材料力学强度理论

合集下载

材料力学强度理论

材料力学强度理论

9 强度理论1、 脆性断裂和塑性屈服脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。

塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。

2、四种强度理论(1)最大拉应力理论(第一强度理论)材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:01σσ= (2)最大伸长拉应变理论(第二强度理论):无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 01εε=(3)最大切应力理论(第三强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值,即: 0max ττ=(4)形状改变比能理论(第四强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即:u u 0dd =强度准则的统一形式 [] σσ≤*其相当应力: r11σ=σr2123()σ=σ-μσ+σ r313σ=σ-σ222r41223311()()()2⎡⎤σ=σ-σ+σ-σ+σ-σ⎣⎦ 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。

9.1图9.1所示的两个单元体,已知正应力σ =165MPa ,切应力τ=110MPa 。

试求两个单元体的第三、第四强度理论表达式。

图9.1[解] (1)图9.1(a )所示单元体的为空间应力状态。

注意到外法线为y 及-y 的两个界面上没有切应力,因而y 方向是一个主方向,σ是主应力。

显然,主应力σ 对与y 轴平行的斜截面上的应力没有影响,因此在xoz 坐标平面内可以按照平面应力状态问题对待。

外法线为x 、z 轴两对平面上只有切应力τ,为纯剪切状态,可知其最大和最小正应力绝对值均为τ,则图9.1(a )所示单元体的三个主应力为:τστσσσ-===321、、,第三强度理论的相当应力为解题范例r4σ=()eq313165110275a σσσστ=-=+=+=MPa第四强度理论的相当应力为:()eq4a σ==252.0== MPa(2)图9.1(b)所示单元体,其主应力为第三强度理论的相当应力为:()eq31322055275b σσσ=-=+=MPa第四强度理论的相当应力为:()eq4a σ=252.0==MPa9.2一岩石试件的抗压强度为[]σ=14OMPa,E=55GPa, μ=0.25, 承受三向压缩。

材料力学-强度理论

材料力学-强度理论

材料单向拉伸时,发生断裂破坏的极限应变eu 。
破坏条件:e1=eu
强度条件:
t sb s
s1-n (s2+s3) ≤ [s ]
二、关于屈服的强度理论
1. 最大切应力理论(第三强度理论)
t 最大切应力 max 是引起材料屈服破坏的原因
当构件内危险点的最大切应力达到某一极限值
时,材料就会发生屈服破坏。
P184 例 8-2
s s
s
s
s
s
例2:一工字钢简支梁如图所示,已知材料的容
许应力[s ] = 170 MPa ,[t ] = 100 MPa。试由强度计
算选择工字钢的型号。
P185 例 8-3
t
a
s
例 3:对某种岩石试样进行了一组三向受压破坏试
验,结果如表所示。设某一工程的岩基中,两个危险点
s 强度条件:
sbc
sbt
s1-
[st] [sc]
s3

[st]
§8-5 强度理论的应用
强度条件: sr ≤ [s ]
相当应力
s r1 s1 s r2 s1 n (s 2 s 3 ) s r 3 s 1 s 3
sr4
1 2
[(s
1
s 2 )2
(s
2
s3)2
(s 3
s1)2 ]
srM
材料的破坏形式与应力状态有关
三向压缩
脆性材料
屈服破坏
三向拉伸
塑性材料
断裂破坏
s1、s2、s3 近似等值
例1:已知一锅炉的内径 D0 =1 m ,壁厚 d =10 mm ,锅炉材料为低碳钢,其容许应力[s ] =170
MPa 。设锅炉内蒸汽压力的压强 p=3.6 MPa,试用 第四强度理论校核锅炉壁的强度。

