相似矩阵的有关性质及其应用

合集下载

矩阵与行列式的相似矩阵与对角化

矩阵与行列式的相似矩阵与对角化

矩阵与行列式的相似矩阵与对角化在线性代数中,矩阵与行列式是两个非常重要的概念。

它们在许多数学和工程领域中都有广泛的应用。

而相似矩阵和对角化则是与矩阵与行列式密切相关的概念。

本文将重点介绍矩阵与行列式的相似矩阵和对角化。

1. 相似矩阵的定义及性质相似矩阵是指具有相同特征值的矩阵。

形式上,对于两个n阶矩阵A和B,如果存在一个可逆矩阵P,使得P⁻¹AP=B,则称矩阵A与B 相似。

相似矩阵有以下性质:(1) 相似矩阵具有相同的特征值;(2) 相似矩阵具有相同的迹;(3) 相似矩阵具有相同的行列式。

相似矩阵的概念在线性代数中有广泛的应用,可以简化对矩阵的运算和分析。

2. 对角化的概念及条件对角化是指将一个矩阵通过相似变换变为对角矩阵的过程。

对于一个n阶方阵A,如果存在一个可逆矩阵P,使得P⁻¹AP=D,其中D为对角矩阵,则称矩阵A可对角化。

对角化的条件有以下两个:(1) 矩阵A有n个线性无关的特征向量;(2) 矩阵A的特征向量构成n阶矩阵的一个特征向量空间的基。

具有对角化性质的矩阵在一些问题的求解中非常有用,可以简化矩阵的计算和分析过程。

3. 对角化的步骤对于一个可对角化的矩阵A,可以通过以下步骤实现对角化:(1) 求解特征值和特征向量:计算矩阵A的特征值和对应的特征向量;(2) 构建特征向量矩阵:将特征向量按列排列得到特征向量矩阵P;(3) 构建对角矩阵:将特征值按对角线排列得到对角矩阵D;(4) 计算相似矩阵:计算相似矩阵B=P⁻¹AP。

经过上述步骤,原矩阵A就可以被对角矩阵D所代替,即A=PDP⁻¹,完成对角化过程。

4. 对角化的应用对角化的概念和方法在许多数学和工程领域都有着重要的应用。

以下是对角化的一些应用:(1) 矩阵的幂计算:对对角矩阵求幂非常简单,只需要对对角线上的元素求幂即可。

这在很多数值计算和电路分析问题中非常有用;(2) 矩阵的指数函数:对角矩阵的指数函数可以通过对对角线上的元素分别求指数得到。

线性代数中矩阵的相似变换及其应用

线性代数中矩阵的相似变换及其应用

线性代数中矩阵的相似变换及其应用线性代数是一门研究线性空间及其上的线性变换的数学分支。

在这门学科中,矩阵是一个极为重要的概念,因为它可以将线性变换转化为更加容易处理的代数形式。

而其中的一种基本操作——矩阵相似变换,更是在许多领域都得到了广泛的应用。

一、矩阵相似变换矩阵相似变换在线性代数中是一个非常重要的概念,因为它可以帮助我们更好地理解矩阵的性质和特征,也方便了我们进行矩阵的运算和求解。

矩阵相似变换指的是对一个矩阵A进行"相似变换"之后得到另一个矩阵B的过程,其中相似变换指的是将矩阵A按照特定的方式变换之后得到的矩阵B,即B=PAP^(-1)。

其中,P是一个可逆矩阵,也就是说,矩阵A和B具有相同的特征值和特征向量。

矩阵相似变换有如下的性质:1. 若A和B相似,则它们的特征值和特征向量相同。

2. 若A相似于B,B相似于C,则A相似于C。

3. 若A相似于B,则A^k相似于B^k,Aⁿ相似于Bⁿ。

4. 若A与B相似,则它们的行列式和迹相同。

5. 若A和B相似,则存在一个可逆矩阵P,使得P^-1AP=B。

二、矩阵相似变换的应用1. 矩阵对角化矩阵对角化是指将某个矩阵转化为对角矩阵的过程,这个过程通常是通过矩阵相似变换来实现的。

对角化之后的矩阵易于计算,也便于我们理解矩阵的特征和性质。

2. 特征值和特征向量的求解矩阵相似变换可以将一个矩阵转化为与之相似的矩阵B,使得B具有与A相同的特征值和特征向量。

因此,通过矩阵相似变换,我们可以方便地求解一个矩阵的特征值和特征向量。

3. 线性微分方程组的求解在求解线性微分方程组时,矩阵相似变换可以将矩阵转化为对角矩阵,使得求解过程更加简单明了。

因此,线性微分方程组的求解中矩阵相似变换得到了广泛的应用。

4. 特征空间的求解特征空间指的是某一矩阵的所有特征向量张成的空间。

通过矩阵相似变换,我们可以方便地求解出一个矩阵的特征向量,从而得到它的特征空间,进而解决许多实际问题。

相似矩阵的性质与判定条件

相似矩阵的性质与判定条件

相似矩阵的性质与判定条件相似矩阵是线性代数中一个重要的概念,它在矩阵理论和应用中都有广泛的应用。

本文将介绍相似矩阵的性质以及判定条件,以便更好地理解和应用这个概念。

一、相似矩阵的定义在线性代数中,给定一个n阶矩阵A和一个可逆矩阵P,如果满足$P^{-1}AP = B$,则称矩阵B是矩阵A的相似矩阵,矩阵A和B互为相似矩阵,记作A~B。

