各项都不变符号; (2)添括号时,括号前添“-”号,括到括号里的各项都改变符号。

整式的加减培优题

整式的加减培优题

第二章《整式》培优姓名:专题一、找规律题(一)、代数式找规律1、观察下列单项式:54325,4,3,2,aaaaa--,…(1)观察规律,写出第2010和第2011个单项式;(2)请你写出第m个单项式和第n+1个单项式。

(m为自然数)2、有一个多项式为332456bababaa-+-…,按这种规律写下去,第六项是= ,最后一项是= 。

3、观察下列一组数:,```87,65,43,21它们是按一定规律排列的,那么这一组数的第n个数是.(二)、图形找规律4、将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有_________个小圆;第n个图形有_ ______个小圆。

5、观察下列图形,则第n个图形中三角形的个数是()A. 22n+B.44n+C.44n-D.4n6、观察如下图的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n个点阵相对应的等式:专题二:整体代换问题7、若aa-2=2010,则()201022--aa= 。

8、若实数a满足122+-aa=0,则542+-aa= 。

9、已知代数式xyx+2=2,xyy+2=5,则22352yxyx++的值是多少?第1个图形第2个图形第3个图形第4个图形………第1个第2个第3个…………①1=12②1+3=22③1+3+5=32④⑤1+3+5+7+9=5^2c a b 010、当x=2010时,201013=++bx ax ,那么x=-2010时,13++bx ax 的值是多少?专题三:绝对值问题11、,,a b c 在数轴上的位置如图所示,化简:|||1||||1||23|a b b a c c b ++-------12、有理数a 、b 在数轴上位置如图所示,试化简b b b 322231-++--.13、有理数a 、b 、c 在数轴上的对应点如图,化简代数式:c b a c b a b a -+--++-2专题四:综合计算问题14、若212y x m -与n y x 2-的和是一个单项式,则m= ,n= 。

第四章整式的加减:多项式与整式的加减培优训练人教版2024—2025学年七年级上册

第四章整式的加减:多项式与整式的加减培优训练人教版2024—2025学年七年级上册

第四章整式的加减:多项式与整式的加减培优训练人教版2024—2025学年七年级上册例1:已知n 是自然数,多项式 x x y n 2331--+ 是三次三项式,那么n 等于 . 变式1:代数式b x x a 2431-++是四次二项式,求a,b 的值.变式2:已知关于x ,y 的代数式(a ﹣3)x 2y |a |+(b +2)为五次单项式,求a 2﹣3ab +b 2的值.变式3:多项式是关于x ,y 的三次二项式,则m 的值是 .变式4:若4xy |k |﹣5(k ﹣3)y 2+1是四次三项式,则k 的值为( )A .±2B .2C .﹣3D .±3 变式5:我们对一个单项式A 进行这样的变化:①A 的系数不发生变化;②将A 包含的所有字母按照英语字母表的顺序进行排列;③从左至右,将A 中每个字母的次数变为其右侧相邻字母的次数,最右侧字母的次数不发生变化.经历上述变化后,单项式A 变为单项式A ′.我们称A ′为A 的“右变次单项式”,例如,的“右变次单项式”为,﹣2a 3b 2c 的“右变次单项式”为﹣2a 2bc ,a 2b 4c 3d 5的“右变次单项式”为a 4b 3c 5d 5.(1)的“右变次单项式”为 ,﹣a 4b 3c 2的“右变次单项式”为 ;(2)若5次单项式A 的“右变次单项式”为3ab ,则A = ;(3)若单项式A 的“右变次单项式”为A ′,单项式B 的“右变次单项式”为B ′,且A +B =7a 6b 4c 2,则A ′+B ′= ;(4)若仅含有字母a ,b ,c 的27次单项式A 的系数为5,“右变次单项式”为A 1,A 1的“右变次单项式”为A 2,若A 1的次数为28,A 2的次数为27,则A = .例2:若多项式()x y x x x mx 537852222+--++-的值与x 无关,求])45(2[22m m m m +---的值.变式6:若多项式x 3+(3m ﹣1)x 2﹣5x +7与多项式x 4+2x 3+8x 2+x ﹣1的差不含二次项,则m 的值为( )A .4B .﹣4C .3D .﹣3变式7:若关于x 的多项式3x 2﹣x +1+kx 中不含一次项,则k 的值为( )A .1B .﹣1C .0D .±1变式8:已知M =2a 2﹣ab +b ﹣1,M ﹣3N =a 2+3ab +2b +1.若计算M ﹣[2N ﹣(M ﹣N )]的结果与字母b 无关,则a 的值是 . 变式9:已知关于x 的多项式2mx 3﹣2x 2+3x ﹣(2x 3+nx )不含三次项和一次项,求(m ﹣n )3的值.变式10:已知A =2a 2﹣a ﹣ab ,B =a 2﹣b +ab .(1)化简A ﹣2B ;(2)若A ﹣2B 的值与a 的取值无关,求A ﹣2B 的值.变式11:关于a 的多项式4a 3﹣2ma 2+3a ﹣1与5a 3﹣4a 2+(n ﹣1)a ﹣1的和不含a 2和a 项.(1)求m ,n 的值;(2)求(4m 2n ﹣3mn 2)﹣2(m 2n +mn 2)的值.变式12:已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x﹣1.(1)当x=2,y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.变式13:已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.变式14:有四个数,第一个数是a2+b,第二个数比第一个数的2倍少a2,第三个数是第一个数与第二个数的差的3倍,第四个数比第一个数少﹣2b,若第二个数用x表示,第三个数用y表示,第四个数用z表示.(1)用a,b分别表示x,y,z三个数;(2)若第一个数的值是3时,求这四个数的和;(3)已知m,n为常数,且mx+2ny﹣3z﹣4的结果与a,b无关,求m,n的值.例3:若单项式与﹣2x n y3的和仍为单项式,则其和为.变式15:如果单项式﹣y与2x4y n+3的和是单项式,那么(m+n)2024的值为()A.22024B.0C.1D.﹣1变式16:如果代数式4x2a﹣1y与的差是单项式,那么3a+b=.变式17:若3a n+1b2与a3b m+3的差仍是单项式,则m﹣n=.例4:已知M=﹣2a2+4a+1,N=﹣3a2+4a﹣1,则M与N的大小关系是()A.M>N B.M<NC.M=N D.以上都有可能变式18:已知M=4x2﹣3x﹣2,N=6x2﹣3x+6,则M与N的大小关系是()A.M<N B.M>NC.M=N D.以上都有可能例5:理解与思考:整体代换是数学的一种思想方法.例如:若x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)若x2+x﹣1=0,则x2+x+2021=;(2)如果a+b=3,求2(a+b)﹣4a﹣4b+21的值;(3)若a2+2ab=20,b2+2ab=8,求a2+2b2+6ab的值.变式19:理解与思考:整体代换是数学的一种思想方法.例如:若x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)如果a+b=3,求2(a+b)﹣4a﹣4b+21的值;(2)若a2+2ab=20,b2+2ab=8,求a2+2b2+6ab的值.(3)当x=2024时,代数式ax5+bx3+cx﹣5的值为m,求当x=﹣2024时,代数式ax5+bx3+cx﹣5的值.变式20:如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=.。