材料力学第9章 强度理论

材料力学第9章 强度理论

由于物体在外力作用下所发生的弹性变形既包括 物体的体积改变,也包括物体的形状改变,所以可推 断,弹性体内所积蓄的变形比能也应该分成两部分: 一部分是形状改变比能(畸变能) ,一部分是体积改 变比能 。 在复杂应力状态下,物体形状的改变及所积蓄的 形状改变比能是和三个主应力的差值有关;而物体体 积的改变及所积蓄的体积改变比能是和三个主应力的 代数和有关。
注意:图示应力状态实际上为弯扭组合加载对 应的应力状态,其相当应力如下:
r 3 2 4 2 [ ] 2 2 [ ] r 4 3
可记住,便于组合变形的强度校核。
例1 对于图示各单元体,试分别按第三强度理论及第四强度理论 求相当应力。
120 MPa 140 MPa
r4
1 2 2 2 [(0 120) ( 120 120) ( 120 0) ] 120MPa 2
140 MPa
(2)单元体(b)
σ1 140MPa
σ 2 110MPa
σ3 0
110 MPa
σr 3 σ1 σ 3 140MPa 1 2 2 2 σr 4 [30 110 ( 140) ] 128MPa 2
1u
1u
E

b
E
1 1 1 2 3 E
1u
1u
E

b
E
1 2 3 b
强度条件为: 1 2 3
b
n
[ ]
实验验证: a) 可解释大理石单压时的纵向裂缝; b) 脆性材料在双向拉伸-压缩应力状态下,且压应 力值超过拉应力值时,该理论与实验结果相符合。
σ1 94 .72MPa σ 3 5 .28MPa

材料力学四大强度理论

材料力学四大强度理论

材料力学四大强度理论材料力学是研究材料在外力作用下的力学性能和变形规律的学科,其中强度理论是材料力学中的重要内容之一。

材料的强度是指材料在外力作用下抵抗破坏的能力,而强度理论则是用来描述和预测材料在不同应力状态下的破坏规律和强度值的理论体系。

在材料力学中,有四大经典的强度理论,分别是极限强度理论、绝对最大剪应力理论、莫尔-库伊特理论和最大应变能理论。

首先,极限强度理论是最早被提出的强度理论之一,它是根据材料的屈服条件来描述材料的破坏规律。

极限强度理论认为材料在受到外力作用时,只要应力达到了材料的屈服强度,材料就会发生破坏。

这种理论简单直观,易于应用,但在实际工程中往往存在一定的局限性,因为它忽略了材料在屈服之前的变形过程。

其次,绝对最大剪应力理论是基于材料的最大剪应力来描述材料的破坏规律。

这种理论认为,材料在受到外力作用时,只要材料中的最大剪应力达到了材料的抗剪强度,材料就会发生破坏。

这种理论在一些特定情况下具有较好的适用性,但在一些复杂应力状态下往往难以准确描述材料的破坏规律。

接下来,莫尔-库伊特理论是基于材料的主应力来描述材料的破坏规律。

这种理论认为,材料在受到外力作用时,只要材料中的任意一个主应力达到了材料的抗拉强度或抗压强度,材料就会发生破坏。

莫尔-库伊特理论相对于前两种理论来说,更加全面和准确,因为它考虑了材料在不同应力状态下的破坏规律。

最后,最大应变能理论是基于材料的应变能来描述材料的破坏规律。

这种理论认为,材料在受到外力作用时,只要材料中的应变能达到了材料的抗拉强度或抗压强度,材料就会发生破坏。

最大应变能理论在描述材料的破坏规律时考虑了材料的变形能量,因此在一些复杂应力状态下具有较好的适用性。

综上所述,材料力学中的强度理论是描述和预测材料在外力作用下的破坏规律和强度值的重要理论体系。

四大强度理论分别是极限强度理论、绝对最大剪应力理论、莫尔-库伊特理论和最大应变能理论,它们各自具有一定的适用范围和局限性,工程应用中需要根据具体情况进行选择和应用。

