正弦定理教学案例
高中数学正弦定理教案
高中数学正弦定理教案
主题:正弦定理
目标:使学生能够理解和应用正弦定理解决三角形中的问题。
教学目标:
1. 了解正弦定理的定义和公式。
2. 掌握如何应用正弦定理解决三角形中的问题。
3. 能够利用正弦定理计算三角形内角和和边长。
教学内容:
1. 正弦定理的定义和公式。
2. 正弦定理的应用举例。
3. 练习题目。
教学过程:
一、导入
1. 引导学生回顾几何学中三角形的相关知识,特别是角的概念。
2. 提出问题:在三角形中,当知道一个角和一边的关系时,如何求解另外两个角和两边的关系?
二、讲解正弦定理
1. 讲解正弦定理的定义:在任意三角形 ABC 中,边 a、b、c 与角 A、B、C 之间有如下关系:
\[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]
2. 举例说明正弦定理的应用。
三、练习
1. 让学生自己尝试应用正弦定理解决一些三角形中的问题。
2. 逐步增加难度,让学生巩固应用正弦定理的能力。
四、总结
1. 对正弦定理的应用进行总结,并强调练习的重要性。
2. 鼓励学生多多练习,掌握正弦定理的运用。
五、作业
布置相关的练习题目,让学生进行巩固练习。
教学反思:
在教学过程中,要不断引导学生思考,激发他们解决问题的兴趣和能力。
同时,要以学生为中心,注重培养学生的自主学习能力和解决问题的方法。
希望通过这次教学,学生能够牢固掌握正弦定理的应用,为将来的学习打下坚实基础。
正弦定理教案
正弦定理教案一、教学目标1.理解正弦定理的概念,掌握计算正弦定理的方法。
2.能够判断已知条件能否求解三角形的某个角或某个边。
3.能够运用正弦定理解决相关的实际问题。
二、教学重点1.正弦定理的公式和应用。
2.正弦定理与其他三角函数定理的关系。
三、教学难点1.运用正弦定理求解实际问题。
2.能够判断已知条件能否求解三角形的某个角或某个边。
四、教学内容1. 正弦定理的概念正弦定理是解决三角形中一个角和它所对的边以及另外两边之间的关系的定理。
在任意三角形ABC中,有如下公式成立:$a/\\sin A = b/\\sin B = c/\\sin C$其中,a,b,c分别为三角形的三条边,A,B,C分别为对应的三个内角。
2. 正弦定理的公式在上述公式中,如果已知三角形的两边和其中一个对角,则可以根据正弦定理求出第三边的长度。
也可以根据已知的三角形的三条边,利用正弦定理求出三个内角的大小。
3. 正弦定理的应用3.1. 求解三角形的边长已知三角形的两边和其中一个角,可以利用正弦定理求出第三边的长度。
具体地,设三角形ABC中,已知AB = 8cm,AC = 9cm,∠BAC = 30°,求BC的长度。
解:根据正弦定理的公式,有$BC/\\sin 30°=9/\\sin 150°$化简得,BC=18因此,BC的长度为18cm。
3.2. 求解三角形的角度已知三角形的三条边,可以根据正弦定理求出三个内角的大小。
具体地,设三角形ABC中,已知AB = 8cm,BC = 10cm,AC = 12cm,求∠A,∠B和∠C的大小。
解:根据正弦定理的公式,有$a/\\sin A = b/\\sin B = c/\\sin C$代入已知条件,得到:$8/\\sin A = 10/\\sin B = 12/\\sin C$化简得到:$\\sin A = 8/10=0.8, \\sin B=10/12=0.83, \\sin C=8/12=0.67$利用反正弦函数,可以求得:$\\angle A=\\arcsin{0.8}\\approx53.1°$$\\angle B=\\arcsin{0.83}\\approx60.4°$$\\angle C=\\arcsin{0.67}\\approx66.5°$因此,$\\angle A\\approx53.1°$,$\\angle B\\approx60.4°$和$\\angleC\\approx66.5°$。
高中数学正弦定理教案5篇
高中数学正弦定理教案5篇高中数学正弦定理教案篇1一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。
在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。
它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。
因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教学重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。
即指导学生掌握“观察——猜想——证明——应用”这一思维方法。
学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。