其中,矩阵P是相似变换矩阵。

二、相似矩阵的性质1. 相似矩阵具有相同的特征值。

即矩阵A和B的特征值相同,即$det(A-\lambda I) = det(B-\lambda I)$,其中I为单位矩阵,$\lambda$为特征值。

2. 相似矩阵有相同的特征多项式。

矩阵A和B的特征多项式相同,即$|A-\lambda I| = |B-\lambda I|$。

3. 相似矩阵有相同的迹。

矩阵A和B的迹相同,即$tr(A) = tr(B)$,其中tr(A)表示矩阵A的迹。

4. 相似矩阵具有相同的秩。

矩阵A和B的秩相同,即$r(A) = r(B)$,其中r(A)表示矩阵A的秩。

5. 相似矩阵的乘积不变。

如果A和B是相似矩阵,那么对于任意的矩阵C,都有$CAC^{-1} = CBC^{-1}$。

三、相似矩阵的判定条件1. 相似矩阵具有相同的标准型。

如果两个矩阵A和B的标准型相同,那么它们互为相似矩阵。

2. 相似矩阵具有相同的秩和相同的特征多项式。

如果两个矩阵A和B具有相同的秩和相同的特征多项式,那么它们互为相似矩阵。

3. 相似矩阵具有相同的Jordan标准型。

如果两个矩阵A和B的Jordan标准型相同,那么它们互为相似矩阵。

四、相似矩阵的应用相似矩阵在矩阵表示、特征值计算、矩阵对角化等方面有着广泛的应用。

在线性代数的教学和研究中,相似矩阵的概念和性质是不可或缺的基础内容。

总结:相似矩阵是线性代数中的一个重要概念,矩阵A和B互为相似矩阵意味着它们具有相同的特征值、特征多项式、迹和秩。

矩阵相似与合同

矩阵相似与合同

矩阵相似与合同引言在线性代数中,矩阵是一个重要概念,它在各个领域都有广泛的应用。

在研究矩阵时,我们经常会遇到矩阵相似和矩阵合同这两个概念。

本文将介绍矩阵相似和矩阵合同的定义、性质和应用。

矩阵相似矩阵相似是一种关系,用来描述两个矩阵之间的某种变换关系。

两个矩阵相似,意味着它们可以通过一个相似变换相互转化。

具体来说,对于给定的两个n阶矩阵A和B,如果存在一个可逆矩阵P,使得P-1AP = B,则称矩阵A和B相似。

相似关系具有以下性质:1.相似关系是一种等价关系,即自反性、对称性和传递性成立。

2.相似矩阵具有相同的特征值。

3.相似矩阵具有相同的秩、行列式、迹等性质。

矩阵相似在实际应用中具有重要意义。

例如,在线性代数中,我们经常需要对矩阵进行对角化处理,而矩阵相似关系可以帮助我们找到相似矩阵来简化计算。

矩阵合同矩阵合同是另一种矩阵之间的关系。

与矩阵相似不同,矩阵合同是通过正交变换来定义的。

对于给定的两个n阶矩阵A和B,如果存在一个正交矩阵P,使得PTAP = B,则称矩阵A和B合同。

合同关系具有以下性质:1.合同关系是一种等价关系,即自反性、对称性和传递性成立。

2.合同矩阵具有相同的正惯性指数和负惯性指数。

矩阵合同在实际应用中也具有重要意义。

例如,在数值计算中,我们经常需要将矩阵进行对称化处理,而矩阵合同关系可以帮助我们找到合同矩阵来简化计算。

相似与合同的关系矩阵相似和矩阵合同之间存在着一定的联系。

具体来说,如果两个矩阵相似,则它们一定是合同的。

这是因为如果矩阵A和B相似,即存在可逆矩阵P,使得P-1AP = B,那么我们可以取正交矩阵Q等于P-1,则有QTAQ = B,即A和B是合同的。

然而,矩阵合同并不一定意味着矩阵相似。

换句话说,合同关系是相似关系的一个子集。

这是因为矩阵相似要求相似变换是可逆的,而矩阵合同要求正交变换是可逆的。

正交矩阵是一类特殊的矩阵,其逆矩阵等于其转置矩阵,因此正交变换一定是可逆的。

矩阵相似的性质:矩阵相似例题

矩阵相似的性质:矩阵相似例题

1 矩阵的相似1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形2 相似的条件3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】)矩阵的相似及其应用1 矩阵的相似定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质(1)反身性A∽A;这是因为A?E?1AE.(2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。

(3)传递性如果A∽B,B∽C,那么A∽C。

已知有X,Y使B?X?1AX,C?Y?1BY。

令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。

3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A)=秩(PA)=秩(AQ)证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩?1(B)=秩(B?CAC)=秩(AC)=秩(A)(2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即P?1AP?B?P?1f(A)P?f(B)证明设f(x)?anx?an?1xnnn?1a1x?a0 a1A?a0E a1B?a0E于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1Bn?1kk由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得Bk?X?1AkX,?1?1anAn?an?1An?1?因此Xf?A?X?X?a1A?a0E?X?anX?1AnX?an?1X?1An?1X? ?anBn?an?1Bn?1? ?f(B) 所以f(A)相似于f(B)。

?a1X?1AX?a0Ea1B?a0E(3)相似矩阵有相同的行列式,即A?B,trA?trB;证明设A与B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,两边取行列式?1?1AC?AC?1C?A,从而相似矩阵有相同的行列式。

矩阵相似例题

矩阵相似例题

矩阵相似例题摘要:一、矩阵相似的定义与性质1.矩阵相似的定义2.矩阵相似的性质二、矩阵相似的判定方法1.秩相似2.行列式相似3.迹相似4.标准型相似三、矩阵相似的应用1.矩阵对角化2.线性变换的性质3.矩阵函数的性质四、矩阵相似的例题解析1.矩阵相似的判定例题2.矩阵相似的应用例题正文:矩阵相似是线性代数中的一个重要概念,它涉及到矩阵的性质及其应用。

本文将详细介绍矩阵相似的定义、性质、判定方法及其应用。

一、矩阵相似的定义与性质矩阵相似是指存在一个可逆矩阵P,使得矩阵A 与矩阵B 满足关系式:B = P^(-1) * A * P。

其中,A 和B 称为相似矩阵。

矩阵相似具有以下性质:1.相似矩阵具有相同的特征多项式;2.相似矩阵具有相同的行列式值;3.相似矩阵具有相同的迹;4.相似矩阵具有相同的秩。

二、矩阵相似的判定方法矩阵相似的判定方法有多种,常见的有以下四种:1.秩相似:当两个矩阵的秩相等时,它们是相似矩阵;2.行列式相似:当两个矩阵的行列式值相等时,它们是相似矩阵;3.迹相似:当两个矩阵的迹相等时,它们是相似矩阵;4.标准型相似:当两个矩阵具有相同的标准型时,它们是相似矩阵。

三、矩阵相似的应用矩阵相似在许多领域都有广泛的应用,例如:1.矩阵对角化:通过矩阵相似可以将一个矩阵对角化,从而简化矩阵的运算和求解线性方程组;2.线性变换的性质:线性变换的性质可以通过矩阵相似进行研究;3.矩阵函数的性质:矩阵函数的性质也可以通过矩阵相似进行研究。

四、矩阵相似的例题解析以下是一些关于矩阵相似的例题:1.矩阵相似的判定例题:已知矩阵A 和B,如何判定它们是否相似?2.矩阵相似的应用例题:已知矩阵A,如何通过矩阵相似将其对角化?。