材料力学强度理论

材料力学强度理论

纵截面裂开,这与第
二强度理论旳论述
基本一致。
例6、填空题
危险点接近于三向均匀受拉旳塑性材
料,应选用 第一 强度理论进行计算,
因为此时材料旳破坏形式

脆性断。裂
例8、圆轴直径为d,材料旳弹性模量为E,泊松比为 ,为了测得轴端旳力偶m之值,但只有一枚电阻片。 (1)试设计电阻片粘贴旳位置和方向; (2) 若按照你所定旳位置和方向,已测得线应变为
(一)、有关脆断旳强度理论
1、最大拉应力理论(第一强度理论)
假定:不论材料内各点旳应力状态怎样, 只要有一点旳主应力σ1 到达单向拉伸断裂时旳 极限应力σu,材料即破坏。
在单向拉伸时,极限应力 σu =σb
失效条件可写为 σ1 ≥ σb
第一强度理论强度条件:
1 [ ]
[ ] b
n
第一强度理论—最大拉应力理论
(二)强度校核 先绘出C截面正应力分布图和剪应力分布图。
C截面
a.正应力强度校核(K1)点
max
k1
MC WZ
32 103 237 106
135Mpa 150Mpa
b.剪应力强度校核(K2)点
C截面
max
k2
FS hb
(200
100 103 22.8) 103 7 103
1 , 2 0, 3
第三强度理论旳强度条件为:
1 3 ( ) 2 [ ]
由此得: [ ]
2
剪切强度条件为: [ ]
按第三强度理论可求得: [ ] [ ]
2
第四强度理论旳强度条件为:
1
2
( 1 2 )2
( 2
3)2
( 3
1)2
3 [ ]

材料力学课件:强度理论-

材料力学课件:强度理论-
r2 1 (2 3) []
§ 8 . 3 屈服准则
问题2 B点(正应力和剪应力均较大)处应力该如何校核?
梁弯曲的强度条件:
max
M max Wz
,
max
Fs
S
* max
Iz bBiblioteka .qzC
D
B
B
B
y y
它的强度条件是:
x
x
σx≤[σ] 、 σy≤[σ] 吗 ? τx≤[τ]、τy≤[τ]
不是! 实 践 证 明 : (1)强度与σ、τ 均有关,相互影响
例:
§ 8 . 1 强度理论的概念
易剪断
不易剪断
易动
不易动
§ 8 . 1 强度理论的概念
(2)强度与σx、σy、σz 、τx、τy和τz 间的比例有关
max 0
max -构件危险点的最大切应力 max (13)/ 2
0 -极限切应力,由单向拉伸实验测得 0 / 2 s
屈服条件
s1 - s3 = ss
强度条件
1 3
s
ns
实验表明:此理论对于塑性材料的屈服破坏能够得到较
为满意的解释。
§ 8 . 3 屈服准则
4. 形状改变比能理论(第四强度理论)
强度理论
§8.1 强度理论的概念 §8.2 断裂准则——第一、第二强度理论 §8.3 屈服准则——第三、第四强度理论
§8.1 强度理论的概念
§ 8 . 1 强度理论的概念
1、基本变形下强度条件的建立
max
FN,max A
[] (拉压)
max
M max Wz
[]
(弯曲)
(正应力强度条件)
max
1 0

材料力学第六章强度理论

材料力学第六章强度理论

r 3 1 3 2 4 2 209.5MPa [ ]
r4
1 2
[( 1 2 ) ( 2 3 ) ( 3 1 )
2 2
2
2 3 2 196.2MPa [ ]
需加大截面积,重选工字钢。改选32a号工字钢, a点处应力
这一极限值可由脆性材料单轴拉伸试验获得。 破坏条件 强度条件
σ 1σ b σ 1 ≤[ σ ]
(没有考虑σ2和σ3两个主应力对破坏的影响) 该理论由英国学者兰金(W.J.Rankine)于1859年提出, 对脆性材料如岩石、混凝土、铸铁、砖等在二向受拉或三向 受拉时较为合适。
2. 最大拉应变理论(第二强度理论)
200kN
200kN
A
420
C
1660 2500
D
420
B
解:1°作梁的FQ图 和M图。 2°正应力强度计算
FQ M
+
200kN
200kN +
-
200kN
2°正应力强度设计
A
420
C
1660 2500
200kN
200k D N
B
由 max
M max [ ] Wz
FQ M
420
+
200kN +

