第二章 电阻电路的等效变换

合集下载

第二章电阻电路的等效变换

第二章电阻电路的等效变换

ab
20 100 60
120 60
ab 20 100
100 Rab=70
ab
20 100 60
40
例2 求: Rab
5
15 6
a 20
b
缩短无
电阻支路
7
6
Rab=10
4 a b
15
10
20
5
a
15 b
7 6 6 4 a
b
15 7
3
例6
求: Rab c
对称电路 c、d等电位
R
R
R
c R
a R
断路 a
+a
2 +
U
6V –
(a)
b
3 9V +
(b)
解: a
+
+a U b
a +
3A 2 U
3A 3 U
b
(a)
b
(b)
例1: 求下列各电源等效变换
+a
3A 1 U
解:
(c)
b
a
+
1 +
U
3V –
(c)
b
+a
2A 5 U
(d) b
a
+
5 -
U
10V +
(d)
b
例2: 试用电压源与电流源等效变换的方法,计算2
2.1 概述
1 一些概念
1)电阻电路 仅由电源和线性电阻构成的电路。
2)等效的概念:
若结构、元件参数不相同的两部分电路N1、N2,具 有相同的电压、电流关系,则称它们彼此等效。
i

二章电阻电路等效变换

二章电阻电路等效变换
2、理想电流源
(1)并联: 所连接的各电流源端为同一电压。
保持端口电流、电 压相同的条件下,图
(a)等效为图(b)。等效 is1
变换式:
i
is2
is
is = is1 - is2
(a)
(b)
(2)串联:只有电流数值、方向完全相同的理想电流 源才可串联。
1
二、实际电源模型:
1、实际电压源模型
(1)伏安关系:
i=1.5A Uab=6(i-1)=3V R=Uab/1=3Ω
13
四、三个电阻的星形、三角形连接及等效变换 1、电阻的星形、三角形连接
(a) 星形连接(T形、Y形)
(b) 三角形连接(形、形)
14
2、从星形连接变换为三角形连接
R1
R3
R2
R31 R12 R23
变换式:R12
R1
R2
R1R2 R3
∴i3=i2/3 KCL: i2+i3=I
∴i3=i/4 ∴u=3i+2i = 5i
- 2i0 +
i0
i1 i2
i3
R= u/I=5Ω
21
二、含受控源简单电路的分析:
基本分析思想:运用等效概念将含受控源电路化简、 变换为只有一个单回路或一个独立节点的最简形式, 然后进行分析计算。 例1:求电压u、电流i。
R23
R2
R3
R2 R3 R1
15
3、从三角形连接变换为星形连接
R1
R3
R2
变换式:R1
R12
R12 R31 R23
R31
R31 R12 R23
R2
R12
R23 R23
R31

[工学]第2章 电阻电路的等效变化

[工学]第2章 电阻电路的等效变化

2、电压源、电流源 、受控源
US 3、KCL—— IS ∑ i=0 或 ∑ i入= ∑ i出 推广到闭合面
KVL——
∑ u=0
或 ∑u压降= ∑ u压升
沿不同路径两点间的压降相同
二、电阻电路的等效变换
1、电阻串并联: Req、分压、分流 2、Y—△ :
R Δ相邻电阻乘积 R GΔ Y相邻电导乘积 GY
Rn + un _ _ 等效 i
Req
u
Req=( R1+ R2 +…+Rn) = Rk 结论: 串联电路的总电阻等于各分电阻之和。 3. 串联电阻上电压的分配 º + + u1 u u2 _ + º
例:两个电阻分压, 如下图 i
R1
R1 u1 u R1 R2
R2 u2 u R1 R2
即 R IS R 2R R 2R RL + UL _
I S RRL UL 4 R RL
P44例2-4.
求UR 2
受控源和独立源一样可以进行电源转换,但要 注意保存控制量。
12V
+ _
+u _
R
i
2 uR 12V
2
2
+
_
+u _
R
i
2 + 4 uR _
U R 2i 4U R 2i 2i 8i 12V
i = i1+ i2+ …+ ik+ …+in
2. 等效电阻Req
i
i i2 Rk ik Rn in 等效 + u _
+ u _ R1
i1 R2

