火力发电厂的设备作用和各系统经过流程
火力发电厂工艺流程
火力发电厂工艺流程
火力发电厂的工艺流程一般包括以下步骤:
1. 燃料供应:火力发电厂通常使用煤炭、天然气或油类等燃料进行发电。
首先需要将燃料供应到发电厂,通常通过输送带、输气管道或石油管道等方式进行输送。
2. 燃料燃烧:燃料在燃烧炉中燃烧,产生高温和高压的燃烧产物,通常包括燃烧室、锅炉和燃烧器等设备。
燃烧产生的热能会被吸收并转化为蒸汽。
3. 蒸汽发生:在锅炉中,燃烧所产生的热能会被传输到水中,使水蒸发成为高温高压的蒸汽。
蒸汽通常通过管道进入蒸汽轮机。
4. 蒸汽轮机发电:蒸汽进入蒸汽轮机,使得轮子上的叶片旋转。
蒸汽轮机连接到发电机,通过旋转的运动产生电能。
5. 冷却系统:蒸汽在蒸汽轮机发电后变为低温低压的水蒸气,需要通过冷却系统冷却后进入锅炉再次循环使用。
一般通过冷却塔或冷却水循环系统实现。
6. 废气处理:燃烧炉产生的废气中含有大量污染物,需要通过废气处理系统进行净化,达到排放标准。
7. 发电厂设备运行与维护:发电厂需要对各种设备进行监控、维修和维护工作,确保设备的稳定运行和安全性。
这只是火力发电厂的基本工艺流程,不同的发电厂可能会有一些细微的差别。
另外,一些现代化的火力发电厂还可采用超临界或超超临界锅炉技术,以提高燃烧效率和减少燃料消耗。
火力发电厂设备及生产运行介绍
火力发电厂设备及生产运行介绍1. 简介火力发电厂是利用燃烧燃料产生高温高压蒸汽驱动汽轮机发电的电力生产设施。
火力发电厂通常由多个设备组成,包括锅炉、汽轮机、发电机、冷却塔、输电系统等。
2. 主要设备介绍2.1 锅炉锅炉是火力发电厂最关键的设备之一,主要用于将燃料燃烧产生的热能转化为蒸汽。
蒸汽的压力和温度决定了最终发电机组的出力。
锅炉通常由燃烧器、炉膛、水冷壁、过热器等部件组成,其运行稳定性对整个发电厂的正常运行至关重要。
2.2 汽轮机汽轮机是火力发电厂中的动力机械,其作用是将由锅炉产生的高温高压蒸汽转化为旋转机械能。
汽轮机通常由高压缸、中压缸、低压缸等级联组成,通过蒸汽的膨胀驱动转子旋转,产生机械功。
汽轮机的转速和功率输出对整个发电系统的运行效率有着重要影响。
2.3 发电机发电机是将汽轮机输出的机械功转化为电能的设备,也是火力发电厂中的核心设备之一。
发电机通过感应电流产生磁场,利用磁场与转子的相对运动产生电流,最终将机械功转化为电能。
发电机的额定功率和电压决定了发电厂的发电能力和对外输电能力。
2.4 冷却塔冷却塔主要用于将汽轮机中的蒸汽冷却成水,保证循环使用。
在火力发电厂中,常见的冷却方法包括湖水冷却、江河冷却和湿冷却塔等。
冷却塔的设计和运行对于保证发电厂的热效率和环保要求至关重要。
2.5 输电系统输电系统是将火力发电厂产生的电能输送到用户端的一系列设备和装置。
这包括变电站、变压器、高压输电线路等。
输电系统的稳定性和安全性是保证电能传输质量和可靠性的关键。
3. 生产运行流程火力发电厂的生产运行流程通常包括以下几个主要步骤:1.燃料供给:火力发电厂使用各种不同的燃料,如煤炭、天然气、燃油等。
燃料供给系统将燃料输送到锅炉中进行燃烧。
2.锅炉燃烧:燃料在锅炉中经过燃烧反应,产生高温高压的燃烧气体,同时将水加热转化为蒸汽。
3.汽轮机发电:蒸汽由锅炉送入汽轮机,蒸汽的膨胀驱动汽轮机转动,产生机械功。
汽轮机通过轴将机械功传给发电机。
火力发电厂的工作流程
火力发电厂的工作流程火力发电厂是一种利用燃烧燃料产生高温高压蒸汽驱动汽轮机发电的设施。
它是目前世界上最主要的电力供应方式之一。
下面将详细介绍火力发电厂的工作流程。
一、燃料供给火力发电厂的第一步是将燃料供给到燃烧室。
常用的燃料包括煤炭、石油、天然气等。
燃料一般经过破碎、筛分和干燥等处理后,通过输送系统送入锅炉的燃烧室。
二、燃烧过程燃料在燃烧室内与空气进行充分混合燃烧,产生高温高压的燃烧气体。
燃烧室内的燃烧过程需要保持适当的氧气含量和燃料供给量,以确保燃料能够完全燃烧,并且不产生大量的烟尘和有害气体。
三、锅炉和热交换燃烧产生的高温燃烧气体通过锅炉,使锅炉内的水转化为高温高压蒸汽。
锅炉内的水通过循环系统不断循环,从而保持锅炉内的水位和温度稳定。
四、汽轮机发电高温高压蒸汽通过输送系统进入汽轮机,驱动汽轮机转动。
汽轮机是火力发电厂的核心设备,其运转方式分为凝汽式和过热式两种。
汽轮机的转动驱动发电机发电,将机械能转化为电能。
五、发电系统发电机产生的交流电经过变压器升压后,通过输电线路输送到变电站,再经过变电站的升压、配电等处理,最终供应给用户使用。
六、余热回收火力发电厂在发电过程中会产生大量的余热。
为了提高能源利用效率,火力发电厂通常会安装余热回收装置,将发电过程中的余热用于供热、供蒸汽或其他用途。
七、废气处理火力发电厂的燃烧过程会产生大量的废气,其中包括二氧化硫、氮氧化物等有害气体。
为了保护环境和人类健康,火力发电厂需要进行废气处理,采取脱硫、脱硝等技术手段减少有害气体的排放。
八、水处理火力发电厂在发电过程中需要大量的水,包括锅炉补水、冷却塔补水等。
为了保证水质符合要求,火力发电厂需要进行水处理,包括除盐、软化等工艺。
九、运行维护火力发电厂需要进行日常的运行维护工作,包括设备巡检、设备维修、设备更换等。
这些工作的目的是确保发电设备的正常运行,提高发电效率和可靠性。
总结起来,火力发电厂的工作流程包括燃料供给、燃烧过程、锅炉和热交换、汽轮机发电、发电系统、余热回收、废气处理、水处理以及运行维护等环节。
简述火力发电厂的生产过程
火力发电厂的生产过程
能量转化过程:
锅炉燃烧
汽轮机动叶
发电机
烟气热量通过锅炉受热面传递给工质(蒸汽) 三种方式:辐射、传导、对流
热能
机械能
电能
汽轮机喷嘴
动能
能量交换过程:
工质(汽轮机排汽)的热量通过凝汽器传递给冷源(循环水) 两种方式:传导、对流
化学能
火力发电厂的生产过程
火力发电厂三个主要流程:
空预器
电除尘
送风机
一次风机
整流装置
主变
厂变
启备变
6KV母线
循环泵
化学水箱
220KV开关站
补水泵
引风机
分离器
贮水箱
20KV
火力发电厂中的主要设备
三大主机: 锅炉、汽轮机、发电机
汽轮机润滑油系统
汽轮机EH油系统
循环水系统
凝结水系统
给水回热系统
汽轮机汽封系统
真空系统
旁路系统
汽轮机主要系统
火力发电厂中的主要辅助系统
每个值负责内容:机组的调试操作与验收,机组的启动、停机和试验操作,机组正常运行的监视、检查和操作调整,机组异常及事故情况下的处理和恢复正常运行,分析事故原因,制定防范措施。总之,就是保证机组安全经济稳定运行,完成发电量任务。
发电部管理模式为值建制,设立4个值,每值设置岗位为:值长、机组长、主值、副值和巡检。
火力发电厂的主要损耗:
发电厂的经济运行
发电厂的经济运行
火力发电厂的能量平衡图
锅炉损失
汽轮机及热力循环损失
管道损失
发电机损失
输出热量
输入热量
热耗量
01
热耗率
02
热效率
火力发电工作流程
火力发电厂的工作流程、主要工作原理、热力系统划分火力发电厂是指使用化石燃料(即煤炭、石油和天燃气)通过燃烧放出热能加热工质,再通过热力原动机驱动发电机发电的方式。
火力发电的原动机主要是蒸汽动力机械,即锅炉和汽轮机,其次为外燃燃气动力的燃气轮机,只有很小部份使用内燃机。
简单的说就是把热能转变为机械能再由机械能转变为电能的过程,并为保证正常的运行、提高效率、节约能源和保证安全、改革环保而采取一系烈的辅助系和措施。
一、热力循环:从一个热力状态出发,经过一系列的变化,最后又回到原来的热力状态所完成的封闭的热力过程。
热力循环过程:除氧器→给水泵→高加→省煤器→汽包→水冷壁→低温过热器→屏式过热器→高温过热器→主蒸汽管道→主汽门→高压缸→再热蒸汽冷段→低温再热器→屏式再热器→再热蒸汽热段→中压缸→低压缸→凝汽器→凝结水泵→低加→除氧器。
除氧器:回热系统中能除去给水内溶解气休的混合式加热器。
气体在水中的的溶解度与此气体在气水界面的分压成正比,加热时气水界面上的分压成正比,加热时气水界面上的不蒸气的分压境加,气体的分压降低,容于水中的气体不断析出。
当加热到饱和温度时气水界面上的水蒸气分压接近于液面上的全压,所有的气体的分压接近于零,这时水中的各种气体将全部解析出来。
锅炉:利用燃料燃烧释放的热能或其他热能加热给水或其它工质以生产规定参数和品质的蒸汽、热水或其它工质的机械设备。
用于发电的锅炉称为电站锅炉。
在电站锅炉中,通常将化石燃料(煤、石油、天然气等)燃烧释放的热能,通过受热面的金属壁面传给其中的工质----水,把水加热成为具有一定压力的和温度的蒸汽。
所产生的蒸汽则用来驱动汽轮机,把热能转化为机械能,汽轮机再驱动发电机,再将机械能变为电用供给用户。
锅炉、汽轮机、发电机合称火力发电厂三大主机。
锅炉的工作原理:包括主机及辅机两部份。
本体主要由汽包、水冷壁、过热器以及再热器、省煤器、空气预热器、燃烧器、排渣装置、阀门附件、锅炉构架、与锅炉炉墙等组成。
火力发电厂的基本生产过程
火力发电厂的基本生产过程这里介绍的是汽轮机发电的基本生产过程。
火力发电厂的燃料主要有煤、石油(主要是重油、天然气)。
我国的火电厂以燃煤为主,过去曾建过一批燃油电厂,目前的政策是尽量压缩烧油电厂,新建电厂全部烧煤。
火力发电厂由三大主要设备——锅炉、汽轮机、发电机及相应辅助设备组成,它们通过管道或线路相连构成生产主系统,即燃烧系统、汽水系统和电气系统。
其生产过程简介如下。
1.燃烧系统燃烧系统如图2-l 所示,包括锅炉的燃烧部分和输煤、除灰和烟气排放系统等。
煤由皮带输送到锅炉车间的煤斗,进入磨煤机磨成煤粉,然后与经过预热器预热的空气一起喷入炉内燃烧,将煤的化学能转换成热能,烟气经除尘器清除灰分后,由引风机抽出,经高大的烟囱排入大气。
炉渣和除尘器下部的细灰由灰渣泵排至灰场。
2.汽水系统汽水系统流程如图2-2 所示,包括锅炉、汽轮机、凝汽器及给水泵等组成的汽水循环和水处理系统、冷却水系统等。
水在锅炉中加热后蒸发成蒸汽,经过热器进一步加热,成为具有规定压力和温度的过热蒸汽,然后经过管道送入汽轮机。
在汽轮机中,蒸汽不断膨胀,高速流动,冲击汽轮机的转子,以额定转速(3000r/min)旋转,将热能转换成机械能,带动与汽轮机同轴的发电机发电。
在膨胀过程中,蒸汽的压力和温度不断降低。
蒸汽做功后从汽轮机下部排出。
排出的蒸汽称为乏汽,它排入凝汽器。
在凝汽器中,汽轮机的乏汽被冷却水冷却,凝结成水。
凝汽器下部所凝结的水由凝结水泵升压后进入低压加热器和除氧器,提高水温并除去水中的氧(以防止腐蚀炉管等),再由给水泵进一步升压,然后进入高压加热器,回到锅炉,完成水—蒸汽—水的循环。
给水泵以后的凝结水称为给水。
汽水系统中的蒸汽和凝结水在循环过程中总有一些损失,因此,必须不断向给水系统补充经过化学处理的水。
补给水进入除氧器,同凝结水一块由给水泵打入锅炉。
3.电气系统电气系统包括发电机、励磁系统、厂用电系统和升压变电站等。
发电机的机端电压和电流随其容量不同而变化,其电压一般在10~20kV 之间,电流可达数千安至20kA。
火力发电厂的生产流程
火力发电厂的生产流程火力发电厂是利用化石燃料燃烧产生高温高压蒸汽驱动汽轮机发电的电力生产设施。
以下是火力发电厂的生产流程的详细步骤和流程。
1. 燃料供应和存储火力发电厂的燃料主要是煤炭、石油和天然气。
燃料供应商将燃料送至火力发电厂,并通过输送系统将燃料储存在燃料库。
2. 燃料预处理燃料预处理包括除尘、脱硫、脱氮等工艺。