极限应力圆
O

包络线
以材料所有极限应 力圆的包络线来判断 材料是否破坏,即包 络线便是其破坏的临 界线。
M P N
K

L O1
O3O1 OO1 OO3

O2 O3 O
1 1 bt ( 1 3 ) 2 2

材料力学11强度理论

材料力学11强度理论
11.4 100 × 10 × 11.4 × 100 88.6 + × 109 QC S * Z 2 = = = 64.8 Mpa 6 3 IZb 23.7 × 10 × 7 × 10
3
τ k3
由于钢梁为塑性材料,K3点处的强度可由第三或第四强 由于钢梁为塑性材料, 度理论进行校核. 度理论进行校核.
材料力学
第十一章 强度理论
一,强度理论的概念及材料的两种破坏形式
1.强度理论的概念 . 前面几章中,讨论了四种基本变形时的强度条件, 前面几章中,讨论了四种基本变形时的强度条件,即 a.正应力强度条件 σ max ≤ [σ ] . b.剪应力强度条件 .
τ max ≤ [τ ]
a.正应力强度条件 σ max ≤ [σ ] . b.剪应力强度条件 .
然而, 然而,在工程实际中许多构件的危险点是处于复杂应力 状态下,其应力组合的方式有各种可能性.如采用拉( 状态下,其应力组合的方式有各种可能性.如采用拉(压) 时用的试验方法来建立强度条件, 时用的试验方法来建立强度条件,就得对材料在各种应力状 态下一一进行试验,以确定相应的极限应力, 态下一一进行试验,以确定相应的极限应力,这显然是难以 实现的. 实现的.
图11-1
b.塑性流动(剪切型)——材料有显著的塑性变形(即屈 .塑性流动(剪切型) 材料有显著的塑性变形( 材料有显著的塑性变形 服现象), ),最大剪应力作用面间相互平行滑移使构件丧 服现象),最大剪应力作用面间相互平行滑移使构件丧 失了正常工作的能力. 失了正常工作的能力.塑性流动主要是由剪应力所引起 的. 例如:低碳钢试件在简单拉伸时与轴线成 45 方向上出现滑 例如: 移线就属这类形式. 移线就属这类形式.
1 2 2 2 (σ 1 σ 2 ) + (σ 2 σ 3 ) + (σ 3 σ 1 ) ≤ [σ ] (11 4) 2

材料力学第9章 强度理论

材料力学第9章 强度理论
第9章 强度理论
第一节 概述 在前面研究杆件基本变形的强度问题时,所用 的强度条件是以杆件横截面上的最大正应力,或最 大切应力为依据的,即
而材料的许用应力[σ]和[τ]是通过拉伸(压 缩)试验和剪切试验,测定出材料破坏时横截面上的 极限应力,然后除以适当的安全因数得到的。
1
解释材料破坏因素的一些假说是否正确,或适 用于什么情况.必须由实践来检验。实际上,也正 是在反复试验与实践的基础上,强度理论才逐步得 到发展并日趋完善。 下面介绍工程中关于各向同 性材料在常温、静载荷条件下几个常用的强度理论。
6
假设单向拉伸直到断裂时,仍可用胡克定律
由广义胡克定律,有
将式(b)、式(c)代入式(a),该理论的脆性断裂 准则改写为
7
相应的强度条件为 最大伸长线应变理论也称为 第二强度理论。
8
二、关于屈服的强度理论 塑性破坏(plastic failure)一般是对塑性材料 而言的,破坏时,以出现屈服或产生显著的塑性变 形为标志。例如,低碳钢拉伸屈服时,出现与轴线 成45°的滑移线。这类破坏与最大切应力τmax、 畸变能密度有关。
12
于是屈服准则改写为
相应的强度条件为
13
对于梁来说,由于 三、第四强度理论的相当应力为
于是第
关于以上4个强度理论的应用,一般来说,如 铸铁、石料、混凝土、玻璃等脆性材料通常以脆断 方式破坏,宜选用第一和第二强度理论。如低碳钢、 铝、铜等塑性材料通常以屈服的方式失效,宜选用 第三和第四强度理论。
2
第二节 常用的强度理论 一、关于断裂的强度理论 脆性断裂(brittle fracture)一般是对脆性材 料而言,破坏时,材料没有明显的塑性变形,突然 断裂。例如,铸铁拉伸、扭转破坏。这类破坏与σ max(拉)、εmax(拉)有关。