相似矩阵的性质及应用毕业论文

相似矩阵的性质及应用毕业论文

相似矩阵的性质及应用毕业论文一.相似矩阵的定义定义:设A 、B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得B=1-X AX ,就说A 相似于B ,记做B A ~.二.相似矩阵的重要性质性质1 数域P 上的n 阶方阵的相似关系是一个等价关系.证明:1〉(反身性) 由于单位矩阵E 是可逆矩阵,且A=1-E AE ,故任何方阵A 与A 相似.2〉(对称性) 设A 与B 相似,即存在数域P 上的可逆方阵C ,使得B=1-C AC ,由此可得A=CB 1-C =11)(--C B 1-C ,显然可逆,所以B 与A 相似.3〉(传递性)设A 与B 相似,B 与C 相似,即存在数域P 上的n 阶可逆方阵P 、Q ,使B=1-P AP ,C=1-Q BQ ,则 C=BQ=1-Q 1-P APQ=1)(-PQ A (PQ ),从而A 与C 相似.〈证毕〉 性质2 相似矩阵有相同的行列式.证明:设A 与B 相似,即存在数域P 上的可逆矩阵C ,使得B=1-C AC ,两边取行列式得:|B |=|1-C AC |=|1-C ||A ||C |=|A ||1-C C |=|A |.从而相似矩阵有相同的行列式. 〈证毕〉 下面先介绍两个引理引理1:设A 是数域P 上的n ×m 矩阵,B 是数域P 上m ×s 矩阵,于是秩(AB )≤min[秩(A ),秩(B )] (1)即乘积的秩不超过各因子的秩.证明:为了证明(1),只需要证明秩(AB )≤秩(A ),同时,秩(AB )≤秩(B ).现在来分别证明这两个不等式.设A=⎪⎪⎪⎪⎪⎭⎫⎝⎛nm n n m m a a a a a a a a a 212222111211,B=⎪⎪⎪⎪⎪⎭⎫⎝⎛ms m m s s b b b b b b b b b212222111211令1B ,2B ,…,m B 表示B 的行向量,1C ,2C ,…n C ,表示AB 行向量.由计算可知,i C 的第j 个分量和m im i i B a B a B a +++ 2211的第j 个分量都等于kj mk ikb a∑=1,因而i C =m im i i B a B a B a +++ 2111 (i=1,2,…n ).即矩阵AB 的行向量组n C C C ,,,21 可经B 的行向量组线性表出.所以AB 的秩不能超过B 的秩,也即, 秩(AB )≤秩(B ).同样,令m A A A ,,21 表示A 的列向量,s D D D ,,21表示AB 的列向量,由计算可知i D =11A b i +22A b i +…+m mi A b (i=1,2,…,s ).这个式子表明,矩阵AB 的列向量可以经矩阵A 的列向量组表出,前者的秩不可能超过后者的秩,这就是说,秩(AB )≤秩(A ). <证毕>引理2:A 是一个s ×n 矩阵,如果P 是个s ×s 可逆矩阵,Q 是n ×n 可逆矩阵,那么秩(A )=秩(PA )=秩(AQ ).证明:令 B=PA,由引理1知秩(B )≤秩(A ); 但是由A=1-P B,又由秩(A )≤秩(B ),所以秩(A )=秩(B )=秩(PA ).同理可证, 秩(A )=秩(AQ ).从而, 秩(A )=秩(PA )=秩(AQ ). 〈证毕〉 性质3 相似矩阵有相同秩.证明:设A,B 相似即存在数域P 上的可逆矩阵C,使得 B=1-C AC , 由引理2可知秩(B )=秩(1-C AC )=秩(AC )=秩(A ). 〈证毕>性质4 相似矩阵或同时可逆或同时不可逆.证明:设A 与B 相似,由性质3可知B A = .若A 可逆,即0≠A ,从而0≠B 故B 可逆; 若A 不可逆,即0=A ,从而0=B ,故B 不可逆. 〈证毕〉性质5 若A 与B 相似,则n A 相似于n B .(n 为正整数)证明:由于A 与B 相似,即存在数域P 上的可逆矩阵X,使得AX X B 1-=,从而X A X AX X AX X AX X n n 1111----=•••个,即 n A 相似于n B . 〈证毕〉性质6 设A 相似于B,)(x f 为任一多项式,则)(A f 相似于)(B f . 证明:设0111)(a x a x a x a x f n n n n ++++=-- 于是Ea B a Ba B a B f E a A a A a A a A f n n nn n n n n 01110111)()(++++=++++=----由于A 相似于B,由性质5可知k A 相似于k B ,(k 为任意正整数) ,即存在可逆矩阵X,使得X A X B K k 1-=,因此)()()(01110111111011111B f Ea B a B a B a E a AX X a X A X a X A X a X E a A a A a A a X X x f X n n nn n n n n n n n n =++++=++++=++++=-----------这就是说)(A f 相似于)(B f . 〈证毕〉性质7 相似矩阵有相同的特征多项式.证明:设A 相似于B ,即存在数域P 上的可逆矩阵C ,使得AC C B 1-=, 则AE C C A E C A E CACC EC C AC C C C AC C E B E -=-=-=-=-=-=--------λλλλλλλ1111111由此可见,B 与A 有相同的特征多项式. 〈证毕〉 性质8:相似矩阵有相同的迹.证明:设A 相似于B 。

