八年级数学平形四边形练习题
(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(含答案解析)
一、选择题1.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .4﹣2B .2﹣4C .1D 2A解析:A【分析】 根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边的性质得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,最后根据等腰直角三角形的直角边等于2 【详解】解:在正方形ABCD 中,∠ABD =∠ADB =45°,∵∠BAE =22.5°,∴∠DAE =90°﹣∠BAE =90°﹣22.5°=67.5°,在△ADE 中,∠AED =180°﹣45°﹣67.5°=67.5°,∴∠DAE =∠AED ,∴AD =DE =4,∵正方形的边长为4,∴BD =2∴BE =BD ﹣DE =2﹣4,∵EF ⊥AB ,∠ABD =45°,∴△BEF 是等腰直角三角形,∴EF =22BE =22×(2﹣4)=4﹣2. 故选:A .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD 是解题的关键,也是本题的难点.2.如图,在等腰直角ABC 中,AB BC =,点D 是ABC 内部一点, DE BC ⊥,DF AB ⊥,垂足分别为E ,F ,若3CE DE =, 53DF AF =, 2.5DE =,则AF =( )A .8B .10C .12.5D .15C解析:C【分析】 根据比例关系设DF=x ,可判断四边形DEBF 为矩形,根据矩形的性质和比例关系分别表示CB 和AB ,再根据AB BC =,列出方程,求解即可得出x ,从而得出AF .【详解】,DE BC DF AB ⊥⊥,90DEB DFB ∴∠=∠=︒,∵△ABC 为等腰直角三角形,∴∠ABC=90°,∴四边形DEBF 为矩形,∴BF=DE=2.5,DF=EB ,设DF=3x ,则EB=3x ,∵53DF AF =,∴AF=5x ,AB=5x+2.5,∵3CE DE =,∴CE=7.5,∴CB=7.5+3x ,∵AB=CB ,∴5x+2.5=7.5+3x ,解得x=2.5,∴512.5AF x ==,故选:C .【点睛】本题考查矩形的性质和判定,等腰三角形的定义,一元一次方程的应用.能借助相关性质表示对应线段的长度是解题关键.本题主要用到方程思想.3.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A.4 B.5 C.8 D.10C解析:C【分析】根据三角形中位线定理求出DE,根据题意求出EF,根据直角三角形的性质计算即可.【详解】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96 B.48 C.24 D.6C解析:C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.5.如图,己知四边形ABCD是平行四边形,下列说法正确..的是()A.若AB AD=,则平行四边形ABCD是矩形B.若AB AD=,则平行四边形ABCD是正方形C.若AB BC⊥,则平行四边形ABCD是矩形D.若AC BD⊥,则平行四边形ABCD是正方形C解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.6.菱形的一个内角是60︒,边长是3cm,则这个菱形的较短的对角线长是()A.3cm2B33cm2C.3cm D.33cm C解析:C【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形.∵菱形的边长是3cm,∴这个菱形的较短的对角线长是3cm.故选:C.【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.7.下列命题中,正确的命题是()A.菱形的对角线互相平分且相等B.顺次联结菱形各边的中点所得的四边形是C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B .【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.8.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】 先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合B、AB=BE时,无法判定四边形AEBD是菱形,故该选项不符合题意;C、DF=EF时,无法判定四边形AEBD是菱形,故该选项不符合题意;∠时,四边形AEBD是菱形,故该选项符合题意;D、当DE平分ADB故选:D.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.9.如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE 折叠,得到△CFE,则△BCF面积的最大值是()A.8 B.83C.16 D.163A解析:A【分析】由三角形底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∵将△CDE沿CE 折叠,得到△CFE,∴FC=CD=4由此,△BCF的底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积∴△BCF面积的最大值是11448BC FC=⨯⨯=22故选:A.【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.10.矩形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的OE ,则四边形EFCD的周长为_____.周长为19, 2.5145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=19 2.52+×2 =14.5. 故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.12.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB , ∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB , ∴43MA AE MC BC ==. ∴MA MC 的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.13.如图,在四边形ABCD 中,150ABC ∠=︒,BD 平分ABC ∠,过A 点作//AE BC 交BD 于点E ,EF BC ⊥于点F 若6AB =,则EF 的长为________.3【分析】过点A 作AM ⊥CB 交CB 延长线于点M 根据题意可知∠ABM=30°可求AM=3再利用平行四边形的性质求出EF【详解】解:过点A 作AM ⊥CB 交CB 延长线于点M ∵∴∠ABM=30°∴AM=AB= 解析:3【分析】过点A 作AM ⊥CB ,交CB 延长线于点M ,根据题意可知,∠ABM=30°,可求AM=3,再利用平行四边形的性质,求出EF .【详解】解:过点A 作AM ⊥CB ,交CB 延长线于点M ,∵150ABC ∠=︒,∴∠ABM=30°,∴AM=12AB=12×6=3, ∵AM ⊥CB ,EF BC ⊥,∴AM ∥EF ,∵//AE BC ,∴四边形AMFE 是平行四边形,∵AM ⊥CB ,∴四边形AMFE 是矩形,∴EF=AM=3,故答案为:3..【点睛】本题考查了含30°角的直角三角形的性质和平行四边形的判定,恰当的作辅助线,构造特殊的直角三角形是解题关键.14.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若38CDF∠=︒,则EFD∠的度数是_________.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.15.如图,B,E,F,D四点在一条直线上,菱形ABCD的面积为2120cm,正方形AECF 的面积为250cm ,则菱形的边长为___cm .13【分析】根据正方形的面积可用对角线进行计算解答即可【详解】解:连接ACBD 交于点O ∵四边形ABCD 是菱形∴AC ⊥BDAO=COBO=DO ∵正方形AECF 的面积为50cm2∴AC2=50∴AC=1 解析:13【分析】根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC ,BD 交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵正方形AECF 的面积为50cm 2, ∴12AC 2=50, ∴AC=10cm ,∴AO=CO=5cm ,∵菱形ABCD 的面积为120cm 2, ∴12×AC×BD=120, ∴BD=24cm ,∴BO=DO=12cm , ∴22AB AO BO +25144+, 故答案为13. 【点睛】本题考查正方形的性质,菱形的性质,关键是根据正方形和菱形的面积进行解答. 16.如图,矩形ABCD 中,10AD =,14AB =,点E 为DC 上一个动点,把ADE 沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为_____.5或【分析】连接BD′过D′作MN⊥AB交AB于点MCD于点N作D′P⊥BC交BC于点P先利用勾股定理求出MD′再分两种情况利用勾股定理求出DE【详解】解:如图连接BD′过D′作MN⊥AB交AB于点解析:5或10 3【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=14-x,又折叠图形可得AD=AD′=10,∴x2+(14-x)2=100,解得x=6或8,即MD′=6或8.在Rt△END′中,设ED′=a,①当MD′=6时,AM=14-6=8,D′N=10-6=4,EN=8-a,∴a2=42+(8-a)2,解得a=5,即DE=5,②当MD′=8时,AM=14-8=6,D′N=10-8=2,EN=6-a,∴a2=22+(6-a)2,解得103a=,即103DE=.故答案为:5或10 3.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.17.平行四边形的两条对角线长分别为6和8,其夹角为45︒,该平行四边形的面积为_______.【分析】画出图形证明四边形EFGH 是平行四边形得到∠EHG=45°计算出MG 得到四边形EFGH 的面积从而得到结果【详解】解:如图四边形ABCD 是平行四边形EFGH 分别是各边中点过点G 作EH 的垂线垂足 解析:122 【分析】 画出图形,证明四边形EFGH 是平行四边形,得到∠EHG=45°,计算出MG ,得到四边形EFGH 的面积,从而得到结果.【详解】解:如图,四边形ABCD 是平行四边形,E 、F 、G 、H 分别是各边中点,过点G 作EH 的垂线,垂足为M ,AC=6,BD=8,可得:EF=HG=12AC=3,EH=FG=12BD=4,EF ∥HG ∥AC ,EH ∥FG ∥BD , ∴四边形EFGH 是平行四边形,∵AC 和BD 夹角为45°,可得∠EHG=45°,∴△HGM 为等腰直角三角形,又∵HG=3,∴MG=233222=, ∴四边形EFGH 的面积=MG EH ⋅=62,∴平行四边形ABCD 的面积为122,故答案为:122.【点睛】此题考查了平行四边形的性质,中位线定理,等腰直角三角形的判定和性质,勾股定理,解题的关键是根据题意画出图形,结合图形的性质解决问题.18.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.【分析】过D作DF⊥AC于F得到AB∥DF求得AF=CF根据三角形中位线定理得到DF=AB=1根据等腰直角三角形的性质即可得到结论【详解】解:过D作DF⊥AC于F∴∠DFC=∠A=90°∴AB∥DF解析:2【分析】过D作DF⊥AC于F,得到AB∥DF,求得AF=CF,根据三角形中位线定理得到DF=12AB=1,根据等腰直角三角形的性质即可得到结论.【详解】解:过D作DF⊥AC于F,∴∠DFC=∠A=90°,∴AB∥DF,∵点D是BC边的中点,∴BD=DC,∴AF=CF,∴DF=12AB=1,∵∠DEC=45°,∴△DEF是等腰直角三角形,∴DE=2DF=2,故答案为:2.【点睛】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.19.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=8,EF=1,则BC长为__________.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB得出AF=AB=8同理可得DE=DC=8再由EF的长即可求出BC的长【详解】解:∵四边形ABCD是平行四边形∴AD∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=8,同理可得DE=DC=8,再由EF的长,即可求出BC的长.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=8,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.20.在长方形ABCD中,52AB=,4BC=,CE CF=,CF平分ECD∠,则BE=_________.【分析】延长CF交EA的延长线于点G连接EF过点F作FH⊥CE于点H过点E作EM⊥CF于点M由题意易得FH=FDFH=EMEC=EG进而可得△CDF≌△CME然后可得CM=CD=由勾股定理可得BG=解析:7 6【分析】延长CF,交EA的延长线于点G,连接EF,过点F作FH⊥CE于点H,过点E作EM⊥CF于点M,由题意易得FH=FD,FH=EM,EC=EG,进而可得△CDF≌△CME,然后可得CM=CD=52,由勾股定理可得BG=3,设BE=x ,则有EC=EG=3+x ,最后利用勾股定理可求解. 【详解】解:延长CF ,交EA 的延长线于点G ,连接EF ,过点F 作FH ⊥CE 于点H ,过点E 作EM ⊥CF 于点M ,如图所示:∵四边形ABCD 是矩形,4BC =,52AB =∴BC=AD ,52AB DC ==,AB ∥DC ,∠D=∠ABC=∠CBE=90° ∴∠DCF=∠G ,∵CF 平分∠ECD ,∴∠DCF=∠ECF ,DF=FH ,∴∠G=∠ECF ,∴EC=EG ,∴△ECG 是等腰三角形,∴CM=MG ,∵CE=CF ,∴△ECF 是等腰三角形, ∵EM 、FH 分别是等腰三角形ECF 腰上的高线, ∴FH=EM=DF ,∴Rt △CDF ≌Rt △CME (HL ),∴52CM DC ==, ∴CG=5,∴在Rt △CBG 中,223BG CG CB -=,设BE=x ,则有EC=EG=3+x ,在Rt △CBE 中,222BC BE CE +=,∴()22243x x +=+, 解得:76x =,∴76BE =; 故答案为76. 【点睛】本题主要考查等腰三角形的性质与判定、矩形的性质及勾股定理,熟练掌握等腰三角形的性质与判定、矩形的性质及勾股定理是解题的关键.三、解答题21.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.解析:(1)①见解析;②22°;(2)1452βα=+︒或1452βα=-+︒,见解析 【分析】 (1)①由直角三角形斜边上中线的性质得AD DC BD ==,再根据等腰三角形的性质,由等角的余角相等,即可证明结论;②设DBC x ∠=︒,则24BDE x ∠=︒-︒,根据角平分线的性质以及三角形的内角和列式求出x 的值即可;(2)分情况讨论,当点E 在线段BC 上,或当点E 在线段BC 的延长线上,由等腰三角形的性质即可求出结果.【详解】(1)①证明:∵90ACB ∠=︒,∴90A ABC ∠+∠=︒,∵点D 是AB 的中点,∴AD DC BD ==,∴DCB ABC ∠=∠.∵90CDE ∠=︒,∴90E DCB ∠+∠=︒,∴A E ∠=∠;②解:设DBC x ∠=︒,则24BDE x ∠=︒-︒,∵BD 平分CDE ∠,∴24CDB BDE x ∠=∠=︒-︒.∵DB DC =,∴DCB DBC x ∠=∠=︒,∴24180x x x ︒+︒+︒-︒=︒,解得68x =,∴906822A ∠=︒-︒=︒;(2)①如图,当CD CE =时,∴CDE CED β∠=∠=.∵A α∠=,AD DC =,∴ACD α∠=,∴90DCB α∠=︒-,∴290180βα+︒-=︒,得1452βα=+︒;②如图,当CD CE =时∴CDE E β∠=∠=,∴290βα=︒-,得1452βα=-+︒.【点睛】本题考查等腰三角形的性质,直角三角形斜边上中线的性质,解题的关键是熟练掌握这些几何的性质定理.22.如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒). (1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.解析:(1)5秒或373秒;(2)存在,163秒或72秒或685秒 【分析】 (1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t 秒.∵四边形MNCB 是平行四边形,∴MB=NC ,当N 从D 运动到C 时,∵BC=13cm ,CD=21cm ,∴BM=AB-AM=16-t ,CN=21-2t ,∴16-t=21-2t ,解得t=5,当N 从C 运动到D 时,∵BM=AB-AM=16-t ,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t=72(秒);Ⅲ.当BM=BN,当N从C运动到D时,则BH=AB-AH=AB-DN=16-2t,∵BM2=BN2=NH2+BH2=122+(16-2t)2,∴(16-t)2=122+(16-2t)2,即3t 2-32t+144=0,∵△<0,∴方程无实根,综上可知,当t=163秒或72秒或685秒时,△BMN 是等腰三角形. 【点睛】 本题主要考查了直角梯形的性质、平行四边形的性质、梯形的面积、等腰三角形的性质,特别应该注意要全面考虑各种情况,不要遗漏.23.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P 在何位置,四边形PCQD 始终是平行四边形.(2)当点P 在点B ,C 之间运动到什么位置时,四边形ABPQ 是平行四边形?并说明理由.解析:(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM ≌△QDM ,可得DQ=PC ,即可得结论;(2)得出P 在B 、C 之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【详解】解:(1)∵AD ∥BC ,∴∠QDM=∠PCM ,∵M 是CD 的中点,∴DM=CM ,∵∠DMQ=∠CMP ,DM=CM ,∠QDM=∠PCM ,∴△PCM ≌△QDM (ASA ).