燃料经过除尘设备去除颗粒物,然后经过脱硫设备去除硫化物,最后经过脱氮设备去除氮化物。
这些工艺能够减少燃料燃烧过程中产生的污染物。
3. 燃烧系统燃料经过预处理后,进入燃烧系统进行燃烧。
燃烧系统由燃烧炉、锅炉和燃烧控制系统组成。
燃烧炉是燃烧过程的核心,燃料在高温下燃烧,产生高温高压蒸汽。
4. 蒸汽发电燃烧产生的高温高压蒸汽驱动汽轮机旋转,汽轮机通过转动的轴带动发电机产生电力。
蒸汽在汽轮机中逐渐降温降压,然后进入凝汽器冷却成水。
5. 冷却系统凝汽器将蒸汽冷却成水,然后水通过泵送回锅炉重新加热成蒸汽,循环使用。
冷却系统还包括冷却塔,用于将冷却后的水进一步降温。
6. 发电系统发电系统包括发电机、变压器和输电系统。
发电机将汽轮机产生的机械能转换为电能,变压器将发电机产生的低电压电能升高为输电系统所需的高电压电能。
7. 废气处理燃烧过程中产生的废气中含有大量的污染物,需要进行处理。
废气处理系统包括烟囱、除尘器、脱硫装置和脱硝装置。
烟囱将废气排放至大气中,除尘器去除废气中的颗粒物,脱硫和脱硝装置去除废气中的硫化物和氮化物。
8. 废水处理火力发电厂产生大量的废水,包括锅炉废水、冷却水和雨水等。
废水处理系统通过沉淀、过滤、调节PH值等工艺将废水处理成达到排放标准的水质,然后排放至水体或进行再利用。
9. 噪声和振动控制火力发电厂会产生噪声和振动,需要采取措施进行控制。
控制措施包括隔声、降噪和减振等技术手段,以减少对周围环境和人群的影响。
10. 安全与环保监测火力发电厂需要进行安全与环保监测,包括燃料和废气中的污染物浓度、废水中的水质、噪声和振动水平等。
火力发电厂完整系统流程图课件
循环水泵与冷却塔
循环水泵
负责将冷却水从冷却塔送至凝汽器,吸收汽轮机排汽热 量后返回冷却塔进行降温。循环水泵通常采用轴流泵或 混流泵,具有流量大、扬程低的特点。为提高冷却效果 ,循环水泵通常采用多台并联运行。
冷却塔
通过自然通风或机械通风方式,将循环水中的热量散发 至大气中,降低循环水温度。冷却塔通常由填料、配水 系统、通风设备等组成。为提高冷却效果,冷却塔需定 期进行清洗和维护。
受体防护
对厂界和敏感点进行噪声监测,确保噪声达 标排放。
08
运行管理与维护保养制 度
运行操作规程和应急预案演练
运行操作规程
严格执行操作规程,确保机组安全稳定运行,包括启动、停机、负荷调整等操作规范。
应急预案演练
定期组织应急演练,提高员工应对突发事件的能力,包括设备故障、安全事故等紧急情况的处理方法。
锅炉
汽轮机
包括燃烧室、水冷壁、过热器、再热器等 ,负责将燃料燃烧产生的热能传递给水, 生成高温高压的蒸汽。
由高压缸、中压缸和低压缸组成,蒸汽在 汽轮机中膨胀做功,驱动汽轮机旋转。
发电机
辅助设备与系统
与汽轮机同轴连接,将汽轮机产生的机械 能转换为电能输出。
包括燃料输送系统、给水系统、冷却水系 统、烟气处理系统等,保障火力发电厂的 稳定运行。
火力发电厂完整系统 流程图课件
目录
• 火力发电厂概述 • 燃料供应系统流程图 • 锅炉系统流程图 • 汽轮机系统流程图 • 发电机及变压器系统流程图 • 辅助设备及控制系统流程图 • 安全环保设施流程图 • 运行管理与维护保养制度
01
火力发电厂概述
定义与分类
定义
火力发电厂是利用化石燃料(如 煤、石油、天然气等)燃烧产生 的热能来发电的工厂。
火力发电流程原理
火力发电流程原理火力发电是一种利用燃烧燃料将化学能转化为热能,再将热能转化为机械能,最后通过发电机将机械能转化为电能的过程。
火力发电是目前世界上最主要的电力发电方式之一,广泛应用于各个领域。
火力发电的原理可以简单概括为以下几个步骤:1. 燃料的燃烧:火力发电的第一步是将燃料进行燃烧。
常用的燃料有煤炭、天然气和石油等。
燃料在高温下与氧气反应,产生大量的热能。
燃料的燃烧一般在锅炉中进行,通过燃烧室中的燃烧器喷射燃料和空气的混合物,使其燃烧产生高温烟气。
2. 锅炉中的水蒸气产生:燃料燃烧产生的高温烟气通过锅炉中的管道,将其热能传递给锅炉内的水。
水受热后产生蒸汽,蒸汽的压力和温度取决于锅炉的工作参数和燃料的热值。
3. 蒸汽进汽轮机:高温高压的蒸汽进入汽轮机,通过喷嘴和叶片的作用,使汽轮机转动。
汽轮机是火力发电厂的核心设备,它将蒸汽的热能转化为机械能,驱动发电机旋转。
4. 发电机发电:汽轮机的转动带动发电机转子旋转,通过电磁感应原理,将机械能转化为电能。
发电机内部的线圈在磁场的作用下产生感应电动势,然后通过电路输出交流电。
5. 输电供电:发电机产生的交流电通过变压器升压,然后通过输电线路输送到各个用电场所。
输电线路一般采用高压输电,以减少线路损耗。
在目的地,交流电再通过变压器降压,供给工业、商业和居民等各个领域使用。
火力发电流程的原理基本上就是通过燃烧燃料产生高温烟气,然后将热能转化为机械能,最终转化为电能供应给人们使用。
整个过程中,需要控制燃料的燃烧过程,保证锅炉中的水蒸气产生和汽轮机的运行,同时还需要对发电机进行监控和维护,以确保火力发电的安全、高效运行。
火力发电具有可靠性高、灵活性强等优点,但也存在着燃料资源有限、燃烧产生大量的二氧化碳等环境问题。
因此,在火力发电的过程中,需要不断探索新的燃料技术和环保措施,以减少对环境的影响。
同时,也需要加强能源的多元化开发和利用,以降低对传统化石燃料的依赖,提高能源利用效率,推动可持续发展。
火力发电厂主要生产过程
火力发电厂主要生产过程(一)输煤系统我厂用煤是用汽车从煤矿直接运至发电厂,煤卸至煤场,然后经过各路皮带由碎煤机将煤打碎,再将煤运至锅炉的原煤仓。
(二)磨煤制粉系统原煤仓里的煤是由给煤机送至磨煤机进口,而后随着热风进入磨煤机,进行磨制和干燥。