电阻电路的等效变换

电阻电路的等效变换

三. 电阻星形联接、三角形联接旳等效互换 由三角形联接求等效星形联接旳公式
比较(1)式和(4)式,可得:
R1
R12
R31 R12 R23 R31
R2
R12
R23 R12 R23
R31
R3
R12
R23 R31 R23 R31
R12
1
i1
R1
2
R2
i2
R31
R3
R23
i3
3
若 R12=R23=R31=R ,则 R1=R2=R3=RT , 且 RT= (1/3) R 。
在分析含受控源旳电路时,也可用以上多 种等效变换措施化简电路。
但要注意:变换过程中不能让控制变量 消失。
例: 求图示二端 电路旳开路 电压Uab。
解:原电路


a
2A
+

U1
-
2U1 b


+-
4U1
a
2A
+

U1
-
b
Uab 4U1 2 (4 5) U1 2 5 10
Uab 4 10 18 22 (V )
第二章 电阻电路旳等效变换
❖ 2.1 等效二端网络 ❖ 2.2 电压源及电流源串、并联电路旳等效变换 ❖ 2.3 实际电源旳两种模型及其等效变换 ❖ 2.4 电阻星形连接与三角形连接旳等效变换 ❖ 2.5 例题
2.1 等效二端网络
电阻电路
仅由电源和线性电阻构成旳 电路
分析措施
(1)欧姆定律和基尔霍夫定律 是分析电阻电路旳根据;
2.1.2 单口网络端口伏安关系(VAR)旳求取
将单口网络从电路中分离出来,标好其端 口电流、电压旳参照方向;

电阻电路的等效变换

电阻电路的等效变换

+
u
_
各电阻顺序连接,流过同一电流 (判断电路是否为串联的依据)
2)等效电阻
R1
Rk
_
_
i
+ u1
+ uk
+
u
由KVL和VAR得:
Rn
_
+ un
_
等效
Req
i
+u
_
u R1i Rki Rni (R1 Rk Rn )i Reqi
n
等效电阻: Req R1 Rk Rn Rk Rk k 1
电阻元件的串、并联对偶记忆
电阻元件
串联
并联
等效变换 分压/分流 公式
功率比
i相同
u相同
Req R1 R2 Rn Geq G1 G2 ... Gn
uk
Rk Req
u
ik
Gk Geq
i
pk1 Rk1 pk 2 Rk 2
pk1 Gk1 pk 2 Gk 2
三、电阻的混联
电路中有电阻的串联,又有电阻的并联,这种连接方式称电阻的串并 联(混联)。
如果一个电路(网络)向外引出一对端钮,这 对端钮可以作为测量用,也可以用来与外部的电源 或其他电路连接用。这类具有一对端钮的电路称为 一端口电路(网络)或二端电路(网络)。
i
+
N
u
i
N0-无源二端网络 Ns-含源二端网络
2.等效二端电路(网络)
N1 i
+
u
i
-
i
+
N2
u
i
若两个二端网络N1和N2与同一个外部相连,当 相接端钮处的电压、电流关系完全相同时,称N1和 N2互为等效的二端网络。

第2章电阻电路的等效变换

第2章电阻电路的等效变换

总电流
U S 18 I= = A = 6A R 3
由分流公式得
6 I1 = I = × 6A = 4A 4× 4 9 6 + (1 + ) 4+4
再分流得
6
1 I x = I 1 = 2A 2
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.4 Y形电路和Δ形电路之间 的等效变换
返回
电路分析基础
如何等效化简电桥测温电路? 如何等效化简电桥测温电路?
返回
电路分析基础
第2章 电阻电路的等效变换
2.1 等效变换
电阻电路
线性电阻电路
非线性电阻电路
简化线性电阻电路的主要依据是等效变换
返回
电路分析基础
第2章 电阻电路的等效变换
2.1.1 一端口网络的定义
二端网络
一端口网络
流入一个端子的电流必定等于流出另一端子的电流
Ig =
Rp Rg + R p
× 10 × 10 −3 = 1 × 10 −3 mA
解之得应并联的电阻为
0.1RG 2 × 10 3 Rp = = Ω ≈ 222.22Ω 0.9 9
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.3 电阻的混联
判别电路的串并联关系根据以下原则: 判别电路的串并联关系根据以下原则: (1)看电路的结构特点。 看电路的结构特点。 (2)看电压、电流关系。 看电压、电流关系。 (3)对电路作变形等效。 对电路作变形等效。 (4)找出等电位点。 找出等电位点。
R4 R5 R2(R3 + ) R4+R5 R = R1 + R4 R5 R2 + (R3 + ) R4 + R5