∴DQ=PC ,∵AD ∥BC ,∴四边形PCQD 是平行四边形,∴不管点P 在何位置,四边形PCQD 始终是平行四边形;(2)当四边形ABPQ 是平行四边形时,PB=AQ ,∵BC-CP=AD+QD ,∴9-CP=5+CP ,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.24.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD 是平行四边形,且,AB BC <求作:菱形ABEF ,使点E 在BC 上,点F 在AD 上.作法:①作BAD ∠的角平分线,交BC 于点E ;②以A 为圆心,AB 长为半径作弧,交AD 于点F ;③连接EF .则四边形ABEF 为所求作的菱形.根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)求证四边形ABEF 为菱形.解析:(1)见解析;(2)见解析【分析】(1)根据要求画出图形即可.(2)利用平行四边形的判定,菱形的判定解决问题即可.【详解】解:解:()1如图所示.()2证明:AE ∵平分,BAD ∠13,∴∠=∠在ABCD 中,//,AD BC23,∴∠=∠12,∴∠=∠,AB BE ∴=,AF AB =,AF BE ∴=又//,AF BE∴四边形ABEF 为平行四边形.,AF AB = ∴四边形ABEF 为菱形.【点睛】本题考查作图-复杂作图,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在▱ABCD 中,AB =12cm ,BC =6cm ,∠A =60°,点P 沿AB 边从点A 开始以2cm/秒的速度向点B 移动,同时点Q 沿DA 边从点D 开始以1cm/秒的速度向点A 移动,用t 表示移动的时间(0≤t ≤6).(1)当t 为何值时,△PAQ 是等边三角形?(2)当t 为何值时,△PAQ 为直角三角形?解析:(1)t =2;(2)t =3或65t =. 【分析】 (1)根据等边三角形的性质,列出关于t 的方程,进而即可求解.(2)根据△PAQ 是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP =2t (米),AQ =6-t (米).∵∠A =60°,∴当△PAQ 是等边三角形时,AQ =AP ,即2t =6-t ,解得:t =2,∴当t =2时,△PAQ 是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒),当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒),∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】 本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.26.如图,在△ABC 中,AB =AC ,DE 垂直平分AC ,CE ⊥AB ,AF ⊥BC ,(1)求证:CF =EF ;(2)求∠EFB 的度数.解析:(1)证明见解析;(2)EFB 45∠=︒【分析】(1)先根据线段垂直平分线的性质及CE ⊥AB 得出△ACE 是等腰直角三角形,再由等腰三角形的性质得出∠ACB 的度数,由AB=AC ,AF ⊥BC ,可知BF=CF ,CF=EF ; (2)根据三角形外角的性质即可得出结论.【详解】∵DE 垂直平分AC ,∴AE=CE ,∵CE ⊥AB ,∴△ACE 是等腰直角三角形,∠BEC=90°,∵AB=AC ,AF ⊥BC ,∴BF=CF ,即F 是BC 的中点,∴Rt △BCE 中,EF=12BC=CF ; (2)由(1)得:△ACE 是等腰直角三角形,∴∠BAC=∠ACE=45°,又∵AB=AC ,∴∠ABC=∠ACB=()11804567.52︒-︒=︒, ∴∠BCE=∠ACB-∠ACE=67.5°-45°=22.5°,∵CF=EF ,∴∠CEF=∠BCE=22.5°,∵∠EFB 是△CEF 的外角,∴∠EFB=∠CEF+∠BCE=22.5°+22.5°=45°.【点睛】本题考查了线段垂直平分线的性质,等腰直角三角形的判定和性质,斜边的中线等于斜边的一半,三角形的外角性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.27.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:∠HEA =∠CGF ;(2)当AH =DG 时,求证:菱形EFGH 为正方形.解析:(1)见解析;(2)见解析.【分析】(1)连接GE ,根据正方形对边平行,得∠AEG=∠CGE ,根据菱形的对边平行,得∠HEG=∠FGE ,利用两个角的差求解即可;(2)根据正方形的判定定理,证明∠GHE=90°即可.【详解】证明:(1)连接GE ,∵AB ∥CD ,∴∠AEG=∠CGE ,∵GF ∥HE ,∴∠HEG=∠FGE ,∴∠HEA=∠CGF ;(2)∵四边形ABCD 是正方形,∴∠D=∠A=90°,∵四边形EFGH 是菱形,∴HG=HE ,在Rt △HAE 和Rt △GDH 中,AH DG HE HG =⎧⎨=⎩, ∴Rt △HAE ≌Rt △GDH ,∴∠AHE=∠DGH,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查了正方形的性质和判定,菱形的性质,平行线的性质,熟记正方形的性质和判定是解题的关键.28.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点图形.(1)在图甲中画出一个三角形,使BP平分该三角形的面积.(2)在图乙中画出一个至少有一组对边平行的四边形,使AP平分该四边形的面积.解析:(1)画图见解析;(2)画图见解析.【分析】△即为所求;(1)连接AP延长至D点,使AP=DP,再连接BD,ABD(2)作EP平行且相等于AB,连接AE,四边形ABPE即为所求.【详解】(1)作图如下,连接AP延长至D点,使AP=DP,再连接BD,△即为所求,ABD=,AP DP∴和BDPABP△是等底同高的两个三角形,∴BP平分ABD△三角形的面积;(2)作图如下,作EP平行且相等于AB,连接AE,四边形ABPE即为所求,AB平行且相等于EP,∴四边形ABPE为平行四边形,∴AP为ABCD的对角线,∴AP平分ABCD的面积.【点睛】本题考查学生的作图能力,涉及三角形面积以及平行四边形面积相关的知识,根据题意作出图像是解题的关键.。
(必考题)初中八年级数学下册第十八章《平行四边形》经典习题(含答案解析)
一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒2.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .243.图1中甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .已知图甲中,45F ∠=︒,15H ∠=︒,图乙中 2MN =,则图2中正方形的对角线AC 长为( )A .22B .23C .231+D .232+ 4.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A 3B .2C .23D .45.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .△ABE ≌△CDE 6.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD 的周长为()433a b + 7.顺次连接菱形四边中点得到的四边形一定是( ) A .矩形 B .平行四边形 C .菱形 D .正方形8.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .45D .109.如图,己知四边形ABCD 是平行四边形,下列说法正确..的是( )A .若AB AD =,则平行四边形ABCD 是矩形B .若AB AD =,则平行四边形ABCD 是正方形C .若AB BC ⊥,则平行四边形ABCD 是矩形D .若AC BD ⊥,则平行四边形ABCD 是正方形10.下列命题中,正确的命题是( )A .菱形的对角线互相平分且相等B .顺次联结菱形各边的中点所得的四边形是矩形C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形11.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .2012.如图,把一张长方形纸片沿对角线折叠,若△EDF 是等腰三角形,则∠BDC ( )A .45ºB .60ºC .67.5ºD .75º13.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .414.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα= 15.在Rt △ABC 中,∠C =90°,点P 在边AB 上.BC =6, AC =8, ( ) A .若∠ACP=45°, 则CP=5B .若∠ACP=∠B ,则CP=5C .若∠ACP=45°,则CP=245D .若∠ACP=∠B ,则CP=245二、填空题16.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.17.如图,在ABC 中,10AB AC ==,D 为CA 延长线上一点,DE BC ⊥交AB 于点F .若F 为AB 中点,且12BC =,则DF =__________.18.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,点E 、F 分别在AC 、BC 上,将CEF △沿EF 翻折,使C 与AB 的中点M 重合,则CF 的长为______.19.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.20.如图,将ABCD 沿对角线AC 进行折叠,折叠后点D 落在点F 处,AF 交BC 于点E ,有下列结论:①ABF CFB ≌;②AE CE =;③//BF AC ;④BE CE =,其中正确结论的是__________.21.如图,在四边形ABCD 中,AC a =,BD b =,且AC BD ⊥顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D …如此进行下去,得到四边形n n n n A B C D ,下列结论正确的有__________.①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b +.22.如图,正方形ABCD 中,5AD =,点E 、F 是正方形ABCD 内的两点,且4AE FC ==,3BE DF ==,则EF 的平方为________.23.如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为_____.24.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是______.25.如图,以Rt ABC 的斜边BC 为边,向外作正方形BCDE ,设正方形的对角线BD 与CE 的交点为O ,连接AO ,若3AC =,6AO =,则AB 的值是__________.26.如图,已知正方形ABCD 的边长为2,延长BC 至E 点,使CE BC =,连结AE 交CD 于点F ,连结BF 并延长与线段DE 交于点G ,则FG 的长是____.三、解答题27.如图,四边形ABCD 是矩形,对角线AC 与BD 相交于点O ,∠AOD =60°,AD =2,求AC 的长度.28.用总长度为4a 的铁丝可围成一个长方形或正方形,小东同学认为围成一个正方形的面积较大.小东同学的看法对不对?请你用数学知识进行说理.29.已知,如图,在等腰直角三角形ABC 中,90C ∠=︒,D 是AB 的中点,点E ,F 分别是AC ,BC 上的动点,且始终满足CE BF =,(1)证明:DE DF =;(2)求EDF ∠的大小;(3)写出四边形ECFD 的面积与三角形ABC 的面积的关系式,并说明理由.30.在ABC 中,23,AB CD AB =⊥于点,2D CD =.(1)如图1,当点D 是线段AB 的中点时,①AC 的长为________;②延长AC 至点E ,使得CE AC =,此时CE 与CB 的数量关系是_______,BCE ∠与A ∠的数量关系是_______;(2)如图2,当点D 不是线段AB 的中点时,画BCE ∠(点E 与点D 在直线BC 的异侧),使2BCE ∠=,A CE CB ∠=,连接AE . ①按要求补全图形;②求AE 的长.。
(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(答案解析)
一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒A解析:A【分析】 由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.2.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .24C解析:C【分析】 根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,BC=AD=6,AB=CD ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD 是解题的关键.3.如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,已知6AD =(正方形的四条边都相等,四个内角都是直角),2DF =.则AEF 的面积AEF S =( )A .6B .12C .15D .30C解析:C【分析】 延长CD 到G ,使DG=BE ,连接AG ,易证ADG ABE △≌△所以AE=AG ,BAE=DAG ∠∠ , 证AFG AEG △≌△,所以 GF=EF ,设BE=DG=x ,则EF=FG=x+2,在ECF Rt △中,利用勾股定理得222462x x 解得求出x ,最后求AGF S △问题即可求解.【详解】解:延长CD 到G ,使DG=BE ,连接AG ,在正方形ABCD 中,AB=AD ,90ADB B C ADC ∠=∠=∠=∠=︒ 90ADG B ∴∠=∠=︒,ADG ABE(SAS)∴△≌△,,AG AE BAE DAG ∴=∠=∠,45EAF ∠=︒ ,45DAF BAE ∴∠+∠=︒ ,GAF=45DAG DAF ∴∠∠+∠=︒,GAF=EAF ∴∠∠,又AF=AF ,AFG AEG ∴△≌△(SAS),EF=FG ∴,设BE=DG=x ,则EC=6-x ,FC=4,EF=FG=x+2,在ECF Rt △中,222=FC CE EF +,()()22246=2x x ∴+-+,解得,x=3, GF=DG DF=2+3=5∴+,AEF AGF 11S =S =GF AD=56=1522∴⨯⨯△△, 故选:C .【点睛】 本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确构造辅助线,证三角形全等是解决本题的关键.4.如图,在平行四边形ABCD 中,100B D ︒∠+∠=,则B 等于( )A .50°B .65°C .100°D .130°A解析:A【分析】 根据平行四边形的对角相等求出∠B 即可得解.【详解】 解:□ABCD 中,∠B =∠D ,∵∠B +∠D =100°,∴∠B =12×100°=50°, 故选:A .【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题.5.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .20205B解析:B【分析】 结合题意分析每个正方形的边长,从而发现数字的规律求解【详解】解:由题意可得:第1个正方形1234A A A A 的边长为012=1=(5)A A∵1212B A A A =∴112A B =∴第2个正方形1234B B B B 221+2=5由题意,以此类推,215C B =2225C B =∴第3个正方形1234C C C C 222(5)(25)5(5)+==…∴第n 个正方形的边长为15)n -∴第2020个正方形的边长为2019(5)故选:B .【点睛】本题考查勾股定理及图形类规律探索,题目难度不大,正确理解题意求解每个正方形边长的规律是解题关键.6.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .43D解析:D【分析】 根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==,∴224223BO =-=,∴243BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.7.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合题意;B 、AB=BE 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;C 、DF=EF 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;D 、当DE 平分ADB ∠时,四边形AEBD 是菱形,故该选项符合题意;故选:D .【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.8.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .4C解析:C【分析】 根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE =12(∠ADF+∠CDF ) =45°, ∵△BGE 的周长=BG+BE+GE ,GE=GF+EF=EC+AG ,∴△BGE 的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.9.如图,正方形ABCD 的对角线相交于点O ,正方形OMNQ 与ABCD 的边长均为a ,OM 与CD 相交于点E ,OQ 与BC 相交于点F ,且满足DE CF ,则两个正方形重合部分的面积为( )A .212aB .214aC .218a D .2116a B 解析:B【分析】由正方形OMNQ 与ABCD 得∠DOC=∠MOQ=90°可推出∠DOE=∠COF 由AC ,BD 是正方形ABCD 的对角线求得∠ODE=∠OCF=45°,可证△DOE ≌△COF (AAS ),利用面积和差S 四边形FOEC = S △EOC +S △DOE =S △DOC =214a 即可. 