磨制的煤粉经粗粉分离器分离,较粗的煤粉返回磨煤机重新磨制,而细煤粉进入旋风分离器作气粉分离,旋风分离器中的热风含有10%的煤粉由排粉机送入炉膛,经喷燃器喷入炉膛燃烧。
(三)风烟系统冷空气经送风机打入空气预热器加热后,一部分热风送到喷燃器(二次风,起助燃作用)喷入炉膛,另一部分送到磨煤机干燥煤粉,并经旋风分离器送入排粉机,再经喷燃器(三次风,起调温助燃作用)喷入炉膛燃烧,煤粉仓中的煤粉经叶轮给粉机送至一次风管,由一次风母管来的一次风送入炉膛,经喷燃器喷入炉膛燃烧。
在炉膛中热风与煤粉混合燃烧,其热量先后传给锅炉的水冷壁管、过热器、省煤器和空气预热器,再进入电除尘器除尘,最后烟气被引风机吸到烟囱,排入大气。
(四)汽水系统由给水泵打出的给水经高压加热器、省煤器加热后,进入汽包,再进入水冷壁吸收热量,逐渐被加热汽化,汽水混合物上升到汽包进行汽水分离,水再次循环进入水冷壁吸热,而饱和蒸汽则进入高温过热器继续吸热,变成过热蒸汽,然后经蒸汽管道送入汽轮机中,为防止汽轮机发生水冲击,使叶片损坏,所以进入汽轮机中必须是过热蒸汽。
蒸汽不断膨胀,高速流动的蒸汽冲动汽轮机转子叶片,带动发电机发电。
在汽轮机内作完一部分功的蒸汽从中段抽出,用作抽汽回热的加热汽源,加热凝结水和给水,以提高热力循环经济性,我厂可调整抽汽式机组可对外供热,提高了热效率。
热电厂的效率可达60%~70%以上,从供热和供电全局来看,可节约燃料20%~25%。
(五)电气系统发电机发出的电,除电厂自用电外,一般由主变压器升高电压后,经高压配电装置和输电线路向电网供电。
发电厂自用电部分由厂用变压器或电抗器供给厂内各种负荷的用电。
火力发电厂的生产流程
火力发电厂的生产流程一、燃料准备:火力发电厂使用的主要燃料为燃煤,因此首先需要对煤炭进行处理和准备。
这包括煤场的设计和建设,煤炭堆场中的煤炭储存和管理,以及将煤炭输送到燃烧系统的输送系统等。
同时,燃煤发电厂还可以使用燃气等其他燃料,这就需要相应的燃气处理设备和燃气输送系统。
二、燃烧系统:燃烧系统是将燃料燃烧产生热能的部分,具体包括燃烧设备、点火系统、燃料供给系统、燃烧调节系统等。
在燃烧系统中,燃料被点燃并与空气进行反应,产生高温燃烧气体。
这些燃烧气体进一步流经锅炉系统。
三、锅炉系统:锅炉系统是将燃烧产生的高温燃烧气体转化为水蒸汽的设备。
锅炉系统包括锅炉本体、辅助设备和管道、阀门等。
在锅炉中,燃烧气体通过换热,将水加热为蒸汽。
蒸汽在锅炉中形成,并通过管道输送到汽轮机系统。
四、汽轮机系统:汽轮机系统是将蒸汽能量转化为机械能的设备。
汽轮机系统包括高压汽轮机、中压汽轮机、低压汽轮机和发电机等。
蒸汽由锅炉输送到汽轮机,蒸汽在汽轮机中通过膨胀发生功,驱动轴上的转子转动。
同时,转子与同一轴线上的发电机连接,产生电能。
五、发电系统:发电系统由发电机、变压器和配电系统等组成。
发电机通过转子的转动产生电能,并经过变压器升压后送入输电系统。
发电系统还包括发电机控制和保护系统等。
这些系统能监控和控制电压、频率和电流等电力参数,确保电力的稳定供应。
六、废气处理系统:火力发电厂产生的燃烧废气中含有很多污染物,如二氧化硫、氮氧化物和颗粒物等。
为了保护环境,需要对这些废气进行处理。
废气处理系统包括脱硫、脱硝、除尘和烟囱等设备。
这些设备能够对废气进行处理,使得排放的废气达到国家和地方的环保标准。
以上就是火力发电厂的生产流程。
通过燃料准备、燃烧系统、锅炉系统、汽轮机系统、发电系统和废气处理系统等环节的协同工作,实现了燃煤等化石燃料转化为电力的过程。
火力发电厂作为一种主要的发电方式,在全球范围内发挥着重要的作用。
然而,随着环境保护意识的增强,更加清洁和可再生的能源发电方式也在逐渐取代火力发电厂。
火电行业流程及主要系统
火电行业流程及主要系统1. 燃料供给:火电厂通常使用煤炭、燃油或天然气等燃料作为能源来源。
这些燃料需要通过运输和储存系统输送到火电厂,以保证燃料的及时供给。
2. 燃烧系统:火电厂的主要系统之一是燃烧系统,其作用是将燃料燃烧产生的热能转化为蒸汽,以驱动汽轮机发电。
燃烧系统还包括热电站锅炉和烟气净化系统,用于控制烟气排放和保护环境。
3. 蒸汽发电系统:在火电厂中,蒸汽发电系统是承载发电任务的主要系统,其核心设备是汽轮机。
蒸汽由锅炉产生后,通过蒸汽轮机转化为机械能,再通过发电机转化为电能。
4. 发电系统:发电系统是火电厂的核心设备之一,包括发电机、变压器、断路器和配电系统等。
发电系统将汽轮机发出的机械能转化为电能,再通过变压器升压后输送到变电站,最终接入电网供给用户。
5. 冷却系统:为了保证火电厂设备能够稳定运行,冷却系统是必不可少的。
冷却系统通常采用水循环、风冷等方式,将发电设备散热,确保其正常运行。
6. 监控与调度系统:火电厂需要实时监测设备运行状态、发电量、燃料消耗以及环境污染排放等数据,并进行调度和优化,以确保设备的安全运行和高效发电。
综上所述,火电行业的流程和主要系统包括燃料供给、燃烧系统、蒸汽发电系统、发电系统、冷却系统以及监控与调度系统等多个方面,这些系统相互配合,确保火电厂能够稳定高效地发电。
火电行业是我国能源行业中最重要的组成部分之一,它承担着大部分电力供应任务。
在火电厂的运行过程中,有一系列系统和工艺流程的支持,以保障火力发电的高效、安全、稳定运行。
7. 热力系统:除了蒸汽发电系统外,火电厂还需要建立完善的热力系统,将锅炉产生的余热利用起来,供给周边的工业和居民用热,提高能源利用效率。
8. 废水处理系统:在火电厂的生产过程中,会产生大量的废水,这些废水需要经过处理后才能排放,以防止对周围环境造成污染。
9. 废气处理系统:火电厂的燃烧工艺产生的废气中含有大量污染物,如二氧化硫、氮氧化物等。
火力发电工作原理及主要设备介绍