第四章整式培优训练试题人教版2024—2025学年七年级数学上册

第四章整式培优训练试题人教版2024—2025学年七年级数学上册

第四章整式培优训练试题人教版2024—2025学年七年级数学上册(一)整式的加减例1.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1B.﹣2x2+5x+1C.8x2﹣5x+1D.2x2﹣5x﹣1笔记:变式1.一个多项式加上2x2﹣4x﹣3得x2﹣3x,则这个多项式为.变式2.一个多项式与单项式﹣4x的差等于3x2﹣2x﹣1,那么这个多项式为.例2.若长方形的周长为6m,一边长为m+n,则另一边长为()A.3m+n B.2m+2n C.m+3n D.2m﹣n笔记:变式1.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A.4a+5b B.a+b C.a+5b D.a+7b例3.某同学做了一道数学题:“已知两个多项式为A,B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B的值应该是()A.4x﹣3y B.﹣5x+3y C.﹣2x+y D.2x﹣y笔记:变式1.某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A﹣2B”的正确答案.变式2.小明在一次测验中计算一个多项式M加上5ab﹣3bc+2ac时,不小心看成减去:5ab ﹣3bc+2ac,结果计算出错误答案为2ab+6bc﹣4ac.(1)求多项式M;(2)试求出原题目的正确答案.变式3.小刚在计算一个多项式A减去多项式2b2﹣3b﹣5时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.(1)求这个多项式A;(2)求出这两个多项式运算的正确结果;(3)当b=﹣1时,求(2)中结果的值.(二)整体代入例1.已知2x﹣3y=6,则7﹣6x+9y的值为()A.25B.﹣25C.11D.﹣11笔记:变式1.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10变式2.若a+2b=3,则代数式2a+4b的值为()A.3B.4C.5D.6变式3.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1B.2C.5D.7例2.若代数式x﹣2y=3,则代数式2(x﹣2y)2+4y﹣2x+1的值为()A.7B.13C.19D.25笔记:变式1.已知x+y=3,xy=1,则代数式(5x+3)﹣(2xy﹣5y)的值为.变式2.若x+y=3,xy=2,则(x+2)+(y﹣2xy)=.变式3.已知y=3xy+x,求代数式=.变式4.已知a+b=4,ab=﹣2,求代数式(2a﹣5b﹣2ab)﹣(a﹣6b﹣ab)的值.例3.若a﹣b=2,b﹣c=﹣5,则a﹣c=.笔记:变式1.如果m和n互为相反数,则化简(3m﹣2n)﹣(2m﹣3n)的结果是()A.﹣2B.0C.2D.3变式2.若a与b互为相反数,m和n互为倒数,则=.练习1.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.6练习2.已知1﹣a2+2a=0,则的值为()A.B.C.1D.5练习3.若x2+4x﹣4=0,则7﹣8x﹣2x2的值等于.练习4.若x=2y+3,则代数式3x﹣6y+1的值是.练习5.如果2x2﹣3x的值为﹣1,则6x﹣4x2+3的值为.练习6.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.练习7.若2m+n=3,则代数式6﹣2m﹣n的值为.练习8.已知a2+3a=2,则3a2+9a+1的值为.练习9.若x2﹣2x﹣2=0,则3x2﹣6x的值是.练习10.若a﹣5b=3,则17﹣3a+15b=.练习11.若a﹣2b=3,则9﹣2a+4b的值为.练习12.如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.练习13.已知x2+2x﹣1=0,则3x2+6x﹣2=.练习14.我们知道,2x+3x﹣x=(2+3﹣1)x=4x,类似地,我们也可以将(a+b)看成一个整体,则2(a+b)+3(a+b)﹣(a+b)=(2+3﹣1)(a+b)=4(a+b).整体思想是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请根据上面的提示和范例,解决下面的题目:(1)把(x﹣y)2看成一个整体,求将2(x﹣y)2﹣5(x﹣y)2+(x﹣y)2合并的结果;(2)已知2m﹣n=4,求8m﹣6n+5的值;(3)已知a﹣2b=﹣5,b﹣c=﹣2,3c+d=6,求(a+3c)﹣(2b+c)+(b+d)的值.(三)绝对值化简例1.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.笔记:变式1.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.变式2.如果a<2,那么|﹣1.5|+|a﹣2|等于.变式3.已知有理数a、b、c在数轴上对应点的位置如图所示.解答下列各题:(1)判断下列各式的符号(填“>”或“<”)a﹣b0,b﹣c0,c﹣a0,b+c0(2)化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.变式4.如图,已知a、b、c在数轴上的位置,求|b+c|﹣|a﹣b|﹣|c﹣b|的值.。

(完整版)《整式的加减》培优训练

(完整版)《整式的加减》培优训练

《整式的加减》培优训练一、 整体代入求值1、已知x-3y=2,求值:6-4x+12y = .2、已知a+b+c=0,求值:(a+b)(b+c)(c+a)+abc= .3、当x=1时,多项式ax 2+bx+1的值为5,则当x=-1时,多项式3ax 2+3bx+1的值等于 。

4、多项式(2x-7y-1)2+5的最小值是 ,此时3-4x+14y= 。

5、已知2n-m=5,求值:5(m-2n )2+6n-3m-70。

6、已知a+b=5,ab=-1,求值:(3a 2b 2-2ab-5b )-(5a-2ab-2a 2b 2).二、 借助绝对值进行化简1、有理数a,b,c 在数轴上的位置如图所示,化简: |c|-|c+b|+|a-c|+|b+a|2、有理数a,b 在数轴上的位置如上图(同第1题图)所示,化简:|1-3b|-2|2+b|+|2-3b|3、有理数a,b,c 在数轴上的位置如图所示,化简: |2a-b|+|b-c|-|c-3a|三、 与字母取值无关问题1、若多项式x 2-8+2mxy-3y 3+6xy 中不含xy 项,则m = .2、若关于x 、y 的多项式6mx 2+4nxy+2x 与-2xy+x 2-y-4d 的差中不含二次项,求m,n 的值。

4、若(2x 2+ax-y+6)-(bx 2-3x+5y-1)的值与字母x 的取值无关,求a b的值。

5、若无论x 为何值,多项式2x 2y-3ax-4x 2+6x+2ay 恒为一个定值,求此定值。

-3 -2 -1 0 1 2 3 4 · b · ac ·四、整式加减的实际应用问题1、如图,①用代数式表示阴影部分的面积;②当a =4cm时,计算阴影部分的面积。

(π取3.14,结果精确到0.1)2、两个正方形如图放置,边长分别为m、n,则阴影部分面积为多少?3、某船顺水航行了5小时,逆水航行3小时已知船在静水中速度为a千米/小时,流水速度为b千米/小时则船顺水航行的路程比逆水航行的路程5、张师傅下岗后再就业,做起了小生意,第一次进货时,他以每件为a元的价格购进了20件甲种小商品,以每件b元的价格购进了30件乙种小商品(a>b)。

福州第一中学七年级数学上册第二章《整式的加减》阶段测试(培优专题)

福州第一中学七年级数学上册第二章《整式的加减》阶段测试(培优专题)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键.4.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.5.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .4D 解析:D【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可.【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4,∴a,b,c,d四个数的和是4,故选:D.【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数.6.大于1的正整数m的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m“裂变”后,其中有一个奇数是2019,则m的值是()A.43B.44C.45D.55C解析:C【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=()()212m m+-,∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()() 4424419892+-=,当m=45时,()() 4524511342+-=,∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.7.已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3 B.﹣3 C.1 D.﹣1D解析:D【分析】根据同类项的概念,首先求出m与n的值,然后求出m n-的值.【详解】解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.9.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.10.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D 解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.11.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者D解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m n x x 中指数大的,即m ,n 中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.12.下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是2D 解析:D【分析】根据整式的相关概念可得答案.【详解】A 、0是单项式,故A 错误;B 、25R π的系数是5π,故B 错误;C 、322a 是2次单项式,故C 错误;D 、多项式2ax +的次数是2,故D 正确.故选:D .【点睛】本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,也考查了多项式的次数.13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A 解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1 解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.2.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案.【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)n n x -.故答案为:(2)n n x -.【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.3.化简:226334x x x x _________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 4.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.-3x2+5x -4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x 的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x 2+5x -4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x 的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x 的二次三项式,二次项系数是-3,∴二次项是-3x 2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.5.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.6.计算7a2b﹣5ba2=_____.2a2b【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 7.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 8.多项式234324x x x -+-按x 的降幂排列为______.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.9.在整式:32x y -,98b -,336b y -,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.10.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x 千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x +【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x 千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.11.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.1.已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.2.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】 此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.3.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(3)请用上述计算103+105+107+…+2015+2017的值.解析:(1)102;(2)()22n + ;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n 个图案所代表的算式为:1+3+5+…+(2n-1)=2n ;1+3+5+…+19的个数为:191102+=, ∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+,∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n +, 故答案为:()22n +;(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=21009-251=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.4.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式.佳佳的解题过程如下:解:222223x y xy x y xy ---① 224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.。