【详解】∵正方形OMNQ 与ABCD ,∴∠DOC=∠MOQ=90°,∴∠DOE+∠EOC =90º,∠EOC+∠COF=90º,∴∠DOE=∠COF ,又AC ,BD 是正方形ABCD 的对角线,∴∠ODE=∠OCF=45°,∵DE CF =,∴△DOE ≌△COF (AAS ),∴S 四边形FOEC =S △EOC +S △COF = S △EOC +S △DOE =S △DOC ,∵S △DOC =2ABCD 11=44S a 正方形, ∴S 四边形FOEC =214a . 故选择:B .【点睛】 本题考查正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题关键.10.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα=A 解析:A【分析】根据题意可得,CAB DBA ABC BAD ∠=∠∠=∠,再由直角三角形斜边的中线等于斜边的一半,可证CM DM AM BM ===,继而证明()AMC BMD SSS △≌△,解得1802AMC BMD CAM ∠=∠=︒-∠,最后根据三角形内角和180°定理,分别解得αβ、与CAM ∠的关系,整理即可解题.【详解】Rt Rt ABC BAD △≌△,CAB DBA ABC BAD ∴∠=∠∠=∠M 是AB 的中点,11,22CM AB DM AB ∴== CM DM AM BM ∴===∴∠CAM=∠MCA ,Rt Rt ABC BAD △≌△AC BD ∴=()AMC BMD SSS △≌△1802AMC BMD CAM ∴∠=∠=︒-∠CMD α∴=∠180AMC BMD =︒-∠-∠1802(1802)CAM =︒-⨯︒-∠4180CAM =∠-︒90ABC BAD CAM ∠=∠=︒-∠,AEB β=∠=180BAD ABC ︒-∠-∠180(90)(90)CAM CAM =︒-︒-∠-︒-∠2CAM =∠2180βα∴-=︒故选:A .【点睛】本题考查全等三角形的判定与性质、直角三角形斜边中线的性质、等腰三角形的性质、三角形内角和180°等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题11.如图,在ABC 中,10AB AC ==,D 为CA 延长线上一点,DE BC ⊥交AB 于点F .若F 为AB 中点,且12BC =,则DF =__________.8【分析】过点A 作AM ⊥BC 过点A 作AN ⊥BC 交DE 于N 证明△AFN ≌△BFE 得出AN=BE=3再利用勾股定理解答即可【详解】解:∵AB=AC ∴∠B=∠C ∵∴∠C+∠BFE=90∠B+∠BFE=90解析:8【分析】过点A 作AM ⊥BC ,过点A 作AN ⊥BC 交DE 于N ,证明△AFN ≌△BFE ,得出AN=BE=3,再利用勾股定理解答即可.【详解】解:∵AB=AC ,∴∠B=∠C ,∵DE BC ⊥,∴∠C+∠BFE=90,∠B+∠BFE=90°,∵∠BFE=∠AFD ,∠B=∠C ,∴∠BFE=∠AED=∠CDE ,∴AD=AF ,过点A 作AM ⊥BC ,在△ABC 中,∵AB=AC ,∴M 为BC 的中点,∴BM=12BC =6, 在Rt △ABM 中,AM=2222106AB BM -=-=8∵F 为AB 中点,FE ⊥BC , ∴FE 为△ABM 的中位线,BF=AF=12AB =5, ∴AD=AF=5,BE=132BM =, 过点A 作AN ⊥BC 交DE 于N ,∵AF=BF ,∠AFN=∠BFE ,∠ANF=∠BEF=90°,∴△AFN ≌△BFE ,∴AN=BE=3,在Rt △AND 中,DN=2222534AD AN -=-=,∵AD=AF ,AN ⊥DF ,∴DF=2DN=8.故答案为:8.【点睛】本题考查了勾股定理,等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,正确作出辅助线是解题的关键.12.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.12【分析】连接BD根据菱形对角线的性质利用勾股定理计算BD的长根据两平行线的距离相等所以△EAB和△ECD的面积和等于菱形ABCD面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12【分析】连接BD,根据菱形对角线的性质,利用勾股定理计算BD的长,根据两平行线的距离相等,所以△EAB和△ECD的面积和等于菱形ABCD面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD交AC于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=12×6=3,∵AB=5,由勾股定理得:224AB OA-=,∴BD=2OB=8,∵AB∥CD,∴△EAB和△ECD的高的和等于点C到直线AB的距离,∴△EAB 和△ECD 的面积和=12×ABCD S 菱形=12×12×AC×BD=168=124⨯⨯. 故答案为:12. 【点睛】 本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD 的高的和等于点C 到直线AB 的距离是解题的关键.13.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.【分析】首先利用勾股定理计算出BD 的长再根据折叠可得AD=A′D=5进而得到A′B 的长再设AE=x 则A′E=xBE=12-x 再在Rt △A′EB 中利用勾股定理得出关于x 的方程解出x 的值可得答案【详解】解析:103【分析】首先利用勾股定理计算出BD 的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x ,则A′E=x ,BE=12-x ,再在Rt △A′EB 中利用勾股定理得出关于x 的方程,解出x 的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴22125+=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x ,则A′E=x ,BE=12-x ,在Rt △A′EB 中:(12-x )2=x 2+82,解得:x=103. 故答案为:103. 【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x 的方程是解此题的关键.14.如图,EF 过ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若ABCD 的周长为19, 2.5OE =,则四边形EFCD 的周长为_____.145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=192.5 2×2=14.5.故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.15.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P 不与写B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF的最小值等于__________.48【分析】连接由菱形的性质解得再根据勾股定理解得继而证明四边形为矩形得到根据垂线段最短解得当时有最小值最后根据三角形面积公式解题即可【详解】连接四边形是菱形四边形为矩形当时有最小值此时的最小值为故解析:4.8【分析】连接OP ,由菱形的性质解得118,622BO BD OC AC ====,再根据勾股定理解得10BC =,继而证明四边形OEPF 为矩形,得到FE OP =,根据垂线段最短解得当OP BC ⊥时,OP 有最小值,最后根据三角形面积公式解题即可.【详解】连接OP ,四边形ABCD 是菱形,12,16AC BD ==,AC BD ∴⊥118,622BO BD OC AC ==== 22643610BC OB OC ∴=+=+=,,PE AC PF BD AC BD ⊥⊥⊥∴四边形OEPF 为矩形,FE OP ∴=当OP BC ⊥时,OP 有最小值,此时1122OBC S OB OC BC OP =⋅=⋅ 68 4.810OP ⨯∴== EF ∴的最小值为4.8,故答案为:4.8.【点睛】本题考查菱形的性质、矩形的判定与性质、勾股定理、垂线段最短等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).18-【分析】过A作AE⊥y轴于EAD⊥x轴于D构造正方形AEOD再证△AEB≌△ADC(SAS)得BE=CD由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a.【分析】过A作AE⊥y轴于E,AD⊥x轴于D,构造正方形AEOD,再证△AEB≌△ADC(SAS),得BE=CD,由EB=EO-BO=9-a,可求CD=9-a,求出OC=OD+CD=9+9-a=18-a即可.【详解】过A作AE⊥y轴于E,AD⊥x轴于D,A,∵点()9,9AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD为正方形,⊥,∠EAD=90°,∵AB AC∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD,=,AE=AD,∵AB AC∴△AEB≌△ADC(SAS),∴BE=CD,∵EB=EO-BO=9-a,∴CD=9-a,OC=OD+CD=9+9-a=18-a,故答案为:18-a.【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.17.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若38CDF∠=︒,则EFD∠的度数是_________.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.18.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若1DE=,则BF的长为__________.【分析】连接FE根据题意得CD=2AE=设BF=x则FG=xCF=2-x 在Rt△GEF中利用勾股定理可得EF2=(-2)2+x2在Rt△FCE中利用勾股定理可得EF2=(2-x )2+12从而得到关于 解析:51-【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.如图,点E 是平行四边形ABCD 的边BC 上一点,连结AE ,并延长AE 与DC 的延长线交于点F ,若AB AE =,50F ∠=︒,则D ∠=______︒.65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°利用平行四边形对角相等得出即可【详解】解:如图所示∵四边形解析:65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°,利用平行四边形对角相等得出即可.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠F=∠BAE=50°,.∵AB=AE,∴∠B=∠AEB=65°,∴∠D=∠B=65°.故答案是:65.【点睛】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.20.如图,在平行四边形ABCD中,∠ABC=135°,AD=42,AB=8,作对角线AC的垂直平分线EF,分别交对边AB、CD于点E和点F,则AE的长为_____.【分析】连接CE过点C作交AB的延长线于点H设AE=x则BE=8-xCE=AE=x在根据勾股定理即可得到x的值【详解】如图:连接CE过点C作交AB的延长线于点H平行四边形ABCD中设AE=x则BE=解析:20 3【分析】连接CE,过点C作CH AB,交AB的延长线于点H,设AE=x,则BE=8-x,CE=AE=x,在根据勾股定理,即可得到x的值.【详解】如图:连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,平行四边形ABCD 中,135,2ABC AD ∠=︒=45,2CBH BC ∴∠=︒=90,H ∠=︒45,BCH ∴∠=︒4CH BH ∴==设AE=x ,则BE=8-x ,EF 垂直平分AC ,CE AE x ∴==, 在Rt CEH 中,222CH EH EC +=,()222484x x ∴+-+=, 解得:203x =, AE ∴的长为203, 故答案为:203. 【点睛】 本题考查了平行四边形的性质,勾股定理以及线段垂直平分线的性质,解决问题的关键是作辅助线构造直角三角形,利用勾股定理求解.三、解答题21.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE BF =,连接AE ,CF .(1)求证:E F ∠=∠;(2)连接AF ,CE ,当BD 平分ABC ∠时,四边形AFCE 是什么特殊四边形?请说明理由.解析:(1)见解析;(2)四边形AFCE 是菱形,理由见解析【分析】(1)根据四边形ABCD 是平行四边形,可以得到AD=CB ,AD ∥BC ,从而可以得到∠ADE=∠CBF ,然后根据SAS 证明△ADE ≌△CBF ,从而得出结论;(2)根据BD 平分∠ABC 和平行四边形的性质,可以证明▱ABCD 是菱形,从而可以得到AC ⊥BD ,然后即可得到AC ⊥EF ,再根据题目中的条件,可以证明四边形AFCE 是平行四边形,然后根据AC ⊥EF ,即可得到四边形AFCE 是菱形.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD=CB ,AD ∥BC ,∴∠ADB=∠CBD ,∴∠ADE=∠CBF ,在△ADE 和△CBF 中,AD CB ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF (SAS ),∴∠E=∠F ;(2)当BD 平分∠ABC 时,四边形AFCE 是菱形,理由:∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,AD ∥BC ,∴∠ADB=∠CBD ,∴∠ABD=∠ADB ,∴AB=AD ,∴平行四边形ABCD 是菱形,∴AC ⊥BD ,∴AC ⊥EF ,∵DE=BF ,∴OE=OF ,又∵OA=OC ,∴四边形AFCE 是平行四边形,∵AC ⊥EF ,∴四边形AFCE 是菱形.【点睛】本题考查平行四边形的判定与性质、菱形的判定、全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒). (1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.解析:(1)5秒或373秒;(2)存在,163秒或72秒或685秒 【分析】 (1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t秒.∵四边形MNCB是平行四边形,∴MB=NC,当N从D运动到C时,∵BC=13cm,CD=21cm,∴BM=AB-AM=16-t,CN=21-2t,∴16-t=21-2t,解得t=5,当N从C运动到D时,∵BM=AB-AM=16-t,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t =72(秒);Ⅲ.当BM=BN ,当N 从C 运动到D 时,则BH=AB-AH=AB-DN=16-2t ,∵BM 2=BN 2=NH 2+BH 2=122+(16-2t )2,∴(16-t )2=122+(16-2t )2,即3t 2-32t+144=0,∵△<0,∴方程无实根,综上可知,当t=163秒或72秒或685秒时,△BMN 是等腰三角形. 【点睛】 本题主要考查了直角梯形的性质、平行四边形的性质、梯形的面积、等腰三角形的性质,特别应该注意要全面考虑各种情况,不要遗漏.23.如图,平行四边形ABCD 中,,AP BP 分别平分DAB ∠和CBA ∠,交于DC 边上点P , 2.5AD =.(1)求线段AB 的长.(2)若3BP =,求ABP △的面积.解析:(1)5;(2)6【分析】(1)证出AD=DP=2.5,BC=PC=2.5,得出DC=5=AB ,即可求出答案;(2)根据平行四边形性质得出AD ∥CB ,AB ∥CD ,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB 中求出∠APB=90°,由勾股定理求出AP ,从而求得△ABP 的面积.【详解】解:(1)∵AP 平分∠DAB ,∴∠DAP=∠PAB ,∵四边形ABCD 是平行四边形,∵AB ∥CD ,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP 是等腰三角形,∴AD=DP=2.5,同理:PC=CB=2.5,即AB=DC=DP+PC=5;(2)∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB+∠PBA=12(∠DAB+∠CBA )=90°, 在△APB 中,∠APB=180°-(∠PAB+∠PBA )=90°;在Rt △APB 中,AB=5,BP=3,∴AP=2253-=4,∴△APB 的面积=4×3÷2=6.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.24.如图,菱形ABCD 中,60B ∠=︒,点E ,F 分别在BC 和CD 上,BE CF =,求证:AE AF =.解析:证明见解析.【分析】连接AC ,证ABE ACF ≌即可【详解】证明:连接AC ,∵四边形ABCD 是菱形,∴AB BC CD AD ===,AC 平分BCD ∠.∵60B ∠=︒,∴ABC 是等边三角形,∴AB AC =,60∠=∠=∠︒=B BCA ACF . ∴在ABE △与ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩.∴ABE ACF ≌.∴AE AF =.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,证明三角形全等是解此题的关键. 25.已知:平行四边形ABCD 中,点M 为边CD 的中点,点N 为边AB 的中点,联结AM 、CN .(1)求证:AM ∥CN ;(2)过点B 作BH AM ⊥,垂足为H ,联结CH .求证:△BCH 是等腰三角形.解析:(1)见解析;(2)见解析【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的性质,可得AB ∥CD ,AB=CD ,又由点M 为边CD 的中点,点N 为边AB 的中点,即可得CM=AN ,继而可判定四边形ANCM 是平行四边形,则可证得AM ∥CN .(2)由AM ∥CN ,BH ⊥AM ,点N 为边AB 的中点,可证得BH ⊥CN ,ME 是△BAH 的中位线,则可得CN 是BH 的垂直平分线,继而证得△BCH 是等腰三角形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB CD =.