吴传生第四版第八章多元函数微积分课后题答案

合集下载

《多元函数积分学》练习题参考答案

《多元函数积分学》练习题参考答案

∫ ∫
2 1 2
dx ∫ dy ∫
2
4− x 1 4− y 1
f ( x, y ) dy f ( x, y ) dx
2 4− y 1
(B) (D)

2 1 2 1
dx ∫
4− x
x
2
f ( x, y ) dy
1

dy ∫ f ( x, y ) dx
y
2 4− y 1 1

2
1
dx ∫ f ( x, y ) dy + ∫ dy ∫
0 < r < R, 顺时针 ,沿 L 与 L1 围成 D ,
I =� ∫=
L
L + L1
− ⎟ dσ − � � ∫ −� ∫ = =∫∫ ⎜ ∫ ⎝ ∂x ∂y ⎠
L1 D
⎛ ∂Q
∂P ⎞
L1
y dx − x dy y dx − x dy = ∫∫ 0dσ − � 2 2 ∫ L1 x + 4y r2 D
) . ( D) I 4
( A) I 1 解:由对称性 I 2 =
(B) I 2
(C) I 3
∫∫ y cos xdxdy = 0 ,
D2 D1
I 4 = ∫∫ y cos xdxdy = 0 ,
D4
在 D1 上, y cos x > 0 ,所以 I1 = 在 D3 上 y cos x < 0 , 所 以 I 3 =
则 f ( x, y ) = xy +
1 8
P105-练习 3 计算 I = 解
2 2
∫∫ x
D
2
+ y 2 − 1 dσ ,其中 D : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 .

高等数学课后习题答案--第八章

高等数学课后习题答案--第八章

第八章 多元函数积分学 §3 三重积分的计算及其应用 习 题
1. 计算下列三重积分 (1) ∫∫∫ xy 2 z 3 dσ ,其中 Ω 是曲面 z = xy 和平面 y = x, x = 1, z = 0 所围成的区域;

(2) ∫∫∫ xzdσ ,其中 Ω 是由平面 z = 0 , x = y, y = z 以及抛物柱面 y = x 2 所围成的
D D
的大小。 【解】 利用 sin 2 x ≤ x 2 .则 sin 2 ( x + 2 y + 3z ) ≤ ( x + 2 y + 3z ) 2 积分得
∫∫∫ sin
D
2
( x + 2 y + 3 z )dσ ≤ ∫∫∫ ( x + 2 y + 3 z ) 2 dσ
D
4. 利用重积分的性质,估计积分值
(1) ∫∫ sin( x 2 + y 2 )dσ ,其中 D = {( x, y ) |
D
π
4
≤ x2 + y2 ≤
3π }; 4
dxdy , 其中 D = {( x, y ) | 0 ≤ x ≤ 4,0 ≤ y ≤ 8}; ln(4 + x + y ) D 2 2 1 (3) ∫∫ e x + y dσ ,其中 D = {( x, y ) | x 2 + y 2 ≤ }. 4 D
习题参考资料
第八章 多元函数积分学 §2 二重积分的计算 习 题
1. 计算二重积分
(1) ∫∫ xye xy dσ ,其中 D = {( x, y ) | 0 ≤ x ≤ 1,0 ≤ y ≤ 1};
2
D
(2) ∫∫

多元微分学 答案

多元微分学 答案

多元微分学例1求函数yx y x z --=24定义域,并在平面上画出定义域的图形。

解:此函数可以看成两个函数214y x z -=与yx z -=12的乘积。

214y x z -=的定义域是x y 42≤ yx z -=12的定义域是⎩⎨⎧≥>-00y y x ,即02≥>y x 。

从而yx y x z --=24的定义域是214y x z -=与yx z -=12定义域的公共部分,即⎩⎨⎧≥>≥≥042y x y x 。

例2设),(y x f y x z -++=当0=y 时,2x z =求.z 解:代入0=y 时,2x z =得),(2x f x x +=即,)(2x x x f -= 所以 .2)(2y y x z +-= 例3 求11lim222200-+++→→y x y x y x解:法1 原式=2)11(lim )11)(11()11)((lim220022*******0=++++++-++++++→→→→y x y x y x y x y x y x y x法2 化为一元函数的极限计算。

令t y x =++122,则当0,0→→y x 时,1→t 。

原式=2)1(lim 11lim121=+=--→→t t t t t 。

例4 求22200lim y x yx y x +→→解:法1 用夹逼准则。

因为22||2y x xy +≤,所以2||22||022222x y x xy x yx y x ≤+⋅=+≤ 而02||lim 00=→→x y x ,从而0||lim 22200=+→→y x y x y x 于是 0lim 22200=+→→y x yx y x法2利用无穷小与有界函数的乘积是无穷小的性质。

因为22||2y x xy +≤所以2122≤+y x xy ,又0lim 00=→→x y x 所以 0)(lim lim 220022200=⋅+=+→→→→x y x xyy x y x y x y x例5求极限(x,y)(0,0)lim→解 (x,y)(0,0)(x,y)lim lim →→= (3分)(x,y)1lim4→==(2分) 例6 研究yx xyy x +→→00lim解:取路径+∈+-=R k kx x y ,2,则,1lim0k y x xy y x -=+→→由k 是任意非零的常数,表明原极限不存在。

高数教学资料 第八章大作业答案

高数教学资料 第八章大作业答案

5 .若 在 点 (x 0 ,y 0 ) 处 f(x ,y ) 可 微 , 且 点 (x 0 ,y 0 ) 为 极 值 点 , 则 该 点
必 为 ( A )
A.驻点; B.最值点;
C.拐点;
D.以上都不对.
注意 可 微 偏 导 数 存 在 , ( 课 本 P 3 1 3 定 理 1 )
Q ( x 0 , y 0 ) 为 极 值 点 , 所 以 该 点 为 驻 点 。
则 f ( x, y)在点 P0( x0 , y0 )处是否取得极值的条件如下: (1) AC B2 0时具有极值,
当 A 0时有极大值, 当 A 0时有极小值;
(2) AC B2 0时没有极值; (3) AC B2 0时可能有极值,也可能没有极值,还需
另作讨论.
三、计算题
1、求极限:
2 xy4 lim
(x, y)(0,0)
xy
解:
原 式
(2 xy4)(2 xy4) lim
(x,y) (0,0)
xy(2 xy4)
lim
1
2 (x,y)(0,0) xy4
lim
1
2 (x,y)(0,0) 004
1 4
三 、 计 算 题
2 求 由 方 程 x ln (y z ) 确 定 的 函 数 z z (x ,y ) 的 一 阶 , 二 阶 偏 导 数
k 1 k2 ,
ykx
其值随k的不同而变化,故极限不存在.
(x,y l) i m (0 ,0 )x 2x yy2f(0 ,0 ) 在 (0 ,0 )不 连 续
(2)fx(0,0) lixm 0f(0 x, 0 x )f(0,0) lixm 0(0 (0 x )x 2) 0 0 x2f(0,0)0,