初一数学《整式的加减》培优专题(经典)word版本

初一数学《整式的加减》培优专题(经典)word版本

初一数学培优专题——整式的加减1化简求值:2225232(4)abc a babc ab a b 其中,,a b c 满足2120a b c 2代数式22111(2)(21)352x ax y x y bx 的值与字母x 的取值无关,求25a b 的值。

3已知332227,6a b a b ab ,求代数式332232()(3)2()b a a b ab b a b 的值4当1x 时,代数式3238ax bx 的值为18,求代数式962b a 的值5已知2,4x y时,代数式31519972ax by ,求当14,2x y 时,代数式33244986ax by 的值6已知012aa ,求2007223a a 的值. 7已知25a ba b,求代数式2(2)3()2a b a b a b a b 的值。

8当250(23)ab 达到最大值时,求22149a b 的值。

9.(2012?金平区模拟)研究下列算式,你会发现有什么规律?①13=12②13+23=32③13+23+33=62④13+23+33+43=102⑤13+23+33+43+53=152…(1)根据以上算式的规律,请你写出第⑥个算式;(2)用含n(n为正整数)的式子表示第n个算式;(3)请用上述规律计算:73+83+93+ (203)10.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.11.已知,a,b互为相反数,c,d互为倒数,|m|=2,求:的值.12.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,…请你在观察规律后用得到的规律填空:10×14+4=_________,_________×_________+_________=202.13.如图,用火柴棒摆成边长为1,2,3,…,(n﹣1),n的正方形(1)依此规律,摆成边长为4的正方形图案中,需火柴棒根数为_________;(2)拼成边长为n的正方形图案比边长为(n﹣1)的正方形图案多_________个小正方形;(3)摆成边长为n的正方形图案中需要火柴棒根数为_________.14.如图,把面积为1的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此进行下去,试用图形揭示规律.计算:.15.将四个数a、b、c、d排列成的形式,定义=ad﹣bc,若=10,求7x2﹣2的值.。

整式的加减培优题

整式的加减培优题

整式的加减培优题一、基础题1、已知-3x,求3x的相反数为3x,所以-3x的相反数为3x。

2、若-4x,求m和n。

由题可知m+3y2与wx5yn+3是同类项,所以它们的指数相等,即2=5n+3,解得n=1,代入m+3y2与wx5yn+3同类项中的y2,得到m-2y3与x3y7-2n是同类项,所以它们的指数相等,即2+2n=m,解得m=4,代入n=1,得到m=4,n=1.3、当1≤m<2时,化简。

由题可知,m=1时,等式右边为(1-1)3=0,所以当1≤m<2时,等式右边为0.4、使m-1-m-2得。

化简得m-1-m-2=m-1-(m-2)=m-1-m+2=m+1.5、已知623mn2xy和xy的和是单项式,则代数式9m2-5mn-17的值为。

由题可知623mn2xy和xy的和是单项式,所以它们的指数相等,即2=n,代入9m2-5mn-17中的n,得到9m2-5m2-17=4m2-17,所以代数式9m2-5mn-17的值为4m2-17.6、若A是三次多项式,B是四次多项式,则A+B一定是()。

A、七次多项式B、四次多项式C、单项式D、不高于四次的多项式或单项式。

A+B的次数为3+4=7,所以A+B是七次多项式。

7、若a-3b=5,则2a-3b+3b-a-15的值是。

化简得2a-3b+3b-a-15=a-15.8、其中单项式有个,多项式有。

单项式为1-1/(2π3x),多项式为x2y,x+3y,a。

1x,2x-y。

9、若代数式4x-2x+5的值是7,那么代数式2x-x+1的值等于。

化简得4x-2x+5=2x+5=7,所以2x-x+1的值等于4.10、若多项式32(k2-2x+k-2x-6)是关于x的二次多项式,则k的值为。

化简得32(k2-4x-6)=-96x+32k2+96,所以k的值为±4.11、一个关于字母x,y的多项式,除常数项外,其余各项的次数都是4,这个多项式最多有几项。

【教师卷】初中数学七年级数学上册第二章《整式的加减》经典练习卷(培优)

【教师卷】初中数学七年级数学上册第二章《整式的加减》经典练习卷(培优)

1.下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】 由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 3.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .46A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.4.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D 解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1D解析:D【分析】 根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.7.下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.9.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.10.已知多项式()210m x m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A【分析】 根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 11.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.12.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)()=10(b-a)+15(a-b)=10b-10a+15a-15b=5a-5b,则这次买卖中,张师傅赚5(a-b)元.故选C.【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.13.如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”( )A.32个B.56个C.60个D.64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n .∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.14.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的A.31,63,64 B.31,32,33 C.31,62,63 D.31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.15.长方形一边长为2a+b,另一边为a-b,则长方形周长为()A.3a B.6a+b C.6a D.10a-b C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.1.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n时,最多可有的交点数m 与直线条数n之间的关系式为:m=_____.(用含n的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n -. 【点睛】 本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.2.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案.【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)n n x -.故答案为:(2)n n x -.【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.3.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.4.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a 【解析】试题分析:根据题意得:a•(1+20)×90=108a ;故答案为108a 考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a ;故答案为1.08a .考点:列代数式.5.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -. 【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.6.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 7.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算.10.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.11.在整式:32x y -,98b -,336b y -,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.1.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应的等式.解析:(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n-1)=n2.【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n个图形黑点个数为1+3+5+…+(2n-1)=n2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.2.有一长方体形状的物体,它的长,宽,高分别为a,b,c(a>b>c),有三种不同的捆扎方式(如图所示的虚线).哪种方式用绳最少?哪种方式用绳最多?说明理由.解析:方式甲用绳最少,方式丙用绳最多.【解析】试题分析:根据长方形的对称性分别得到三种方式所需要的绳子的长度,然后将这三个代数式进行作差比较大小.试题方式甲所用绳长为4a+4b+8c,方式乙所用绳长为4a+6b+6c,方式丙所用绳长为6a+6b+4c,因为a>b>c,所以方式乙比方式甲多用绳(4a+6b+6c)-(4a+4b+8c)=2b-2c,方式丙比方式乙多用绳(6a +6b +4c)-(4a +6b +6c)=2a -2c.因此,方式甲用绳最少,方式丙用绳最多.3.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】 解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.4.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.。

七年级数学上册第二单元《整式加减》-选择题专项经典测试卷(培优专题)

七年级数学上册第二单元《整式加减》-选择题专项经典测试卷(培优专题)