02第二章电阻电路的等效变换

02第二章电阻电路的等效变换

12
12
12
8 //(4 4) 4
R
R eq R
R
R
例6.求Req。
解:
R
R
R
R R
Req

R 8
例7.
R R I1 I2
I3
I4 求:I1 ,I4 ,U4
12V
2R 2R
2R
U4 2R
解:
I1

12 R
I4


1 2
I
3


1 4
I2


1 8
I1


1 8
12 R
3 2R
0.04
16.5mA
10mA
I3

G1

G3 G2

G3
Is

0.04 0.025 0.1
0.04
16.5mA
4mA
三、 电阻的串并联(混联)
电阻的串联和并联相结合的联接方式叫电阻的串并联 (或混联)。
要求:弄清楚串、并联的概念。
计算举例:
4
º
例1.
Req
2 3
Req
i1

i' 1
,
i2

i' 2
,
i3

i' 3
i' 2
2
对,各个电阻的电流分别为:
R31
'
i ' 31
i3 3
1 i'
1
i' 12
i' u12 R 12
12
R 12
R23

第二章电阻电路的等效变换

第二章电阻电路的等效变换

(2)R1增大,Uis增大,对其它元件均无影响
26
$2-5 电压源及电流源串联和并联(39)
1、电压源串联(如图): 1 + 等效电压源符号: 1 + Us 2 +Us1+ Us2 Us 2 +Usn -
Us=Us1+Us2+….+Usn Usk与Us方向一致取“+”,否则,取“-”
27
2、电流源并联(如图)
22
R 23 R 31
R23
2
2、 △ 型连接等效变换为Y型连接
1
23
R13
R23
R12 2
R R
1

R R R
3
12
R 1 2 R 31 R 23 R R 12 R 23 R 23 R R 31 R 23 R 23 R
31
2
1 R1 R3 3 R2 2
12
31
R
3
• 端口施加电压法求Rin: 端口施加电压源U,则有端口电流I, 求出端口伏安特性表达式:U=IR 则Rin=R=U/I
C)若端口内部有独立电源 先将电压源短路,电流源开路, 求输入电阻归结为 a)b)情况 34
二、实例: 例2-5( 44页)(自学)
练习题 2-12 :试求图(a)图(b)中的Rab
则: I Req=U 等效电路: 结论:串联电阻,等效电阻为各电阻之和。
例2-3-1 电路如图,求U1
I + U1 R1 R2 -
+
Us -
KVL:IR IR U 1 2 S + US I U2 R1 R2 R 1 U R *I Us 1 1 R R 1 2

第二章电阻电路的等效变

第二章电阻电路的等效变

第二章-电阻电路的等效变第二章 电阻电路的等效变换2.1 学习要点1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。

2. 电源的串联、并联及等效变换。

3. “实际电源”的等效变换。

4. 输入电阻的求法。

2.2 内容提要 2.2.1 电阻的等效变换1. 电阻的串联:等效电阻: R eq =∑1=k nk R ;分压公式:u k =eqkeq ×R R u ; 2. 电阻的并联:等效电导:G eq =∑1=k nk G ;分流公式:qe G G i i keqk ×=;2.2.2. 电阻的Y 与△的等效变换1. △→Y :一般公式:Y 形电阻=形电阻之和形相邻电阻的乘积∆∆;即31232331*********231231212311++=++=++R R R R R R R R R R R R R R R R R R 2312=2. Y →△:一般公式:形不相邻电阻形电阻两两乘积之和形电阻=Y Y ∆;即:213322131113322123313322112++=++=++=R R R R R R R RR R R R R R R R R R R R R R R R2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。

表2.1 电源的串联、并联等效变换图2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”R u =R i =1/G i u s =i s R i =i s /G i两者等效互换的原则是保持其端口的V AR 不变。