∵点M 、N 分别是边CD 、AB 的中点,∴12CM CD =,1AN AB 2=. ∴CM AN =.又∵AB ∥CD , ∴四边形ANCM 是平行四边形∴AM ∥CN .(2)设BH 与CN 交于点E ,∵AM ∥CN ,BH ⊥AM ,∴BH ⊥CN ,∵N 是AB 的中点,∴EN 是△BAH 的中位线,∴BE=EH ,∴CN 是BH 的垂直平分线,∴CH=CB ,∴△BCH 是等腰三角形.【点睛】此题考查了平行四边形的判定与性质、线段垂直平分线的性质以及等腰三角形的判定.此题难度适中,注意掌握数形结合思想的应用. 26.综合与实践——探究正方形旋转中的数学问题问程情境:已知正方形ABCD 中,点O 是线段BC 的中点,将将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,在正方形绕点O 旋转过程中,顺次连接点B ,B ',C ,C '得到四边形''BB CC ,求证:四边形''BB CC 是矩形;(2)“善学”小组提出问题:如图2.在旋转过程中,当点B '落在对角线BD 上时,设A B ''与CD 交于点M .求证:四边形OB MC '是正方形.深入探究:(3)“好问”小组提出问题:如图3.若点O 是线段BC 的三等分点且2OB OC =,在正方形ABCD 旋转的过程中当线段A D ''经过点D 时,请直接写出''DD OC 的值. 解析:(1)证明见解析;(2)证明见解析;(3)2'='DD OC. 【分析】(1)由旋转性质可得 OB=OB′ ,OC=OC′ ,得到四边形BB′CC′是平行四边形,又 BC=B′ C′ ,得到平行四边形BB′CC′是矩形.(2)先由∠C=∠OB′M=∠B′OC=90°,证明四边形 OB′MC 是矩形 ,再由OC=OB′ 得到四边形 OB′MC 是正方形.(3)过D 作DN ⊥B′C′,证Rt △DNO ≌Rt △DCO(HL),设OC=a ,得到OC′=a ,DD′=2a ,即可求解.【详解】解:(1)由旋转性质可得OB OB '=,OC OC '=.点O 是线段BC 的中点 OB OC ∴=,''∴=OB OC ,OB OC =.∴四边形''BB CC 是平行四边形.又BC B C ''=,∴平行四边形''BB CC 是矩形. (2)证明:四边形ABCD 是正方形,BC CD ∴=,90C ∠=︒.180180904522-∠︒-∴︒∠=∠===︒︒C CBD CDB 由旋转可知,OB OB '=,45''∴∠=∠=︒OB B OBB454590'''∴∠=∠+∠=︒+︒=︒B OC OB B OBB .四边形A B C D ''''是正方形,90'∴∠=︒OB M∴四边形OB MC '是矩形OB OC =,OC=OC′ ,OB′=OB ,∴OC=OB′∴矩形OB MC '是正方形,(3)2'='DD OC .如图,过D 作DN ⊥B′C′可知,∠A′=∠B′=∠B′ND=90°,∠D′=∠C′=∠C′ND=90°,∴四边形DNC′D′为矩形,四边形DNB′A′为矩形,在Rt △DNO 与Rt △DCO 中,∵OD=OD ,DN=DC ,∴Rt △DNO ≌Rt △DCO(HL)设OC=a ,则OB=2OC=2a ,∴ON=OC=OC′=a∴BC=OB+OC=3a ,DD′=NC′=ON+OC′=2a , ∴2DD a OC a'='=2. 【点睛】 本题考查了特殊的四边形,平行四边形,矩形,正方形的性质和判定,解题的关键是熟练掌握特殊的四边形的性质和判定.27.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .(1)试判断BDE 的形状,并说明理由.(2)若4AB =,8AD =,求AE 的长.参考答案解析:(1)BDE 是等腰三角形,证明见解析;(2)3AE =.【分析】(1)根据折叠的性质可知EBD DBC ∠=∠,又因为//AD BC ,可知ADB DBC ∠=∠,即推出ADB EBD ∠=∠,所以BE DE =,BDE 为等腰三角形.(2)设AE x =,则8BE DE x ==-,在Rt ABE △中根据勾股定理列出等式,解出x 即可.【详解】(1)BDE 是等腰三角形,理由是:由折叠得:EBD DBC ∠=∠,∵四边形ABCD 是矩形,∴//AD BC ,∴ADB DBC ∠=∠,∴ADB EBD ∠=∠,∴BE DE =,∴BDE 是等腰三角形.(2)设AE x =,则8BE DE x ==-, ∵四边形ABCD 是矩形,∴90A ∠=︒,∴在Rt ABE △中,222AB AE BE +=,即2224(8)x x +=-,解得:3x =,∴3AE =.【点睛】本题考查翻折的性质,矩形的性质,等腰三角形的判定以及勾股定理.根据翻折的性质间接证明出BE DE =是解答本题的关键.28.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.解析:(1)见解析;(2)CE=CF ,理由见解析;(3)522【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt△ADK≌Rt BAG,则AK=BG=12,DK=AG=5,∵AF+FK=AK=BG=GF=AG+AF∴FK=AG=5在R t△DFK中,根据勾股定理可得,DF=2252+=DK FK②点F在AB左侧时,如图,过D作DK⊥AG,交其延长线于K.方法同①,可得FK=AG=12,在R t△DFK中,根据勾股定理可得,DF22122+=DK FK综上所述,DF的长为522【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,熟练掌握相关性质和定理是解本题的关键.。
【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)
【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( ) A.100° B.160° C.80° D.60°2.【2022·广东】如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=( )A.14B.12C.1 D.2(第2题) (第4题) (第5题) (第8题) 3.【2022·河北】依据所标数据,下列一定为平行四边形的是( )4.【教材P44例2改编】【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC ⊥BC,则▱ABCD的面积为( )A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB =60°,AB=5,则BD的长为( )A.20 B.15 C.10 D.56.【2021·河南】关于菱形的性质,以下说法不正确...的是( )A.四条边相等 B.对角线相等C.对角线互相垂直 D.是轴对称图形7.下列命题中,是真命题的为( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.89.【2022·青岛】如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.62B. 6 C.2 2 D.2 3(第9题) (第10题) (第11题) (第13题)10.【教材P68复习题T13拓展】【2022·恩施州】如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.【2021·益阳】如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC =BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题) (第15题) (第16题) (第17题) 15.【2022·哈尔滨】如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.【2022·桂林】如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF =DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.【2021·郴州】如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.【教材P55练习T2改编】【2021·长沙】如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【2021·十堰】如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.【2022·北京八中模拟】在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC =10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t 秒(t>0).。
八年级数学平行四边形30道经典题(含答案和解析)
八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。
八年级平行四边形专题练习(含答案)
中考专题复习平行四边形知识考点:理解并掌握平行四边形的判定和性质 精典例题:【例1】已知如图:在四边形ABCD 中,AB =CD ,AD =BC ,点E 、F 分别在BC 和AD 边上,AF =CE ,EF 和对角线BD 相交于点O ,求证:点O 是BD 的中点。
分析:构造全等三角形或利用平行四边形的性质来证明BO =DO 略证:连结BF 、DE在四边形ABCD 中,AB =CD ,AD =BC ∴四边形ABCD 是平行四边形 ∴AD ∥BC ,AD =BC 又∵AF =CE∴FD ∥BE ,FD =BE ∴四边形BEDF 是平行四边形∴BO =DO ,即点O 是BD 的中点。
【例2】已知如图:在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是平行四边形。
分析:欲证四边形EFGH 是平行四边形,根据条件需从边上着手分析,由E 、F 、G 、H 分别是各边上的中点,可联想到三角形的中位线定理,连结AC 后,EF 和GH 的关系就明确了,此题也便得证。
(证明略)变式1:顺次连结矩形四边中点所得的四边形是菱形。
变式2:顺次连结菱形四边中点所得的四边形是矩形。
变式3:顺次连结正方形四边中点所得的四边形是正方形。
变式4:顺次连结等腰梯形四边中点所得的四边形是菱形。
变式5:若AC =BD ,AC ⊥BD ,则四边形EFGH 是正方形。
变式6:在四边形ABCD 中,若AB =CD ,E 、F 、G 、H 分别为AD 、BC 、BD 、AC 的中点,求证:EFGH 是菱形。
娈式6图娈式7图变式7:如图:在四边形ABCD 中,E 为边AB 上的一点,△ADE 和△BCE 都是等边三角形,P 、Q 、M 、N 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形PQMN 是菱形。
例1图 O F E D CB A 例2图探索与创新:【问题】已知如图,在△ABC 中,∠C =900,点M 在BC 上,且BM =AC ,点N 在AC 上,且AN =MC ,AM 和BN 相交于P ,求∠BPM 的度数。
八年级数学下册《平行四边形的性质》练习题及答案(人教版)
八年级数学下册《平行四边形的性质》练习题及答案(人教版) 一、单选题1.平行四边形四个顶点分别为O、A、B、C,已知O(0,0)、A(2,3)、B(5,3),且OC边在x 轴上,则点C的坐标为()A.(3,0)B.(5,0)C.(3,0)或(﹣3,0)D.(5,0)或(﹣5,0)2.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误..的是()A.OA=OC B.AB=CD C.AD=BC D.∠ABD=∠CBD3.如图在8×5的正方形网格中,AB,AC是经过格点的线段,如果能找到这样的格点M,使得S∠ACM=S∠ABM,这样的点M的个数是()A.1B.2C.3D.44.如图,在平行四边形 ABCD中,CE平分∠BCD交AD于点E.若∠B=46°,则∠AEC的大小为()A.110°B.113°C.125°D.134°5.如图,在平行四边形ABCD中,∠BDC=47°42′,依据尺规作图的痕迹,计算α的度数是()A.67°29′B.67°9′C.66°29′D.66°9′6.如图,在平面直角坐标系中,∠MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为()A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)7.如图:平行四边形ABCD的周长为24,A、B、D相交于点O, EO⊥BD交AD于点E,则△ABE 的周长为()A.8B.10C.12D.168.在□ABCD中,∠C、∠D的度数之比为3∠1,则∠A等于()A.45°B.50°C.135°D.130°9.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16B.14C.26D.2410.在∠ABCD中(如图),连接AC,已知∠BAC=40°,∠ACB=80°,则∠BCD=()A.80°B.100°C.120°D.140°二、填空题11.如图,在平面直角坐标系中,AD∠BC,AD=5,B(-3,0),C(9,0),点E是BC的中点,点P 是线段BC上一动点,当PB=时,以点P、A、D、E为顶点的四边形是平行四边形.12.在平面直角坐标系中,AB//x轴,点A(−1,2),AB=3,则点B的坐标为.13.如图,已知直角三角形ABC,∠A=90°,AB=4厘米,AC=3厘米,BC=5厘米,将△ABC沿AC方向平移1.5厘米,线段BC在平移过程中所形成图形的面积为平方厘米.14.在平行四边形ABCD中,∠B+∠D=200°,则∠A=.15.如图,平行四边形ABCD的对角线AC,BD交于点O,三角形AOB是等边三角形,AB=4cm ,求平行四边形ABCD的面积.三、解答题16.如图,在平行四边形ABCD中,对角线AC,BD交于点O,EF过点O交AD于点E,交BC于点F.求证:OE=OF.17.如图,∠ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.18.在平行四边形ABCD中,E为CD的中点,连接BE并延长交AD的延长线于F.求证:AD= DF.19.如图,四边形ABCD是平行四边形,延长AB至点E.使BE = AB.连接DE交BC于点F.求证:CF = BF.20.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F在AC上,且AF=CE.求证:BE=DF.参考答案1.【答案】C2.【答案】D3.【答案】C4.【答案】B5.【答案】D6.【答案】A7.【答案】C8.【答案】C9.【答案】C10.【答案】C11.【答案】1或1112.【答案】(2,2)或(-4,2)13.【答案】614.【答案】80°15.【答案】16√3cm 216.【答案】证明:∵四边形ABCD 是平行四边形,∴OA =OC ,AD ∥BC∴∠OAE =∠OCF ,∠OEA =∠OFC在△AOE 和△COF 中{∠OAE =∠OCF ∠OEA =∠OFC OA =OC∴△AOE ≅△COF(AAS)∴OE =OF .17.【答案】证明:∵四边形ABCD 是平行四边形,∴OA=OC ,AD∠BC ,∴∠OAE=∠OCF ,在∠OAE和∠OCF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴∠AOE∠∠COF (ASA ),∴OE=OF 18.【答案】证明: ∵ 平行四边形 ABCD ∴AD//BC , AD =BC∴∠C =∠FDE∵E 为 DC 的中点∴DE =CE在 △BCE 与 △FDE 中{∠C=∠FDE CE=DE∠BEC=∠FED∴△BCE≌△FDE∴BC=FD∴AD=DF.19.【答案】证明:∵四边形ABCD是平行四边形∴AB∥CD,AB=CD∴∠DCF=∠EBF,∠CDF=∠BEF∵BE=AB∴BE=CD∴△DCF≌△EBF∴CF=BF20.【答案】证明:∵四边形ABCD是平行四边形∴AB=CD∴∠BAE=∠DCF∵AF=CE∴AF−EF=CE−EF即AE=CF∴ΔCDF≌ΔABE∴BE=DF.。
(完整版)八年级数学平行四边形专题练习题(含答案)
图1 A B C D初二数学平行四边形专题练习1.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .2.(08贵阳市)如图1,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2.3.若四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是菱形.4.在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为17,AB =6,那么对角线AC +BD =⒎以正方形ABCD 的边BC 为边做等边△BCE ,则∠AED 的度数为 .5.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2那么AP 的长为 .6.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是 .二、选择题(每题3分,共30分)7.如图2在平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F =( )A .110°B .30°C .50°D .70°图2 图3 图48.菱形具有而矩形不具有的性质是 ( )A .对角相等B .四边相等C .对角线互相平分D .四角相等9.如图3所示,平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm10.已知:如图4,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,则图中阴影部分的面积为 ( )A .8B .6C .4D .3E AF D C B HG11.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形( )A.①③⑤B.②③⑤C.①②③D.①③④⑤12.如图5所示,是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是( )A.88 mm B.96 mm C.80 mm D.84 mm图5 图613、(08甘肃省白银市)如图6所示,把矩形ABCD沿EF对折后使两部分重合,若150∠=o,∠=()则AEFA.110° B.115°C.120° D.130°14、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?()AB∥CD BC∥AD AB=CD BC=ADA.2组B.3组C.4组D.6组15、下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形.B.每组邻边都相等的四边形是菱形.C. 对角线互相垂直的平行四边形是正方形.D.四个角都相等的四边形是矩形.三、解答题16、如图7,四边形ABCD是菱形,对角线AC=8 cm ,BD=6 cm, DH⊥AB于H,求:DH的长。