一、选择题1.下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】 A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意.【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键.3.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的A.31,63,64 B.31,32,33 C.31,62,63 D.31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.4.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a﹣2b)人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a﹣6b)人,则中途上车的人数为()A.16a﹣8b B.7a﹣5b C.4a﹣4b D.7a﹣7b B解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a﹣6b)﹣[(6a﹣2b)﹣(3a﹣b)]=10a﹣6b﹣6a+2b+3a﹣b=7a﹣5b.故选B.【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.5.如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”( )A.32个B.56个C.60个D.64个C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.6.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.7.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误;235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.8.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C 解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.9.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商.故选:B .【点睛】本题考查了代数式,正确理解代数式表示的意义是关键.10.下列关于多项式21ab a b --的说法中,正确的是( )A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1-B 解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误;故选:B .【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.11.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - D 解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =()A .17B .67C .-67 D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.14.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b C 解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a +b ,另一边为a -b ,∴长方形周长为:2(2a +b +a -b )=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.15.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.16.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次C解析:C【分析】 首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.17.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.18.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.19.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1 B .-1 C .2020 D .2020- A解析:A【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 20.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 21.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.22.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.64 B.77 C.80 D.85D解析:D【分析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n+++n2,根据规律求解.【详解】通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4,第二个图形为:()1332+⨯+22=10,第三个图形为:()1442+⨯+32=19,第四个图形为:()1552+⨯+42=31,…,所以第n个图形为:()()122n n+++n2,当n=7时,()()72712+++72=85,故选D.【点睛】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.23.若 3x m y3 与﹣2x2y n 是同类项,则()A.m=1,n=1 B.m=2,n=3 C.m=﹣2,n=3 D.m=3,n=2B解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】33m x y和22nx y﹣是同类项,得m=2,n=3,所以B选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.24.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.25.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.26.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,2+, (2)22∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类. 27.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj D解析:D 【分析】明码“love”中每一个字母所代表的数字分别为12,15,22,5,再根据这四个数字的奇偶性,求得其密码. 【详解】l 对应的序号12为偶数,则密码对应的序号为1212182+=,对应r ; o 对应的序号15为奇数,则密码对应的序号为|1525|52-=,对应e ; v 对应的序号22为偶数,则密码对应的序号为2212232+=,对应w ; e 对应的序号5为奇数,则密码对应的序号为|525|102-=,对应j . 由此可得明码“love ”译成密码是rewj . 故选:D . 【点睛】本题考查了绝对值和求代数式的值.解题的关键是明确字母与数字的相互转化,每一个字母代表一个数字,一一对应关系.28.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C 解析:C 【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案. 【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意; B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意; C 选项、333541x x x x -++-+-=3724x x -++,符合题意; D 选项、337322724x x x x x -+---=-+-,不符合题意. 故选:C . 【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 29.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kg B .24(1-a %)b % 元/kg C .(24-a %-b % )元/kg D .24(1-a %)(1-b %)元/kg D解析:D 【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格. 【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg , ∴2月份鸡的价格为24(1-a %)元/kg , ∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg . 故选:D . 【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系. 30.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D 解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确. 故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.。