2.2.5 输入电阻的求法一端口无源网络输入电阻的定义(见图2.2):R in =u/ i1. 当一端口无源网络由纯电阻构成时,可用电阻的 串并联、Y 形与△形等效变换化简求得。

2. 当一端口无源网络内含有受控源时,可采用外加电压法或外加电流法求得: 即输入电阻R in =u s /i 或 R in =u/ i s方法是:在端口处加一电压源u s (或电流源i s ), 再求比值u s /i 或u/ i s ,该比值即是一端口无源网络的输入电阻。

第二章电阻电路等效变换

第二章电阻电路等效变换

3、在同样的条件下,等效电路的形式也不是唯 一的。
4、电路进行等效变换的目的是为了简化电路以 方便地求解未知量。
3
§2-2 电阻的串联、并联和混联
一、电阻的串联 (Series connection of resistors)
1、电阻的串联 特点:在串联电路中,各元件流过的电流相同。
由欧姆定律及KVL得: i u = u 1 + u 2 + + u n a =R1i+R2i+ +Rni + u =(R1+R2+ +Rn)i 令R eq=R1+R2+…+Rn=Rk b 则有 u= R eqi
27
电压源: u U s Rs i 电流源: u i Is Rs I s Rs i u Rs
电源模型等效的条件为: 电压源 I RS + US a Uab b
Is
US
RS
Is
电流源 I' a
RS ' RS
Uab' RS'
b
U s I s Rs' Rs Rs'
即形电阻 电阻两两乘积之和 Rmn i' 接在与 Rmn相对端钮的电阻 31

R31
i3'
i'1 2
R23
i'2 3

21
2)形等效为Y形,有:
i1'
R12
i2'
R31 R12 R1 R12 R23 R31 R12 R23 R2 R12 R23 R31 R23 R31 R3 R R R 12 23 31

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换

4
Rab=10
15 10
a b
a b
7
20
15
3
返 回
上 页
下 页
例 2-8 求图 2-5电路 a b 端的等效电阻。
Req (2 // 2 (4 // 4 2) // 4) // 3 (1 4 // 4) // 3 1.5
21
复习
1、电阻的串联 等效电阻、分压
23
例2-4 图2-7所示电路每个电阻都是2Ω, 求a, b两端的等效电阻
解:
c
d
e
根据电路的对称性, 可知 c, d, e三点等电位, 故可用导线短接。
8 2 8 2 16 3 3 2 Req [(2//1) 2]// 2//1 2 // 2 8 2 3 3 15 3 3
26
R12 ( R23 + R31 ) R12 + R23 + R31
i1
i1
i3
i2
i3
i2
R12 R31 R12 + R23 + R31 R23 R12 R12 + R23 + R31 R31 R23 R12 + R23 + R31
27
同理,令i1=0, 可得: R23 ( R12 + R31 ) R2 + R3 = R12 + R23 + R31 同理,令i2=0, 可得:
25
二、 等效变换:保证伏安特性相同
对应端口电压、电流分别相等
i1
u12 = f1 ( i1 , i2 , i3 ) u23 = f 2 ( i1 , i2 , i3 ) u31 = f3 (i1 , i2 , i3 )

第2章 电阻电路的等效变换

第2章 电阻电路的等效变换

方法2:加流看压法
原理图:
R in
+
u
-
i 列u、iS为变量的方程
S
u
⇒ Rin = iS
练习1:求端口的最简等效形式
R i1
i
+
βi1
_uS
Rin
判断:是无源网络吗? 最简形式是什么?
由KCL(设流入为正): i + i1 − βi1 = 0
由VCR:i1
=

uS R
得:
R in
=
uS i
=R
1− β
王馨梅
第二章 电阻电路的等效变换
“电阻电路”:由电阻、独立源、受控源组成 (不含L或C) 等效变换的目的:为了化简电路!
课件符号: ★ 重要 * 大纲之外的知识扩展
§§22--11、、§§22--22 等等效效概概念念
2Ω 1Ω 2Ω
i
+
u
i
+

u
-
-
N1
N2
★概念:两个网络的端口伏安特性曲线完全相同,则 称这两个网络对外等效。
但等效电导好求:
n
∑ G eq =
Gk
k =1
i k = G k u = G k × ( R eq ⋅ i ) ⇒
并联分流公式: i k
=
Gk G eq
i
并联电导越大 则分流越大
思考:电阻除了串并联关系之外,还有其它连接方式吗?
三、Δ⎯Y之间的等效变换
引例:
A
B
A
B
A
B
R1
R2
R3
1
R12
2
R31