相似矩阵的性质

相似矩阵的性质

相似矩阵的性质相似矩阵在线性代数和矩阵论中有着重要的地位和广泛的应用。

它们具有独特的性质,为解决许多实际问题提供了强大的工具。

本文将介绍相似矩阵的定义、性质和应用,以深入了解这一重要的数学概念。

相似矩阵的定义给定两个n阶方阵A和B,如果存在一个可逆矩阵P,使得B = PAP^-1那么矩阵B就称为矩阵A的相似矩阵,而矩阵P则称为相似变换矩阵。

相似矩阵的定义表明它们有相同的特征值和特征向量,但不一定有相同的线性变换。

相似矩阵的性质相似矩阵具有以下性质:1.相似矩阵具有相同的特征值:如果A和B是相似矩阵,它们具有相同的特征值。

这可以通过相似变换的特征值的性质来证明。

由于相似变换不改变特征值,B的特征值与A的特征值相同。

2.相似矩阵具有相同的迹:矩阵的迹等于其特征值之和。

因此,如果A和B是相似矩阵,它们具有相同的迹。

迹的性质可以通过相似变换的迹的性质来证明。

由于迹等于特征值之和,B的迹与A的迹相同。

3.相似矩阵具有相同的秩:矩阵的秩是指其线性无关的行或列的最大数目。

如果A和B是相似矩阵,它们具有相同的秩。

这可以通过相似变换的秩的性质来证明。

由于秩也是特征值的性质,B的秩与A的秩相同。

4.相似矩阵具有相同的行列式:矩阵的行列式是其特征值之积。

因此,如果A和B是相似矩阵,它们具有相同的行列式。

行列式的性质可以通过相似变换的行列式的性质来证明。

由于行列式等于特征值之积,B的行列式与A 的行列式相同。

相似矩阵的应用相似矩阵在各个领域中都有着广泛的应用,例如:1.特征值计算:相似矩阵的性质使得计算矩阵的特征值变得更加简单。

通过将矩阵A化为其相似矩阵B,我们可以使用B的特征值来得到A的特征值。

2.矩阵对角化:相似矩阵的性质使得矩阵对角化成为可能。

对角化是一种特殊的相似变换,将矩阵化为对角矩阵,使得矩阵的计算更加简便。

3.线性变换:相似矩阵描述了不同线性变换之间的关系。

通过相似变换,我们可以将一个复杂的线性变换转化为一个简单的线性变换,从而简化问题的解决过程。

相似矩阵与合同矩阵

相似矩阵与合同矩阵

相似矩阵与合同矩阵在线性代数中,矩阵是一种非常重要的数学工具,它在各个领域都有着广泛的应用。

在研究矩阵的性质和特征时,相似矩阵和合同矩阵是两个重要的概念。

本文将分别介绍相似矩阵和合同矩阵的定义、性质和应用,并对它们进行比较和分析。

相似矩阵是指具有相同特征值的矩阵,它们之间的关系可以由线性代数中的相似变换来描述。

设A和B是n阶矩阵,如果存在一个可逆矩阵P,使得P^-1AP=B,那么称矩阵A和B是相似的,记作A∼B。

相似矩阵具有以下性质:1. 相似矩阵具有相同的特征值。

设A∼B,如果λ是矩阵A的特征值,那么λ也是矩阵B的特征值。

2. 相似矩阵的特征多项式相同。

设A∼B,那么矩阵A和B的特征多项式相同。

3. 相似矩阵的迹和行列式相同。

设A∼B,那么矩阵A和B的迹和行列式相同。

相似矩阵的概念在矩阵的对角化和矩阵的相似标准型等问题中有着重要的应用。

在实际问题中,我们通常通过求解矩阵的特征值和特征向量来判断矩阵的相似性,从而简化矩阵的运算和分析。

合同矩阵是指通过非奇异矩阵的相似变换得到的矩阵。

设A和B是n阶矩阵,如果存在一个可逆矩阵P,使得P^TAP=B,那么称矩阵A和B是合同的,记作A≈B。

合同矩阵具有以下性质:1. 合同矩阵具有相同的惯性指数。

设A≈B,那么矩阵A和B的正惯性指数和负惯性指数相同。

2. 合同矩阵的秩相同。

设A≈B,那么矩阵A和B的秩相同。

3. 合同矩阵的对称性相同。

设A≈B,如果矩阵A是对称矩阵,那么矩阵B也是对称矩阵。

合同矩阵的概念在二次型和正定矩阵等问题中有着重要的应用。

在实际问题中,我们通常通过求解矩阵的合同变换来简化矩阵的分析和求解。

相似矩阵和合同矩阵都是矩阵的重要概念,它们在矩阵的性质和特征分析中有着广泛的应用。

在实际问题中,我们常常需要判断矩阵的相似性和合同性,从而简化矩阵的运算和分析。

通过对相似矩阵和合同矩阵的深入理解和应用,我们可以更好地理解矩阵的性质和特征,为实际问题的求解和分析提供更加有效的方法和工具。

矩阵相似变换

矩阵相似变换

矩阵相似变换矩阵相似变换是线性代数中一个重要的概念,它在很多领域中都有广泛的应用。

本文将从基本概念、相似矩阵的性质以及实际应用等方面对矩阵相似变换进行解读。

一、基本概念矩阵相似变换是指对一个矩阵进行线性变换,使得变换后的矩阵与原矩阵有相同的特征值。

具体来说,对于一个n阶矩阵A和一个可逆矩阵P,如果存在一个可逆矩阵P,使得P⁻¹AP=B,那么矩阵B与矩阵A相似。

二、相似矩阵的性质1. 相似矩阵具有相同的特征值:相似矩阵不仅特征值相同,对应的特征向量也相同。

这一性质在矩阵的谱分解、对角化等问题中有广泛的应用。

2. 相似矩阵的迹相等:矩阵的迹是指矩阵主对角线上元素的和,相似矩阵的迹相等。

这一性质在矩阵的特征值求和、矩阵的迹运算等问题中有重要的应用。

3. 相似矩阵的行列式相等:矩阵的行列式是指矩阵的特征值的乘积,相似矩阵的行列式相等。

这一性质在矩阵的特征值求积、矩阵的行列式运算等问题中有重要的应用。

三、实际应用1. 特征值分析:通过矩阵相似变换,可以将一个复杂的矩阵转化为对角矩阵,从而更方便地进行特征值分析。

这在物理、化学、生物等领域中有广泛的应用,例如求解量子力学中的能级问题。

2. 线性方程组求解:通过矩阵相似变换,可以将一个线性方程组转化为一个更简单的形式。

这在工程、经济学等领域中有广泛的应用,例如求解电路中的电流和电压分布问题。

3. 图像处理:矩阵相似变换在图像处理中起着重要的作用。

通过对图像矩阵进行相似变换,可以实现图像的旋转、缩放、平移等操作,从而达到图像处理的目的。

四、总结矩阵相似变换是线性代数中的一个重要概念,它在特征值分析、线性方程组求解、图像处理等领域中有广泛的应用。

通过矩阵相似变换,可以将复杂的问题转化为简单的形式,从而更方便地进行分析和求解。

同时,相似矩阵具有一些重要的性质,如相同的特征值、相等的迹和行列式等,这些性质在实际应用中也起到了重要的作用。

因此,熟练掌握矩阵相似变换的概念和性质,对于理解和应用线性代数具有重要意义。

矩阵的相似和对角化的性质和应用

矩阵的相似和对角化的性质和应用

矩阵的相似和对角化的性质和应用矩阵的相似和对角化是线性代数中比较基础的概念,也是常常用到的重要工具。

在本文中,我将介绍矩阵相似的定义及其一些性质,探讨矩阵对角化的方法和应用。

一、矩阵相似1.1 定义设 $A$ 和 $B$ 是 $n$ 阶矩阵,若存在一个可逆矩阵 $P$,使得$B=P^{-1}AP$,则称 $B$ 与 $A$ 相似,$P$ 叫做相似变换矩阵。

1.2 性质(1)相似关系是一种等价关系。

对于任意的 $n$ 阶矩阵 $A$,有 $A\sim A$。

若 $A\sim B$,则$B\sim A$。

若 $A\sim B$,$B\sim C$,则 $A\sim C$。

(2)相似关系保持一些矩阵的特性。

若 $A$ 是一个对称矩阵,则 $B=P^{-1}AP$ 也是对称矩阵。

若$A$ 是一个正定矩阵,则 $B=P^{-1}AP$ 也是一个正定矩阵。

(3)相似矩阵有相同的特征值和相同的秩。

若 $A\sim B$,则 $A$ 和 $B$ 有相同的特征值。

即它们的特征多项式相同。

并且相似矩阵有相同的秩。

二、对角化2.1 定义设 $A$ 是 $n$ 阶矩阵。

若存在一个可逆矩阵 $P$,使得 $P^{-1}AP=D$,其中 $D$ 是一个对角矩阵,则称 $A$ 可对角化,$D$ 叫做 $A$ 的一个对角化矩阵,$P$ 叫做对角化矩阵。

2.2 对角化的必要条件若$A$ 可对角化,则$A$ 必须有$n$ 个线性无关的特征向量。

即存在一组线性无关的向量$\{\vec{v_1},\vec{v_2},\cdots,\vec{v_n}\}$,使得$A\vec{v_i}=\lambda_i\vec{v_i}$,其中 $\lambda_i$ 是 $A$ 的特征值。

2.3 对角化的方法(1)在求解 $A$ 的特征值 $\lambda$ 和特征向量 $\vec{v}$ 后,将特征向量按列组成矩阵 $P$,得到 $D=P^{-1}AP$。

(完整版)5-3.4相似矩阵

(完整版)5-3.4相似矩阵
性质2 实对称矩阵的相异特征值所属的特征向量必正交。
证 设 Ap须1 证 1pp1T1 ,p2Ap02 2 p2 (1 2 ), A AT
1 p1T (1 p1 )T ( Ap1 )T p1T AT p1T A,
1 p1T p2 p1T Ap2 p1T (2 p2 ) 2 p1T p2
4 0 0
例1