五、教学过程本节知识教学采用发生型模式:1、问题情境有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。
已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。
高二数学人教A版必修5教学教案1-1-1正弦定理(2)_1
正弦定理一、教学内容的分析“正弦定理”是人教A版必修五第一章第一节的主要内容。
其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.二、学生学习情况分析在初中学生已经学习过关于任意三角形中大边对大角、小边对小角的边角关系,本节内容是处理任意三角形中的边角关系,与初中学习的三角形的边与角的基本关系有着密切的联系;这里的一个重要问题是:是否能得到这个边、角关系准确量化的表示.也就是如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。
这就要求教师在教学中引导学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得知识。
所以本节课的教学将以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
四、三维目标1、知识与技能通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及证明方法,并能解决一些简单的三角形问题。
2、过程与方法通过对特殊三角形边长和角度关系的探索,发现正弦定理,初步学会用特殊到一般的思想方法发现数学规律。
3、情感态度与价值观通过生活实例的探究引出正弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值。
五、教学重难点重点:正弦定理的证明及其基本运用.难点:(1)正弦定理的探索和证明;(2)已知两边和其中一边的对角解三角形时,判断解的个a cb O B C A 数.六、教学过程设计(一)新课导入如图,河流两岸有A 、B 两村庄,有人说利用测角器与直尺,不过河也可以得到A 、B 两地的距离(假设现在的位置是A 点),请同学们讨论设计一个方案解决这个问题。
正弦定理数学教案优秀5篇
正弦定理数学教案优秀5篇《正弦定理》教案篇一《正弦定理》教案一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。
正弦定理教案 (3)
正弦定理教案一、教案背景正弦定理是初中数学中的重要内容,它是解决三角形中未知边长和角度的关系的一个定理。
掌握正弦定理的原理和应用,对于学习数学和解决实际问题都有很大的帮助。
本教案旨在通过教学活动,帮助学生理解正弦定理的概念和用法。
二、教学目标1.理解正弦定理的概念和原理;2.能够应用正弦定理解决实际问题;3.培养学生的逻辑思维和解决问题的能力。
三、教学准备1.教师准备:–教学课件和投影设备;–关于正弦定理的教学素材和练习题。
2.学生准备:–学生书本和笔记;–三角形的相关知识和公式。
四、教学过程步骤一:导入新知1.教师通过提问和展示图片引入正弦定理的概念,让学生回忆并复习三角形的相关知识。
2.教师给出正弦定理的定义和公式,解释其中的符号意义和用法。
正弦定理:在一个三角形中,任意两边的比值等于这两边对应角的正弦值的比值。
公式:$\\frac{a}{\\sin A} = \\frac{b}{\\sin B} = \\frac{c}{\\sin C}$步骤二:示例分析1.教师通过具体的示例,演示如何应用正弦定理解决三角形中未知边长和角度的问题。
示例1:已知三角形的两边和夹角,求第三边的长度。
示例2:已知三角形的两条边和一个角度,求另外两个角的大小。
2.教师引导学生参与示例分析,共同探讨解决问题的步骤和思路。
步骤三:小组活动1.教师组织学生分成小组,分发练习题和考察题。
2.学生在小组内合作解决问题,通过讨论和交流来加深对正弦定理的理解和应用。
3.教师巡视指导,鼓励学生主动思考和提出问题。
步骤四:讲评和总结1.教师引导学生讲解和分享解题思路和方法,梳理正弦定理的应用要点和注意事项。
2.教师总结本节课的主要内容和学习收获,强调正弦定理在实际问题中的应用。
五、教学延伸1.学生可以通过练习题和考察题进一步巩固和拓展对正弦定理的应用能力。
2.学生可以通过研究和解决实际问题,发现和探索正弦定理的更多应用场景。
六、课后作业1.完成课堂上未能完成的练习题和考察题,加深对正弦定理的理解和熟练应用。
正弦定理及应用教案
正弦定理及应用教案教案标题:正弦定理及应用教案教案目标:1. 理解正弦定理的概念和公式;2. 掌握正弦定理在解决三角形问题中的应用方法;3. 培养学生的数学思维和解决问题的能力。
教学准备:1. 教师准备:教案、黑板、白板、彩色粉笔、投影仪;2. 学生准备:教材、笔记本。
教学过程:步骤一:导入(5分钟)1. 教师出示一张三角形的图片,引导学生回顾三角形的基本概念和性质。