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)习题8-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界. (1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为 {(x , y )|x =0或y =0}. (2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为 {(x , y )|1≤x 2+y 2≤4}, 边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}. (3){(x , y )|y >x 2}; 解 开集, 区域, 无界集, 导集为 {(x , y )| y ≥x 2}, 边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}. 解 闭集, 有界集, 导集与集合本身相同, 边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22ty tx ty tx ty tx ty tx f ⋅⋅-+=),()tan (2222y x f t y x xy y x t =-+=.3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域: (1)z =ln(y 2-2x +1); 解 要使函数有意义, 必须 y 2-2x +1>0, 故函数的定义域为D ={(x , y )|y 2-2x +1>0}. (2)y x y x z -++=11;解 要使函数有意义, 必须 x +y >0, x -y >0, 故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须 y ≥0,0≥-y x 即y x ≥, 于是有 x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }. (4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须 y -x >0, x ≥0, 1-x 2-y 2>0, 故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221r z y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}. (6)22arccos y x z u +=.解 要使函数有意义, 必须 x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限: (1)22)1,0(),(1lim y x xyy x +-→;解110011lim22)1,0(),(=+-=+-→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y yx . (3)xyxy y x 42lim )0,0(),(+-→; 解xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim )0,0(),(-=++-=→xy y x .(4)11lim )0,0(),(-+→xy xyy x ;解11lim)0,0(),(-+→xy xyy x )11)(11()11(lim)0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)yxy y x )sin(lim)0,2(),(→;解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim不存在.(2)22222)0,0(),()(lim y x y x y x y x -+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0), 则1lim )(lim 44022222 )0,0(),(==-+→=→x x y x y x y x x xy y x ;如果动点p (x , y )沿y =2x 趋向(0, 0), 则044lim )(lim 2440222222 )0,0(),(=+=-+→=→x x x y x y x y x x xy y x .因此, 极限22222)0,0(),()(lim y x y x y x y x -+→不存在.8. 函数xy xy z 2222-+=在何处间断?解 因为当y 2-2x =0时, 函数无意义, 所以在y 2 -2x =0处, 函数xy x y z 2222-+=间断.9. 证明0lim 22)0,0(),(=+→yx xyy x . 证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+,所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x y x xyy x y x .因此 0lim22)0,0(),(=+→yx xyy x . 方法二:证明 因为2||22y x xy +≤, 故22||22222222y x y x y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤-+22|0|2222y x y x xy,所以 0lim22)0,0(),(=+→yx xyy x .10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x -x 0|<δ时, 有|f (x )-f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x -x 0|<δ, 从而|F (x , y )-F (x 0, y 0)|=|f (x )-f (x 0)|<ε, 所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8-21. 求下列函数的偏导数: (1) z =x 3y -y 3x ; 解 323y y x xz -=∂∂,233xy x y z -=∂∂.(2)uvvu s 22+=;解 21)(uv v u v v u u u s -=+∂∂=∂∂,21)(vu u u v v u v v s -=+∂∂=∂∂.(3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理 )ln(21xy y y z =∂∂.(4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅-⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y -=根据对称性可知)]2sin()[cos(xy xy x yz -=∂∂.(5)yx z tan ln =;解 yx y y y x yx x z 2csc 21sec tan 12=⋅⋅=∂∂,yx y x y x y x yx y z 2csc 2sec tan 1222-=-⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(--+=⋅+=∂∂y y xy y y xy y xz ,]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xyxy xy y ++++=.(7)zy x u =;解 )1(-=∂∂z y x zy x u ,x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂,x x zy z y x x z u z yz y ln )(ln 22⋅-=-=∂∂.(8) u =arctan(x -y )z ;解 zz y x y x z x u 21)(1)(-+-=∂∂-, zz y x y x z y u 21)(1)(-+--=∂∂-, zz y x y x y x z u 2)(1)ln()(-+--=∂∂. 2. 设g l T π2=, 试证0=∂∂+∂∂g T g l T l .解 因为lg l T ⋅⋅=∂∂1π,gg g l g T 1)21(223⋅-=⋅-⋅=∂∂-ππ, 所以 0=⋅-⋅=∂∂+∂∂g l g l g T g l T l ππ. 3. 设)11(yx ez +-=, 求证z yz y x z x 222=∂∂+∂∂.解 因为2)11(1x ex z yx ⋅=∂∂+-, 2)11(1y e yz y x ⋅=∂∂+-, 所以 z eeyz y x z x yx yx 2)11()11(22=+=∂∂+∂∂+-+-4. 设y x y x y x f arcsin )1(),(-+=, 求)1 ,(x f x .解 因为x x x x f =-+=1arcsin )11()1 ,(,所以 1)1 ,()1 ,(==x f dx d x f x .5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 因为242x x x z ==∂∂,αtan 1)5,4,2(==∂∂xz ,故 4πα=.6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4-4x 2y 2;解 2384xy x xz -=∂∂, 2222812y x x z -=∂∂; y x y yz 2384-=∂∂, 2222812x y y z -=∂∂;xy y x y yy x z 16)84(232-=-∂∂=∂∂∂. (2)xyz arctan =;解 22222)(11y x y x y xy x z +-=-⋅+=∂∂,22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy yz +=⋅+=∂∂, 22222)(2y x xy y z +-=∂∂;22222222222222)()(2)()(y x x y y x y y x y x y y y x z +-=+-+-=+-∂∂=∂∂∂. (3) z =y x .解 y y xz xln =∂∂, y y x z x 222ln =∂∂; 1-=∂∂x xy yz , 222)1(--=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂--y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, -1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x , f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0, 所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2, f yz (0, -1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyyx xy x z ,x xy y x z 122==∂∂, 023=∂∂∂y x z ,y xy x y x z 12==∂∂∂, 2231y y x z -=∂∂∂. 9. 验证:(1)nx e y tkn sin 2-=满足22xy k t y ∂∂=∂∂;证明 因为nx e kn kn nx e t y t kn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx ne x y tkn cos 2-=∂∂, nx e n x y t kn sin 2222--=∂∂, nx e kn xy k t kn sin 2222--=∂∂,所以 22xyk t y ∂∂=∂∂.(2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂. 证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r xr -=∂∂-=∂∂, 由对称性知32222ry r y r -=∂∂, 32222r z r z r -=∂∂,因此 322322322222222rz r r y r r x r z r y r x r -+-+-=∂∂+∂∂+∂∂ rr r r r z y x r 23)(332232222=-=++-=. 习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22yx y z +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分. 解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12,所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233y x y y x x y x +∆+∆++=, 所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cm 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x y x ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yxy xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dt dyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=x xxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明)()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y y e f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂.(2)) ,(zyy x f u =;解1211)()(f yz y x f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂, )()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f zy'⋅-=.(3) u =f (x , xy , xyz ).解 yz f y f f x u ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22yz ∂∂. 解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422, f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数):(1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂=v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)(1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=v fx u v f v u f x u f x 2222222vf v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和v f ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂ )(1)1()(vfy y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂=y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=222112232221v f y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂ 22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2',z y=f1'⋅2xy+f2'⋅x2=2xyf1'+x2f2';z xx=y2[f11''⋅y2+f12''⋅2xy]+2yf2''+2xy[f21''⋅y2+f22''⋅2xy]=y4f11''+2xy3f12''+2yf2''+2xy3f21''+4x2y2 f22''=y4f11''+4xy3f12''+2yf2''+4x2y2 f22'',z xy=2y f1'+y2[f11''⋅2xy+f12''⋅x2]+2xf2'+2xy[f21''⋅2xy+f22''⋅x2]=2y f1'+2xy3f11''+x2y2f12''+2xf2'+4x2y2f21''+2x3yf22''=2y f1'+2xy3f11''+5x2y2f12''+2xf2'+2x3yf22'',z yy=2xf1'+2xy[f11''⋅2xy+f12''⋅x2]+x2[f21''⋅2xy+f22''⋅x2]=2xf1'+4x2y2f11''+2x3y f12''+2x3yf21''+x4f22''=2xf1'+4x2y2f11''+4x3y f12''+x4f22''.(4) z=f(sin x, cos y,e x+y).解z x=f1'⋅cos x+ f3'⋅e x+y=cos x f1'+e x+y f3',z y=f2'⋅(-sin y)+ f3'⋅e x+y=-sin y f2'+e x+y f3',z xx=-sin x f1'+cos x⋅(f11''⋅cos x+ f13''⋅e x+y)+e x+y f3'+e x+y(f31''⋅cos x+ f33''⋅e x+y)=-sin x f1'+cos2x f11''+e x+y cos x f13''+e x+y f3'+e x+y cos x f31''+e2(x+y) f33''=-sin x f1'+cos2x f11''+2e x+y cos x f13''+e x+y f3'+e2(x+y) f33'', z xy=cos x[f12''⋅(-sin y)+ f13''⋅e x+y]+e x+y f3'+e x+y [f32''⋅(-sin y)+ f33''⋅e x+y]=-sin y cos x f12''+e x+y cos x f13'+e x+y f3'-e x+y sin y f32'+e2(x+y)f33'=-sin y cos x f12''+e x+y cos x f13''+e x+y f3'-e x+y sin y f32''+e2(x+y)f33'',z yy=-cos y f2'-sin y[f22''⋅(-sin y)+ f23''⋅e x+y]+e x+y f3'+e x+y[f32''⋅(-sin y)+ f33''⋅e x+y]=-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23ts y +=, 证明2222)()()()(tu s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(yu x u ∂∂+∂∂=.又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222yu x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅=22222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(22yu x u t t u t t u ∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343yu y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂. 习题8-51. 设sin y +e x-xy 2=0, 求dxdy.解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设xy y x arctan ln 22=+, 求dx dy.解 令xy y x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=, 22222221)(11221yx x y x xy y x y y x F y +-=⋅+-+⋅+=, y x y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x ,F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F y z , 于是 13231=+=--=∂∂+∂∂z z z x F FF F y z x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu u v u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,所以 c b a c b b a c a y z b x z a vu v v u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z-xy , xye yz F F x z zz x -=-=∂∂, 222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xy z yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xz xy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂.(3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g x u g xv x vf x u x u f x u 21212)1()( , 即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x u u cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx u u sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得dy v v e v dx v v e v du u u 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u u u u ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而 1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u , ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u . 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tFy F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=. 证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得 ⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dx dt t f x f dx dy , 移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F t F y F t fD 的条件下 yF t f t F x F t f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1.习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为 ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++,法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得y y 2='.。