整式的加减能力培优专题训练含答案

整式的加减能力培优专题训练含答案

【008】第二章 整式的加减能力培优2.1整式专题一 用代数式表示实际问题1.10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( )2.某种商品进价为a 元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原售价的70%)的价格开展促销活动,这时一件该商品的售价为( ).A.a 元B.0.7 a 元C.1.03 a 元D.0.91a 元专题二 单项式的系数与次数3.代数式-23xy 3的系数与次数分别是( )A .-2,4B .-6,3C .-2,3D .-8,44.如果-33a m b 2是7次单项式,则m 的值是( )A .6B .5C .4D .2 5.写出含有字母x ,y 的四次单项式 .(答案不唯一,只要写出一个)6.判断下列各式是否是单项式,是单项式的写出系数和次数.3a , 12 xy 2,-5xy 4 ,a π ,-x , 13 (a +1), 1x.专题三 考查多项式的项、项数与次数7.如果一个多项式的次数是6,则这个多项式的任何一项的次数都( )A.小于6B.等于6C.不大于6D.不小于68.若2210a a +-=,则2242013a a ++= .9.m 为何值时,2123(2)3m m x y xy -+-是五次二项式 专题四 列代数式解决中考中的规律探索题10.(2012·山西)如图,是由形状相同的正六边形和正三角形组合成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 (用含有n 的代数式表示).11.(2012·桂林)下图是在正方形网格中按规律填成的阴影,根据此规律,第n 个图中的阴影部分小正方形的个数是 .12.(2011·汕头)如图数表是由从 1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数.知识要点:1.单项式的概念:数或字母的积,这样的代数式叫做单项式.单独的一个数或字母也是单项式.2.单项式的系数和次数:单项式中的数字因数叫做这个单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数.单独一个非零的数,规定它的次数为0.3. 多项式的定义:几个单项式的和叫做多项式.4.多项式的有关概念.多项式中的每一个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式里,次数最高项的次数,叫做这个多项式的次数.5.整式的定义:单项式和多项式统称为整式.温馨提示:1.用字母表示数要点:(1)字母与字母相乘,乘号一般省略不写,字母的排列顺序一般按字母表的顺序.如a ×b 写成ab ;(2)数与字母相乘,乘号一般也省略不写,但数一定要写在字母的前面,当数是带分数时,一定要化为假分数.如a ×3要写成3a ,不要写为a 3;313×m 要写为310m ,不要写成313m ;(3)带括号的式子与字母的地位相同.如a ×(b -2)可写为a (b -2),也可以写成(b -2)a ;(π-3)×2可写为2(π-3),但不要写成(π-3)2;(4)含字母的除法中,一般不用除号,而改为分数线.如x与y的商一般写为y x ,而不写x ÷y ;(5)和或差关系,又带单位的代数式要用括号括起来后再写上单位.如气温从t ℃下降6℃后是(t -6)℃,不要写为t -6℃.2.与单项式有关的注意事项:(1)确定一个单项式的系数,要注意包括它前面的性质符号.(2)看上去只含有字母因式的单项式,其系数是1或1-,1往往省略不写.(3)计算单项式的次数时,应注意是所有字母指数的和,不要漏掉字母指数是1的指数.(4)单项式的次数只和字母的指数有关,与系数的指数无关.3.与多项式有关的注意事项:(1)多项式中的每一项要包括它前面的符号.(2)“×次×项式”,用大写“一、二、三…”表示.方法技巧:1.本节概念性的东西较多,熟记概念是做好题目的保证.2.与图形有关的规律探索问题,往往先从最简单的前1至3个入手,找到它们共同的规律(规律一般是与图形的序号有关的式子),然后将要解决的复杂图形的问题,代入到前面发现的规律中,得到问题的解.【008-1】答案:1. B解析:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为1042015x.2. D解析 :因为商品每件a元,按进价提高30%出售,则售价为(1+30%)a=1.3a元,商品以7折销售时售价为1.3a×70% =0.91a元.3. D解析:该单项式的因数是-23,即-8,所以该单项式的系数是-8.字母x、y的指数分别是1和3,指数和是4,所以该单项式的次数是4.4. B解析:由题意得,所有字母的指数和为7,即m+2=7,则m=5.5.解析:根据四次单项式的定义,x2y2,x3y,xy3等都符合题意(答案不唯一).6.解析:3a表示3与a相乘,是单项式,系数为3,次数为1;1 2xy2表示12与xy2相乘,是单项式,系数为12,次数为3;-5xy4表示-54与xy相乘,是单项式,系数为-54,次数为2;a π表示1π与a相乘,是单项式,系数为1π,次数为1;-x表示-1与x相乘,是单项式,系数为-1,次数为1;13 (a +1)表示a 与1的和的31倍,含有加法运算,不是单项式. 1x表示1与x 的商,不是单项式. 7.C 解析:由于多项式的次数是“多项式中次数最高的项的次数”,因此六次多项式中,次数最高的项是六次的,其余项的次数可以是六次的,也可以是小于六次的,却不能是大于六次的.因此六次多项式中的任何一项都是不大于六次的.8.2015 解析:222420132(2)2013220132015a a a a ++=++=+=.9.解析:根据条件,有m 2-1+2=5,且m +2≠0.所以m =2.10. 4n -2 解析:第1个图案中阴影小三角形的个数是2;第2个图案中阴影小三角形的个数是6=2+4×1;第三个图案中阴影小三角形的个数是10=2+4×2;第4个图案中阴影小三角形的个数是14=2+4×3;…,所以第n 个图案中阴影小三角形的个数是2+4(n -1)=4n -2.11. n (n +1)+2或 n 2+n +2 解析:根据图形可知:第一个图形中阴影部分小正方形个数为4=2+2=1×2+2,第二个图形中阴影部分小正方形个数为8=6+2=2×3+2,第三个图形中阴影部分小正方形个数为14=12+2=3×4+2,…所以第n 个图形中阴影部分小正方形个数为n (n +1)+2或 n 2+n +2.12.(1)64 8 15 (2)2(1)1n -+ 2n 21n -解析:(1)观察所给数阵可知,每行最右侧的数是该行序号的平方.每一行数字的个数是每行的序号乘以2减去1.所以第8行的最后一个数是自然数8的平方,即82=64,共有2×8-1=15个数;(2)第n -1行的最后一个数为2(1)n -,所以第n 行的第一个数是2(1)1n -+,最后一个数为2n ,第n 行共有2n -1个数.2.2整式的加减专题一 同类项及合并同类项1.如果单项式13a x y +与32b x y 的和是单项式,那么b a = .2. 把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个整体合并同类项,结果应是( )A .-4(x -3)2-(x -3)B .4(x -3)2-x (x -3)C .4(x -3)2-(x -3)D .-4(x -3)2+(x -3)3.多项式2x 4-(a +1)x 3+(b -2)x 2-3x -1,不含x 3项和x 2项,求ab 的值.4.化简,求值:22211332424a b a b a -+--,其中13a =,3b =-.专题二 去括号法则的应用5.下列去括号中,正确的是 ( )A.a 2-(2a -1)=a 2-2a -1?B.a 2+(-2a -3)=a 2-2a +3C.3a -[5b -(2c -1)]=3a -5b +2c -1D.-(a +b )+(c -d )=-a -b -c +d6.不改变代数式a -(b -3c )的值,把代数式括号前的“-”号变成“+”号,结果应是( )A.a +(b -3c )???B.a +(-b -3c )C.a +(b +3c )????D.a +(-b +3c )7. 先去括号,再合并同类项(1)(3x +1)-2(4-x ); (2)3(2a -3b )+5(a +b )-4(3a -2b );(3)6a 2-2ab -2(3a 2+12ab ); (4)2a -[3b -5a -(2a -7b )]. 8.下图为某学校校园的总体规划图(单位:m ),试计算这个学校的占地面积.小丽说:学校的占地面积可以用代数式表示为100a +200a +240b +60b.小明说:也可以表示为(100+200)a +(240+60)b.小虎说:还可以表示为(100+200)(a +b ).你认为他们说的对吗如何用数学知识加以解释专题三 多项式加减及其在生活中的应用9.已知A =2x 2-9x -11,B =3x 2-6x +4.求(1)A -B ;(2)21A +2B . 10.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.11.小明同学在计算5x 2+3xy +2y 2加上某多项式A 时,由于粗心,误算成减去这个多项式,而得到2x 2-3xy +4y 2,求正确的运算结果.12.有这样一道题目:“当a=0.35,b=-0.28时,求多项式7a3-3(2a3b-a2b-a3)+(6a3b -3a2b)-(10a3-3)的值”.小敏指出,题中给出的条件a=0.35,b=-0.28是多余的,她的说法有道理吗为什么知识要点:1.同类项:所含的字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.2.合并同类项:把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项.3.合并同类项法法则:合并同类项后,所得项的系数是合并同类项前各同类项的系数的和,且字母连同它的指数不变.4.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.5.整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.温馨提示:1.同类项的注意事项:(1)“两相同”:一是所含字母相同;二是相同字母的指数也相同,二者缺一不可.(2)“两无关”:一是与系数大小无关;二是与所含字母的顺序无关.2.去括号法则注意事项:(1)括号外有系数时,将系数乘以括号内每一项,不能只给括号内第一项乘.(2)如果括号外的因数是负数,去括号后原括号内每一项的符号都与原来的符号相反,不要忘记给后面的各项改变符号.(3)注意多层括号的去法:对于含有多层括号的题目,应先观察式子的特点,再考虑去括号的顺序,以使运算简便.一般由内向外,先去小括号,再去中括号,最后去大括号;但有时也可以由外向内,先去大括号,再去中括号,最后去小括号.3.多项式加减:(1)两个多项式相减,需要将每个多项式先用括号括起来.(2)求多项式的值时,遇到分数、负数的平方或者立方时,需要用括号将这些数括起来.方法技巧:1.去大括号时,要将中括号看作一个整体,去中括号时,要将小括号看作一个整体.2.合并同类项的基本步骤:(1)标出同类项;(2)将同类项写在一起;(3)合并同类项.3.多项式的求值问题,一般需要先合并同类项,再代入字母的值计算.当出现分数的乘方、负数的乘方时要加小括号.若已知代数式中每个字母的值则采用直接代入法;若代数式中字母的值没有一个个给出时,常采用整体代入法求解.【008-2】答案:1. 8 解析:由题意知a +1=3, b =3,解得a =2, b =3,所以823==b a .2. A 解析:(x -3)2-2(x -3)-5(x -3)2+(x -3)=(1-5)(x -3)2+(-2+1)(x -3)=-4(x -3)2-(x -3).3.解析:因为多项式不含x 3项和x 2项,所以a +1=0,b -2=0解得a =-1,b =2.所以ab =-1×2=-1.4.解析:22211332424a b a b a -+--=21313(1)()2244a b +-+--=2a b -. 当13a =,3b =-时,原式=21()(3)3--=139+=139.5. C6. D7.解析:(1)原式=3x +1-8+2x =5x -7; (2)原式=6a -9b +5a +5b -12a +8b =-a +4b ;(3)原式=6a 2-2ab -6a 2-ab = -3ab ; (4)原式=2a -(3b -5a -2a +7b )=2a -3b +5a +2a -7b =9a -10b.8.解析:他们说的都是对的,小丽说的是把整个学校的面积分成了教学区、操场、学生活动区、图书馆,把每个部分的面积表示出来后就可以得到100a +200a +240b +60b ;小明是把教学区和操场看成是一个长为(100+200),宽为a 的长方形,面积为(100+200)a ,学生活动区和图书馆看成是一个长为(240+60),宽为b 的长方形,面积为(240+60)b ,从而总面积为(100+200)a +(240+60)b ;小虎是把整个学校的面积看成是长为(100+200),宽为(a +b )的长方形,面积为(100+200)(a +b ).9.解析:(1)A -B =(2x 2-9x -11)-(3x 2-6x +4)=2x 2-9x -11-3x 2+6x -4=-x 2-3x -15; (2)21A +2B =21(2x 2-9x -11)+2(3x 2-6x +4)=x 2-92x -112+6x 2-12x +8=7x 2-233x +25. 10.原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2=2(a 2+2b 2)=2×5=10.11.解析:(5x 2+3xy +2y 2)-A =2x 2-3xy +4y 2.A =(5x 2+3xy +2y 2)-(2x 2-3xy +4y 2)=5x 2+3xy +2y 2-2x 2+3xy -4y 2=3x 2+6xy -2y 2. 所以(5x 2+3xy +2y 2)+(3x 2+6xy -2y 2)=8x 2+9xy .即正确的运算结果为8x 2+9xy .12.解析:她的说法有道理,因为原式=7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+3=3,所以原式的值与a ,b 无关.因此所给条件是多余的.。

天津市七年级数学上册第二章《整式的加减》经典题(培优练)(1)

天津市七年级数学上册第二章《整式的加减》经典题(培优练)(1)