火力发电工作原理及主要设备介绍火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。
以煤、石油或天然气作为燃料的发电厂统称为火电厂。
火力发电站的主要设备系统包括:燃料供给系统、给水系统、蒸汽系统、冷却系统、电气系统及其他一些辅助处理设备。
火力发电系统主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、电气系统(以汽轮发电机、主变压器等为主)、控制系统等组成。
前二者产生高温高压蒸汽;电气系统实现由热能、机械能到电能的转变;控制系统保证各系统安全、合理、经济运行。
火力发电的重要问题是提高热效率,办法是提高锅炉的参数(蒸汽的压强和温度)。
90年代,世界较好的火电厂能把40%左右的热能转换为电能;大型供热电厂的热能利用率也只能达到60%~70%。
此外,火力发电大量燃煤、燃油,造成环境污染,也成为日益引人关注的问题。
热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。
为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。
通过利用中压缸的蒸汽去推动汽轮发电机发电。
从中压缸引出进入对称的低压缸。
已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。
40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,较后流入锅炉进行再次利用。
以上就是一次生产流程。
火力发电厂的基本生产过程火力发电厂的主要生产系统包括汽水系统、燃烧系统和电气系统,现分述如下:(一)汽水系统:火力发电厂的汽水系统是由锅炉、汽轮机、凝汽器、高低压加热器、凝结水泵和给水泵等组成,他包括汽水循环、化学水处理和冷却系统等。
火力发电厂设备及生产运行介绍
火力发电厂设备及生产运行介绍概述火力发电厂是利用燃料燃烧,产生高温高压蒸汽驱动涡轮发电的厂房设施。
其电力生产效率高、灵活性强,是目前世界上电力生产的主要形式之一。
本文将介绍火力发电厂的设备以及生产运行过程。
火力发电厂设备下面将介绍火力发电厂的主要设备:发电机发电机是将热能转化成电能的主要设备。
其作用是转换电力能源,使之转化为交流电。
目前,市场上主要使用同步发电机。
锅炉锅炉是燃料燃烧产生蒸汽的主要设备,其将燃料中的化学能转化为热能。
根据用途和方式可分为热水锅炉、蒸汽锅炉以及压力容器。
市场上主要使用的是火管锅炉和水管锅炉。
燃料输送系统燃料输送系统是将原料输送到锅炉的主要设备之一,其主要包括储煤场、皮带输送机和煤粉制备系统。
其中,煤粉制备系统是煤炭、水和空气按一定比例混合制成可燃性的粉状物质,以便于其输送到锅炉中。
脱硫脱硝设备为减少燃烧过程中产生的二氧化硫和氮氧化物对环境以及人体的危害,火电厂设有脱硫和脱硝设备。
这些设备包括烧碱吸收法、湿法石灰石-石膏法、SCR脱硝和SNCR脱硝等。
烟气脱灰设备为减少烟气中灰尘对环境和机器设备的污染,火电厂设有脱灰设备。
目前市场上主要使用的是电除尘器和袋式除尘器。
火力发电厂生产运行过程火力发电厂的生产运行过程可分为燃料输送、燃烧、蒸汽发电及烟气处理四个主要流程。
燃料输送火力发电厂的燃料输送系统包括煤炭的储藏、输送和粉煤的制备。
首先,煤炭在储煤场被储备,然后通过皮带、索道等输送至锅炉房。
在锅炉房,煤粉制备系统将煤炭加工成粉煤,然后通过输送机送至锅炉中。
燃烧燃烧是火力发电厂的核心过程。
锅炉中的煤粉通过皮带输送机送达到锅炉中,在燃烧器的作用下燃烧产生高温高压的烟气,进而产生蒸汽驱动发电机工作。
但这过程中,锅炉中的污染物比如二氧化硫、氮氧化物和氧化物也会一同被排放出来,这时烟气经过除尘装置去除灰尘和颗粒物,而且经过脱硫和脱硝后的烟气可更好的符合环保要求。
蒸汽发电燃烧产生的高温高压烟气通过锅炉中的传热面传递给水,使水加热并产生蒸汽。
火电厂主要设施及工艺流程简介
第25页/共41页
主要设备简介
喷嘴及喷嘴室
第26页/共41页
主要设备简介
汽轮机转子
第27页/共41页
主要设备简介
汽轮机扣缸
第28页/共41页
主要设备简介
发电机
• 汽轮发电机的作用是将汽轮机转动的机械能,转变成电能,通过母线输送到电 网。
• 发电机工作的机理是通过励磁机对发电机转子产生磁场,通过转子的旋转,对静 子线圈产生切割磁力线作用,从而在静子线圈上产生电流。
第17页/共41页
主要设备简介
汽轮机
第18页/共41页
主要设备简介
汽轮机
第19页/共41页
主要设备简介
汽轮机高压缸
第20页/共41页
主要设备简介
汽轮机中压缸
第21页/共41页
主要设备简介
汽轮机低压缸
第22页/共41页
主要设备简介
汽轮机下气缸
第23页/共41页
主要设备简介
汽轮机隔板
第24页/共41页
• 汽水系统由省煤器、汽包、下降管、水冷壁、 过热器等设备组成。它的任务是使水吸收蒸发, 最后成为具有一定参数的过热蒸汽。
• 燃烧系统由燃烧器、炉膛、烟道及空气预热器 等组成。
第11页/共41页
主要设备简介
• 锅炉设备是由锅炉本体和辅助设备两大部分组成。
锅炉
1、锅炉本体 炉膛 汽包 过热器 省煤器 空气预热器 炉墙和钢架
利用燃料中的化学能在锅炉中燃烧,转化为热能,这种热 能被锅炉中的水吸收成为具有一定温度、一定压力的蒸汽,这 种具有相当热量的蒸汽冲动汽轮机转动,使热能转化为动能— —机械能,汽轮机借助于这个旋转的动能带动发电机旋转,而 发电机将赋予的机械能转变为电能。
火电厂发电流程
火电厂发电流程火电厂是利用化石燃料(如煤炭、油和天然气)进行发电的设施。