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换

最后求得
10 10 i= = = 4A R 2.5
§ 2.5 电压源、电流源的串联和并联
一、理想电压源的串并联
+ uS1 _ + uSn _ º I + 5V _ + 5V _ º I º + 5V _ º º + uS _ º º
1.串联:
可等效成一个理想电压源uS
uS=us1+us2+…+usn=∑ uSk ( 注意参考方向) 2.并联:
§ 2. 3 电阻的串联、并联和串并联
一、电阻串联(Series Connection of Resistors) 1.电路特点:
R1 i + Rk Rn + un _ _
+ u1 _ + u k _ u
(a)各电阻顺序连接,流过同一电流(KCL); (b)总电压等于各串联电阻的电压之和 (KVL)。
§ 2.1 引言
时不变线性电路:由时不变线性无源元件、线性受 控源和独立电源组成的电路,简称线性电路。本书 大部分是线性电路。 线性电阻电路:电路的无源元件均为线性电阻构成 的电路,简称电阻电路。本书2、3、4章介绍电阻 电路分析。 直流电路:电路中的独立电源都是直流电源。
§ 2.2 电路的等效变换
3× 5 R1 = = 1.5Ω 3+ 2+ 5 3× 2 R2 = = 0.6Ω 3+ 2+ 5 2× 5 R3 = = 1Ω 3+ 2+5
再 用电阻串联和并联公式,求 出连 接到电压源两 端单口的等效电阻
(0.6 + 1.4)(1 + 1) R = 1.5 + = 2.5Ω 0.6 + 1.4 + 1 + 1

第02章 电阻电路的等效变换

第02章 电阻电路的等效变换
u i is R0
i
R0=R , is=us/R
u us Ri
u is R0 R0 i
i
i
i' Ru 0 O
u
is
i
R=R0, us=Ris
所以,如果令
R R0
us R is
电压源、电阻的串联组合与电流源、电阻的并联组合 可以相互等效变换。 i R + + u i +
1
1
R3
3
R1
R2
2 3
R31
R12
R23
2
星接(Y接)
三角接(△接)
R1 R2 R2 R3 R3 R1 R12 R3 R1 R2 R2 R3 R3 R1 R23 R1 R1 R2 R2 R3 R3 R1 R31 R2
三式相加后通分可 得,Δ形连接变Y形 连接的电阻等效变 换关系式为(下页)
例2-2 求电流i 和 i5

i5
② ①

i5


① i1

等效电阻 R = 1.5Ω
i5

④ ③
i = 2A
i1

×
i5
-
i1 1A
2 1 - 6 2 1 1
1 A 3

*电阻的混联
电阻串并联的组合称为电阻混联。处理混联电路问 题的方法是:利用电阻串联或并联的公式对电路进 行等效变换,将复杂的混联电路转化成简单的电路 。 〖例1-6〗 求图1-19所示电路的等效电阻Rab, 已知图中各电阻的阻值均为20Ω 。
R2
2
3
R31
R12
R23

电阻电路的等效变换

电阻电路的等效变换

R23
R31
R12 R3 R31 R2 R1 R2 R3
R12 R31 R1
R1
R12
R12 R31 R23
R31
已知电阻,求Y形电阻
R1
R12
R12 R31 R23
R31
R2
R12
R23 R12 R23
R31
R3
R12
R31 R23 R23
R31
请用文字概括以上三个公式
R31 i3/ 3
已知电阻,求Y形电阻
R1
R 12
R12R 31 R 23 R 31
R2
R 12
R 23R12 R 23 R 31
R3
R 12
R 31R 23 R 23 R 31
R1
R2
R3
RY
1 3
R
用电导表示时 已知Y电阻,求形电阻
R12
R1 R2
R2 R3 R3
R3 R1
R23
R1 R2
R2 R3 R1
Y形电阻两两乘积之和 Y形不相邻电阻
Y连接的三个电阻相等R1=R2=R3=RY时 已知Y电阻,求形电阻
R12
R1 R2
R2 R3 R3
R3 R1
R23
R1 R2
R2 R3 R1
R3 R1
R31
R1 R2
R2 R3 R2
R3 R1
R R12 R23 R31 3 RY
连接的三个电阻相等R12=R23=R31=R 时
并联 16 64 12.8
10
16 64
串联12.8 7.2 20
并联 20 30 12 20 30
例: 电路如图,求等效电阻 Rab 和 Rcd。