高等数学课后答案 第八章 习题详细解答

高等数学课后答案 第八章 习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D= ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。

微积分课后题答案

微积分课后题答案

微 积 分 课 后 习 题 答 案习 题 一 (A )1.解下列不等式,并用区间表示不等式的解集:(1)74<-x ; (2)321<-≤x ;(3))0(><-εεa x ; (4))0,(0><-δδa x ax ;(5)062>--x x ;(6)022≤-+x x .解:1)由题意去掉绝对值符号可得:747<-<-x ,可解得j .113.x <<-即)11,3(-. 2)由题意去掉绝对值符号可得123-≤-<-x 或321<-≤x ,可解得11≤<-x ,53<≤x .即]5,3[)1,1(⋃-3)由题意去掉绝对值符号可得εε<-<-x ,解得εε+<<-a x a .即)a , (εε+-a ;4)由题意去掉绝对值符号可得δδ<-<-0x ax ,解得ax x ax δδ+<<-00,即ax a x δδ+-00 , () 5)由题意原不等式可化为0)2)(3(>+-x x ,3>x 或2-<x 即)(3, 2) , (∞+⋃--∞. 6)由题意原不等式可化为0)1)(2(≤-+x x ,解得12≤≤-x .既1] , 2[-.2.判断下列各对函数是否相同,说明理由: (1)x y =与x y lg 10=; (2)xy 2cos 1+=与x cos 2;(3))sin (arcsin x y =与x y =;(4))arctan (tan x y =与x y =;(5))1lg(2-=x y 与)1lg()1lg(-++=x x y ; (6)xxy +-=11lg 与)1lg()1lg(x x x +--=.解:1)不同,因前者的定义域为) , (∞+-∞,后者的定义域为) , 0(∞+; 2)不同,因为当))(2 , )212((ππ23k k x k ++∈+∞-∞- 时,02cos 1 >+x ,而0cos 2<x ;3)不同,因为只有在]2, 2[ππ-上成立; 4)相同;5)不同,因前者的定义域为) , (11) , (∞+⋃--∞),后者的定义域为) , 1(∞+; 6)相同3.求下列函数的定义域(用区间表示): (1)1)4lg(--=x x y ; (2)45lg 2x x y -=;(3)xx y +-=11; (4))5lg(312x x x y -+-+-=; (5)342+-=x x y ;(6)xy xlg 1131--=;(7)xy x-+=1 lg arccos 21; (8)6712arccos2---=x x x y .解:1)原函数若想有意义必须满足01>-x 和04>-x 可解得 ⎩⎨⎧<<-<41 1x x ,即)4 , 1()1 , (⋃--∞.2)原函数若想有意义必须满足0452>-x x ,可解得 50<<x ,即)5 , 0(.3)原函数若想有意义必须满足011≥+-xx,可解得 11≤<-x ,即)1 , 1(-. 4)原函数若想有意义必须满足⎪⎩⎪⎨⎧>-≠-≥-050302x x x ,可解得 ⎩⎨⎧<<<≤5332x x ,即) 5 , 3 (] 3 , 2 [⋃,3]. 5)原函数若想有意义必须满足⎪⎩⎪⎨⎧≥--≥+-0)1)(3(0342x x x x ,可解得 ⎩⎨⎧≥-≤31x x ,即(][) , 3 1 , ∞+⋃-∞.6)原函数若想有意义必须满足⎪⎩⎪⎨⎧≠-≠>0lg 100x x x ,可解得⎩⎨⎧><<10100x x ,即) , 10()10 , 0(∞+⋃. 7)原函数若想有意义必须满足01012≤≤-x 可解得21010--≤<x 即]101 , 0()0 , 101[22--⋃- 8)原函数若想有意义必须满足062>--x x ,1712≤-x 可解得) 4 , 3 (] 2 , 3 [⋃--.4.求下列分段函数的定义域及指定的函数值,并画出它们的图形: (1)⎪⎩⎪⎨⎧<≤-<-=43,13,922x x x x y ,求)3( , )0(y y ;(2)⎪⎪⎩⎪⎪⎨⎧∞<<+-≤≤-<=x x x x x x y 1, 1210,30,1,求)5( , )0( , )3(y y y -.解:1)原函数定义域为:)4 , 4(-3)0(==y 8)3(==y .图略2)原函数定义域为:) , (∞+-∞31)3(-=-y 3)0(-==y 9)5(-=y y(5)=-9.图略5.利用x y sin =的图形,画出下列函数的图形:(1)1sin +=x y ; (2)x y sin 2=; (3)⎪⎭⎫⎝⎛+=6sin πx y .解:x y sin =的图形如下(1)1sin +=x y 的图形是将x y sin =的图形沿沿y 轴向上平移1个单位(2)x y sin 2=是将x y sin =的值域扩大2倍。