设A 求004可13逆013阵,P求, 使 0正P交1阵A(P4P,为 使P对)(1角2AP阵6为?对 8角) 阵.
E-A 0
0
3 1P
1
( q13
q
2
(q43
)
)2 (2 1
)
2,
2 3 4.
1 2 的特征向量为 q1 (0,1, 1)T ;
将 q1 (0,1, 1)T 单位化,得: p1 (0,1 , 1 )T .
(1 2 ) p1T p2 0
p1T p2 0 p1与p2正交。
特征值λ 的重数k ≥ λ对应的线性无关的特征向量的个数
定理8
n – R(λE-A) 个
n 阶实对称矩阵 A 的 k 重特征值 λ 所对应的线性
无关的特征向量恰有 k 个。
R (λE-A ) = n- k
实对称矩阵A一定与对角矩阵相似
反之不真
若A 有重特征值, 不能马上断言A 是否与对角阵相似, 这时要看重根对应的特征向量. 只要 k 重特征值正好对应 k 个线性无关的特征向量即可
四、对角化的方法
例1 判断下列实矩阵能否化为对角阵?
1 2 2
2 1 2
(1) A 2 2 4 (2)A 5 3 3
2 4 2
1
为对角矩阵,

0

矩阵相似_精品文档

矩阵相似_精品文档

矩阵相似1. 引言矩阵相似是线性代数中一个重要的概念,它在许多领域中有广泛的应用。

矩阵相似性是指两个矩阵具有相同的特征值,相同的特征多项式和相同的秩。

2. 矩阵相似的定义设A和B是两个n阶复矩阵,如果有一个可逆矩阵P,使得P-1AP=B,则称矩阵A和B相似。

其中P-1是矩阵P的逆矩阵。

3. 矩阵相似的性质矩阵相似是一种等价关系,即具有反身性、对称性和传递性。

反身性是指任何矩阵都与它自己相似,对称性是指如果矩阵A与矩阵B 相似,则矩阵B也与矩阵A相似,传递性是指如果矩阵A与矩阵B 相似,矩阵B与矩阵C相似,则矩阵A与矩阵C相似。

4. 矩阵相似与特征值矩阵相似的一个重要性质是两个相似的矩阵具有相同的特征值。

特征值是指矩阵对应的线性方程组Ax=λx中的λ值,其中x是非零向量。

相似的矩阵具有相同的特征值的原因是它们对应的特征多项式相同。

特征多项式是指将矩阵减去λI(其中I是单位矩阵)后的行列式,它的根就是矩阵的特征值。

5. 矩阵相似与秩矩阵相似的另一个性质是两个相似的矩阵具有相同的秩。

秩是指矩阵中线性无关列的最大个数。

由于相似的矩阵具有相同的特征值,所以它们对应的特征向量的个数相同,而特征向量是线性无关的,因此两个相似的矩阵的秩也相同。

6. 矩阵相似与对角化对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。

相似矩阵具有相同的特征值,因此可以通过选择适当的变换矩阵P,使得P-1AP=D,其中D是对角矩阵。

对角矩阵是一个只有主对角线上有非零元素的矩阵。

对角化可以大大简化矩阵的运算,对于一些特定的应用来说非常有用。

7. 应用领域矩阵相似在许多领域中有广泛的应用。

在物理学中,矩阵相似性是量子力学中重要的概念之一,用于描述系统的量子态之间的变换。

在图论中,矩阵相似性与图的同构性密切相关,用于研究网络结构的相似性。

在机器学习和数据挖掘中,矩阵相似性可以用于聚类分析和模式识别。

8. 结论矩阵相似性是线性代数中的一个重要概念,具有许多重要的性质和应用。

矩阵相似的研究

矩阵相似的研究

矩阵相似的研究矩阵相似是线性代数中的一个重要概念,它在许多领域中都有着广泛的应用。

本文将从定义、性质、判定和应用等方面对矩阵相似进行研究。

一、定义矩阵相似是指两个矩阵具有相同的特征值和相似的特征向量。

具体来说,对于两个n阶矩阵A和B,如果存在一个可逆矩阵P,使得P^{-1}AP=B,那么我们称矩阵A和B相似。

二、性质1. 矩阵相似是一种等价关系,即满足自反性、对称性和传递性。

2. 相似矩阵具有相同的特征值,但不一定具有相同的特征向量。

3. 相似矩阵具有相同的迹、秩和行列式。

三、判定给定两个矩阵A和B,判断它们是否相似有以下几种方法:1. 比较特征值和特征向量:计算两个矩阵的特征值和特征向量,如果它们完全相同,则可以判定两个矩阵相似。

2. 比较迹、秩和行列式:计算两个矩阵的迹、秩和行列式,如果它们完全相同,则可以判定两个矩阵相似。

3. 使用相似矩阵的定义:找到一个可逆矩阵P,使得P^{-1}AP=B,如果存在这样的P,则可以判定两个矩阵相似。

四、应用矩阵相似在许多领域中都有着广泛的应用,下面列举几个常见的应用:1. 特征值分解:矩阵相似可以将一个矩阵分解为特征值和特征向量的形式,这在信号处理、图像处理等领域中有着重要的应用。

2. 矩阵的对角化:矩阵相似可以将一个矩阵对角化,即将矩阵化为对角矩阵的形式,这在线性代数中有着重要的应用。

3. 矩阵的相似变换:矩阵相似可以表示一个矩阵的相似变换,这在几何变换、物理模型等领域中有着广泛的应用。

矩阵相似是线性代数中的一个重要概念,它具有许多重要的性质和应用。

通过研究矩阵相似,我们可以更好地理解和应用线性代数的知识,为解决实际问题提供了有力的工具。

希望本文对读者对矩阵相似有一定的了解,并能够进一步深入研究和应用。

相似矩阵

相似矩阵

B1 B2 X 1( A1 A2 )X ,
B1B2 X 1( A1A2 )X .
即, 性质5:
A1
A2 :
B1 B2 ,
A1 A2 : B1B2 .
② 若 B X 1AX , f ( x) P[x], 则
f (B) X 1 f ( A)X .
特别地, Bm X 1Am X .
性质 相似矩阵具有相同的特征多项式. 证:设 A : B, 则存在可逆矩阵X,使得
i E A X 0, i 1.2.L k
的一个基础解系(此即A的属于i 的全部线性无关
的特征向量).
3°若全部基础解系所合向量个数之和等于n ,则
A有n个线性无关的特征向量 1,2 ,L ,n , 从而
矩阵A可对角化. 以这些解向量为列,作一个 n阶方阵T,则T可逆, T 1AT 是对角矩阵.
B X 1AX
于是, E B E X 1AX X 1EX X 1AX X 1( E A)X X 1 E A X E A
② 有相同特征多项式的矩阵未必相似.