2. 引导学生思考:在解决三角形问题时,我们有哪些方法可以使用?步骤二:概念讲解(15分钟)1. 教师引导学生回顾三角形中的边和角的概念,并提出正弦定理的概念。
2. 教师讲解正弦定理的公式:a/sinA = b/sinB = c/sinC,并解释公式中各变量的含义。
3. 教师通过例题演示正弦定理的应用方法,解决已知两边和一个夹角的情况。
步骤三:应用练习(20分钟)1. 教师出示一些应用正弦定理解决的问题,并引导学生分组讨论解题思路。
2. 学生在小组内互相讨论,尝试解决问题,并记录解题过程和答案。
3. 学生展示解题过程和答案,教师进行点评和讲解。
步骤四:拓展应用(15分钟)1. 教师出示一些较为复杂的三角形问题,引导学生运用正弦定理解决。
2. 学生在小组内合作解决问题,并记录解题过程和答案。
3. 学生展示解题过程和答案,教师进行点评和讲解。
步骤五:归纳总结(10分钟)1. 教师引导学生总结正弦定理的应用方法和注意事项。
2. 学生将重点内容记录在笔记本上,作为复习和巩固。
步骤六:作业布置(5分钟)1. 教师布置相关的练习题作为课后作业。
2. 学生完成作业并在下节课前交给教师。
教学反思:本节课通过导入、概念讲解、应用练习、拓展应用和归纳总结等环节,引导学生理解正弦定理的概念和公式,并掌握其在解决三角形问题中的应用方法。
通过小组合作和展示,培养学生的数学思维和解决问题的能力。
同时,布置相关作业,巩固学生的学习成果。
正弦定理教学设计最新5篇
正弦定理教学设计最新5篇正弦定理教学设计篇一《正弦定理》教学设计茂名市实验中学张卫兵一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。
2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。
3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教学基本流程1、创设问题情境,引出问题:在三角形中,已知两角以及一边,如何求出另外一边;2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;4、应用正弦定理解三角形。
四、教学情境设计五、教学研究1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。
本设计从生活中的实际问题出发创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。
2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下进行“再创造”过程。
本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A的正弦与B的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。
高中数学《正弦定理》教案4篇
高中数学《正弦定理》教案4篇高中数学《正弦定理》教案1教材地位与作用:本节学问是必修五第一章《解三角形》的第一节内容,与学校学习的三角形的边和角的基本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的学问特别重要。
学情分析:作为高一同学,同学们已经把握了基本的三角函数,特殊是在一些特别三角形中,而同学们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。
(依据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:学问目标:理解并把握正弦定理的证明,运用正弦定理解三角形。
力量目标:探究正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让同学感受数学公式的干净对称美和数学的实际应用价值。
教法学法分析:教法:采纳探究式课堂教学模式,在老师的启发引导下,以同学自主和合作沟通为前提,以“正弦定理的发觉”为基本探究内容,以生活实际为参照对象,让同学的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。
学法:指导同学把握“观看——猜测——证明——应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。
让同学在问题情景中学习,观看,类比,思索,探究,动手尝试相结合,增添同学由特别到一般的数学思维力量,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣“爱好是最好的老师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab 长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发同学关心别人的热忱和学习的爱好,从而进入今日的学习课题。