2024学年八年级数学经典好题专项(平行四边形)练习(附答案)
2024学年八年级数学经典好题专项(平行四边形)练习一、选择题1、如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后不能与原图重合,则这个角度不可能是( )A .60°B .90°C .120°D .180°(1) (4) (5)2、下列图案中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .3、对于任意的矩形,下列说法一定正确的是 ( )A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形4、如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,则下列说法一定正确的( )A .AO =ODB .AO ⊥ODC .AO =OCD .AO ⊥AB5、如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF6、如图所示,四边形ABCD 是平行四边形,按下列条件得到的四边形BFDE 是平行四边形的个数是( )①图甲,DE ⊥AC ,BF ⊥AC ②图乙,DE 平分∠ADC ,BF 平分∠ABC③图丙,E 是AB 的中点,F 是CD 的中点 ④图丁,E 是AB 上一点,EF ⊥AB . A . 3 B . 4 C . 1 D . 27、如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( ) A. 7 B. 9 C. 10 D. 11(7) (8) (9) (10) 8、如图,菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若EF =5,则菱形ABCD 的周长为( )A .20B .30C .40D .509、已知平行四边形ABCD 中,8AC =,E 是AD 上一点,DCE 的周长是平行四边形ABCD 周长的一半,且5EC =,连结EO ,则EO 的长为( )A.2 B.3 C.4 D.510、如图,△ABC 的周长为17,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为点N ,∠ACB 的平分线垂直于AD ,垂足为点M ,若BC =6,则MN 的长度为( )A .B .2C .D .311、如图,正方形ABCD 中,点E.F 分别在边CD ,AD 上,BE 与CF 交于点G .若BC=4,DE=AF=1,则GF 的长为( )A .135B .125C .195D .165(11) (12) (13) (14)12、如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若25CBF ∠=︒,则(AED ∠= )A .60︒B .65︒C .70︒D .75︒ 13、如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①∠ABE =∠DCE ;②AG ⊥BE ;③S △BHE =S △CHD ;④∠AHB =∠EHD .其中正确的是( )A .①③B .①②③④C .①②③D .①③④14、已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12)C . (65,35)D . (107,57)二、填空题15、如图,△ABP 是由△ACD 按顺时针方向旋转某一角度得到的,若∠BAP =60°,则在这转过程中,旋转中心是 ,旋转的角度为 .(15) (16) (18)16、如图,△DEC 是由△ABC 经过了如下的几何变换而得到的:①以AC 所在直线为对称轴作轴对称,再以C 为旋转中心,顺时针旋转90°;②以C 为旋转中心,顺时针旋转90°得△A'B'C ,再以A'C 所在直线为对称轴作轴对称;③将△ABC 向下、向左各平移1个单位,再以AC 的中点为中心作中心对称.其中正确的变换有( )A.①②B.①③C.②③ D .①②③17、一个平行四边形的两条对角线的长分别为5和7,则它的一条边长a 的取值范围是18、如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD 交AD 于点E ,AB =6,BC =10,则EF 长为______________19、如图,在矩形ABCD 中,AE =AF ,过点E 作EH ⊥EF 交DC 于点H ,过F 作FG ⊥EF 交BC 于G ,当AD 、AB 满足____________(关系)时,四边形EFGH 为矩形.(19) (20) (21)20、如图,已知DE∥BC,AB∥CD,E 为AB 的中点,∠A=∠B.下列结论:①AC=DE;②CD=AE;③AC 平分∠BCD;④O 点是DE 的中点;⑤AC=AB. 其中正确的序号有_______.21、如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________.22、如图,平行四边形ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,给出下列判断:①若△AEF 是等边三角形,则∠B =60°,②若∠B =60°,则△AEF 是等边三角形,③若AE =AF ,则平行四边形ABCD 是菱形,④若平行四边形ABCD 是菱形,则AE =AF ,其中,结论正确的是__________(只需填写正确结论的序号).(22) (23) (24)23、如图,菱形ABCD 的边长为2,∠DAB =60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE的周长最小,则△PBE 的周长的最小值为 .24、如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE =1,则△BEF 的面积为 .三、解答题25、如图,E、F 在正方形ABCD 的边上,45EAF ︒∠=.(1)ABG 是由ADE 旋转而来,旋转中心是什么?旋转角是多少度?(2)求证:GF EF =;(3)若2,3BG BF ==,求正方形ABCD 的面积.26、如图,在□ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO=CO .(1)求证∶△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF______(填"是"或"不是")平行四边形.27、如图,在平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F(1)求证:AE =CF ;(2)求证:四边形AECF 是平行四边形.28、如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:ABE ∆≅△CDF ∆;(2)当线段AB 与线段AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.29、如图,矩形ABCD 中,点E 在边CD 上,将BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作//FG CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若3AB =,5AD =,求四边形CEFG 的面积.30、四边形ABCD 的四个内角的平分线两两相交又形成一个四边形EFGH ,求证:⑴四边形EFGH 对角互补;⑵若四边形ABCD 为平行四边形,则四边形EFGH 为矩形.⑶四边形ABCD 为长方形,则四边形EFGH 为正方形.31、如图,以△ABC 的边AB 、AC 为边的等边三角ABD 和等边三角形ACE ,四边形ADFE 是平行四边形.(1)当∠BAC 满足什么条件时,四边形ADFE 是矩形;(2)当∠BAC 满足什么条件时,平行四边形ADFE 不存在;(3)当△ABC 分别满足什么条件时,平行四边形ADFE 是菱形,正方形?32、已知:如图1,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是 ,证明你的结论.(2)如图2,请连接四边形ABCD 的对角线AC 与BD ,当AC 与BD 满足 条件时,四边形EFGH 是矩形;证明你的结论.(3)你学过的哪种特殊四边形的中点四边形是矩形?说明理由.33、如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE CG=,=,AH CF 且EG平分HEF∠.(1)求证:AEH CGF∆≅∆.(2)若90∠=︒.求证:四边形EFGH是正方形.EFG34、在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB外作正方形ABCD,正方形ABCD的对角线交于点O(如图1).(1)如图1,OM⊥EM并交EB延长线于点M,ON⊥AE,且交EA于点N,求证:EO平分∠AEB;(2)如图1,延长EA到P,使AP=BE,连接OP,试猜想线段OE与OP是否相等,并证明;(3)如图2,过点C作CF⊥EB并交EB的延长线于点F,过点D作DH⊥EA并交EA的延长线于点H,CF 和DH的反向延长线交于点G,求证:四边形EFGH为正方形.参考答案一、选择题1、如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后不能与原图重合,则这个角度不可能是( )A.60° B.90° C.120° D.180°【答案】解:如图,观察图形可知:∠AOB=∠EOF=60°∴旋转角是60°的倍数时,旋转后可以与原来图形重合,故性质90°不可能与原来图形重合,故选:B.2、下列图案中,既是中心对称图形又是轴对称图形的是()B.B.C.D.【答案】解:A、不是轴对称图形,是中心对称图形;B、不是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.3、对于任意的矩形,下列说法一定正确的是A.对角线垂直且相等 B.四边都互相垂直C.四个角都相等 D.是轴对称图形,但不是中心对称图形【解析】A.矩形的对角线相等,但不垂直,故此选项错误;B.矩形的邻边都互相垂直,对边互相平行,故此选项错误;C.矩形的四个角都相等,正确;D.矩形是轴对称图形,也是中心对称图形,故此选项错误.故选C.4、如图,平行四边形ABCD的对角线AC、BD相交于点O,则下列说法一定正确的()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB【解析】∵四边形ABCD是平行四边形,∴OA=OC;故选C.5、如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF【解析】∵在△ABC中,D,E分别是AB,BC的中点,∴DE 是△ABC 的中位线,∴DE = 12AC .A .根据∠B=∠F 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.B .根据∠B=∠BCF 可以判定CF ∥AB ,即CF ∥AD ,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC 为平行四边形,故本选项正确.C .根据AC=CF 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.D .根据AD=CF ,FD ∥AC 不能判定四边形ADFC 为平行四边形,故本选项错误.故选B .6、如图所示,四边形ABCD 是平行四边形,按下列条件得到的四边形BFDE 是平行四边形的个数是( )①图甲,DE ⊥AC ,BF ⊥AC ②图乙,DE 平分∠ADC ,BF 平分∠ABC③图丙,E 是AB 的中点,F 是CD 的中点 ④图丁,E 是AB 上一点,EF ⊥AB . A . 3 B . 4 C . 1 D . 2【解析】①∵四边形ABCD 是平行四边形,∴S △ACD =S △ABC ,∵DE ⊥AC ,BF ⊥AC ,∴DE ∥BF ,S △ACD =AC ꞏDE ,S △ABC =AC ꞏBF ,∴DE =BF ,∴四边形BFDE 是平行四边形;②∵四边形ABCD 是平行四边形,∴∠ADC =∠ABC ,AD =CB ,AD ∥BC ,∴∠DAE =∠BCF ,∵DE 平分∠ADC ,BF 平分∠ABC ,∴∠ADE =∠CBF ,在△ADE 和△CBF 中,∴△ADE ≌△CBF (ASA),∴DE =BF ,∠AED =∠BFC ,∴∠DEF =∠BFE ,∴DE ∥BF ,∴四边形BFDE 是平行四边形;③∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵E 是AB 的中点,F 是CD 的中点,∴DF =CD ,BE =AB ,∴DF =BE ,∴四边形BFDE 是平行四边形;④∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵E 是AB 上一点,EF ⊥AB ,无法判定DF =BE ,∴四边形BFDE 不一定是平行四边形.故选A.7、如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )A. 7B. 9C. 10D. 11【解析】本题考查勾股定理、三角形的中位线定理和四边形的周长 . 解题思路:⎭⎪⎬⎪⎫ ⎭⎪⎬⎪⎫⎭⎬⎫ BD =4,CD =3 BD ⊥CD ⇒BC =5E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点⇒EF =HG =12BC =52 ⎭⎬⎫E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点 AD =6⇒EH =FG =12AD =3 ⇒四边形EFGH 的周长=EF +FG +HG +EH =11. 故选D8、如图,菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若EF =5,则菱形ABCD 的周长为( )A .20B .30C .40D .50【解析】∵E ,F 分别是AD ,BD 的中点,∴EF 是△DAB 的中位线.∴AB =2EF =10.∵菱形的四边相等,∴菱形ABCD 的周长=4AB =40.故选C .9、已知平行四边形ABCD 中,8AC =,E 是AD 上一点,DCE 的周长是平行四边形ABCD 周长的一半,且5EC =,连结EO ,则EO 的长为( )A.2 B.3 C.4 D.5解析:∵DCE 的周长是平行四边形ABCD 周长的一半,即AD+CD=CD+DE+EC,∴AE=EC=5,即ACE △为等腰三角形.∵点O 是平行四边形ABCD 对角线交点,∴点O 为AC 中点.∴EO 垂直平分AC.∴AO=4.在Rt AOE 中,3EO ===.故选:B10、如图,△ABC 的周长为17,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为点N ,∠ACB 的平分线垂直于AD ,垂足为点M ,若BC =6,则MN 的长度为( )A .B .2C .D .3【答案】解:∵BN 平分∠ABC ,BN ⊥AE ,∴∠NBA =∠NBE ,∠BNA =∠BNE ,在△BNA 和△BNE 中,,∴△BNA ≌△BNE (ASA ),∴BA =BE ,∴△BAE 是等腰三角形,同理△CAD 是等腰三角形,∴点N 是AE 中点,点M 是AD 中点(三线合一), ∴MN 是△ADE 的中位线,∵BE +CD =AB +AC =17﹣BC =17﹣6=11, ∴DE =BE +CD ﹣BC =5,∴MN =DE =. 故选:C .11、如图,正方形ABCD 中,点E.F 分别在边CD ,AD 上,BE 与CF 交于点G .若BC=4,DE=AF=1,则GF 的长为A .135B .125C .195D .165【解析】正方形ABCD 中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF(SAS),∴∠CBE=∠DCF ,∵∠CBE+∠CEB=∠ECG+∠CEB =90°=∠CGE ,∵BCE S ∆=21BC CE ∙=21BE ∙CG, ∴CG=125,∴GF=CF ﹣CG=5﹣125=135,故选A .12、如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若25CBF ∠=︒,则(AED ∠= )A .60︒B .65︒C .70︒D .75︒【答案】解:∵四边形ABCD 是正方形,∴∠ABC =90°,BA =DA ,∠BAE =∠DAE =45°.又AD =AD ,∴△ABE ≌△ADE (SAS ).∴∠ADE =∠ABE =90°﹣25°=65°.∴∠AED =180°﹣45°﹣65°=70°.故选:C .13、如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①∠ABE =∠DCE ;②AG ⊥BE ;③S △BHE =S △CHD ;④∠AHB =∠EHD .其中正确的是( ) A .①③ B .①②③④ C .①②③ D .①③④【答案】解:∵四边形ABCD 是正方形,E 是AD 边上的中点,∴AE =DE ,AB =CD ,∠BAD =∠CDA =90°,∴△BAE ≌△CDE (SAS ),∴∠ABE =∠DCE ,故①正确;∵四边形ABCD 是正方形,∴AD =DC ,∠ADB =∠CDB =45°,DH =DH ,∴△ADH ≌△CDH (SAS ),∴∠HAD =∠HCD ,∵∠ABE =∠DCE ,∴∠ABE =∠HAD ,∵∠BAD =∠BAH +∠DAH =90°,∴∠ABE +∠BAH =90°,∴∠AGB =180°﹣90°=90°,∴AG ⊥BE ,故②正确;∵AD ∥BC ,∴S △BDE =S △CDE ,∴S △BDE ﹣S △DEH =S △CDE ﹣S △DEH ,即;S △BHE =S △CHD ,故③正确; ∵△ADH ≌△CDH ,∴∠AHD =∠CHD ,∴∠AHB =∠CHB ,∵∠BHC =∠DHE ,∴∠AHB =∠EHD ,故④正确;故选:B .14、已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF , ∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4, 根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x , 直线AD 的函数解析式是y =-15x +1,联立得:⎩⎪⎨⎪⎧y =12x y =-15x +1,解得⎩⎪⎨⎪⎧x =107y =57,∴点P 的坐标为(107,57).