A
1 0
0 1
,B
11 01
它们的特征多项式都是 ( 1)2,但A、B不相似.
• 性质2 相似矩阵的特征值相同。
的充分必要条件是A有 n个线性无关的特征向量.
推论 设A为n阶矩阵,若在数域 P中有n个不同特征值,
则 A 可对角化
特别地,(推论2) 在复数域C上的线性空间中,
如果矩阵A的特征多项式没有重根,则A可对角化。
对角化的一般方法
步骤:
1° 求出矩阵A的全部特征值 1,2 ,L ,k . 2° 对每一个特征值 i ,求出齐次线性方程组
1 0 1

矩阵相似的性质与应用的研究2

矩阵相似的性质与应用的研究2

矩阵相似的性质与应用的研究2矩阵相似是一种非常有用的性质,它使得我们能够利用一些简单的矩阵来描述一些复杂的矩阵。

在这里,让我们来看一下矩阵相似的一些性质:(1)矩阵相似具有自反性,即任何矩阵都与自身相似;(2)矩阵相似具有对称性,即若A与B相似,则B与A相似;(4)矩阵相似保持行列式不变;(6)矩阵相似保持特征值不变,即若A与B相似,则它们的特征值相同;(7)矩阵相似保持特征向量不变(方向不变,大小可能变)。

矩阵相似是一种非常有用的数学工具,它在科学、工程和统计学等各个领域都有广泛的应用。

(1)对称矩阵对称矩阵是一类特殊的矩阵,它们的对角线上的元素相等,而且它们的非对角线上的元素是相同的。

对称矩阵还有一个重要的性质,就是它们的特征值是实数。

在实际应用中,对称矩阵广泛存在于物理、工程和化学等领域中,比如说能量矩阵、惯性矩阵、协方差矩阵等等。

(2)正交矩阵正交矩阵是一类非常特殊的矩阵,它的每一行和每一列都是单位向量,而且这些向量是互相垂直的。

正交矩阵也有一个非常重要的性质,就是它们的逆矩阵等于它们的转置矩阵,即A^(-1) = A^T。

在实际应用中,正交矩阵广泛存在于几何、物理、通信和图像处理等领域中。

(3)特征值分解特征值分解是一种非常重要的矩阵分解方法,它将一个方阵分解为它的特征值和特征向量的乘积。

在实际应用中,特征值分解广泛存在于信号处理、数据降维、机器学习和量子计算等领域中,比如说主成分分析(PCA)、奇异值分解(SVD)等等。

总之,矩阵相似是一种非常重要的数学工具,它使得我们能够有效地描述和处理各种复杂的矩阵。

在实际应用中,矩阵相似被广泛应用于各个领域,它为我们提供了一种强大而灵活的数学工具来解决各种实际问题。

矩阵相似的充分条件

矩阵相似的充分条件

矩阵相似的充分条件矩阵相似是线性代数中一个重要的概念,它描述了两个矩阵在某种意义下具有相同的性质。

在实际应用中,矩阵相似性质的研究对于矩阵的特征值、特征向量、对角化等问题都有着重要的作用。

本文将从矩阵相似的定义、性质和充分条件三个方面来探讨矩阵相似的相关知识。

一、矩阵相似的定义矩阵相似是指两个矩阵在某种意义下具有相同的性质。

具体来说,设A和B是两个n阶矩阵,如果存在一个可逆矩阵P,使得P-1AP=B,则称A和B相似,P为相似变换矩阵。

其中,P-1表示P 的逆矩阵。

二、矩阵相似的性质1. 相似矩阵具有相同的特征值设A和B是两个n阶矩阵,且A和B相似,则A和B具有相同的特征值。

证明如下:设λ是A的一个特征值,x是对应的特征向量,则有Ax=λx。

由于A和B相似,存在一个可逆矩阵P,使得P-1AP=B。

因此,有B(Px)=P-1AP(Px)=P-1A(x)=P-1(λx)=λ(Px)。

这说明λ也是B的一个特征值,且对应的特征向量为Px。

同理,B的任意特征值也是A的特征值。

2. 相似矩阵具有相同的特征多项式设A和B是两个n阶矩阵,且A和B相似,则A和B具有相同的特征多项式。

证明如下:设f(x)是A的特征多项式,则有f(x)=det(xI-A),其中I是n阶单位矩阵。

由于A和B相似,存在一个可逆矩阵P,使得P-1AP=B。

因此,有det(xI-B)=det(xI-P-1AP)=det(PxI-P-1AP)=det(P(xI-A)P-1)=det(xI-A)。

这说明f(x)也是B的特征多项式。

3. 相似矩阵具有相同的迹设A和B是两个n阶矩阵,且A和B相似,则A和B具有相同的迹。

证明如下:由于A和B相似,存在一个可逆矩阵P,使得P-1AP=B。

因此,有tr(A)=tr(P-1AP)=tr(B)。

1. 相似矩阵具有相同的特征向量设A和B是两个n阶矩阵,且A和B具有相同的n个线性无关的特征向量,则A和B相似。

证明如下:设P=[x1,x2,...,xn],其中xi是A的第i个特征向量,则有AP=[Ax1,Ax2,...,Axn]=[λ1x1,λ2x2,...,λnxn]=P[λ1,λ2,...,λn],其中λi是A的第i个特征值。

矩阵相似定义

矩阵相似定义

矩阵相似定义矩阵相似是在线性代数中的一个非常重要的概念。

简单地说,这个概念描述了两个矩阵的相似程度。

如果两个矩阵相似,那么它们具有相同的特征值和特征向量,但是它们的矩阵元素可能不同。

理解矩阵相似的定义对于理解线性代数的许多其他重要概念非常重要,如特征值和特征向量、对角化和数量运算中。

矩阵相似定义:如果两个n阶矩阵A和B可以表示为以下形式:B = P^-1AP其中,P是一个可逆矩阵,则我们称A和B是相似的矩阵。

矩阵相似的概念可以用简单的例子来说明。

假设我们有一个n阶矩阵A,它有一组线性无关的特征向量v1,v2,v3, (v)各对应一组特征值λ1,λ2,λ3,...,λn。

我们可以使用这些特征向量来构建一个n阶矩阵P,每一列是一个特征向量,如下所示:P = [v1, v2, v3, ..., vn]然后,相似的矩阵B可以通过以下公式得到:B = P^-1AP根据线性代数的知识,矩阵A和B具有相同的特征值和特征向量,但矩阵元素不同。

矩阵相似的性质:矩阵相似具有以下关键性质:1. 矩阵相似是一种等价关系,也就是说,它是可传递和对称的,因此如果A相似于B,B相似于C,则A相似于C;如果A相似于B,则B相似于A。

2. 矩阵相似不改变矩阵的秩,也就是说,如果r是矩阵A和矩阵B的秩,则它们相似,且r(A) = r(B)。

3. 矩阵相似可以保持行列式和迹,也就是说,det(A) = det(B),tr(A) = tr(B)。

4. 相似变换保持矩阵之间的矩阵乘积结构,也就是说,如果A 和B相似,则AB和BA也相似。

矩阵相似的应用:矩阵相似在线性代数中非常有用,特别是在特征值分解和矩阵对角化中。

由于相似矩阵具有相同的特征值和特征向量,因此我们可以使用对角化方法来解决诸如矩阵幂,矩阵指数,线性常微分方程组中的问题,等等。

此外,相似矩阵还具有应用于物理学、工程学、计算机科学等领域的广泛用途。

在物理学中,相似变换有助于几何对象的旋转和变形,而在计算机科学中,它们有助于优化计算机程序性能和加速大型数据处理任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似矩阵的有关性质及其应用作 者 王国强 数学系 数学与应用数学专业 指导教师 金银来 数学系 教授摘要 若矩阵P 可逆,则矩阵P -1AP 与A 称为相似。