它的发电流程包括以下几个主要步骤:燃料处理、锅炉系统、蒸汽动力系统、发电机组和排放处理。
下面将详细介绍每个步骤。
1. 燃料处理火电厂使用不同类型的化石燃料,这些燃料需要经过处理才能用于发电。
主要的处理步骤包括: - 煤场:将原始的煤块通过运输设备(如输送带)送至储存场地。
- 破碎和筛分:使用颚式破碎机将大块的原始煤块粉碎,并通过筛分设备获取所需粒度。
- 磨粉:使用球磨机将原始粗粉碎物进一步细化,以提高其可燃性。
- 干燥:对湿度较高的原始物料进行干燥,以减少水分含量。
2. 锅炉系统锅炉系统是火电厂中最重要的部分之一,它将经过处理后的化石燃料转化为高温高压的蒸汽,用于驱动发电机组。
主要的步骤包括: - 燃烧:将经过处理的化石燃料与空气混合,并在锅炉炉膛中进行燃烧。
燃料的完全燃烧将产生高温高压的燃气。
- 锅炉:将产生的高温高压的燃气传递给锅炉,通过锅内管道与水进行换热,使水转化为蒸汽。
- 过程控制:使用自动控制系统监测和调节锅炉操作参数,以确保安全稳定地生成足够的蒸汽。
3. 蒸汽动力系统蒸汽动力系统将由锅炉产生的高温高压蒸汽转化为机械能,进而驱动发电机组发电。
主要步骤包括: - 蒸汽轮机:将高温高压蒸汽输入到蒸汽轮机中,通过叶片转动轴来产生旋转力。
- 减速器:将轮机输出的旋转力减速,并传递给发电机组。
- 发电机组:通过接收减速器输出的旋转力,将机械能转化为电能。
发电机组由转子和定子组成,通过磁场的作用产生感应电流,从而生成电能。
4. 发电机组发电机组是火电厂中的核心设备,负责将轴的旋转力转化为电能。
主要步骤包括:- 转子:由永磁体和励磁线圈组成,通过接收减速器输出的旋转力来产生磁场。
- 定子:由线圈和铁芯组成,通过转子产生的磁场感应出感应电流。
- 感应电流:定子中的感应电流会随着旋转力的改变而变化,这样就产生了交流电。
火力发电厂工作原理
火力发电厂工作原理
火力发电厂是一种利用燃烧燃料产生热能,并将其转化为电能的设施。
其工作原理可以概括为以下几个步骤:
1. 燃料燃烧:火力发电厂使用各种燃料如煤、天然气或石油来产生高温高压的热能。
燃料在燃烧室中被点燃,释放出大量热量。
2. 蒸汽发生器:燃料的燃烧释放的热能被传递给水,在蒸汽发生器中将水加热转化为高压蒸汽。
蒸汽发生器通常是由一系列的锅炉管组成,燃烧产生的烟气通过管道传递热量给水。
3. 蒸汽推动涡轮:高压蒸汽通过管道进入涡轮机的高压部分。
涡轮机内安装有一系列的叶片,当蒸汽冲击叶片时,涡轮开始旋转。
4. 发电机:涡轮旋转带动连接在其轴上的发电机转动。
发电机内部的电磁场与旋转的磁铁之间产生电磁感应,从而产生交流电。
5. 输电:产生的电能经过变压器进行升压,以便远距离输送电能到用户。
输电线路将电能输送至城市、工厂以及其他用电设施。
整个过程中,燃料的燃烧产生的热能转化为蒸汽发电,通过蒸汽驱动涡轮旋转,再由发电机转化为电能。
这种工作原理使得火力发电成为一种可靠且高效的发电方式。
火力发电厂的生产过程及其组成
常规500kv间隔的3%~5%;
(3)由于金属外壳接地的屏蔽作用,能消除 无线电干扰、静电感应和噪声;
(4)安装方便,建设速度快; (5)维护工作量少,检修周期也较长。
2024/4/9
20
全封闭型升压站的缺点是:
材料性能、加工精度和装配工艺要求很高,且 金属消耗量大,因此造价较高;
1-输煤皮 带
2-媒斗 3-磨煤机 4-排粉机 5-送风机 6-空器预
热器 7-锅炉 8-除尘器 9-引风机 10-灰渣
泵
6
2024/4/9
图3-2 燃烧系统流程图
7
二、汽水系统
汽水系统(热力系统):产生蒸汽推动汽轮 机做功,把热能转换为机械能。是火电厂 动力部分的核心。
凝汽式火电厂的汽水系统包括由锅炉、汽 轮机、凝汽器、给水泵等组成的汽水循环 系统、冷却水系统和水处理系统等。对热 力发电厂还包括中间抽气供应热用户的汽 水网络。
2024/4/9
30
4 交通运输
需运输燃料的火电厂从兴建开始到投产后 正常运行,运输任务始终都是繁重的,
火电厂厂址应当建设在交通方便的地方, 如铁路沿线,航运码头等附近。
火电厂的铁路专用线要便于与国家铁路干 线相连接,其距离不宜过长。
2024/4/9
31
埃迪斯通发电厂
2024/4/9
32
秦岭发电厂的运煤设施和储煤场
35
埃及巴斯图兹第一发电厂
2024/4/9
36
德国施瓦茨蓬普发电厂
2024/4/9
37
德国尼德奥森发电厂
2024/4/9
38
思考题
火电厂主要生产系统的组成及其任务
火力发电厂的主要系统构成及基本生产过程
火力发电厂的主要系统构成及基本生产过程火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。
以煤、石油或天然气作为燃料的发电厂统称为火电厂。
火力发电站的主要设备系统包括:燃料供给系统、给水系统、蒸汽系统、冷却系统、电气系统及其他一些辅助处理设备。
火力发电系统主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、电气系统(以汽轮发电机、主变压器等为主)、控制系统等组成。
前二者产生高温高压蒸汽;电气系统实现由热能、机械能到电能的转变;控制系统保证各系统安全、合理、经济运行。
火力发电的重要问题是提高热效率,办法是提高锅炉的参数(蒸汽的压强和温度)。
90年代,世界最好的火电厂能把40%左右的热能转换为电能;大型供热电厂的热能利用率也只能达到60%~70%。
此外,火力发电大量燃煤、燃油,造成环境污染,也成为日益引人关注的问题。
热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。
为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。