故选D二、填空题15、如图,△ABP 是由△ACD 按顺时针方向旋转某一角度得到的,若∠BAP =60°,则在这转过程中,旋转中心是 ,旋转的角度为 .【解答】解:旋转中心为点A ,旋转角为∠BAC =∠BAP +∠P AC =60°+30°=90°;故答案为A ,90°.16、如图,△DEC 是由△ABC 经过了如下的几何变换而得到的:①以AC 所在直线为对称轴作轴对称,再以C 为旋转中心,顺时针旋转90°;②以C 为旋转中心,顺时针旋转90°得△A'B'C ,再以A'C 所在直线为对称轴作轴对称;③将△ABC 向下、向左各平移1个单位,再以AC 的中点为中心作中心对称.其中正确的变换有( )A.①②B.①③C.②③ D .①②③答案A 根据题意分析可得△DEC 可以由△ABC 经过:①以AC 所在直线为对称轴作轴对称,再以C 为旋转中心,顺时针旋转90°得到,故正确;②以C 为旋转中心,顺时针旋转90°得△A'B'C ,再以A'C 所在直线为对称轴作轴对称变化得到,故正确;③将△ABC 向下、向左各平移1个单位,所得三角形与△DEC 为轴对称图形,以AC 的中点为中心,作中心对称得不到△DEC ,故错误.17、一个平行四边形的两条对角线的长分别为5和7,则它的一条边长a 的取值范围是OD C B A【解析】如图,不妨设AB a =,5AC =,7BD =,在ABO ∆中,52AO =,72BO =,由三角形三边关系可得 AO BO AB AO BO -<<+,即16a <<.18、如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD 交AD 于点E ,AB =6,BC =10,则EF 长为______________【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =10,DC =AB =6.∴∠AFB =∠FBC .∵BF 平分∠ABC ,∴∠ABF =∠FBC .∴∠AFB =∠ABF .∴AF =AB =6.同理可得DF =DC =6. ∴EF =AF +DE ﹣AD =6+6﹣10=2.19、如图,在矩形ABCD 中,AE =AF ,过点E 作EH ⊥EF 交DC 于点H ,过F 作FG ⊥EF 交BC 于G ,当AD 、AB 满足____________(关系)时,四边形EFGH 为矩形.【解析】∵四边形ABCD 是矩形,∴∠A =90°. ∵AE =AF ,∴∠AFE =∠AEF =45°.又∵EH ⊥EF ,FG ⊥EF ,∴∠GFB =∠HED =45°,∴△DHE 和△BGF 都是等腰直角三角形.如果四边形EFGH 是矩形,则EH =FG ,∴ED =FB , 又∵AE =AF ,∴AD =AB .20、如图,已知DE∥BC,AB∥CD,E 为AB 的中点,∠A=∠B.下列结论:①AC=DE;②CD=AE;③AC 平分∠BCD;④O 点是DE的中点;⑤AC=AB. 其中正确的序号有_______.解:①∵DE∥BC,AB∥CD,∴四边形BCDE 是平行四边形,∴BC=DE,∵∠A=∠B,∴AC=BC,∴AC=DE;故①正确;∵四边形BCDE 是平行四边形,∴CD=BE,∵E 为AB 的中点,∴AE=BE,∴CD=AE;故②正确; ∵AB∥CD,∴∠A=∠ACD,∵∠A=∠B,∴∠ACD=∠B,但∠B 不一定等于∠ACB,故AC 不一定是∠BCD 的平分线;故③错误;在△AOE 和△COD 中,,A OCD AOE COD AE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOE≌△COD(AAS),∴OE=OD,即O 是DE 的中点;故④正确;∵AC=BC,但不能确定AC=AB,故⑤错误.答案: ①②④21、如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________.【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.22、如图,平行四边形ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,给出下列判断:①若△AEF 是等边三角形,则∠B =60°,②若∠B =60°,则△AEF 是等边三角形,③若AE =AF ,则平行四边形ABCD 是菱形,④若平行四边形ABCD 是菱形,则AE =AF,其中,结论正确的是__________(只需填写正确结论的序号).【解析】①∵△AEF 是等边三角形,∴∠EAF =60°,AE =AF ,又∵AE ⊥BC ,AF ⊥CD ,∴∠C =120°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∠C =∠BAD =120°,∴∠B =180°-∠C =60°,故①正确;②∵∠D =∠B =60°,∴∠BAE =∠DAF =90°-60°=30°,∴∠EAF =120°-30°-30°=60°,但是AE 不一定等于AF ,故②错误;③若AE =AF ,则21BC ꞏAE =21CD ꞏAF ,∴BC =CD ,∴平行四边形ABCD 是菱形,故③正确; ④若平行四边形ABCD 是菱形,则BC =CD ,∴21BC ꞏAE =C 21D ꞏAF ,∴AE =AF ,故④正确; 故答案为①③④.23、如图,菱形ABCD 的边长为2,∠DAB =60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE的周长最小,则△PBE24、如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE =1,则△BEF 的面积为 .解:∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,CM =AE =1,∴F 、C 、M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠FDM =90°,∵∠EDF =45°,∴∠FDM =∠EDF =45°,在△DEF 和△DMF 中,,∴△DEF ≌△DMF (SAS ),∴EF =MF ,设BF =x ,则CF =3﹣x ,FM =3﹣x +1=4﹣x ,EF =4﹣x ,∵Rt △BEF 中,BE 2+BF 2=EF 2,∴22+x 2=(4﹣x )2,解得x =,∴BF =,∴△BEF的面积为××2=.故答案为:.三、解答题25、如图,E、F 在正方形ABCD 的边上,45EAF ︒∠=.(1)ABG 是由ADE 旋转而来,旋转中心是什么?旋转角是多少度?(2)求证:GF EF =;(3)若2,3BG BF ==,求正方形ABCD的面积.解:(1)由旋转性质可得旋转中心为A 点,旋转角度为90°;(2)ABG △由ADE 旋转而来,ABG ADE ∴≅ ,,AG AE BAG DAE ∴=∠=∠90,45BAD EAF ︒︒∠=∠= ,45GAF BAG BAF ︒∴∠=∠+∠=,GAF EAF ∴∠=∠在EAF △由GAF 中AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()EAF GAF SAS ∴≅ ,GE EF ∴=;(3)设正方形边长为x ,235EF GF ==+=222(3)(2)5x x ∴-+-=,6x ∴=或1x =-(舍弃)∴正方形面积为2636=.26、如图,在□ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO=CO .(1)求证∶△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF______(填"是"或"不是")平行四边形.解析:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠FAO=∠ECO ,在△AOF 和△COE 中FAO ECO AO CO AOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOF 和△COE (ASA ).(2)由(1)△AOF 和△COE ,∴OF=OE ,又∵OA=OC ,∴四边形AEOF 为平行四边形.27、如图,在平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F(1)求证:AE =CF ;(2)求证:四边形AECF 是平行四边形.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥BC ,∴∠ADE =∠CBF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB =90°,在△ADE 和△CBF中,,∴△ADE ≌△CBF (AAS ),∴AE =CF ;(2)证明:∵AE ⊥BD ,CF ⊥BD ,∴AE ∥CF ,∵AE =CF ,∴四边形AECF 是平行四边形.28、如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:ABE ∆≅△CDF ∆;(2)当线段AB 与线段AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.【答案】证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,OB =OD ,OA =OC ,∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE =OB ,DF =OD ,∴BE =DF ,在△ABE 和△CDF 中,∴△ABE ≌△CDF (SAS );(2)解:当AC =2AB 时,四边形EGCF 是矩形;理由如下:∵AC =2OA ,AC =2AB ,∴AB =OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG =90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG ∥CF ,∵EG =AE ,OA =OC ,∴OE 是△ACG 的中位线,∴OE ∥CG ,∴EF ∥CG ,∴四边形EGCF 是平行四边形,∵∠OEG =90°,∴四边形EGCF 是矩形.29、如图,矩形ABCD 中,点E 在边CD 上,将BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作//FG CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若3AB =,5AD =,求四边形CEFG的面积.解:(1)证明:由题意可得,BCE BFE ≌,∴BEC BEF ∠=∠,FE CE =,∵//FG CE ,∴FGE CEB ∠=∠,∴FGE FEG ∠=∠,∴FG FE =,∴FG EC =,∴四边形CEFG 是平行四边形, 又∵CE FE =,∴四边形CEFG 是菱形;(2)∵矩形ABCD 中,3AB =,5AD =,BC BF =,∴90BAF ∠=︒,5AD BC BF ===,∴4AF =,∴1DF =,设EF x =,则CE x =,3DE x =-,∵90FDE ∠=︒,∴21+22)3(x x =-,解得,53x =,∴53CE =, ∴四边形CEFG 的面积是:51353CE DF ⋅=⨯=.30、四边形ABCD 的四个内角的平分线两两相交又形成一个四边形EFGH ,求证: ⑴四边形EFGH 对角互补;⑵若四边形ABCD 为平行四边形,则四边形EFGH 为矩形.⑶四边形ABCD 为长方形,则四边形EFGH 为正方形.解析:⑴ 因为()11802GHE BHC ABC BCD ∠=∠=︒-∠+∠, ()11802GFE AFD DAB CDA ∠=∠=︒-∠+∠, 所以GHE GFE ∠+∠()13602ABC BCD CDA DAB =︒-∠+∠+∠+∠180=︒ ⑵ 若四边形ABCD 为平行四边形,则180ABC BCD ∠+∠=︒所以()360180DAB CDA ABC BCD ∠+∠=︒-∠+∠=︒. 从而1180180902GFE ∠=︒-⨯︒=︒,故1180180902GHE ∠=︒-⨯︒=︒. 同理,四边形EFGH 的另两个角都是直角,所以,四边形EFGH 为矩形.⑶ 若四边形ABCD 为矩形,则由⑵知四边形EFGH 是矩形.GCD EAB ∆∆≌,HBC FAD ∆∆≌,GC EB =,HC HB =,GH HE =,故矩形EFGH 为正方形.31、如图,以△ABC 的边AB 、AC 为边的等边三角ABD 和等边三角形ACE ,四边形ADFE 是平行四边形.(1)当∠BAC 满足什么条件时,四边形ADFE 是矩形;(2)当∠BAC 满足什么条件时,平行四边形ADFE 不存在;(3)当△ABC 分别满足什么条件时,平行四边形ADFE 是菱形,正方形?【答案】解 (1)当∠BAC =150°时,四边形ADFE 是矩形,∴∠DAE =360°-120°-150°=90°;∵四边形ADFE 是平行四边形,∴四边形ADFE 是矩形(有一个角是直角的平行四边形是矩形);(2)当∠BAC =60°时,平行四边形ADFE 不存在, ∠DAE =180°-60°-60°-60°=0°;(3)当AB =AC 且∠BAC 不等于60°时,平行四边形ADFE 是菱形.当AB =AC ,∠BAC =150°时,平行四边形ADFE 是正方形.32、已知:如图1,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是 ,证明你的结论.(2)如图2,请连接四边形ABCD的对角线AC与BD,当AC与BD满足 条件时,四边形EFGH是矩形;证明你的结论.(3)你学过的哪种特殊四边形的中点四边形是矩形?说明理由.【答案】解:(1)四边形EFGH的形状是平行四边形.理由如下:如图1,连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=BD,同理FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形;(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下: 如图2,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形;(3)菱形的中点四边形是矩形.理由如下:如图3,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直.33、如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE CG=,=,AH CF ∠.且EG平分HEF(1)求证:AEH CGF∆≅∆.(2)若90∠=︒.求证:四边形EFGH是正方形.EFG【答案】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C.在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,∠B =∠D .∵AE =CG ,AH =CF ,∴EB =DG ,HD =BF .∴△BEF ≌△DGH (SAS ),∴EF =HG . 又∵△AEH ≌△CGF ,∴EH =GF .∴四边形HEFG 为平行四边形.∴EH ∥FG ,∴∠HEG =∠FGE .∵EG 平分∠HEF ,∴∠HEG =∠FEG ,∴∠FGE =∠FEG ,∴EF =GF ,∴四边形EFGH 是菱形. 又∵∠EFG =90°,∴平行四边形EFGH 是正方形.34、在Rt△AEB 中,∠AEB =90°,以斜边AB 为边向Rt△AEB 外作正方形ABCD ,正方形ABCD 的对角线交于点O (如图1).(1)如图1,OM ⊥EM 并交EB 延长线于点M ,ON ⊥AE ,且交EA 于点N ,求证:EO 平分∠AEB ;(2)如图1,延长EA 到P ,使AP =BE ,连接OP ,试猜想线段OE 与OP 是否相等,并证明;(3)如图2,过点C 作CF ⊥EB 并交EB 的延长线于点F ,过点D 作DH ⊥EA 并交EA 的延长线于点H ,CF和DH 的反向延长线交于点G ,求证:四边形EFGH为正方形.解:(1)证明:∵四边形ABCD 是正方形,∴∠BOA =90°,OB =OA ,∴∠BON +∠AON =90°,∵∠AEB =90°,OM ⊥EM ,ON ⊥AE ,∴四边形MENO 为矩形,∴∠MON =90°,∴∠BON +∠BOM =90°,∴∠BOM =∠AON ,在△BOM 和△AON 中,90OM ONA BOM AON OB OA ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△BOM ≌△AON (AAS ),∴OM =ON ,∵OM ⊥EM ,ON ⊥AE ,∴EO 平分∠AEB ;(2)解:OE =OP ,理由如下:由(1)可知,△BOM ≌△AON ,∴∠OBM =∠OAN ,∴∠OBE =∠OAP ,在△OBE 和△OAP 中,OB OA OBE OAP BE AP =⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△OAP (SAS ),∴OE =OP ;(3)证明:∵CF ⊥EB ,DH ⊥EA ,∴∠F =∠H =∠AEB =90°,∴四边形EFGH 为矩形, ∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°,∴∠EAB =∠HDA ,∠ABE =∠DAH .在△ABE 与△ADH 中,90EAB HDA AEB DHA AB DA ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ADH (AAS ),∴BE =AH ,AE =DH ,同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF ,∴CG +FC =BF +BE =AE +AH =DH +DG ,∴FG =EF =EH =HG ,∴四边形EFGH 为正方形.。
八年级数学下册《平行四边形》练习题与答案(人教版)