高等数学(下)第四版-第八章习题答案.doc

高等数学(下)第四版-第八章习题答案.doc

i.判断下列平面点集哪些是开集、闭集、区域、冇界集、无界集?并分别指出它们的聚点集和边界:⑴{g)|20};⑵{(心)| 1<X2+/<4};⑷{(x,y) I (x - I)2 + b G} U {(w) I(X + I)2 + 尸5 1}.解:(1)开集、无界集,聚点集:R2,边界:{(x,y)|尸0}.(2)既非开集乂非闭集,有界集,聚点集:{(x』)|l Wx\y2w4},边界:{(x,叨F+b=l} U {(x』)| xV=4}.(3)开集、区域、无界集,聚点集:{(x』)[yWF}, 边界:{(¥』)|尸<}.(4)闭集、有界集,聚点集即是其木身,边界:{(X^)|(X-1)24-/=1 } U {(x,y)|(x4-l)2+y=l}.2.己知f (x,y)= x2+y~-xy tan —,试求f(tx,ty).y解:f(tx,ty) = (tx)2 + (ty)2-tx-tytan— = t2f(x,y).3•已知/(u,v,w)= w u + 卜严' ,试求f(x + y,x-y,xy).解:Xx+y, x-y, xy)=(巧严+(砂严’心'=(x+)泸'+(初)4•求下列各函数的定义域:(l)z= ln(y2-2x+l);(4) w = —j= 4- —j= + —j=;yjx y]y yjzz - \n(y一x) +u = arccos解:(l)n = {(x,y)|/-2x + l>0}.(2)Z) = {(x,jO|x + y〉0,x-y >0}.(3)D = {(x,y)\4x-y2>0,\-x2-y2>0,x2+y2 ^0}.(4) D = {(x』,z) | x > 0,y > 0,z > 0}.(5) D = {(x,y)ix>0,y> 0, x2 > y}.(6)Z) = {(x』)| y-x > 0,x > 0,x2+y2 < 1}.⑺D = {(x,y,z)|/ + 尸工0,兀? + 尹2 _么2 J。

赵树嫄-《微积分(第四版)》第八章 多元函数微积分(1)

赵树嫄-《微积分(第四版)》第八章 多元函数微积分(1)

36
例6

lim
( x, y)(0,0)
x2 y x2 y2
.
解 由基本不等式 | xy | 1 ( x2 y2 ) , 知 2
(2) 单叶双曲面
x2 y2 z2 a2 b2 c2 1
z
(3) 双叶双曲面
x2 y2 z2 a2 b2 c2 1
o
y
x
o
y
x
21
(4) 椭圆锥面
x2 a2

y2 b2

z2
z
特殊情况:a b ,
x2 y2 a2z2 --圆锥面.
o
y
z
x
z x2 y2
y
o
x
28
函数 z ln( x y) 的定义域为
{( x, y) | x y 0}
y
o
x

29
例3 求 f ( x, y) arcsin(3 x2 y2 ) 的定义域. x y2
解 | 3 x2 y2 | 1
y
x

y2

0
2 x2 y2 4
例如: x y 0 ,
z
x yz2,
z (0,0,2)
x yz2
oy
o
y
x
(0,2,0) x (2,0,0)
14
2º 柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面。 这条定曲线 C 叫柱面的准线,动直线L叫柱面的母线。
15
例4 考虑方程 x2 + y2 = R2 所表示的曲面。
y
Q(0, y,0) A( x, y,0)

实用文档之《微积分》各章习题及详细答案

实用文档之《微积分》各章习题及详细答案

实用文档之"第一章 函数极限与连续"一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题 1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分第八章习题解答

微积分第八章习题解答

第八章习题解答1.利用积分性质求下列函数在给定区间上的二重积分。

()()(){}()()()()13241321431,,,,50,21,53,21432,21320,211,1321321=⋅+⋅+⋅=⋅+⋅+⋅=⋅++=≤≤≤≤=⎪⎩⎪⎨⎧≤≤≤≤≤≤≤≤≤≤≤≤=⎰⎰⎰⎰⎰⎰⎰⎰S S S d y x f d y x f d y x f d y x f y x y x R y x y x y x y x f R R R Rσσσσ解:()()(){}()22144,2,32,4,2=⋅=⋅=≤≤≤≤==⎰⎰R RS d y x f x y x y x R y x f σ解:2. 估计下列不定积分()()(){}(){}()()624624624,32,10,32,10,,21≤++≤⇒⋅≤++≤⋅∴≤++≤≤≤≤≤=≤≤≤≤=++=⎰⎰⎰⎰⎰⎰σσσd y x S d y x S y x y x y x R y x y x R d y x I RR RR R中在解:()()(){}(){}()()()202020,10,10,10,10,,2≤+≤⇒⋅≤+≤⋅∴≤+≤≤≤≤≤=≤≤≤≤=+=⎰⎰⎰⎰⎰⎰σσσd y x xy S d y x xy S y x xy y x y x R y x y x R d y x xy I RR RR R中在解:3. 利用对称性确定下列积分值。

()()(){}(){}()()022,0,4,0,4,,212323222223=+=∴+≥≤+=≥≤+=+=⎰⎰⎰⎰σσd x y y I y x y y x y x y x R x y x y x R d x y y I RR轴对称关于中在解:()(){}(){}0,20,22,20,22,,2222==∴≤≤≤≤-=≤≤≤≤-==⎰⎰⎰⎰σσd xy I x xy y x y x R y x y x R d xy I RR轴对称关于中在解:4计算下列积分。

多元函数微分学习题解知识点与课后习题答案

多元函数微分学习题解知识点与课后习题答案

第8章 多元函数微分学§8.1 多元函数的基本概念习题8-1★1.设222(,)xy f x y x y =+,求(1,)y f x。

解:222222(1,)1()yy xy x f y x x y x==++★2. 已知函数(,,)w u v f u v w u w +=+,试求(,,)f x y x y xy +-。

解: 2(,,)()()xy x f x y x y xy x y xy +-=++★★3.设()zx y f x y =++-,且当0y =时,2z x =,求()f x 。

解:将0y =代入原式得: 20(0)x x f x =++- ,故 2()f x x x =-4.求下列函数的定义域: ★(1)2ln(21)zy x =-+解:要使表达式有意义,必须 2210y x -+>∴ 所求定义域为 2{(,)|210}D x y y x =-+>★(2)z=解:要使表达式有意义,必须0x , ∴{(,)|D x y x =≥★★(3)u =解:要使表达式有意义,必须11-≤≤∴{(,,)|D x y z z =≤★★★(4)z =解:要使表达式有意义,必须 222224010ln(1)0ln1x y x y x y ⎧-≥⎪-->⎨⎪--≠=⎩∴ 222{(,)|01,4}D x y x y y x =<+≤≤★★(5)ln()z y x =-解:要使表达式有意义,必须220010y x x x y ⎧->⎪≥⎨⎪-->⎩∴ 22{(,)|1,0}D x y x y x y =+<≤<5.求下列极限:★(1)10y x y →→知识点:二重极限。

思路:(1,0)为函数定义域内的点,故极限值等于函数值。

解:1ln 2ln 21y x y →→== ★★(2)00x y →→知识点:二重极限。

思路: 应用有理化方法去根号。

(整理)高等数学课后答案第八章习题详细解答

(整理)高等数学课后答案第八章习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆=.任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D DD =,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。