1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次C解析:C【分析】 首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.3.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C 解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.4.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg ,∴2月份鸡的价格为24(1-a %)元/kg ,∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg .故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.5.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( )A .100x 100B .﹣100x 100C .101x 100D .﹣101x 100C解析:C【分析】 由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100.【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100,故选C .【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.6.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项, ∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.7.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2tD 解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】 A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意.故选D .【点睛】本题考查单项式的定义,较为简单,要准确掌握定义.8.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .4D 解析:D【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可.【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4,∴a ,b ,c ,d 四个数的和是4,故选:D .【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 9.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.10.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.11.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.12.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( )A .AB >B .A B =C .A B <D .无法确定A 解析:A【分析】作差进行比较即可.【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6)=x 2-5x +2- x 2+5x +6=8>0,所以A >B .故选A .【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .13.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.14.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.15.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.1.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 2.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.3.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.4.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44=44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键. 5.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n 个图形有6n+2根火柴棒.6.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.-3x2+5x -4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x 的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x 2+5x -4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x 的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x 的二次三项式,二次项系数是-3,∴二次项是-3x 2,∵一次项系数是,∴一次项是5x ,∵常数项是-4,∴这个二次三项式为:-3x 2+5x-4.故答案为:-3x 2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.7.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠,∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 8.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示) …………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n 由以上规律即可求解【详解解析:83n -【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.9.多项式223324573x x y x y y --+-按x 的降幂排列是______。

七年级数学上册第二章《整式的加减》复习题(培优练)

七年级数学上册第二章《整式的加减》复习题(培优练)

1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C 【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答. 【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.2.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1C .5D .11A解析:A 【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.3.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100 B .﹣100x 100C .101x 100D .﹣101x 100C解析:C 【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100. 【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得, 单项式的系数的绝对值为序数加1, 系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100, 故选C . 【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系. 4.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 6.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.7.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6n B .8+6nC .4+4nD .8n A解析:A 【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答. 【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2- B .13C .23D .32A 解析:A 【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值. 【详解】∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期 ∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A. 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1D解析:D 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键. 10.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大. 11.下列去括号正确的是( ) A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x+--=+-+D .()()223423422x y x x y x--+=--+ C解析:C 【分析】依据去括号法则计算即可判断正误. 【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+-⎪⎝⎭,故此选项错误;B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x+--=+-+,此选项正确;D. ()()223423422x y x x y x--+=---,故此选项错误;故选:C. 【点睛】此题考查整式的化简,注意去括号法则.12.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C解析:C 【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值. 【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选:C . 【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.13.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8 B .4和8-C .6和8D .2-和8- D解析:D 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答. 【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8. 故选D . 【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数; (2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.14.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C 【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可. 【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -. ∴第5个树枝为15+42=31,第6个树枝为:31+52=63, ∴第(6)个图比第(2)个图多63−3=60个 故答案为C 【点睛】此题考查图形的变化类,解题关键在于找出其规律型. 15.多项式33x y xy +-是( ) A .三次三项式 B .四次二项式C .三次二项式D .四次三项式D解析:D 【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了. 【详解】 解:由题意,得该多项式有3项,最高项的次数为4, 该多项式为:四次三项式. 故选:D . 【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2). 【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答. 【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子, ∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子. 故答案为:(4n+2). 【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.已知等式:2222233+=⨯,233 3388+=⨯,244 441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可. 【详解】解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10 ∴a+b=10+99=109. 故答案为109. 【点睛】本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.3.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的 解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案. 【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)nnx -. 故答案为:(2)nnx -. 【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.4.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0 【解析】 由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.5.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 6.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029 【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可. 【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-. 故答案为:1029-. 【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.7.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n 由以上规律即可求解【详解解析:83n -【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.8.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 9.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.10.在x y +,0,21>,2a b -,210x +=中,代数式有______个.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.11.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m 的值【详解】解:∵多项式3x |m |y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.【详解】解:∵多项式3x |m |y 2+(m +2)x 2y -1是四次三项式, ∴m +2=4,20m +≠∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.1.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ;∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x 、y 的值,以及掌握整式的混合运算.2.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值. 解析:(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= .【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.3.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 4.化简与求值:(1)若1a =-,则式子21a -的值为______;(2)若1a b +=,则式子12a b ++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可;(2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可.【详解】解:(1)()221110a -=--=;(2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-.【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.。

七年级数学上册第二单元《整式加减》-解答题专项测试卷(培优专题)

七年级数学上册第二单元《整式加减》-解答题专项测试卷(培优专题)

一、解答题1.一种商品每件成本a 元,原来按成本增加22%定出价格. (1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元? 解析:(1)每件售价1.22a 元;(2)每件盈利0.037a 元. 【分析】(1)根据每件成本a 元,原来按成本增加22%定出价格,列出代数式,再进行整理即可; (2)用原价的85%减去成本a 元,列出代数式,即可得出答案. 【详解】 (1)根据题意,得: (1+22%)a =1.22a (元), 答:每件售价1.22a 元; (2)根据题意,得: 1.22a ×85%-a =0.037a (元). 答:每件盈利0.037a 元. 【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.2.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD . (1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可. 【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDEACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABD a b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABDb a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 3.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积. 解析:(1)22111222a ab b ++;(2)492【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案; (2)将3a =,5b =代入求值即可. 【详解】 (1)()21122a ab b ⨯++,22111222a ab b =++; (2)当3a =,5b =时,原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】此题考察列式计算,根据图形边长正确列式表示图形的面积即可.4.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.解析:(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x 不超过150度时,x 超过150度,但不超过时250度时和x 超过250度时,再分别代入计算即可. 【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元) 答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x 度,则当x≤150时,应付电费:0.50x 元; 当150<x≤250时,应付电费:0.65(x -150)+75=0.65x 22.5-(元); 当250<x <300,应付电费:0.80(x -250)+140=0.8x 60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩.【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.5.有一道化简求值题:“当1a =-,3b =-时,求222(32)2(())44a b ab ab a ab a b ---+-的值.”小明做题时,把“1a =-”错抄成了“1a =”,但他的计算结果却是正确的,小明百思不得其解,请你帮他解释一下原因,并求出这个值.解析:2228a b a +,解释见解析,2. 【分析】将原式化简后即可对计算结果进行解释;将a 、b 的值代入化简后的式子计算即得结果. 【详解】解:原式22232284a b ab ab a ab a b =--++-2228a b a =+. 因为无论1a =-,还是1a =,2a 都等于1,所以代入的结果是一样的. 所以当1a =-,3b =-时,原式222(1)(3)8(1)=⨯-⨯-+⨯-682=-+=. 【点睛】本题考查了整式的加减运算及代数式求值,属于常考题型,熟练掌握整式加减运算法则是解题关键. 6.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+. (1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由. (3)若18a =,15b = ,求正确结果的代数式的值. 解析:(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0. 【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可. 【详解】解:(1)∵2A B C +=,∴2B C A =-. B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+- 2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++-- 2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= .【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键. 7.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

第二章整式的加减(培优)(解析版)

第二章整式的加减(培优)(解析版)

人教7年级 数学 第二章 整式 (培优).一、单选题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2【答案】B2.单项式﹣5x 2yz 2的系数和次数分别是( )A .5,4B .,5,5C .5,5D .,5,,5 【答案】B3.如果3ab 2m -1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .0 【答案】A4.当x=1时,ax +b +1的值为−2,则(a +b −1)(1−a −b )的值为A .− 16B .− 8C .8D .16 【答案】A5.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B6.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A .2B .-2C .4D .-4【答案】D7.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样 【答案】C8.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为( )A .3nB .6nC .3n +6D .3n +3【答案】D9.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab b a ab b a +---++= 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( ,A .+2abB .+3abC .+4abD .-ab【答案】A10.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B二、填空题 11.已知多项式x |m |+,m ,2,x ,10是二次三项式,m 为常数,则m 的值为_____,【答案】-212.若多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.【答案】-613.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.【答案】114.某音像社出租光盘的收费方法是:每张光盘在租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____元;那么第10天应收租金__________元.【答案】(0.60.5)n + 5.615.若单项式-12a 2x b m 与a n b y -1可合并为12a 2b 4,则xy -mn=___________, 【答案】-3三、解答题 16.已知A ,2x 2,1,B ,3,2x 2,求A ,2B 的值.【答案】6x 2-717.已知有理数a ,b 在数轴上的位置如图所示,化简:232a b a b b a +----,【答案】73a b -+18.已知xy x y+=2,求代数式3533x xy y x xy y -+-+-的值。