通过利用中压缸的蒸汽去推动汽轮发电机发电。
从中压缸引出进入对称的低压缸。
已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。
40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。
以上就是一次生产流程。
火力发电厂的主要系统构成火力发电厂的主要生产系统包括汽水系统、燃烧系统和电气系统,现分述如下:(一)汽水系统:火力发电厂的汽水系统是由锅炉、汽轮机、凝汽器、高低压加热器、凝结水泵和给水泵等组成,他包括汽水循环、化学水处理和冷却系统等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火力发电厂的设备作用和各系统流程一、燃烧系统生产流程来自煤场的原煤经皮带机输送到位置较高的原煤仓中,原煤从原煤仓底部流出经给煤机均匀地送入磨煤机研磨成煤粉。
自然界的大气经吸风口由送风机送到布置于锅炉垂直烟道中的空气预热器内,接受烟气的加热,回收烟气余热。
从空气预热器出来约250左右的热风分成两路:一路直接引入锅炉的燃烧器,作为二次风进入炉膛助燃;另一路则引入磨煤机入口,用来干燥、输送煤粉,这部分热风称一次风。
流动性极好的干燥煤粉与一次风组成的气粉混合物,经管路输送到粗粉分离器进行粗粉分离,分离出的粗粉再送回到磨煤机入口重新研磨,而合格的细粉和一次风混合物送入细粉分离器进行粉、气分离,分离出来的细粉送入煤粉仓储存起来,由给粉机根据锅炉热负荷的大小,控制煤粉仓底部放出的煤粉流量,同时从细粉分离器分离出来的一次风作为输送煤粉的动力,经过排粉机加压后与给粉机送出的细粉再次混合成气粉混合物,由燃烧器喷入炉膛燃烧。
二、汽水系统生产流程储存在给水箱中的锅炉给水由给水泵强行打入锅炉的高压管路,并导入省煤器。
锅炉给水在省煤器管内吸收管外烟气和飞灰的热量,水温上升到300左右,但从省煤器出来的水温仍低于该压力下的饱和温度(约330),属高压未饱和水。
水从省煤器出来后沿管路进入布置在锅炉外面顶部的汽泡。
汽包下半部是水,上半部是蒸汽,下半部是水。
高压未饱和水沿汽泡底部的下降管到达锅炉外面底部的下联箱,锅炉底部四周的下联箱上并联安装上了许多水管,这些水管内由下向上流动吸收炉膛中心火焰的辐射传热和高温烟气的对流传热,由于蒸汽的吸热能力远远小于水,所以规定水冷壁内的气化率不得大于40%,否则很容易因为工质来不及吸热发生水冷壁水管熔化爆管事故。
锅炉设备的流程一、锅炉燃烧系统1、作用:使燃料在炉内充分燃烧放热,并将热量尽可能多的传递给工质,并完成对省煤器和水冷壁水管内的水加热,对过热器和再热器管内的干蒸汽加热,对空气预热器管内的空气加热。
2、系统组成:燃烧器,炉膛,空气预热器组成。
二、锅炉的汽水系统1、作用:对水进行预热、气化和蒸汽的过热,并尽可能多地吸收火焰和烟气的热量。
2、系统的组成:水的预热汽化系统,干蒸汽的过热再热系统。
三、燃料输送系统1、作用:完成对原煤的输送、储存、供给。
2、系统组成:皮带机、原煤仓和给煤机四、制粉系统1、作用:生产流量足够、颗粒大小符合要求的煤粉,满足锅炉燃烧需求。
2、组成:磨煤机、粗粉分离器、细粉分离器、煤粉仓、给粉机和排粉机。
五、给水系统1、作用:向锅炉提供压力足够高的高压未饱和水,因为只有高压才能高温,工质在高温高压下能携带更多的热量。
2、组成:给水箱和给水泵六、通风系统1、作用:保证足够的空气进入炉膛并及时排出。
2、组成:送风机、引风机和烟囱七、除尘系统1、作用:对即将进入烟囱高空排放的烟气进行除尘,减少对环境的污染。
2、组成:除尘器汽轮机一、作用:将蒸汽的热能转换成蒸汽的动能二、汽轮机设备流程:1.回热加热系统(1)组成:回热加热器和除氧器(2)作用:抽出汽轮机中做了部分功的蒸汽,对锅炉给水进行加热,这部分蒸汽自身变成凝结水而汽化潜热完全被利用。
2.凝气系统(1)组成:凝汽器和抽气器(2)作用:1。
建立并维持高度真空,降低汽轮机的背压,提高循环热效率2.汽轮机的排气凝结成水,以便重新送入锅炉使用。
3.冷却水供水系统两个冷却水用水大户:(1)机组轴承润滑油冷却水(2)汽轮机乏汽冷却水火电厂计算机监控系统的结构一、结构:三点一线,分散控制系统(DCS),即上位机的操作员站,工程师站,下位机的现地控制单元和用来连接个站点的通信网络。
集计算机技术、数据通信技术、控制技术与CRT显示技术融于一体,采用分散结构和危险结构。
数据采集结构(DAS):对机组运行参数和状态进行采集、处理,用于显示、报警及打印报表。
模拟量调节控制系统(MCS):包括锅炉的燃烧调节控制、汽包给水水位调节控制、主蒸汽温度调节控制等子系统和辅助设备的控制子系统。
开关量顺序控制系统(SCS):对机组和辅助设备进行启停的顺序控制和连锁保护。
锅炉炉膛安全监控系统(FSSS):通过对炉膛的自动吹扫、火焰监测、炉膛压力保护以及喷油、喷煤燃烧器管理,锅炉连锁保护等安全管理,保证了锅炉的安全火电厂输煤系统的任务是卸煤、堆煤、上煤和配煤,以达到按时保质、保量为机组(原煤仓)提供燃煤的目的。
整个输煤系统是火电厂十分重要的支持系统。
它是保证机组稳发满发的重要条件。
输煤系统是火电厂的重要组成部分,其安全可靠运行是保证电厂实现安全、高效不可缺少的环节。
输煤系统的工艺流程随锅炉容量、燃料品种、运输方式的不同而差别较大,并且使用设备多,分布范围广。
作为一种具有本安性且远距离传输能力强的分布式智能总线网络,lonworks总线能将监测点做到彻底的分散(在一个网络内可带32000多个节点),提高了系统的可靠性,可以满足输煤系统监控的要求。