(完整版)多元函数微分学复习题及答案精选全文完整版

(完整版)多元函数微分学复习题及答案精选全文完整版

可编辑修改精选全文完整版第八章 多元函数微分法及其应用 复习题及解答一、选择题 1. 极限= (提示:令22y k x =) ( B )(A) 等于0 (B) 不存在 (C) 等于(D) 存在且不等于0或2、设函数,则极限= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数在点处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件 5、设,则= ( B )(A)(B)(C)(D)6、设,则 ( A )(A ) (B ) (C ) (D )7、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C ) (A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若,则= ( D ) (A) (B)(C)(D)9、设,则( A )(A) 2 (B) 1+ln2 (C) 0 (D) 1 10、设,则 ( D )(A) (B)(C) (D)11、曲线在点处的法平面方程是 (C ) (A) (B)(C)(D)12、曲线在点处的切线方程是 (A )(A) 842204x z y --=-=(B) (C) (D)13、曲面在点处的切平面方程为 (D )(A ) (B )(C )(D )14、曲面在点处的法线方程为 (A )(A ) (B ) (C ) (D )15、设函数,则点是函数 的 ( B )(A )极大值点但非最大值点 (B )极大值点且是最大值点(C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数具有二阶连续偏导数,在处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点是函数的极大值点 (B )点是函数的极小值点(C )点非函数的极值点 (D )条件不够,无法判定17、函数在222421x y z ++=条件下的极大值是 ( C )(A) (B) (C) (D)二、填空题 1、极限= ⎽⎽⎽⎽⎽⎽⎽ .答:2、极限=⎽⎽⎽⎽⎽⎽⎽ .答:3、函数的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:4、函数的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:,5、设函数,则= ⎽⎽⎽⎽⎽⎽⎽ .答:6、设函数,则= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-)7、设,要使处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:8、设,要使在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:19、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线及11、设,则_________ .答:3cos5 12、设,则= _________ .答:1 13、设,则=_________ .答:14、设,则在极坐标系下,= _________ .答:015、设,则= _________.答:16、设,则= ___________ .答:17、函数由所确定,则= ___________ .答:18、设函数由方程所确定,则= _______ .答:19、由方程所确定的函数在点(1,0,-1)处的全微分= _________ .答:20、曲线在点处的切线方程是_________.答:21、曲线在对应于点处的法平面方程是___________. 答:01132=+--e y x22、曲面在点处的法线方程为_________ .答:eze y x 22212=-+=- 23、曲面在点处的切平面方程是_________.答:24、设函数由方程确定,则函数的驻点是_________ .答:(-1,2) 27、函数的驻点是_________.答:(1,1)25、若函数在点处取得极值,则常数_________,_________.答:0,426、函数在条件下的极大值是_______答:三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.4 2、求极限 .解:= 43、求极限 .解:原式=4、求极限 .解:= -85、设,求.解:6、设,求.解:7、设函数由所确定,试求(其中).解一:原式两边对求导得,则同理可得:解二:xy xz F F y z xy yz F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数的极值.解:由,得驻点074334>=--==yyyxxy xx z z z z D,函数在点处取极小值.9、设,而,求.解:=-++(sin )3432t t e x y10、设,求.解:11、设,求.解:,,12、求函数的全微分.解:四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为米.水池底部的单位造价为. 则水池造价 且令由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e x z y x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+- 2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx ekn xy k tkn sin 2222--=∂∂, 所以22xy k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。

高等数学第9章参考答案

高等数学第9章参考答案

第八章 多元函数的微分法及其应用§ 1 多元函数概念一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ϕϕ求-=+=.二、求下列函数的定义域:1、2221)1(),(y x y x y x f ---= 222{(,)|(,)R ,1};x y x y y x ∈+≠ 2、xyz arcsin = };0,|),{(≠≤x x y y x三、求下列极限:1、222)0,0(),(sin lim y x yx y x +→ (0) 2、x y x x y3)2,(),()1(lim+∞→ (6e )四、证明极限 242)0,0(),(lim yx yx y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2x y =趋于(0,0)时,极限为21, 二者不相等,所以极限不存在五、证明函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x yx xy y x f 在整个xoy 面上连续。

证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。

当)0,0(),(=y x 时,)0,0(01sin lim 22)0,0(),(f yx xy y x ==+→,所以函数在(0,0)也连续。

所以函数 在整个xoy 面上连续。

六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数1、设z=x yx e x y + ,验证 z xy +=∂∂+∂∂yzyx z x 证明:x yx yx ye x ,e x y e y +=∂∂-+=∂∂y z x z ,∴z xy xe xy xy x y+=++=∂∂+∂∂yzy x z x 42244222222)()),,((y y x x y y x y y x f +-=+-=ϕ答案:2、求空间曲线⎪⎩⎪⎨⎧=+=Γ21:22y y x z 在点(1,21,23)处切线与y 轴正向夹角(4π) 3、设yx y xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1)4、设yz x u =, 求x u ∂∂ ,y u ∂∂ ,zu ∂∂ 解:1-=∂∂y zx y z x u ,x x yz y u y zln 2-=∂∂ x x y z u y zln 1=∂∂ 5、设222z y x u ++=,证明 : u zu y u x u 2222222=∂∂+∂∂+∂∂6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由⎪⎩⎪⎨⎧≠+≠++=0,00,1sin ),(222222y x y x yx x y x f )0,0(0),(lim 00f y x f y x ==→→ 连续; 201sin lim )0,0(xf x x →= 不存在, 0000lim )0,0(0=--=→y f y y7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 xb x a f b x a f x ),(),(lim--+→(2f x (a,b)) § 3 全微分 1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 __________(A) 必要条件而非充分条件 (B )充分条件而非必要条件 (C )充分必要条件 (D )既非充分又非必要条件(2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在 (B )偏导数连续,则全微分必存在 (C )全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在 2、求下列函数的全微分:1)x y e z = )1(2dy x dx xy e dz x y+-=2))sin(2xy z = 解:)2()cos(22xydy dx y xy dz +=3)zyx u = 解:xdz x zyxdy x z dx x z y du z yz yz yln ln 121-+=-3、设)2cos(y x y z -=, 求)4,0(πdz解:dy y x y y x dx y x y dz ))2sin(2)2(cos()2sin(-+-+--= ∴)4,0(|πdz =dy dx 24ππ-4、设22),,(yx z z y x f += 求:)1,2,1(df )542(251dz dy dx +--5、讨论函数⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin )(),(2222y x y x y x y x y x f 在(0,0)点处的连续性 、偏导数、 可微性解:)0,0(01sin )(lim 2222)0,0(),(f y x y x y x ==++→ 所以),(y x f 在(0,0)点处连续。

《微积分》课后习题答案详解 八

《微积分》课后习题答案详解 八
9.设 是一个常数,判别级数 的敛散性,当级数收敛时要确定级数是绝对收敛还是条件收敛.
解:当 时 时 收敛.
当 ,时 收敛.
所以 时 绝对收敛.
当 时 为常数)
所以当 时 发散
10.设 是一个常数,判别级数 的剑散性,当级数收敛时要确定级数是绝对收敛还是条件收敛,而且其敛散性是否与常数 的取值有关.
令 则
(2)
令 则
(3)
令 时,
16.把下列函数展开成 的幂级数:
(1) ;(2) ;(3) ;
(4) (5) (6)
解:(1)

(2)=
(3)=
4)
5)
6)
17.把下列函数展开成 的幂级数:
(1) (2)
解:1)
2)
收敛为
(B)
1.选择题
(1)正项级数 收敛的充分必要条件是(D).
A. B. 且
C. D.部分和数列有界
C.若 条件收敛,则 与 的敛散性都不定
D.若 绝对收敛,则 与 的敛散性都不定
(8)设 若 发散, 收敛,则下列结论中正确的是(D).
A. 收敛, 发散B. 收敛, 发散
C. 收敛D. 收敛
(9)设有以下命题:
①若 收敛,则 收敛;
②若 收敛,则 收敛
③若 ,则 发散;
④若 收敛,则 , ,则以上命题中正确的是(B).
当 时 发散.
当 时, 发散.
所以收敛域为(-4,4)
(6)
所以 ,收敛区间和收敛域为(- ,+ ).
(7)
所以
,所以收敛半径为1.
当 时 发散.
所以收敛域为(-1,1).
(8)
所以 收敛区间为(- , ).