第二章电阻电路的等效

第二章电阻电路的等效

电路的等效变换就是用一个较为简单的电路
替代原电路;其替代条件为:替代(简化)的电路
与原电路具有相同的伏安特性。
如图所示:
R1
1-1'以左的
RS i 1 R2
电路未被替换,uS+_
+u -
R4 R3
R5
1' 原电路
RS i 1
+
+
uS -
u_ Req
1' 替代电路
而1-1' 以右的电路用等效电阻Req 替代。 两个电路的u,i相同,
? u12 ? R1i1 ? R2i2 ?
联立以上几式:
? ?
u
23
?
R2i2
?
R3i
? ?
? ?
i1
?
i2
?
i3
?
0
? ?
?
可解 ? i1 ?
?
R 3 u 12
Δ 型联结
? ? ?
ab..对流应入的对端应子端之子间的具电有 流相分同别的相电等压;;???
则两种联接方式可以相互等效变换。
3.Y—Δ 变换公式
i1 - 1+
如图Y形联结时有 u31 R1 u12
两两端子之间的电压:+ 3
? u 12 ? R1i1 ? R 2 i2 ?
? ?
u
23
?
R2i2 ?
=(R1+R2+······Rn)i=Reqi
u Req ? i ? R1 ? R2 ?
n
? ? Rn ? Rk k?1
若n个相同的电阻R串联时则有Req=nR
由此可得:电阻串联时的等效电阻等于各电阻之和;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-
C
i
+ u
-
对A电路Hale Waihona Puke 言,C代替B后BA
C
A
(1)等效变换的条件
结 论 (2)仅仅是对外等效
(3)对内不等效
两电路具有相同的VCR
即外电路A中的电压、 电流和功率不变。
C是B的简化。
2.3 电阻的串联、并联
1. 电阻串联( Series Connection of Resistors )
(1) 电路特点
R31
R1
R2
R3
2
R23
3
2
3
形网络
Y形网络
R2
b
R4
三端 网络
,Y 网络的变形:
形电路 ( 形)
T 形电路 (Y形)
这两个电路当它们的电阻满足一定的关系时, 能够相互等效。
2. —Y 变换的等效条件
1 +– i1
1 +i1Y –
u12 R12
– i2
2+
R23 u23
等效条件:
i1 =i1Y ,
第二章 电阻电路的等效变换
2.2 电路的等效变换
1. 二端电路(网络)
任何一个复杂的电路, 向外引出两个端钮,且从一个 端子流入的电流等于从另一端子流出的电流,则称这一电 路为二端网络(或一端口网络)。
i i
2. 电路等效的概念
两个二端电路,端口具有相同的伏安特性,则两电路等效
B
i
+ u
等效
i3 =u31 /R31 – u23 /R23
根据等效条件,比较式(3)与式(1),得Y型型的变换条件:
R12
R1R2R2R3R3R1 R3
R23
R1R2R2R3R3R1 R1
R31
R1R2R2R3R3R1 R2
G 12
G 1G 2 G1 G2 G3