八年级数学下册《平行四边形》练习题与答案(人教版)一、选择题1.如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO周长是( )A.10B.14C.20D.222.如图,在▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是( )A.16°B.22°C.32°D.68°3.下列条件中,不能判定四边形是平行四边形的是( )A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等4.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE度数为( )A.20°B.25°C.30°D.35°5.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥AB交BC于点E,AD=6cm,则OE的长为( )A.6cmB.4cmC.3cmD.2cm6.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )A.20°B.30°C.35°D.55°7.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A.3a+2bB.3a+4bC.6a+2bD.6a+4b8.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是( )A.正方形B.矩形C.菱形D.都有可能9.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )A.2B. 3C. 2D.110.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D 恰好都落在点G处,已知BE=1,则EF的长为( )A.1.5B.2.5C.2.25D.311.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )A.AB∥DCB.AC=BDC.AC⊥BDD.AB=DC12.如图,在四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是( )①四边形A 4B 4C 4D 4是菱形;②四边形A 3B 3C 3D 3是矩形;③四边形A 7B 7C 7D 7的周长为a +b 8; ④四边形A n B n C n D n 的面积为ab 2n . A.①②③ B.②③④ C.①③④ D.①②③④二、填空题13.如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件 ,使四边形ABCD 是平行四边形(填一个即可).14.如图所示,已知▱ABCD ,下列条件:①AC =BD ,②AB =AD ,③∠1=∠2,④AB ⊥BC 中,能说明▱ABCD 是矩形的有(填写序号) .15.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是_________.16.如图,把矩形ABCD 绕着点A 逆时针旋转90°可以得到矩形AEFG ,则图中△AFC 是 三角形.17.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是 .18.如图,在矩形纸片ABCD中,AB=6,BC=10,BC边上有一点E,BE=4,将纸片折叠,使A点与E点重合,折痕MN交AD于M点,则线段AM的长是.三、解答题19.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有的等腰三角形.20.如图,已知在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE.(2)连结DE,线段DE与AB之间有怎样的位置关系和数量关系?请证明你的结论.21.如图,在△ABC中,∠A CB=90°,O,D分别是边AC,AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD 是菱形;(2)若四边形AECD 的面积为24,BC :AC =34,求BC 的长.22.如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA ⊥AF.求证:DE =BF.23.已知:如图1,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH(即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是 ,证明你的结论.(2)如图2,请连接四边形ABCD 的对角线AC 与BD ,当AC 与BD 满足 条件时,四边形EFGH 是矩形;证明你的结论.(3)你学过的哪种特殊四边形的中点四边形是矩形?说明理由.24.已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.参考答案1.B.2.C3.B4.C.5.C6.A.7.A.8.B.9.B10.B11.C12.B.13.答案为:AD=BC(答案不唯一).14.答案为:①④.15.答案为:AB=AD或AC⊥BD;16.答案为:等腰直角.17.答案为:22.5°.18.答案为13 2.19.证明:(1)如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD∵BE=DF∴OB﹣BE=OD﹣DF,即OE=OF∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD∴∠ABF=∠CDF=36°∴∠AFB=180°﹣108°﹣36°=36°∴AB=AF∵AF=EF∴△ABF 和△AFE 是等腰三角形同理△EFC 与△CDE 是等腰三角形.20.证明:(1)∵AB =AC∴∠B =∠ACB又∵AD 是BC 边上的中线∴AD ⊥BC ,即∠ADB =90°.∵AE ∥BC∴∠EAC =∠ACB∴∠B =∠EAC.∵CE ⊥AE ,所以∠CEA =90°∴∠ADB =∠CEA.又∵AB =CA∴△ABD ≌△CAE(AAS).(2)解:AB ∥DE 且AB =DE.证明:由△ABD ≌△CAE 可得AE =BD又∵AE ∥BD∴四边形ABDE 是平行四边形∴AB ∥DE 且AB =DE.21.(1)证明:∵点O 是AC 的中点∴OA =OC.∵CE ∥AB∴∠DAO =∠ECO.又∵∠AOD =∠COE∴△AOD ≌△COE(ASA)∴AD =CE∴四边形AECD 是平行四边形.又∵CD 是Rt △ABC 斜边AB 上的中线∴CD =AD =12AB∴四边形AECD 是菱形;(2)由(1)知,四边形AECD 是菱形∴AC ⊥ED.在Rt △AOD 中 OD OA 34可设OD =3x ,OA =4x则ED =2OD =6x ,AC =2OA =8x.由题意可得12·6x ·8x =24 ∴x =1∴OD =3.∵O ,D 分别是AC ,AB 的中点∴OD 是△ABC 的中位线∴BC =2OD =6.22.证明:∵∠FAB +∠BAE =90°,∠DAE +∠BAE =90°∴∠FAB =∠DAE∵∠AB =AD ,∠ABF =∠ADE∴△AFB ≌△ADE∴DE =BF.23.解:(1)四边形EFGH 的形状是平行四边形.理由如下:如图1,连结BD . ∵E 、H 分别是AB 、AD 中点∴EH ∥BD ,EH =12BD同理FG ∥BD ,FG =12BD∴EH ∥FG ,EH =FG∴四边形EFGH 是平行四边形;(2)当四边形ABCD 的对角线满足互相垂直的条件时,四边形EFGH 是矩形.理由如下: 如图2,连结AC 、BD .∵E 、F 、G 、H 分别为四边形ABCD 四条边上的中点∴EH ∥BD ,HG ∥AC∵AC ⊥BD∴EH ⊥HG又∵四边形EFGH 是平行四边形∴平行四边形EFGH 是矩形;(3)菱形的中点四边形是矩形.理由如下:如图3,连结AC 、BD .∵E 、F 、G 、H 分别为四边形ABCD 四条边上的中点∴EH ∥BD ,HG ∥AC ,FG ∥BD ,EH =12BD ,FG =12BD∴EH ∥FG ,EH =FG∴四边形EFGH是平行四边形.∵四边形ABCD是菱形∴AC⊥BD∵EH∥BD,HG∥AC∴EH⊥HG∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直.24.解:(1)AF=CD+CF;(2)AF=CD+CF.。
八年级数学 下册第十八章《平行四边形》测试卷-人教版(含答案)
八年级数学 下册第十八章《平行四边形》测试卷-人教版(含答案)一、单选题(共30分)1.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AD =BCB .AB =CDC .AD ∥BC D .∥A =∥C 2.如图,在∥ABCD 中,连接AC ,∥ABC =∥CAD =45°,AB =2,则BC 的长是( )A 2B .2C .2D .4 3.如图,在长方形ABCD 中无重叠放入面积分别为216cm 和212cm 的两张正方形纸片,则图中空白部分的面积为( )2cmA .1683-B .1283-+C .843-D .423- 4.如图,已知平行四边形ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,则边AB 的长可以是( )A .1B .8C .10D .12 5.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,4),(1,1),以这三点为平行四边形的三个顶点,则第四个顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,矩形ABCD 和矩形CEFG ,AB =1,BC =CG =2,CE =4,点P 在边GF 上,点Q 在边CE 上,且PF =CQ ,连结AC 和PQ ,M ,N 分别是AC ,PQ 的中点,则MN 的长为( )A .3B .6C 37D 17 7.如图,菱形ABCD 对角线AC ,BD 交于点O ,15ACB ∠=︒,过点C 作CE AD ⊥交AD 的延长线于点E .若菱形ABCD 的面积为4,则菱形的边长为( )A .22B .2C .2D .4 8.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .5D .10 9.如图,在矩形ABCD 内有一点F ,FB 与FC 分别平分∥ABC 和∥BCD ,点E 为矩形ABCD 外一点,连接BE ,CE .现添加下列条件:∥EB ∥CF ,CE ∥BF ;∥BE =CE ,BE =BF ;∥BE ∥CF ,CE ∥BE ;∥BE =CE ,CE ∥BF ,其中能判定四边形BECF 是正方形的共有( )A .1个B .2个C .3个D .4个 10.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当∥CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0)二、填空题(共24分)11.在菱形ABCD 中,∥BAD =72°,点F 是对角线AC 上(不与点A ,C 重合)一动点,当ADF 是等腰三角形时,则∥AFD 的度数为_____.12.如图,在ABC 中,点M 为BC 的中点,AD 平分,BAC ∠且BD AD ⊥于点D ,延长BD 交AC 于点,N 若12,18AB AC ==,则MD =_______________________.13.如图,在Rt ∥ABC 中,∥ABC =90º,D 、E 、F 分别为AB 、BC 、CA 的中点,若BF =6,则DE =_____.14.平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,∥AOB 的周长比∥BOC 的周长为8cm ,则AB 的长为_____cm .15.如图,在平行四边形ABCD 中,BF 平分∥ABC ,交AD 于点F ,CE 平分∥BCD ,交AD 于点E ,AB =8,BC =12,则EF 的长为__________.16.如图在Rt △ABC 中,∥ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB ,当AD =_____,平行四边形CDEB 为菱形.17.如图,在平行四边形ABCD 中,AB =10,AD =6,AC ∥BC .则BD =_____.18.如图所示,在ΔABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF ,给出下列条件:∥BE ∥EC ;∥BF∥EC ;∥AB =AC∥从中选择一个条件使四边形BECF 是菱形,你认为这个条件是____(只填写序号).三、解答题(共66分)19.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点,E F 分别为,OB OD 的中点,连接,AE CF .求证:AE CF .20.如图,∥ABCD 的对角线AC 、BD 交于点O ,E 、F 是对角线AC 上两点,AE =CF .求证:四边形DEBF 是平行四边形.21.如图,将∥ABCD 的边AB 延长至点E ,使BE=AB ,连接DE 、EC 、BD 、DE 交BC 于点O .(1)求证:∥ABD∥∥BEC ;(2)若∥BOD=2∥A ,求证:四边形BECD 是矩形.22.如图,在ABC ∆中,AD 是高,E F 、分别是AB AC 、的中点.(1)EF 与AD 有怎样的位置关系?证明你的结论;(2)若6,4BC AD ==,求四边形AEDF 的面积.23.如图,等边AEF ∆的顶点E ,F 在矩形ABCD 的边BC ,CD 上,且45CEF ∠=. 求证:矩形ABCD 是正方形.24.如图,在正方形ABCD 中,点E 、F 分别在边BC 和CD 上,且BE CF =,连接AE 、BF ,其相交于点G ,将BCF △沿BF 翻折得到BC F '△,延长FC '交BA 延长线于点H .(1)求证:AE BF =;(2)若3AB =,2EC BE =,求BH 的长.25.如图,在▱ABCD 中,AE∥BC ,AF∥CD ,垂足分别为E ,F ,且BE=DF (1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.26.如图,在矩形ABCD 中,AB =15,E 是BC 上的一点,将∥ABE 沿着AE 折叠,点B 刚好落在CD 边上点G 处;点F 在DG 上,将∥ADF 沿着AF 折叠,点D 刚好落在AG 上点H 处,且CE =45BE , (1)求AD 的长;(2)求FG 的长27.如图,BD是∥ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∥ABC=60°,∥ACB=45°,CD=6,求菱形BEDF的边长.28.(1)如图1,正方形ABCD中,E为边CD上一点,连接AE,过点A作AF∥AE 交CB的延长线于F,猜想AE与AF的数量关系,并说明理由;(2)如图2,在(1)的条件下,连接AC,过点A作AM∥AC交CB的延长线于M,观察并猜想CE与MF的数量关系,并说明理由;(3)解决问题:王师傅有一块如图所示的板材余料,其中∥A=∥C=90°,AB=AD.王师傅想切一刀后把它拼成正方形.请你帮王师傅在图3中画出剪拼的示意图.参考答案1.A2.C3.B4.B5.C6.C7.A8.A9.D10.D11.108°或72°12.313.614.1915.416.7517.1318.∥22.(1)EF 垂直平分AD ;(2)6AEDF S 四边形. 24.5.25.S 平行四边形ABCD =24 26.(1)AD = 9;(2)FG =7.5 27.(2)628.(1)AE=AF (2)CE=MF ,。
数学八年级平行四边形性质与判定4套练习及答案
平行四边形练习题1平行四边形的性质(一) 一、选择题1.平行四边形的两邻角的角平分线相交所成的角为( ) A.锐角 B.直角 C.钝角 D.不能确定2.平行四边形的周长为24cm ,相邻两边的差为2cm ,则平行四边形的各边长为( ) A.4cm ,4cm ,8cm ,8cm B.5cm ,5cm ,7cm ,7cm C.5.5cm ,5.5cm ,6.5cm ,6.5cm D.3cm ,3cm ,9cm ,9cm3. 如.则∠A.28C.324. 在5A.6.在□A100二、填7. .8. 9.10.. ∠C 11. 中,对角线AC 、BD 相交于点O ,图中全等三角形共有对12.如图所示,在ABCD 中,∠B =110°,延长AD 至F ,CD 至E ,连结EF ,则∠E+∠F= 三、解答题13. 在四边形ABCD 中,AB ∥CD ,∠A =∠C ,求证:四边形ABCD 是平行四边形. 14. 在□ABCD 中, ∠A+∠C=160°, , 求∠A,∠C,∠B,∠D 的度数第11题图 第12题图15. .如图所示,四边形ABCD 是平行四边形,BD ⊥AD ,求BC ,CD 及OB 的长.16. 如图,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.课时一答案:一、1.B ,提示:平行四边形的两邻角的和为180°,所以它们的角平分线的夹角为90°;2.B ,提示:设相邻两边为,,ycm xcm 根据题意得⎩⎨⎧=-=+212y x y x ,解得⎩⎨⎧==57y x ;3. B ,提示:根据平行四边形的性质对角相等得∠D =∠ABC=120°,邻角互补得∠CAB +∠CAD+∠D =180°,则∠CAB =180°-32°-120°=28°;4. D ,提示:根据平行四边形的对角相等,得对角的比值相等故选D ;5.A ;6.B ,由题意得∠A =60°,根据平行四边形的邻角互补,得∠B =180°-60°=120°; 二、7.3提示:°11.4;三角形三、∴AD 14.解:又∵∠∵在□∴∠B 15. 解:∵∵∴16. AE =平行四边形的性质(二)1. 如图所示,如果该平行四边形的一条边长是8,一条对角线长为6,那么它的另一条对角线长x 的取值范围是________.2.长为( A.8.3 3. ,交AD4.为( A.155. 已知ABCD ,求证:6. 为E 、7.已知O 为平行四边形ABCD 对角线的交点,△AOB 的面积为1,则平行四边形的面积为( )第3题图A.1B.2C.3D.48.平行四边形的对角线分别为y x ,,一边长为12,则y x ,的值可能是下列各组数中的( ) A.8与14 B.10与14 C.18与20 D.10与28 9. □ABCD 中,若,6,10,30cm AB cm BC B ===∠ 则□ABCD 的面积是 .10. 如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45°,且AE+AF=则平行四边形ABCD 的11.点E ,F 分别在AC,AB 上,且DE ∥求证:12. M 、N ,•点(1(2第10题图 第11题图课时二答案:1. 10<x <22,提示:根据三角形的三边关系得11215<<x ,解得2210<<x ;2. B ;3. BC =AD =4.8;4.A ;提示:根据面积法求出邻边的比为3∶2,则邻边为7.5,5,则面积为7.5×2=15cm 2;5. 证明:∵ABCD ,∴OA =OC ,DF ∥EB ∴∠E =∠F ,又∵∠EOA =∠FOC ∴△OAE ≌△OCF ,∴OE =OF ;6. OE =OF , 在□ABCD 中,OB=OD ,∵BE ⊥AC ,DF ⊥AC ∴∠BEO =∠DFO ,又∠7.D 边,若11.∴∠B=12. ( 在∴∠平行四边形的判定(一) 一、选择题1.下列条件中不能判定四边形ABCD 为平行四边形的是( ) A.AB=CD,AD=BC B.AB ∥CD ,AB=CD C.AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC2.已知:四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;② AB=CD, ③AD=BC ,④∠A=∠C ,⑤∠B=∠D ,能使四边形ABCD 成为平行四边形的条件的个数是( ) A.4 B.3 C.2 D.13.4. 