微积分吴迪光版答案chap 08 习题 解答(春季)

微积分吴迪光版答案chap 08 习题 解答(春季)


BP = BA + AP , CP = CA + AP
而 AP 因位于三角形内, 可被不共线的 AB, AC 唯一线性表示,即设有 m,n,使得
AP = m AB + n AC ,
于是
OP = 1 (OA + OB + OC) + 1 (AP + BP + CP) 3 3 (OA + OB + OC) + AP + 1 (BA + CA ) =1 3 3 (OA + OB + OC) + (m AB + n AC) + 1 (BA + CA ) =1 3 3
题 14 (p48)◇ 【3】 用矢量方法证明:可作一三角形,使它的各边分别平行且等于已知三角形的三条中线。 『证明』
C D
E
A
F
B
只需证明这三条中线矢量首尾相接。即证 r CF + BE + AD = 0 事实上,
CF = CA + AF = CA + 1 AB , 2 BE = BC + CE = BC + 1 CA 2
5
题 57 (p51)◇ 【16】 已知 a⊥b,计算 a×{ a×[a×(a×b)]} 『解』 由 a×(b×c)=(ac) b-(ab)c 知 a×(a×b)=(ab) a-(aa)b=-|a|2 b a×{ a×[a×(a×b)]}=a×{ a×[-|a|2 b]}= -|a|2[a×(a×b)]=|a|4 b # 题 59 (p51)◇ 【17】 直线 L1 : 『解』 由 L 2 得 x=z-1, y=z+1, 代入 L1 方程,可求出 m=