材料力学 第06章 强度理论

材料力学 第06章 强度理论



可见:由第三强度理论,图b所示应力状态比 图a所示的安全;而由第四强度理论,两者的危险 程度一样。 注意:图a所示应力状态实际上为拉扭和弯扭组 合加载对应的应力状态,其相当应力如下:
s r 3 s 2 4 2
s r 4 s 2 3 2
例 工字钢梁如图a所示。已知材料(Q235钢)的许 用应力为[s]=170MPa和[]= 100MPa。试按强度条 件选择工字钢号码。 (a) 200 kN 解:确定危险截面。 200 kN

1 2s s2 6E



因此:
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 s s 2
由此可得强度条件为:


ss 1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 [s ] 2 n
s r4
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 2


§7-7 强度理论的应用
应用范围: a) 仅适用于常温、静载条件下的均匀、连续、各 向同性的材料; b) 不论塑性或脆性材料,在三向拉应力状态都 发生脆性断裂,宜采用第一强度理论; c) 对于脆性材料,在二向拉应力状态下宜采用第 一强度理论; d) 对塑性材料,除三向拉应力状态外都会发生 屈服,宜采用第三或第四强度理论; e) 不论塑性或脆性材料,在三向压应力状态都发 生屈服失效,宜采用第四强度理论。
假设形状改变能密度vd是引起材料塑性屈服的 因素,即:
vd vd u
vd u
所以:
可通过单拉试验来确定。
因为材料单拉屈服时有: s 1 s s s 2 s 3 0

材料力学_强度理论小结

材料力学_强度理论小结

D3O D2O
3 2
= =
s1 −s3
2 [s y ],
2
, D1O1 =
OO
1
=
[sl 2
[sl 2
]

OO 3
=
s
]

OO
2
=
[s y 2
]
1
+ 2
s
3
s1

s
3
−[s
l
]
[s =
l
]−(s1
+
s
3
)
[s y ]−[sl ] [sl ]+[s y ]
s1
[s −
[s
l y
] s ]
3
=[s
强度理论小结
• 强度理论的概念 • 四个强度理论 • 摩尔强度理论 • 各种强度理论的适用范围
强度理论的概念
强度理论
1.简单应力状态下强度条件可由实验确定
2.一般应力状态下,材料的失效方式不仅与材料性质有关,且与其应力状态 有关,即与各主应力大小及比值有关;
3.复杂应力状态下的强度准则不能由实验确定(不可能针对每一种应力状态做无 数次实验);
4.应用情况:形式简单,符合实际,广泛应用,偏于安全。
强度理论
四、第四强度理论(形状改变比能理论)
准则:不论应力状态如何,材料发生屈服的共同原因是单元体中的形状 改变比能ud达到某个共同的极限值udjx。
1.屈服原因:最大形状改变比能ud(与应力状态无关);
2.屈服条件:
(s 1
−s 2 )2
+
(s 2
1.摩尔理论适用于脆性剪断: 脆性剪断:在某些应力状态下,拉压强度不等的一些材料也可能发生剪断, 例如铸铁的压缩。