5.为平行四边形,6.如图所示,ABCD E 、7.如图所示,在ABCD 且8. 9.ABCD 行四边形.10. 如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥四边形AECF 为平行四边形.11. 如图所示,平行四边形ABCD的对角线A C、BD相交于点O,E、F是直线AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.12.CE课时三答案:一、1.C ;2.B ,提示:AD ∥BC ,添加条件①③④能使四边形ABCD 成为平行四边形;3.C ;4.B ;二、5. AD =BC (或AB ∥CD 或∠A=∠C 或∠B=∠D );6.30°,6,9;7.对角线互相平分;8. 3; 三、9.在ABCD 中,AD=CB,AB=CD,∠D =∠B ,∵E 、F 分别为AB 、CD 的中点,∴DF=BE , 又∵AB ∥CD ,AB=CD ,∴AE=CF ,∴四边形AECF 是平行四边形. 10. 证明:∵ABCD∴AB =CD ,AB ∥CDAE ∴11. 12. 证明:BC ∴又 ∴△BE ∴BE ∴连结 BO ∴又 AE ∴EO ∴∴BE DF ∴∥课时四平行四边形的判定(二)1.如图所示,D 、E 、F 为△ABC 的三边中点, 则图中平行四边形有( ) A.1个 B2个 C 3个 D.4个2. D 、为20A.153.4.□分别是5. 连结6. (1)(2)7. BC ,BA ∥DE ,BD ∥AE ,EF=FC ,路车,路线是B →A →E →F ,乙乘2路,路线是B →D ,假设两车速度相同,途中耽误时间相同,那么谁先到达F 站,请说明理由.第1题图第6题图8. 如图所示,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB;(2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF=12BE.9..10.是OA11.如图所示,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?第9题图第10题图课时四答案:1.C;2.D ,提示:根据三角形中位线的性质定理:;21,21DEF LMN ABC DEF L L L L ∆∆∆∆== 3.26或22,提示:当两腰上的中位线长为3时,则底边长为6,腰长为10,三角形的周长为26,当两腰上的中位线长为5时,则底边长为10,腰长为6,三角形的周长为22;4.平行四边形 ;5.平行四边形;6.证明:(1)∵ 四边形ABCD 是平行四边形,∴AB ∥CF .∴∠1=∠2,∠3=∠4 ∵E 是AD 的中点,∴ AE=DE .∴△ABE ≌△DFE .(2)四边形ABDF 是平行四边形.∵△ABE ≌△DFE∴AB=DF 又AB ∥CF .∴四边形ABDF 是平行四边形.7.解:∵BA ∥DE ,BD ∥AE ,∴四边形ABDE 是平行四边形∴AB=DE ,BD=AE ,又EF=FC 且AF ∥BC ,EC ⊥BC ,∴DE=DC ,∴EA+AE+EF=BD+DC+CF ,∴二人同时到达F 站.8.证明:(1)∵BD=CD ,∴∠BCD=∠1.∵ ∠l=∠2,∠BCD=∠2.∴CD ∥AB .(2) ∵ CD ∥AB ∴∠CDA=∠3.∠BCD=∠2=∠3.且BE=AE .且∠CDA=∠BCD .∴DE=CE .在△BDE 和△ACE 中, DE=CE ,∠DEB=∠CEA ,BE=AE .∴△BDE ≌△ACE(3) ∵△BDE ≌△ACE∠4=∠1,∠ACE=∠BDE=90°.∴∠ACH=90°一∠BCH又CH ⊥AB ,.∴ ∠2=90°一∠BCH∴∠ACH=∠2=∠1=∠4.AF=CF∵∠AEC=90°一∠4,∠ECF=90°一∠ACH∠ACH=∠4 ∠AEC=∠ECF .CF=EF .∴ EF=AFO 为AB 中点,OF 为△ABE 的中位线 ∴OF=12BE 9. 线段AC 与EF 互相平分.理由是:∵四边形ABCD 是平行四边形.∴AB ∥CD ,即AE ∥CF ,AB =CD ,∵BE =DF ,∴AE =CF∴四边形AECF 是平行四边形,∴AC 与EF 互相平分.10.是平行四边形,△AOE ≌△COF .11是平行四边形,四边形AMCN 、BMDN 是平行四边形.。
2024学年八年级数学经典好题专项(平行四边形)练习(附答案)
2024学年八年级数学经典好题专项(平行四边形)练习一、选择题1、如图,在平行四边形ABCD中,下列结论中错误的是( )A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC=BC(1题) (2题) (4题) (6题),则ABCD的周长为( ) 如图在ABCD中,已知AC=4 cm,若△ACD的周长为13 cm▱2、▱A.26 cm B.24 cm C.20 cm D.18 cm3、已知平行四边形ABCD的周长为30cm,AB:BC=2:3,则AB的长为( )A.6cmB.9cmC.12cmD.18cm如图,ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为( ) 4、▱A.13 B.17 C.20 D.265、在平行四边形ABCD中,对角线AC、BD交于点0,下列式子一定成立的是( )A.AC⊥BDB.OA=OCC.AC=BDD.AO=OD,若ABCD的周长为18,OE=1.5,6、如图,EF▱过ABCD对角线的交点O,交AD于E,交BC于F▱则四边形EFCD的周长为( )A.14 B.13 C.12 D.10(7题) (8题) (9题)7、如图, ABCD的对角线AC,BD交于点0,已知AD=8,BD=12,AC=6,则∆OBC的周长为( )A.13B.17C.20D.26如图,在ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( )8、▱A. 2 B.2 C.2 2 D.49、如图,在平行四边形ABCD中AB=6,BC=8,BD的垂直平分线交AD于点E,则∆ABE的周长是( )A.7B.10C.13D.1410、如图,在 ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于( )A. 1cmB. 2cmC. 3cmD. 4cm(10题) (11题) (12题) (13题)11、如图,将=ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=480,∠CFD=40°,则∠E为( )A. 102°B. 112°C. 122°D.92°如图,在ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,12、▱交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是( )A.BO=OH B.DF=CE C.DH=CG D.AB=AE二、填空题13、如图,两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成一个四边形,这个四边形是______________.如图,在ABCD中,∠A∶∠B=2∶1,则:∠A=________°,∠C=________°;14、▱(14题) (15题) (16题)15、如图所示,在平行四边形ABCD中,两条对角线交于点0,若A0=2cm,∆ABC的周长为13cm,则平行四边形ABCD的周长为__________cm如图,在ABCD中,对角线AC,BD交于点O,若DO=1.5 cm,AB=5 cm,BC=4 cm,16、▱则ABCD的面积为 cm2.▱17、已知平行四边形ABCD中,AC,BD交于点0,若AB=6,AC=8,则BD的取值范围是________如图,在ABCD中,AC=21 cm,BE⊥AC于点E,且BE=5 cm,AD=7 cm,18、▱则两平行线AD与BC间的距离是___ cm.(18题) (19题)19、如图, ABCD的对角线相交于点0,且AD≠CD,过点0作OM⊥AC,交AD于点M.如果∆CDM的周长为8,那么 ABCD的周长是___________如图,在ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,20、▱若点B的落点记为B′,则DB′的长为 .三、解答题21、如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.22、如图所示,平行四边形ABCD中,对角线AC,BD相交于点0,过点0的直线分别交AD,BC于点M N,若∆CON的面积为2,∆DOM的面积为4,求∆AOB的面积23、▱如图,在ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.24、▱如图所示,在ABCD中,对角线AC与BD相交于点O,点M,N在对角线AC上,且AM=CN,求证:BM∥DN.如图,ABCD的对角线AC,BD相交于点O,EF过点O且与AB,CD分别相交于点E,F,连接EC. 25、▱(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10▱,求ABCD的周长.,ABCD的对角线AC,BD相交于点O,过点O作直线EF分别交AD,BC于点E,26、(1)如图1▱F.求证:OE=OF;,在ABCD中,若过点O的直线与BA,DC的延长线分别交于点E,F,能得到(2)如图2▱(1)中的结论吗?由此你能得到什么样的一般性结论?参考答案一、选择题1、如图,在平行四边形ABCD 中,下列结论中错误的是(D )A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC=BC2、▱如图在ABCD 中,已知AC=4 cm,若△ACD 的周长为13 cm ▱,则ABCD 的周长为( D )A.26 cm B.24 cm C.20 cm D.18 cm3、已知平行四边形ABCD 的周长为30cm,AB:BC=2:3,则AB 的长为( )A.6cmB.9cmC.12cmD.18cm答案: 结合平行四边形性质,可知15AB BC +=,由题意得6AB =,故选A4、▱如图,ABCD 的对角线AC ,BD 交于点O ,已知AD =8,BD =12,AC =6,则△OBC 的周长为( B )A.13 B.17 C.20 D.265、在平行四边形ABCD 中,对角线AC、BD 交于点0,下列式子一定成立的是( )A.AC ⊥BDB.OA=OCC.AC=BDD.AO=OD答案: 结合平行四边形对角线平分,可知OA=OC,故选B。
八年级数学第十八章《平行四边形》全章基础测试题含答案
八年级数学第十八章《平行四边形》全章基础测试题测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。
2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )(A)2(B)53 (C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断 一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC 于F ,DE ∥AC 交AB 于E ,求DE +DF 的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数x k y 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB 的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD 的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.49.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。
八年级初二数学 平行四边形练习题含答案
八年级初二数学 平行四边形练习题含答案一、解答题1.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.2.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 . (2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.3.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+4.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF . (1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形;②当折痕经过点A 时,BE 与AE 的数量关系为 .(2)深入探究:在矩形ABCD 中,AB =3,BC =23.①当△BEF 是等边三角形时,求出BF 的长;②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.5.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥.②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = .6.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.7.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:2DE AF =.8.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .(1)①求证:四边形BFDE 是菱形;②求∠EBF 的度数.(2)把(1)中菱形BFDE 进行分离研究,如图2,G ,I 分别在BF ,BE 边上,且BG =BI ,连接GD ,H 为GD 的中点,连接FH ,并延长FH 交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图3,矩形ABCD 满足AB =AD 时,点E 是对角线AC 上一点,连接DE ,作EF ⊥DE ,垂足为点E ,交AB 于点F ,连接DF ,交AC 于点G .请直接写出线段AG ,GE ,EC 三者之间满足的数量关系.9.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
八年级初二数学数学平行四边形试题含答案
15.如图,在平行四边形 ABCD 中,对角线 AC,BD 相交于点 O,AB=OB,点 E,F 分别是 OA,OD 的中点,连接 EF,EM⊥BC 于点 M,EM 交 BD 于点 N,若∠CEF=45°,FN=5, 则线段 BC 的长为_____.
16.如图,在平行四边形 ABCD 中,AB=6,BC=4,∠A=120°,E 是 AB 的中点,点 F 在 平行四边形 ABCD 的边上,若△AEF 为等腰三角形,则 EF 的长为_____.
ABCD
AB·AC
;③OA=
OB;④OE= 1 BC.其中成立的个数是( ) 4
A.1
B.2
C.3
D.4
10.如图,在正方形 ABCD 中,E 是 BC 边上的一点,BE=4,EC=8,将正方形边 AB 延 AE 折
叠刀 AF,延长 EF 交 DC 于 G,连接 AG,现在有如下结论:①∠EAG=45°;②GC=CF;
19.在锐角三角形 ABC 中,AH 是边 BC 的高,分别以 AB,AC 为边向外作正方形 ABDE 和 正方形 ACFG,连接 CE,BG 和 EG,EG 与 HA 的延长线交于点 M,下列结论:①BG=CE; ②BG⊥CE;③AM 是△AEG 的中线;④∠EAM=∠ABC.其中正确的是_________.
A.
B.
C.
D.
5.正方形 ABCD,CEFG 按如图放置,点 B,C,E 在同一条直线上,点 P 在 BC 边上,
PA PF ,且 APF 90 ,连接 AF 交 CD 于点 M,有下列结论: ①EC BP ;
② BAP GFP ; ③AB2
CE2
1 2
AF2
;
④S正方形ABCD
S正方形CEFG
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册《平形四边形》练习题
选择题
1.下列条件中,能判定四边形是平行四边形的条件是( )
A.一组对边平行,另一组对边相等
B.一组对边平行,一组对角相等
C.一组对边平行,一组邻角互补
D.一组对边相等,一组邻角相等
2.过不在同一直线上的三点,可作平行四边形的个数是( )
A.1个
B.2个
C.3个
D.4个
3.下列性质中,矩形具有而平行四边形不一定具有的是() A.对边相等 B.对角相等 C.对角线相等 D.对边
平行
4. 矩形的两条对角线与各边围边的三角形中,共有多少对全等的三角形()
A. 2
B. 4
C. 6
D. 8
5. 矩形的两条对角线与各边围边的三角形中,共有多少对全等的三角形()
A. 2
B. 4
C. 6
D. 8 6.下列检查一个门框是否为矩形的方法中正确的是()A.测量两条对角线,是否相等 B.测量两条对角线,是否互相平分
C.用曲尺测量门框的三个角,是否都是直角 D.用曲尺测量对角线,是否互相垂直
二、填空题
7.一个四边形的边长依次为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是 .
8.一平行四边形两条对角线的长度分别是5cm和7cm, 一边长为acm, 则a的取值范围是
9.四边形中,任意相邻两个内角都互补,那么这个四边形是四边形
10.已知四边形ABCD中,AD∥BC,分别添加下列条件,①AB∥CD,②AB=DC,③AD=BC,④∠A=∠C,⑤∠B=∠C,能使四边形ABCD成为平行四边表的条件的序号是 .
三、证明题
11.如图,已知AC是□ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,求证:四边形BMDN是平行四边形.
12.四边形ABCD是平行四边形,E、F分别是AD、CB上的点,且DF = BE,求证:EF、AC互相平分;
D F C
A E B
13.如图,G、H是□ABCD对角线上的点,且AG=CH,E、F分别是AB,
CD 的中点.
求证:四边形EHFG 是平行四边形
.
14.如图,矩形ABCD 中,AC 与BD 交于O 点,BE⊥AC 于E ,CF⊥BD
于F. 求证:BE=CF.
15.平行四边形ABCD ,E 是CD 的中点,△ABE 是等边三角形,求证:
四边形ABCD 是矩形
16.在平行四边形ABCD 中,对角线AC 、BD 相交于O ,EF 过点O ,且AF ⊥BC ,
求证:四边形AFCE 是矩形
17.△ABC 中,∠ACB=90°,CD ⊥AB ,AE 平分∠BAC 交CD 于F ,EG ⊥AB 于G ,
求证:四边形CEGF 是菱形。
的对角线交点,作DE∥AC, CE∥BD,DE、CE相
OCED 是菱形 .
B C
E。