相似矩阵有很多应用。

例如:利用相似矩阵的性质来确定矩阵中未知元素方法的完整性;两个相似矩阵属于同一个特征值的特征向量之间的关系;矩阵相似与特征多项式的等价条件及相关结果;尤其是矩阵的标准形及其对角化问题,在高等代数和其他学科中都有极其广泛的应用。

本文将讨论相似矩阵的有关性质及其应用。

关键词:相似矩阵;对角化;Jordan 标准型;特征向量;特征值Abstract: There are a lot of applications about similar matrix. For example, we candiscuss the integrality of the method by using the properties of similar matrices to confirm unknown elements and characteristic subspaces of similar matrices belong to the same characteristic value are isomorphism. Also we may discuss the equivalent conditions for similar matrices and their characteristic polynomial and their corresponding results, especially, applications of digitalization matrices in advanced algebra theory and other subjects are probed into. In this paper I will give out some corresponding properties of similar matrices and show their appliance.Keywords: similar matrices; diagonal matrix; Jordan ’s normal form; characteristic value; characteristic vector1 相似矩阵有关定义定义1.1设A,B 是n 阶方阵,如果存在可逆阵P 使得P -1AP=B,则称矩阵A 与B 相似.定义 1.2矩阵A 相似于对角阵,则称A 可相似对角化,即存在可逆阵P 使),,(2,11n diag AP P λλλ =-,n λλ,,1 为A 的n 个特征值.2 相似矩阵有关性质a. 已知P -1AP=B,即A 相似于B,则ⅰ) |A|=|B|; ⅱ) t r (A)=t r (B); ⅲ) |A-λI |=|B-λI |.b. 若A 与B 都可对角化,则A 与B 相似的充分条件是A 与B 由相同的特征多项式.c. A 的属于同一特征值i λ的特征向量的线形组合只要不是零向量, 仍是对应i λ的特征向量.d. A 的属于不同特征值的特征向量线形无关.e. 实对称矩阵A 的特征值都是实数,属于不同特征值的特征向量正交.f. 若λ是实对称矩阵A 的r 重特征值,则A 对应特征值λ恰有r 个线性 无关的特征向量.g. 任何一个n 阶复矩阵A 都与一个Jordan 形矩阵J 相似. h. 对n 阶方阵A ,以下三条等价: ⑴A 可对角化;⑵A 有n 个特征值(重根按重数计),且∀r (>1)重特征值λ; ⑶A 有n 个线性无关的特征向量.i. 对角化的基本方法有如下两种:特征值法,特征向量法.3 相似矩阵在微分方程中的应用许多实际问题最后都归结为求解微分方程(组)的问题.因此,如何求解微分方程(组)是个很重要的问题.下面举例说明特征值和特征向量,约当标准形在其中的应用.3.1 将常系数线性微分方程组⎝⎛+++=+++=+++=.;;22112222121212121111n nn n n n n n n n u a u a u a dtduu a u a u a dt du u a u a u a dt du (3-1)写成矩阵形式为Au dtdu= (3-2)其中u=(T n u u u ),,,21 ,n n ij a A *)(=为系数矩阵,令(3-2)式的解u=x e t λ, (3-3)即 (T n u u u ),,,21 =T n t x x x e ),,,(21 λ. 将(3-3)式代入(3-2)得λx e t λ=A x e t λ=Ax e t λ,化简得X AX λ=,即(3-3)式中λ为A 的特征值,X 为λ对应的特征向量;若A 可对角化,则存在n 个线性无关的特征向量,,,,21n x x x 于是得到(3-2)式的n 个线性无关的特解.u 1=111x e t λ, u 2=22x e t λ,, u n =n t x e n λ.它们的线性组合 =u c 1111x e t λ+c222x e t λ+…+cnn t x e n λ,(3-4)(其中n c c c ,,,21 为任意常数)为(3-1)式的一般解,将(3-4)式改写成矩阵形式u=),,,(21n x x x ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡ttt n e e e λλλ 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n c c c 21, 记 c=(n c c c ,,,21 )T ,Λt e =diag (t t t n e e e λλλ,,,21 ) p=),,,(21n x x x ,则(3-1)式或(3-2)式有一般解c pe u t ∆=(3-5) 对于初值问题⎪⎩⎪⎨⎧==∆=00,u t u u dt du(3-6) 解为01u p pe u t -∆=(3-7)因为t=0代入(3-5)式得 c=01u p -. 例3.1 解线性常系数微分方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+=.2;54;313212211x x dt dx x x dt dx x x dt dx 已知初始值为: .2)0(,1)0(,1)0(321=-==x x x解 本题的初始值问题为⎪⎩⎪⎨⎧-===Tx x Axdt dx)2,1,1()0(0其中 110450102A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,可得A 的约当标准形,即有可逆矩阵 P =012025111⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ ,使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==-3001300021J AP P . 由(3-7)式,该初值问题的解为01x P Pe X tJ -=(3-8)其中 ,!)(!2)(2 +++++=n tJ tJ tJ I e ntJ(3-9)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-n n n n n nn C J 30033000230013000211 (3-10)将(3-10)式代入(3-9)式得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=t t t t tJ e te e e e 333200000(3-11)再将(3-11)式及1,-P P 代入(3-8)式得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=t t tt t t t te t e e t e t e te e et x t x t x x 32333332321)34(2)61()31(21101202511300000111520210)()()( 例3.2 解线性微分方程组11111221221122221122..............................n n n n n n n nn n dx a x a x a x dt dx a x a x a x dtdx a x a x a xdt⎧=+++⎪⎪⎪=+++⎪⎨⎪⎪⎪=+++⎪⎩(3-12)解 令12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n dx dt dx dX dt dt dx dt ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦则方程组(3-12)可表示成矩阵形式 dXAX dt= (3-13)假设A 可以相似对角化,即存在可逆矩阵P ,使得112(,,,)n P AP diag λλλ-=其中12,,,n λλλ为A 的全部特征值.