材料力学强度理论

材料力学强度理论

材料力学强度理论
材料力学强度理论是材料力学的重要分支,它研究材料在外力作用下的变形和破坏规律,对于工程结构的设计和材料的选用具有重要的指导意义。

材料力学强度理论主要包括极限强度理论、能量强度理论和应变强度理论等。

首先,极限强度理论是最早形成的材料力学强度理论之一。

它认为材料的破坏取决于材料内部的最大应力达到其抗拉强度或抗压强度时所对应的应变状态。

极限强度理论的优点是简单易行,适用范围广,但其缺点是只考虑了材料的强度,忽略了材料的变形性能,因此在工程实践中应用受到了一定的限制。

其次,能量强度理论是在极限强度理论的基础上发展起来的。

它认为材料的破坏取决于单位体积内的应变能达到一定数值时所对应的应变状态。

能量强度理论考虑了材料的变形性能,能够更准确地描述材料的破坏过程,因此在工程实践中得到了广泛的应用。

最后,应变强度理论是在能量强度理论的基础上进一步发展起来的。

它认为材料的破坏取决于应变状态达到一定数值时所对应的应力状态。

应变强度理论综合考虑了材料的强度和变形性能,能够更全面地描述材料的破坏规律,因此在工程实践中得到了广泛的应用。

总的来说,材料力学强度理论对于工程结构的设计和材料的选用具有重要的指导意义。

不同的强度理论各有其优缺点,工程师需要根据具体的工程要求和材料性能选择合适的强度理论进行分析和计算。

在今后的研究和工程实践中,我们还需要进一步深入理解材料的力学性能,不断完善和发展材料力学强度理论,为工程结构的安全可靠提供更加科学的依据。

材料力学强度理论

材料力学强度理论

材料力学强度理论材料力学强度理论是研究材料在外力作用下的强度性能和破裂行为的理论。

强度是指材料在外力作用下抵抗破坏的能力。

材料力学强度理论可以帮助工程师预测材料在实际工程应用中的强度,从而确保工程的安全性和可靠性。

在材料力学强度理论中,常用的强度概念包括抗拉强度、抗压强度、抗剪强度等。

抗拉强度是指材料在拉伸状态下能够承受的最大拉力;抗压强度是指材料在压缩状态下能够承受的最大压力;抗剪强度是指材料在受剪状态下能够承受的最大剪力。

这些强度值可以通过实验测试得到,也可以通过数值计算预测。

材料力学强度理论的基础是材料的弹性行为和塑性行为。

弹性行为是指材料在外力作用下能够恢复原状的性质,塑性行为是指材料在外力作用下会发生永久形变的性质。

根据材料的弹性和塑性行为,可以得到不同的强度理论。

常用的强度理论包括极限强度理论、最大剪应力理论和最大能量释放率理论。

极限强度理论是最简单和常用的强度理论,它假设材料的破坏强度只取决于材料本身的性质,与外力的作用方式无关。

根据极限强度理论,材料的破坏强度取决于其最弱的部分,即材料中最容易出现破坏的部分。

因此,工程师需要在设计过程中充分考虑材料的强度分布,以确保整个结构的强度。

最大剪应力理论假设材料破坏的原因是剪应力达到材料的抗剪强度。

根据最大剪应力理论,材料的破坏只与剪应力有关,而与拉应力和压应力无关。

因此,工程师在设计中应当避免剪应力集中,以提高结构的强度。

最大能量释放率理论是基于能量耗散的原理,假设材料的破坏是由于能量释放速率最大而引起的。

根据最大能量释放率理论,材料的破坏不仅与应力分布有关,还与材料的断裂韧性有关。

因此,工程师在设计中需要考虑材料的韧性因素,以提高结构的抗破坏能力。

综上所述,材料力学强度理论是研究材料在外力作用下的强度性能和破裂行为的理论,包括抗拉强度、抗压强度、抗剪强度等。