杭州市锦绣中学七年级数学上册第二章《整式的加减》经典测试题(培优专题)

杭州市锦绣中学七年级数学上册第二章《整式的加减》经典测试题(培优专题)

1.下列代数式的书写,正确的是( ) A .5n B .n5C .1500÷tD .114x 2y A 解析:A 【分析】直接利用代数式书写方法分析得出答案. 【详解】解:A 、5n ,书写正确,符合题意; B 、n5,书写错误,不合题意; C 、1500÷t ,应为1500t,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意;故选:A . 【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键. 2.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0C .3D .6C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==,所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键. 3.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( ) A .2 B .3C .4D .6C解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可. 【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=; 故选:C . 【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 4.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 5.下列式子:222,32,,4,,,22ab x yz ab ca b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式;2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.6.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a A解析:A 【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果. 【详解】解:根据题意得:b <a <0,且|a |<|b |, ∴a -b >0,a +b <0, ∴原式=a -b -a -b =-2b . 故选:A . 【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键. 7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3C .4D .5B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B. 【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.8.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7 B .-1C .5D .11A解析:A 【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1; 第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题. 9.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++ B解析:B 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握. 10.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+- D .如果||||x y =,那么x y = B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误; 故选:B. 【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.11.下面去括号正确的是( ) A .2()2y x y y x y +--=+- B .2(35)610a a a a --=-+ C .()y x y y x y ---=+- D .222()2x x y x x y +-+=-+ B 解析:B 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误; 故选:B 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.12.下列式子中,是整式的是( ) A .1x + B .11x + C .1÷x D .1x x+ A 解析:A 【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可. 【详解】解:A. 1x +是整式,故正确; B.11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1x x +是分式,故错误. 故选A. 【点睛】本题主要考查了整式,关键是掌握整式的概念.13.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解. 【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.14.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .0B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 15.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.1.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值. 【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…, ∴第m 组有m 个连续的偶数, ∵2020=2×1010, ∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数, ∴m =45,n =20, ∴m +n =65. 故答案为:65. 【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.2.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题故剪n 次时,共有4+3(n-1)=3n+1. 考点:规律型:图形的变化类.3.化简:226334xx x x_________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键 解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可. 【详解】 解:226334xx x x226334xx x x2(64)(33)xx=2106x x -+, 故答案为:2106x x -+. 【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 4.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3. 【分析】找出a 的次数的高低后,由低到高排列即可得出答案. 【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3. 【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.5.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.6.将连续正整数按以下规律排列,则位于第7行第7列的数x是________________.?136********259142027?48131926??7121825??111724??1623??22?????x?【分析】先根据第一行的第一列的数以及第二行的第二列的数第三行的第三列数第四行的第四列数进而得出变化规律由此得出结果【详解】第一行的第一列的数是1;第二行的第二列的数是5=1+4;第三行的第三列的数是解析:85【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列数,第四行的第四列数,进而得出变化规律,由此得出结果.【详解】第一行的第一列的数是 1;第二行的第二列的数是 5=1+4;第三行的第三列的数是 13=1+4+8;第四行的第四列的数是 25=1+4+8+12;......第n 行的第n 列的数是1+4+8+12+...+4(n-1)=1+4[1+2+3+...+(n+1)]=1+2n(n-1);∴第七行的第七列的数是1+2×7×(7-1)=85;故答案为:85.【点睛】本题考查数字的变化规律,学生通过观察、分析、归纳发现其中的规律,从而利用规律解决问题.7.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253ab ab a b ab +--+ 解:()22253a b ab a b ab +--+22253a b ab a b ab =++-①22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律【分析】直接利用整式的加减运算法则进而得出答案.【详解】解:原式=2a 2b+5ab+a 2b-3ab=2a 2b+a 2b+5ab-3ab=(2a 2b+a 2b )+(5ab-3ab )=3a 2b+2ab .第②步依据是:加法交换律.故答案为:加法交换律.【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.8.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.9.“a 的3倍与b 的34的和”用代数式表示为______.【分析】a 的3倍表示为3ab 的表示为b 然后把它们相加即可【详解】根据题意得3a +b ;故答案为:3a +b【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列 解析:334a b + 【分析】a 的3倍表示为3a ,b 的34表示为34b ,然后把它们相加即可. 【详解】根据题意,得3a +34b ; 故答案为:3a +34b . 【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.10.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m 的值【详解】解:∵多项式3x |m |y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式,∴m+2=4,20m+≠∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.11.请根据给出的x,-2,y2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x、-2、y2组成一个单项式,这个单项式可以为-2xy2,由x、-2、y2组成一个二项式,这个二次项式可以为-2x+y2.故答案为:-2xy2;-2x+y2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+12 23 ab+(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.解析:(1)4ab﹣2a+13;(2)b=12【分析】(1)将a=﹣1,b=﹣2代入A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+23,求出A、B的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B =2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.2.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.3.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.解析:(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100 111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.4.有一道化简求值题:“当1a =-,3b =-时,求222(32)2(())44a b ab ab a ab a b ---+-的值.”小明做题时,把“1a =-”错抄成了“1a =”,但他的计算结果却是正确的,小明百思不得其解,请你帮他解释一下原因,并求出这个值.解析:2228a b a +,解释见解析,2.【分析】将原式化简后即可对计算结果进行解释;将a 、b 的值代入化简后的式子计算即得结果.【详解】解:原式22232284a b ab ab a ab a b =--++-2228a b a =+.因为无论1a =-,还是1a =,2a 都等于1,所以代入的结果是一样的.所以当1a =-,3b =-时,原式222(1)(3)8(1)=⨯-⨯-+⨯-682=-+=.【点睛】本题考查了整式的加减运算及代数式求值,属于常考题型,熟练掌握整式加减运算法则是解题关键.。

深圳市七年级数学上册第二章《整式的加减》经典练习题(课后培优)

深圳市七年级数学上册第二章《整式的加减》经典练习题(课后培优)