于是令X PY=(3-14) 其中12(,,,)T n Y y y y =,将式(3-14)代入式(3-13),得()d PY APY dt= 即dYPAPY dt=(3-15)在上式两端同时左乘1P -,得112(,,)n dYP APY diag Y dtλλλ-==即111222n n n dy y dt dy y dtdy ydtλλλ⎧=⎪⎪⎪=⎪⎨⎪⎪⎪=⎪⎩ 将上式积分,得121122,,,n tt t n n y C e y C e y C e λλλ===(3-16) 其中1C ,2C ,,n C 为积分常数.将式(3-16)代入(3-15)式,可得121122n t tt n n X C Pe C P e C P e λλλ=+++其中i P 为矩阵P 的第i 列,也是A 的对应于特征值i λ的特征向量,1,2,,i n =.3.2 对于n 阶线性齐次常系数微分方程1111()()()()0n n n n n n d x t d x t dx t a a a x t dt dtdt---++++=(3-17) 可令2112321,,,,n n n dx d xd xx x x x x dt dtdt--==== 于是可得与方程(3-17)同解的方程组12231121n n n ndx x dt dx x dt dx a x a x a x dt-⎧=⎪⎪⎪=⎪⎨⎪⎪⎪=----⎪⎩(3-18)式(3-18)可写成矩阵形式dXAX dt=(3-19) 其中12(,,)T n X x x x =,12(,,,)T n dx dx dx dXdt dt dt dt=, 11010000001n n A a a a -=⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦于是这类微分方程可以归纳为等价的线性微分方程组,然后再利用特征值和特征向量求解.例3.3 求解微分方程323234120d x d x dx x dt dt dt--+=(3-20)解 令21232,,x x dx d xx x dt dt===于是(3-20)式可变成等价的方程组122331231243dx x dt dx x dt dx x x x dt ⎧=⎪⎪⎪=⎨⎪⎪=-++⎪⎩即dXAX dt= 其中 123(,,)T X x x x =,312(,,)T dx dx dx dX dt dt dt dt=,010*******A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦可求得A 的特征值为1233,2,2λλλ===-,对应的特征向量分别为123(1,3,9),(1,2,4),(1,2,4)T T T X X X ===-于是由上例知,312112233t tt X C C C X eX e X e λλλ=++322123111322944t t t C C C e e e -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦从而3221123t t t C C C x x e e e -==++ 其中(1,2,3)i C i =为任意常数.4 相似矩阵在现实生活中的应用例4.1 污染与环境发展的增长模型——发展与环境已成为21世纪各国政府关注的重点,为了定量分析污染与工业发展间的关系,我们可提出以下的工业增长模型:解 设x 0是某地区目前的污染水平(以空气或河湖水质的某种污染指数为测量单位),y 0是目前的工业发展水平(以某种工业发展指数为测量单位),以5年作为一个期间,第t 个期间的污染和工业发展水平分别记为x t 和y t ,它们之间的关系是:1111322t t t t t t x x y y x y ----=+⎧⎨=+⎩t=1,2,…(4-1)记 A=⎥⎦⎤⎢⎣⎡2213 , ⎥⎦⎤⎢⎣⎡=t t t y x α , 则(4-1)的矩阵形式为 ,1-=t t A αα t=1,2,… (4-2)如果已知该地区目前(亦称为基年)的污染和工业发展水平0α=[],00Ty x 利用(4-2)就可以预测第k 个期间该地区的污染和工业发展水平k α,这是因为由(4-2)可得.,,,0021201αααααααk k A A A A ====这表明k α可通过k A 求得,为此考察A 能否对角化,计算出A 的特征多项式.()f λ=|A E -λ|=)4)(1(2213--=----λλλλ由A 有2个相异的特征值1和4知,A 能对角化,所以可用性质来计算k A . 对于11=λ,解,0)(=-X A E 可得A 属于1的一个特征向量[].211T=ξ对于,42=λ解,0)4(=-X A E 可得A 属于4的一个特征向量[].112T=ξ令[],21ξξ=P 有A=[].411-P Pdiag[],424*22414*213112113140011211411⎥⎥⎦⎤⎢⎢⎣⎡++-+-+=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-==-k k k k k kkPPdiag A 所以 k α=⎥⎥⎦⎤⎢⎢⎣⎡+++-+-++=00000)42()4*22()41()4*21(31y x y x A kk kk kα (4-3)(4-3)就是所要的预测结果,对不同的0α值代入(4-3)即可求得k α.例如:若[]T110=α,有[]Tk kk 44=α,(实际上此时0α就是属于4的特征向量,所以[]);44400Tk kk k k A ===ααα若[],210T=α有[].42413111Tk k k +++-+-=α这些都表明,尽管工业发展水平可以达到相当高的程度,但照此模式发展,环境污染不容忽视.例 4.2 人口流动模型——假设某省城人口总数保持不变,每年有20%的农村人口流入城镇,有10%的城镇人口流入农村.试问该省城人口与农村人口的分布最终是否会趋向一个“稳定状态”?为解答这个问题,可设该省城人口总数为m,从今年开始,第k 年该省城的城镇人口和农村人口分别设为k x ,k y ,据题意有11110.90.20.10.8k k k kk k x x y y x y ----=+⎧⎨=+⎩ 即0.90.20.10.8A ⎡⎤=⎢⎥⎣⎦ k k k x y α⎡⎤=⎢⎥⎣⎦则 110()k k k k A A A A αααα--====为计算k A ,仍考察A 能否对角化.计算出A 的特征多项式0.90.2()(1)(0.7)0.10.8f E A λλλλλλ--=-==----由于A 有2个相异的特征值1和0.7知,A 能对角化,所以可用性质来计算k A . 对于11λ=解()0E A X -=可得A 属于1的一个特征向量[]121Tξ=; 对于20.7λ=解(0.7)0E A X -=可得A 属于0.7的一个特征向量[]211Tξ=-. 令[]12P ξξ=,有1[10.7]A Pdiag P -=,11(0.7)k k A Pdiag P -⎡⎤=⎣⎦1021112(0.7)22*(0.7)111112330(0.7)1(0.7)12*(0.7)k k k k k ⎡⎤+-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥---+⎣⎦⎣⎦⎣⎦⎣⎦利用 00x y m +=,可得00000002(0.7)22*(0.7)131(0.7)12*(0.7)2(2)(0.7)13(2)(0.7)k kkk k k kk x A y m x y m x y αα⎡⎤+-⎡⎤==⎢⎥⎢⎥-+⎣⎦⎣⎦⎡⎤+-=⎢⎥--⎢⎥⎣⎦从而有000021(2)(0.7)3311(2)(0.7)33kk k k x m x y y m x y ⎧=+-⎪⎪⎨⎪=--⎪⎩数列{}{},k k x y 的极限为21lim ,lim 33k k k k x m y m →∞→∞== 这表明该省城的城镇人口与农村人口的分布会趋于一个“稳定状态”:大约有23为城镇人口,13为农村人口. 例4.3 某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收的新非熟练工补齐,新老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n 年一月统计的熟练工和非熟练工所占百分比分别为n x 和n y ,记成向量n n x y ⎡⎤⎢⎥⎣⎦(a)求n+1n+1x y ⎡⎤⎢⎥⎣⎦与n n x y ⎡⎤⎢⎥⎣⎦的关系式,并写成矩阵形式n+1n+1x y ⎡⎤⎢⎥⎣⎦=A n n x y ⎡⎤⎢⎥⎣⎦;(b)验证14=1η⎛⎫ ⎪⎝⎭,2-1=1η⎛⎫⎪⎝⎭,是A 的两个线性无关的特征向量,并求出相应的特征值;(c)当111x 2=y 12⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦时,求n+1n+1x y ⎡⎤⎢⎥⎣⎦. 【思路】本题的关键在于读懂题意,写出n+1x 与n+1y ,用n x ,n y 来表达的关系式:第n 年初熟练工与非熟练工所占百分比为n x 和n y ,第n+1年初的熟练工所占的百分比n+1x 由两部分构成。

相关文档
最新文档