常用的强度理论包括极限强度理论、最大剪应力理论和最大能量释放率理论。

工程师可以根据这些理论预测材料的强度,从而确保工程的安全和可靠。

材料力学刘鸿文第七章-强度理论

材料力学刘鸿文第七章-强度理论

]
]
3
3、莫尔强度理论的相当应力:
M
1 [[
L ]
y]
3
三、实用范围:
试用于破坏形式为屈服的构件及其拉压极限 强度不等的处于复杂应力状态的脆性材料的 破坏(岩石、混凝土等)。
案例分析1: 把经过冷却的钢质实心球体,放人沸腾的热油锅 中,将引起钢球的爆裂,试分析原因。
案例分析2: 水管在寒冬低温条件下,由于管内水结冰引起体 积膨胀,而导致水管爆裂。由作用反作用定律可 知,水管与冰块所受的压力相等,试问为什么冰 不破裂,而水管发生爆裂。
6、机轴材料为45号钢,工作时发生弯扭组合变形,
宜采用
强度理论进行强度校核?
A:第一、第二; B:第二、第三; C:第三、第四; D:第一、第四;
7、某碳钢材料工作时危险点处于三向等值拉伸应 力状态,宜采用 强度理论进行强度校核?
A:第一 B:第二; C:第三; D:第四;
8、在三向压应力相等的情况下,脆性材料与塑性 材料的破坏形式为: 。
可选择莫尔强度理论。
莫尔强度理论
莫尔认为:最大剪应力是 使物体破坏的主要因素,但 滑移面上的摩擦力也不可忽 略(莫尔摩擦定律)。综合 最大剪应力及最大正应力的 因素,莫尔得出了他自己的 强度理论。
阿托?莫尔(O.Mohr),1835~1918
一、两个概念: 1、极限应力圆:
极限应力圆
s
O
s3
s2
脆性材料 第一强度理论 拉伸型和拉应力占主导的混 合型应力状态
第二强度理论 仅用于石料、混凝土等少 数材料。 压应力占主导的脆断
二、对于常温、静载但具有某些特殊应力状态的情况 不能只看材料必须考虑应力状态对材料弹性失效的影响
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学强度理论
材料力学强度理论是材料力学的一个重要分支,它研究材料在外力作用下的强
度和变形特性。

材料的强度是指材料抵抗破坏的能力,而变形特性则是指材料在外力作用下的形变行为。

强度理论的研究对于材料的设计、制备和应用具有重要意义。

首先,强度理论可以帮助我们了解材料的破坏机制。

材料在外力作用下会发生
破坏,而不同的材料在受力时表现出不同的破坏模式,比如拉伸、压缩、剪切等。

强度理论可以通过实验和理论分析,揭示材料在受力时的破坏机制,为材料的设计和选用提供依据。

其次,强度理论可以指导材料的合理使用。

在工程实践中,我们需要根据材料
的强度特性来选择合适的材料,并确定合理的使用条件。

强度理论可以帮助我们评估材料在特定工况下的承载能力,从而保证材料的安全可靠使用。

此外,强度理论还可以为材料的改进和优化提供指导。

通过对材料强度特性的
研究,我们可以发现材料的强度局限性,并提出改进的方案。

比如,可以通过合金化、热处理等手段来提高材料的强度,或者通过结构设计来减小应力集中,提高材料的抗破坏能力。

综上所述,材料力学强度理论是材料科学中的重要内容,它不仅可以帮助我们
了解材料的破坏机制,指导材料的合理使用,还可以为材料的改进和优化提供指导。

在未来的研究和工程实践中,我们需要进一步深入研究强度理论,不断提高材料的强度和可靠性,为社会发展和科技进步做出贡献。

相关文档
最新文档