1.下列用代数式表示正确的是( ) A .a 是一个数的8倍,则这个数是8a B .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D 解析:D 【分析】根据题中叙述列出代数式即可判断. 【详解】A 、a 是一个数的8倍,则这个数是8a,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意; 故选:D . 【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.2.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( ) A .(x ﹣8%)(x+10%) B .(x ﹣8%+10%) C .(1﹣8%+10%)x D .(1﹣8%)(1+10%)x D解析:D 【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润. 【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D . 【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.3.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100 B .﹣100x 100C .101x 100D .﹣101x 100C解析:C【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100. 【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得, 单项式的系数的绝对值为序数加1, 系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100, 故选C . 【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.4.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1 B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A 【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案. 【详解】由题意得:5x 2+4x−1−(3x 2+9x), =5x 2+4x−1−3x 2−9x , =2x 2−5x−1. 故答案选A. 【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算. 5.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C 【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积. 【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-. 故选:C . 【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.6.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -1D解析:D 【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可. 【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1. 故答案为D . 【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键. 7.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p - D .2y z ÷ A解析:A【分析】根据代数式的书写要求判断各项. 【详解】 A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2yz,故选项D 错误; 故选:A . 【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写; (2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.下列式子中,是整式的是( ) A .1x + B .11x + C .1÷x D .1x x+ A 解析:A 【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x+是整式,故正确;B.11x+是分式,故错误;C. 1÷x是分式,故错误;D.1xx+是分式,故错误.故选A.【点睛】本题主要考查了整式,关键是掌握整式的概念.9.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是()A.2010 B.2014 C.2018 D.2022A解析:A【分析】设第二个为x,则第一个,第三个,第四个分别为:x-1,x+1,x+2,总和为:4x+2,分别令代数式为:2010,2014,2018,2022,算出x再判断.【详解】解: 设第二个为x,则第一个,第三个,第四个分别为:x-1,x+1,x+2,总和为:4x+2.当4x+2=2010时,x=502,则x-1=501;当4x+2=2014时,x=503,则x-1=502;当4x+2=2018时,x=504,则x-1=503;当4x+2=2022时,x=505,则x-1=504;由图可知每行有9个数,∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:496497498499500501502503504 505506507508509510511512513故选A.【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程.10.下列去括号正确的是()A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x+--=+-+D .()()223423422x y x x y x--+=--+ C解析:C 【分析】依据去括号法则计算即可判断正误. 【详解】A. 221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误; B. ()8347831221a ab b a ab b --+=-+-,故此选项错误; C. ()()222353261063x y x x y x+--=+-+,此选项正确;D. ()()223423422x y x x y x--+=---,故此选项错误;故选:C. 【点睛】此题考查整式的化简,注意去括号法则. 11.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 12.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B . 13.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍B 解析:B 【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断. 【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B . 【点睛】本题考查了代数式,正确理解代数式表示的意义是关键.14.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b,cd和m的值是解决此题的关键.15.长方形一边长为2a+b,另一边为a-b,则长方形周长为()A.3a B.6a+b C.6a D.10a-b C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.1.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n时,最多可有的交点数m 与直线条数n之间的关系式为:m=_____.(用含n的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n -. 【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.2.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65 【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值. 【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…, ∴第m 组有m 个连续的偶数, ∵2020=2×1010, ∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数, ∴m =45,n =20, ∴m +n =65. 故答案为:65. 【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+ 解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果. 【详解】解:设这个多项式为A,则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4,故答案为2m2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有________________ 个★.【分析】由排列组成的图形都是三角形找出规律即可求出答案【详解】解:根据规律可知:第一个图形中有1×3=3个★第二个图形中有2×3=6个★第三个图形中有3×3=9个★…第n个图形有3n个★∴第20个图解析:60【分析】由排列组成的图形都是三角形,找出规律,即可求出答案. 【详解】解:根据规律可知: 第一个图形中有1×3=3个★, 第二个图形中有2×3=6个★, 第三个图形中有3×3=9个★, …第n 个图形有3n 个★,∴第20个图形共有20×3=60个★. 故答案为:60. 【点睛】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n 个图形有3n 个★. 6.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____; (2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b+ (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答; (2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答; (4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答,(5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -; (2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b+cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b +%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -. 【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.7.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.-25【分析】由x =1时代数式ax+b+1的值是﹣3求出a+b 的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x =1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b =﹣4∴(a解析:-25.【分析】由x =1时,代数式ax +b +1的值是﹣3,求出a +b 的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x =1时,ax +b +1的值为﹣3,∴a +b +1=﹣3,∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.8.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 9.“a 的3倍与b 的34的和”用代数式表示为______.【分析】a 的3倍表示为3ab 的表示为b 然后把它们相加即可【详解】根据题意得3a +b ;故答案为:3a +b【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列 解析:334a b + 【分析】a 的3倍表示为3a ,b 的34表示为34b ,然后把它们相加即可. 【详解】根据题意,得3a +34b ; 故答案为:3a +34b . 【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.10.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)【分析】用个位上的数字表示出十位和百位上的数然后根据数的表示列式整理即可得答案【详解】∵个位数字为n 十位数字比个位数字少2百位数字比个位数字多1∴十位数字为n-2百位数字为n+1∴这个三位数为100解析:11180n +【分析】用个位上的数字表示出十位和百位上的数,然后根据数的表示列式整理即可得答案.【详解】∵个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,∴十位数字为n-2,百位数字为n+1,∴这个三位数为100(n+1)+10(n-2)+n=111n+80.故答案为111n+80.【点睛】本题考查了列代数式,主要是数的表示,表示出三个数位上的数字是解题的关键. 11.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.1.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-,当12,2x y =-=-时,原式174.22=-= 2.若1+2+3+…+n=m ,求(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b )的值.解析:a m b m【解析】试题分析:根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质,(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b )=a 1+2+…n b n+n ﹣1+…+1=a m b m .解:∵1+2+3+…+n=m ,∴(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b ),=a 1+2+...n b n+n ﹣1+ (1)=a m b m考点:单项式乘单项式;同底数幂的乘法.点评:本题考查单项式的乘法法则和同底数幂的乘法的性质.3.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键. 4.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

七年级数学上册第二单元《整式加减》-解答题专项经典题(培优专题)

七年级数学上册第二单元《整式加减》-解答题专项经典题(培优专题)

一、解答题1.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列; (2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.2.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y , 757223235x x x y x y y y x y , 979324347x x x y x y y y x y, …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键. 3.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492 【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++,22111222a ab b =++; (2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.4.有一道化简求值题:“当1a =-,3b =-时,求222(32)2(())44a b ab ab a ab a b ---+-的值.”小明做题时,把“1a =-”错抄成了“1a =”,但他的计算结果却是正确的,小明百思不得其解,请你帮他解释一下原因,并求出这个值.解析:2228a b a +,解释见解析,2.【分析】将原式化简后即可对计算结果进行解释;将a 、b 的值代入化简后的式子计算即得结果.【详解】解:原式22232284a b ab ab a ab a b =--++-2228a b a =+.因为无论1a =-,还是1a =,2a 都等于1,所以代入的结果是一样的.所以当1a =-,3b =-时,原式222(1)(3)8(1)=⨯-⨯-+⨯-682=-+=.【点睛】本题考查了整式的加减运算及代数式求值,属于常考题型,熟练掌握整式加减运算法则是解题关键.5.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式及其加减培优习题
一、填空选择题
5、
6、
7、下面有4个判断
①互为相反数的两个数的绝对值相等;
②如果n 的绝对值等于,则一定为正数;
③点M 在数轴上距原点2个单位长度,且位于原点右侧.若将向左移动5个单位长度,则此点对应的值为-3;
④两个数相加,它们的和一定大于其中一个加数.
其中,正确判断的个数为( )
(A )1 (B )2 (C )3 (D )4
8、小明带a 元钱去超市买文具,买铅笔用去了说带钱数的
13,买橡皮用去余下钱数的14,然后他又用剩下的钱数的12
买了把尺子.这时小明还剩___________ 9、已知a ,b 是整数,且121a b -++=,则()()2412a b -⨯+=___________
10、Ifa+3=b 一9=c+6,then the value of (a 一b)2+(b 一c)2+(c 一a)2 is_____________.
11、已知ab c≠0,若c
c b b a a m 432∙∙=,则m 2+2m+1=___________. 12、某天,黑河凌晨的温度比上午9点的温度低12 ℃,中午12点的温度比凌晨的温度高20℃,晚上9点的温度比中午12点的温度低19℃,若当天上午9点的温度记为a ℃,则当天晚上9点的温度应记为_____________.
13、计算:___________. 14、有理数满足,并且,则的
值( )
(A )大于 (B )等于 (C )小于 (D )与的大小关系不确定
15、如图4,数轴上的六个点满足AB=BC=CD=DE=EF ,则在点B 、C 、D 、E 对
应的数中,最接近的点是( )
(A )点B (B )点C (C )点D (D )点E
16、若66554433221032x a x a x a x a x a x a a )1x x 2(++++++=--,则=
++531a a a ,=++642a a a ;
二、解答题 17、若,求的值.
18、当x =2时,多项式353mx x m -++的值是118,求多项式267m m --的值
19、如图,边长为1的等边三角形ABC 从图示的位置开始在数轴上顺时针无滑动地向右滚
动.当三角形的一个顶点落在x=2013处时,三角形停止滚动.
(1)落在x=2013处的点是三角形ABC 的哪个顶点?说明理由.
(2)在滚动的过程中,点A 走过的路程是多少?
(3)若在滚动的过程中A 走过的路程是某个圆的周长,求这个圆的半径.
()()=+----⨯-1
233113d c b a 、、、d c b a <<<<0d a c b <<<d c b a +++000010-0232=+-x x 10
423+--x x x 图4
F E D C B A。

相关文档
最新文档