高等数学_课后习题答案第八章

高等数学_课后习题答案第八章

习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x ,y )|x ≠0};(2) {(x ,y )|1≤x 2+y 2<4}; (3) {(x ,y )|y <x 2};(4) {(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x ,y )|y ≤x 2}, 边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}.2. 已知f (x ,y )=x 2+y 2-xy tan xy ,试求(,)f tx ty .解:222(,)()()tan (,).txf tx ty tx ty tx ty t f x y ty =+-⋅=3. 已知(,,)wu vf u v w u w +=+,试求(,,).f x y x y xy +-解:f (x +y , x -y , xy ) =(x +y )xy +(xy )x +y +x -y =(x +y )xy +(xy )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(3)z =(4)u =(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠ (4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:1(1)y x y →→22001(2)lim;x y x y →→+00(3)x y →→0x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y xy x y x y +→→-++解:(1)原式0ln 2.=(2)原式=+∞.(3)原式=1.4x y →→=-(4)原式=02.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2e x y x y x x y y x y x yx y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x yx y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x yx y ⎧++≠⎪=+⎨⎪+=⎩ (3)222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩ 解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y ++++≤=≤+⋅++++又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y u x y u →→→+==+,故00lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续.(2)000sin lim lim1(0,0)0x u y uz z u→→→==≠= 故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+,若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++故00lim x y z→→不存在.故函数z 在O (0,0)处不连续. 7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y x y x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=22e ,0,0,0.x y x y y y -⎧⎪≠⎨⎪=⎩ 解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞.故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z =x 2y +2x y ;(2)s =22u v uv +;(3)z =x;(4)z =lntan xy ;(5)z =(1+xy );(6)u =z xy ; (7)u =arctan(x -y )z;(8)y zu x =.解:(1)223122,.z z x xy x xy y y ∂∂=+=-∂∂ (2)u v s v u =+ 2211,.s v s u u v u v v u ∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xyx y y x y∂==∂+(4)21122sec csc ,tan z x x xx y y y yy ∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy ∂=⋅⋅-=-∂(5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy -∂'=+⋅=+⋅=++∂+ []ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z -∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂(7)11221()().1[()]1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z z z z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yz u y x x z -∂=∂2211ln ln .ln ln .y yzzy y zz u x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y =+,求证:3u ux y u x y ∂∂+=∂∂.证明: 222223222()2()()u xy x y x y x y xy xx y x y ∂+-+==∂++. 由对称性知 22322()u x y yx yx y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+.10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z x y z x y ∂∂+=∂∂.证明: 11112211e e x y x y z x x x ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦,由z 关于x ,y 的对称性得1121e x y z y y ⎛⎫+- ⎪⎝⎭∂=∂故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y ⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(y,求f x (x ,1) .解:1(,)1(x f x y y y =+-则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂设切线与正向x 轴的倾角为α,则tan α=1. 故α=π4.13.求下列函数的二阶偏导数: (1)z =x 4+ y 4-4x 2y 2; (2)z=arctan yx ;(3)z =y x;(4)z =2exy+.解:(1)2322224812816z z z x xy x y xyx x x y ∂∂∂=-=-=-∂∂∂∂ ,,由x ,y 的对称性知22222128.16.z z y x xy y y x ∂∂=-=-∂∂∂(2)222211z y y x x y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++(3)222ln ,ln ,x x z zy y y y x x ∂∂==∂∂21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y yz y xy y y x y x y y zy x y y y x y y x -------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂(4)22e 2,e ,x y x y z zx x y ++∂∂=⋅=∂∂222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x yz x x x x z z z x x y x y y x ++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+ 22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z =x ln(xy ),求32z x y ∂∂∂及32z x y ∂∂∂.解:ln()1ln(),z yx xy xy x xy ∂=⋅+=+∂232223221,0,11,.z y z x xy x x y z x z x y xy y x y y ∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx yx y ++∂∂=⋅=⋅∂∂∴222222d 2ed 2e d 2e (d d )x yx y x y z x x y y x x y y +++=+=+ (2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=-⎪+∂+⎝⎭2223/2()z x y x y ∂==∂+∴ 223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y --∂∂==⋅⋅∂∂2ln ln y z u x x y y z ∂=⋅⋅⋅∂∴211d d ln d ln ln d .zzzy y z y zu y x x x x zy y x x y y z --=+⋅+⋅⋅⋅ (4)∵1y zu y x x z -∂=∂1ln y z u x x y z ∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭ 17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=-(2)e ,1,1,0.15,0.1.xyz x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y )取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f (x ,y )=x y,则d f (x ,y )=yx y -1d x +x yln x d y , 取x =2,y =1,d x =-0.03,d y =0.05,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=19.矩型一边长a =10cm ,另一边长b =24cm,当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则d d ).l l x x y y ==+当x =10,y =24,d x =0.4,d y =-0.1时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20. 1mol 理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L ,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT 得V =RTP ,且在标准状态下,R =8.20568×10-2,ΔV ≈d v =-2d d RT R p T P P +=d d V RP T P P -+222.48.20568100.01530.0911-⨯=-⨯+⨯≈-故体积改变量大约为0.09.21. 测得一物体的体积V =4.45cm 3,其绝对误差限是0.01cm 3,质量m =30.80g ,其绝对误差限是0.01g ,求由公式mv ρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m =30.80,d v =0.01,d m =0.01时,22130.801d d d 0.010.014.45 4.450.01330.0133m v m v v ρ==-+-⨯+⨯≈=-当v =4.45, m =30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,zv ∂∂;(2) z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v ∂∂; (3) ln(e e )xyu =+,y =x 3,求d d ux ;(4) u =x 2+y 2+z 2, x =e cos t t ,y =e sin t t ,z =e t,求d d ut .解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z yxy y v x xy v u x u y uu v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=- 223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y vu v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++(2)222222211111x z z x z y y x v y u x u y uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y v y x x y y y x u x y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e e x y xx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++(4)d d d d d d d d u u x u y u z t x t y t z t ∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭ (3)().,,u f x xy xyz =解:(1)12122e 2e .xy xy uf x f y xf y f x ∂''''=⋅+⋅⋅=+∂1212(2)e 2e .xy xy uf y f x yf x f y ∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f xy y ∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭ (3)1231231,uf f y f yz f yf yzf x ∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf y uf xy xyf z ∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x =+=为可导函数,证明:.z zx y z xy x y ∂∂+=+∂∂证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x ∂''=+⋅=+∂故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+25. 设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y ∂∂+=∂∂. 证明:∵ 2222z yf x xyf xf f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂,∴22222112211z z yf f y f y zx x y yf yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂解:2,2,z zxf yf x y ∂∂''==∂∂222222224,224,zf x xf f x f x zxf y xyf x y ∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.zf y f y ∂'''=+∂27. 