火电厂输煤系统一般都采用顺序控制和报警方式,为相对独立的控制单元系统,系统配备了各种性能可靠的测量变送器。
通过运用Lonworks现场总线技术将各种测量变送器的输出信号接入对应的智能节点组成多个检测单元,然后挂接在Lonworks总线上,再通过Lonworks总线与已有的DCS系统集成,实现了对输煤系统更加有效便捷的监控。
在输煤系统中,常用的测量变送器一般有以下几种:(1)开关量皮带速度变送器(2)皮带跑偏开关(3)煤流开关(4)皮带张力开关(5)煤量信号(6)金属探测器(7)皮带划破探测(8)落煤管堵煤开关(9)煤仓煤位开关。
每一种测量变送器和其相对应节点共同组成智能监测单元,对需要监测的工况参数进行实时的监控。
监测单元通过收发器接入Lonworks总线网络进行通信,可根据监测到的参数进行控制和发出报警信号,系统的结构如图1所示。
3、 Lonworks总线智能节点的一般设计智能节点是总线网络中分布在现场级的基本单元,其设计开发分为两种:一种是基于neuron芯片的设计,即节点中不再包含其它处理器,所有工作均由neuron 芯片完成。
另一种是基于主机的节点设计,即neuron 芯片只完成通信的工作,用户应用程序由其它处理器完成。
前者适合设计相对简单的场合,后者适应于设计相对复杂的场合。
一般情况下,多采用基于芯片的设计。
由于智能节点不外乎输入/输出模拟量和输入/输出开关量四种形式,节点的设计也大同小异,对此本文只给出了节点设计的一般方法。
基于芯片的智能节点的硬件结构包括控制电路、通信电路和其它附加电路组成,其基本结构如图2所示。
图2 智能节点基本结构图Fig 2 Basic Structure Of Node Based On The Neuron Chip控制电路①神经元芯片:采用Toshiba公司生产的3150芯片,主要用于提供对节点的控制,实施与Lon网的通信,支持对现场信息的输入输出等应用服务。
②片外存储器:采用Atmel公司生产的AT29C256(Flash存储器)。
AT29C256共有32KB的地址空间,其中低16KB空间用来存放神经元芯片的固件(包括LonTalk协议等)。
高16KB空间作为节点应用程序的存储区。
采用ISSI公司生产的IS61C256作为神经元芯片的外部RAM。
③I/O接口:是neuron芯片上可编程的11个I/O引脚,可直接与外部接口电路连接,其功能和应用由编程方式决定。
通信电路通信电路的核心收发器是智能节点与Lon网之间的接口。
目前,Echelon公司和其他开发商均提供了用于多种通信介质的收发器模块。
通常采用Echelon公司生产的适用于双绞线传输介质的FTT-10A收发器模块。
附加电路附加电路主要包括晶振电路、复位电路和Service电路等。
①晶振电路:为3150神经元芯片提供工作时钟。
②复位电路:用于在智能节点上电时产生复位操作。
另外,节点还将一个低压中断设备与3150的Reset 引脚相连,构成对神经元芯片的低压保护设计,提高节点的可靠性稳定性。
③Service电路:专为下载应用程序设计。
Service指示灯对诊断神经元芯片固件状态有指示作用节点的软件设计采用Neuron C编程语言设计。
Neuron C是为neuron芯片设计的编程语言,可直接支持neuron芯片的固化,并定义了34种I/O对象类型。
节点开发的软件设计分为以下几步:(1)定义I/O对象:定义何种I/O对象与硬件设计有关。
在定义I/O对象时,还可设置I/O对象的工作参数及对I/O对象进行初始化。
(2)定义定时器对象:在一个应用程序中最多可以定义15个定时器对象(包括秒定时器和毫秒定时器),主要用于周期性执行某种操作情况,或引进必要的延时情况。
(3)定义网络变量和显示报警:既可以采用网络变量又可以采用显示报警形式传输信息,一般情况采用网络变量形式。
(4)定义任务:任务是neuron C实现事件驱动的途径,是对事件的反应,即当某事件发生时,应用程序应执行何种操作。
(5)定义用户自定义的其它函数:可以在neuron C 程序中编写自定义的函数,以完成一些经常性功能,也将一些常用的函数放到头文件中,以供程序调用。
4、基于Lonworks总线的火电厂输煤系统与DCS的网络集成现场总线技术与传统的系统DCS系统实现网络集成并协同工作的情况目前在火电厂中尚为数不多。
进一步推动火电厂数字化和信息化的发展,逐步推行现场总线技术与DCS系统的集成是火电厂工业控制及自动化水平发展的趋势。
就目前来讲,现场总线技术与DCS 集成方式有多种,且组态灵活。
根据现场的实际情况,我们知道不少大型火电厂都已装有DCS系统并稳定运行,而现场总线很少或首次引入系统,因此可采用将现场总线层与DCS系统I/O层连接的集成,该方案结构简便易行,其原理如图3所示。
从图中可以看出现场总线层通过一个接口卡挂在DCS的I/O层上,将现场总线系统中的数据信息映射成与DCS的I/O总线上的数据信息,使得在DCS控制器所看到的从现场总线开来的信息如同来自一个传统的DCS设备卡一样。
这样便实现了在I/O总线上的现场总线技术集成。
火电厂输煤系统无论是在规模上,还是在利用已有生产资源的基础上,采用该方案都是可行的,同时也体现了把火电厂某些相对独立控制系统通过现场总线技术纳入DCS系统的合理性。
由此可见,现阶段现场总线与系统的并存不仅会给生产用户带来大量收益,而且使用户拥有更多的选择,以实现更合理的监测与控制。
燃煤,用输煤皮带从煤场运至煤斗中。
大型火电厂为提高燃煤效率都是燃烧煤粉。
因此,煤斗中的原煤要先送至磨煤机内磨成煤粉。
磨碎的煤粉由热空气携带经排粉风机送入锅炉的炉膛内燃烧。
煤粉燃烧后形成的热烟气沿锅炉的水平烟道和尾部烟道流动,放出热量,最后进入除尘器,将燃烧后的煤灰分离出来。