G 23
G 2G 3 G1 G2 G3
G 31
u31 R31
i3 + –3
u12Y – i2Y R2
2+
R1 u31Y R3 i3Y +
u23Y
–3
i2 =i2Y , i3 =i3Y ,
u12 =u12Y , u23 =u23Y , u31 =u31Y
1 +– i1
1 +i1Y –
u12 R12 – i2 2+
R23 u23
R3u1 31
n
ReqR1R2 Rn Rk k1
结论: 串联电路的总电阻等于各分电阻之和。
R1
R2
Rn
i
+ u1 _ + U 2 _ + un _
等效
i
+
u
_
+
R eq u_
(3) 各电阻的电压
uk
Rki
Rk
u Req
Rk u u Req
说明串联的每个电阻,其电压与电阻值成正比。 串联电阻电路可作分压电路
例i
两个电阻的分压:
º ++
u-1 R1
u1
R1 R1 R2
u
u_ u+2 R2 º
u2
R2 R1 R2
u
注意方向 !
2. 电阻并联 (Parallel Connection)
(1) 电路特点
ii
+
i1 i2
ik
in
u
R1 R2
Rk
Rn
_
(a) 各电阻两端分别接在一起,两端为同一电压 (KVL); (b) 总电流等于流过各并联电阻的电流之和 (KCL)。
-
18
165V
18
9
4 i4
i5
-
12
i11656515A
u 15i15 1575 V
i2 1 5 99 1 8 5 Ao r i216575185A
u26i118i290 V
i315510 A
u3 6i3 60V
i4 1 01 21 24 7 .5 A
i5107.52.5A
u4u53i330V
i
R1
R2
Rn
+
+ u1 _ + u 2 _ + un _ u
_
(a) 各电阻顺序连接,流过同一电流 (KCL);
(b) 总电压等于各串联电阻的电压之和 (KVL)。
u u 1 u k u n
(2) 等效电阻
由欧姆定律 uu 1u ku n
u R 1 i R K i R n i ( R 1 R n ) i R e iq
例 求: Rab
对称电路 c、
c
d等电位
c
R
R
R
i
R
i
a
短路
R
b
R
a i1 R d
根据电
R i2 b
d
c
R
R
流分配
1
i1
2
i
1
i2
1
a
R
uabi1Ri2R(2i2i)RiR
d
R
b
Rab
uab i
R
Rab R
2.4 电阻的Y形连接与Δ连接的
等效变换
c
1.电阻的 ,Y连接
R1
包含 1
a
R3
1d
R12
(2)
i 3 u31 R31u23R23
i1Yi2Yi3Y 0
由式(2)解得:
i1Y
u12YR3u31YR2 R1R2R2R3R3R1
i2Y
u23YR1u12YR3 R1R2R2R3R3R1
i3Y R1uR321YRR 22Ru323YR R31R1
i1 =u12 /R12 – u31 /R31 (3) i2 =u23 /R23 – u12 /R12 (1)
G 3G 1 G1 G2 G3
类似可得到由型 Y型的变换条件:
G1
G 12
G 31
G 12 G 31 G 23
G2
G 23
G 12
G 23 G 12 G 31
G3
G 31
G 23
G 31 G 23 G 12
R1
R 12
R 12 R 31 R 23
R 31
或 R2
R 12
R 23 R 12 R 23 R 31
R3
R 12
R 31 R 23 R 23
R 31
简记方法:
R 相邻电阻乘积 或
R
GΔY相邻 G电Y 导乘积
变Y
Y变
特例:若三个电阻相等(对称),则有
R = 3RY
注意
外大内小
R12 R1 R2
ik
Gku
Gk Geq
i
每个电阻的电流与 其电导值成正比
例 i
º R1
º
i1 R2
Req
1
1R11R2
R1R2 R1R2
i2
i1
G1 Geq
i
R2 R1 R2
i
i2G G e2qiR1R1 R2i(ii1)
例 计算各支路的电压和电流。 i1 5
i1 5
6
+
i2 6 i3
+
i2
i3
165V
ii1 i2 ik in
(2) 等效电阻
由欧姆定律: ii1 i2 ik in
G 1uG 2u G ku G nu
G 1G 2 G k G nuG equ
n
GeqG1G2 Gn Gk k1
并联电路的总电导等于各电导之和
i
i
+
i1 i2
ik
in等效 +
u R1 R2
Rk
Rn
u
Req
_
_
(3) 各电阻的电流
i3 + –3
u12Y – i2Y R2
2+
R1 u31Y R3 i3Y +
u23Y – 3
接: 用电压表示电流
Y接: 用电流表示电压
i1 u12 R 12u31 R31
u 12 Y
R1i1Y R2i2Y
u 2 3 Y R2i2Y R3i3Y
i 2 u23 R23u12R 12 (1) u 3 1 Y R3i3Y R1i1Y
相关文档
最新文档