设f 是c 2类函数,求下列函数的二阶偏导数:(1),;x x z f y ⎛⎫= ⎪⎝⎭ (2)()22;,z f xy x y = (3)().sin ,cos ,e x y z f x y +=解:(1)1212111,z f f f f x y y ∂''''=⋅+⋅=+∂2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x ∂''''=⋅+⋅=+∂()()22222211122122432221112222222244,z y yf xy f y f xy f y f xy xyf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yzxf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x ++∂''''=⋅+⋅=+∂()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y z xf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y+++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28. 试证:利用变量替换1,3x y x yξη=-=-,可将方程22222430u u ux x y y ∂∂∂++=∂∂∂∂化简为 20uξη∂=∂∂.证明:设1(,),3u f f x y x y ξη⎛⎫==-- ⎪⎝⎭ 2222222222222222222222221411(1)(1)3333u u u u u x x x u u u u u u u ux x x x x u u u uuu u x y ξηξηξηξηξηξξηηξηξξηηξξηηξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⋅+⋅+⋅+⋅=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫⎛⎫=+⋅-+⋅+⋅-=----- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭22u η∂∂222222222222222222222222211(1)33111211(1)(1)33933343142433u u u u uy u u u uuu u u y u u ux x y yu u u u ξηξηξξηηξηξξηηξξηηξ∂∂∂∂∂⎛⎫=⋅+⋅-=--- ⎪∂∂∂∂∂⎝⎭∂∂∂∂∂∂∂∂⎛⎫⎛⎫=-⋅-⋅--⋅-⋅-=++-- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂++∂∂∂∂∂∂∂∂∂=+++--∂∂∂∂∂2222222221239340.3u u u u u u ξηηξξηηξη⎛⎫⎛⎫∂∂∂∂+-++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭∂=-=∂∂故20.uξη∂=∂∂29. 求下列隐函数的导数或偏导数:(1)2sin e 0x y xy +-=,求d d yx ;(2)ln arctany x =,求d d yx ;(3)20x y z ++-=,求,z z x y ∂∂∂∂;(4)333z xyz a -=,求22,z zx y ∂∂∂∂. 解:(1)[解法1] 用隐函数求导公式,设F (x ,y )=sin y +e x -xy 2,则2e ,c o s 2,x x y F y F y xy =-=- 故22d e e d cos 2cos 2x x x y F y y y x F y xy y xy --=-=-=--. [解法2] 方程两边对x 求导,得()2cos e 02x y y y x yy '⋅+-='+⋅故2e .cos 2xy y y xy -'=- (2)设()221(,)ln arctan ln arctan ,2y yF x y x y x x ==-+ ∵222222121,21x x x y y F x y x y x y x +⎛⎫=-⋅=- ⎪++⎝⎭⎛⎫+ ⎪⎝⎭222221211,21y y y x F x y x x y y x -=-⋅=++⎛⎫+ ⎪⎝⎭∴d .d x y F y x y xF x y +=-=- (3)方程两边求全微分,得d 2d d 0,x y z ++=,z x y =则d ,z x y =故z z xy ∂∂==∂∂ (4)设33(,,)3F x y z z xyz a =--,23,3,33,x y z F yz F xz F z xy =-=-=-则 223,33x z F z yz yz x F z xy z xy ∂-=-=-=∂--223,33y z F z xz xz y F z xy z xy ∂-=-=-=∂--()()()()22222222322232222()z z z x x xz z xy xz y z y z xy y y z xy xzxzz x x xz z xy z xyx yzz xy xy z z xy ∂∂⎛⎫--- ⎪∂∂∂∂⎛⎫⎝⎭== ⎪-∂∂⎝⎭-⎛⎫⋅--- ⎪--⎝⎭==--30. 设F (x ,y ,z )=0可以确定函数x =x (y ,z ),y =y (x ,z ),z =z (x ,y ),证明:1x y zy z x ∂∂∂⋅⋅=-∂∂∂.证明:∵,,,y x z x y z F F F x y zyF z F x F ∂∂∂=-=-=-∂∂∂∴ 1.y z x y z x F F F x y z F F F y z x ⎛⎫⎛⎫∂∂∂⎛⎫---⋅⋅=⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭31. 设11,0F y z x y ⎛⎫++= ⎪⎝⎭确定了函数z =z (x ,y ),其中F 可微,求,z zx y ∂∂∂∂. 解:12122110x F F F F x x ⎛⎫'''=⋅+⋅=-- ⎪⎝⎭122122121222122221222011111z y x z y zF F F F F F F y F F F z x x F F x F F F F F y F z y y F F y F '''=⋅+⋅=⎛⎫''-=⋅+⋅ ⎪⎝⎭'-'∂=-=-=∂''''-''-∂=-=-=∂''32. 求由下列方程组所确定的函数的导数或偏导数:(1)22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求:d d ,;d d y z x x(2)1,0,xu yv yu xv +=⎧⎨-=⎩ 求:,,,;u v u vx x y y ∂∂∂∂∂∂∂∂(3)2(,),(,),u f ux v y v g u x v y =+⎧⎨=-⎩ 其中f ,g 是c '类函数,求,;u v x x ∂∂∂∂(4)e sin ,e cos ,u u x u v y u v ⎧=+⎪⎨=-⎪⎩ 求,,,.u u v v x y x y ∂∂∂∂∂∂∂∂ 解:(1)原方程组变为222222320y z x y z x ⎧-=-⎪⎨+=-⎪⎩方程两边对x 求导,得d d 22d d d d 23d d y zy x x x y z y z x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩当 2162023y J yz y y z -==+≠21d 16(61),3d 622(31)22d 12.2d 6231x y xz x x z x z x J yz y y z y x z xy x y x x J yz y z ----+===--++-===-++(2)设(,,,)1,(,,,),F x y u v xu yv G x y u v yu xv =+-=-,,,,,,,,x y u v x y u v F u F v F x F y G v G u G y G x =====-===-22u v uv F F x yJ x y G G y x===---故 22x v xv F F uyG G v x u ux yvxJJ x y --∂-+=-=-=∂+222222,,.uxu x yvy v uyu y F F xuG G y v vvx uy x J J x yF F vyG G u x u vx uy y J J x yF F x vG G y u v xu vy y J J x y-∂--=-=-=∂+-∂--=-=-=∂+∂-=-=-=∂+(3)设(,,,)(,),F u v x y f ux v y u =+-2(,,,)(,),G u v x y g u x v y v =-- 则121221121(1)(21),21uv uvF F xf f J xf yvg f gG G g vyg ''-''''===---''-故12121221122121(21),(1)(21)xvx v uf f F F G G g yvg uf yvg f g ux JJ xf yvg f g ''''''''-----∂=-=-=∂''''--- 111111112211(1).(1)(21)uxu x xf uf F F G G g g g xf uf vx JJ xf yvg f g ''-'''''-+-∂=-=-=∂''''---(4)(,),(,)u u x y v v x y ==是已知函数的反函数,方程组两边对x 求导,得1e sin cos ,0e cos (sin ),u u u u v v u v x x xu u v v u v x x x ∂∂∂⎧=++⎪⎪∂∂∂⎨∂∂∂⎪=---⎪∂∂∂⎩整理得 (e sin )cos 1,(e cos )sin 0,uu u v v u v x x u v v u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪-+=⎪∂∂⎩解得 sin e (sin cos )1uu v x v v ∂=∂-+cos e [e (sin cos )1]uu v v x u v v ∂-=∂-+方程组两边对y 求导得0e sin cos 1e cos sin u u u u v v u v y y y u u v v u v y y y ∂∂∂⎧=++⎪∂∂∂⎪⎨∂∂∂⎪=-+⎪∂∂∂⎩整理得 (e sin )cos 0(e cos )sin 1uu u v v u v y y u v v u v y y ∂∂⎧++=⎪∂∂⎪⎨∂∂⎪-+=⎪∂∂⎩解得 cos sin ,.e (sin cos )[e (sin cos )1]uu uu v v v e y v v y u v v ∂-∂+==∂-∂-+ 33. 设e cos ,e sin ,u ux v y v z uv ===,试求,.z z x y ∂∂∂∂ 解:由方程组e cos e sin uux v y v ⎧=⎪⎨=⎪⎩ 可确定反函数(,),(,)u u x y v v x y ==,方程组两边对x 求导,得1e cos e sin 0e sin e cos uu u u u v v v x x u v v v x x ∂∂⎧=-⎪⎪∂∂⎨∂∂⎪=+⎪∂∂⎩解得 cos sin ,e e u uu v v v x x ∂∂==-∂∂ 所以 cos sin e u z u v v v u v v u x x x ∂∂∂-=+=∂∂∂方程组两边对y 求导,得0e cos e sin 1e sin e cos uu u u u v v v y y u v v v y y ∂∂⎧=-⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩解得 sin cos ,e e u uu v v v xy ∂∂==∂∂所以 sin cos e u z u v v v u v v u y y y ∂∂∂+=+=∂∂∂.34. 求函数322(,)51054f x y x x xy y x y =--+++-在(2,-1)点的泰勒公式. 解:(2,1)2f -=231010,(2,1)325,(2,1)1610,(2,1)21,6,2,x x y y xx xx xy xxx yy f x x y f f x y f f x f f f f =--+-==-++-==--==-==故223223(,)(2,1)(2)(2,1)(1)(2,1)1(2)(2,1)2(2)(1)(2,1)(1)(2,1)2!1(2)(2,1)3!23(2)(1)(2)(2)(1)(1)(2)x y xx xy yy xxx f x y f x f y f x f x y f y f x f x y x x y y x =-+--++-⎡⎤+--+-+-++-⎣⎦+⎡⎤--⎣⎦=+-+++---++++-35. 将函数(,)xf x y y =在(1,1)点展到泰勒公式的二次项.解:(1,1)1,f =(1,1)(1,1)1(1,1)(1,1)ln 0,1,x x x y f y y f xy -====2(1,1)(1,1)1(1,1)(1,1)2(1,1)(1,1)2(ln )0,1ln 1,(1)0,(,)1(1)(1)(1)0().x xx x x xy x yyx f y y xy y y f y f xy x f x y y y x y ρ--==⎛⎫+⋅== ⎪⎝⎭=-===+-+--+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吴传生第四版第八章多元函数微积分课后题答案
1.给出下列函数:①;②;③;④. 其中是对数函数的有() [单选题] *
A.1个(正确答案)
B.2个
C.3个
D.4个
2.若函数为对数函数,则() [单选题] *
A.1
B.2(正确答案)
C.3
D.4
3.对数函数的图像过点M(125,3),则此对数函数的解析式为() [单选题] * A.y=log5x(正确答案)
B.y=
C.y=
D.y=log3x
4.设(且),若,则(). [单选题] * A.2
B.-2
C.(正确答案)
D.
5.函数的定义域为() [单选题] *
A.
B.
C.(正确答案)
D.
6.已知函数的定义域是,则函数的定义域是() [单选题] *
A.
B.
C.
D.(正确答案)
7.若函数的定义域为,则() [单选题] *
A.1
B.-1(正确答案)
C.2
D.无法确定
8.函数(,且)的图象一定经过的点是() [单选题] *
A.
B.(正确答案)
C.
D.
9.已知函数(且)的图象恒过定点P,点P在幂函数
的图象上,则( ) [单选题] *
A.
B.2
C.1(正确答案)
D.
10.下列函数在其定义域内既是奇函数又是增函数的是() [单选题] *
A.(正确答案)
B.
C.
D.
11.函数的单调递增区间是() [单选题] *
A.
B.
C.(正确答案)
D.
12.函数的单调递增区间为() [单选题] *
A.
B.
C.
D.(正确答案)
13.已知,,,则() [单选题] *
A.(正确答案)
B.
C.
D.
14.已知奇函数在上是增函数,若,,
,则的大小关系为() [单选题] *
A.
B.
C.(正确答案)
D.
15,.不等式<的解集为() [单选题] * A.(-∞,3)
B.
C.
D.(正确答案)
16.“”是“”的()条件. [单选题] *
A.充分不必要
B.必要不充分(正确答案)
C.充要
D.既不充分又不必要
17.图中曲线
分别表示的图像,,的关系是()[单选题] *
A.
B.
C.(正确答案)
D.
18.已知函数的大致图象如下图,则幂函数
在第一象限的图象可能是() [单选题] *
A.
B.
C.
D.(正确答案)
19.已知函数,,的图象如图所示,
则a,b,c的大小关系为() [单选题] *
B.a<b<c(正确答案)
C.a<c<b
D.b<c<a
20.函数的定义域是() [单选题] *
A.
B.
C.
D.(正确答案)
21.已知,,,则的大小关系为 [单选题] *
A.(正确答案)
B.
C.
D.
22.已知函数图像与函数的图像关于对称,则____.___ [填空题] *空1答案:f(x)=log2 x
空2答案:请设置答案
23.若函数的图像与的图像关于直线对称,则
_________. [填空题] *
空1答案:3
24.已知,则函数的值域是 _____ [填空题] *
_________________________________(答案:[-2,3])
25..函数的值域为_________. [填空题] *
空1答案:{y>=-2}
26.已知函数的值域为,则实数的取值范围是
_________
[填空题] *
_________________________________(答案:a>=-1)
27.函数的值域为R,则的取值范围是________. [填空题] *
空1答案:{a|a<或=0a>=1}
28.已知函数(,且)在上是减函数,则实数a的取值范围是________. [填空题] *
空1答案:(1,2)
29.已知函数是奇函数,则的解集为
_______. [填空题] *
空1答案:{x|x<=1}
30.若函数在区间内单调递增,则实数的取值范围为__________. [填空题] *
空1答案:[4/3,2)。

相关文档
最新文档