正弦定理教案
正弦定理教案正弦定理教案「篇一」教学目标:1.让学生从已有的几何知识出发,通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。
2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想提出过程。
教学准备:制作多媒体,学生准备计算器,直尺,量角器。
教学过程:(一)结合实例,激发动机师生活动:师:每天我们都在科技楼里学习,对科技楼熟悉吗?生:当然熟悉。
师:那大家知道科技楼有多高吗?学生不知道。
激起学生兴趣!师:给大家一个皮尺和测角仪,你能测出楼的高度吗?学生思考片刻,教师引导。
生1:在楼的旁边取一个观测点C,再用一个标杆,利用三角形相似。
师:方法可行吗?生2:B点位置在楼内不确定,故BC长度无法测量,一次测量不行。
师:你有什么想法?生2:可以再取一个观测点D。
师:多次测量取得数据,为了能与上次数据联系,我们应把D点取在什么位置?生2:向前或向后师:好,模型如图(2):我们设正弦定理教学设计,正弦定理教学设计 ,CD=10,那么我们能计算出AB吗?生3:由正弦定理教学设计求出AB。
师:很好,我们可否换个角度,在正弦定理教学设计中,能求出AD,也就求出了AB。
认识三角函数的正弦定理与余弦定理教案
认识三角函数的正弦定理与余弦定理教案引言三角函数是数学中的重要分支,广泛应用于物理、工程和几何等领域。
其中,正弦定理和余弦定理是解决三角形相关问题的基本工具,它们可以通过关系三角形的边长和角度,帮助我们求解未知量。
本文将介绍正弦定理和余弦定理的原理和应用,并提供相应的教学案例。
一、正弦定理正弦定理是指在任意三角形ABC中,有以下关系成立:a/sinA = b/sinB = c/sinC其中a,b,c分别表示三角形ABC的边长,A,B,C表示三角形ABC的对应内角。
正弦定理的原理:通过边长与角度之间的关系,我们可以得到正弦定理。
在三角形ABC中,我们假设有一高足AD与BC垂直相交于D点。
根据正弦函数的定义,我们可以得到以下关系:sinA = BD/ABsinB = AD/AB由此,我们可以得到以下等式:BD = AB * sinAAD = AB * sinB再根据三角形BD与三角形AC的相似性,我们可以推导出正弦定理的公式。
二、余弦定理余弦定理是指在任意三角形ABC中,有以下关系成立:c² = a² + b² - 2ab * cosC其中a,b,c分别表示三角形ABC的边长,C表示三角形ABC的对应内角。
余弦定理的原理:通过边长与角度之间的关系,我们可以得到余弦定理。
在三角形ABC中,我们可以利用平行四边形BCDE的性质,从而得到以下关系:BC² = BE² + EC² - 2 * BE * EC * cosBEC根据三角形ABE与三角形ACD的相似性,我们可以得到以下等式:BE = a * cosCEC = b * cosB将上述等式带入平行四边形BCDE的性质中,可以得到余弦定理的公式。
应用教学案例:为了帮助学生深入理解和掌握正弦定理和余弦定理的应用,我们可以设计以下教学案例。
案例一:海上测距学生们分组进行实际测量,在一片平坦的海面上,使用望远镜观测两个灯塔的仰角,并利用船上的测距仪测量出船与两个灯塔的距离。
《正弦定理》教案(含答案)
一、教学目标1. 让学生理解正弦定理的定义和意义。
2. 让学生掌握正弦定理的推导过程。
3. 让学生能够运用正弦定理解决实际问题。
二、教学重点与难点1. 教学重点:正弦定理的定义、推导过程和应用。
2. 教学难点:正弦定理在实际问题中的应用。
三、教学方法1. 采用问题驱动法,引导学生思考和探索正弦定理的推导过程。
2. 通过实际例题,让学生掌握正弦定理的应用方法。
3. 利用多媒体辅助教学,直观展示正弦定理的应用场景。
四、教学内容1. 正弦定理的定义与推导正弦定理是指在一个三角形中,各边的长度与其对角的正弦值成正比。
具体来说,对于一个三角形ABC,有:a/sinA = b/sinB = c/sinC其中,a、b、c分别表示三角形ABC的边长,A、B、C分别表示三角形ABC 的对角。
2. 正弦定理的应用(1)求解三角形的边长:已知三角形的两个角和其中一个角的正弦值,求解第三边的边长。
(2)求解三角形的角度:已知三角形的两边和它们夹角的正弦值,求解第三个角的大小。
(3)求解三角形的面积:已知三角形的两边和它们夹角的正弦值,求解三角形的面积。
五、教学过程1. 引入新课:通过展示三角形模型,引导学生思考三角形中边长和角度的关系。
2. 讲解正弦定理的定义与推导:引导学生回顾正弦函数的定义,结合三角形的特点,推导出正弦定理。
3. 例题讲解:挑选一些典型的例题,讲解如何运用正弦定理解决问题。
4. 练习与讨论:让学生分组讨论,互相解答疑问,巩固正弦定理的应用。
5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。
六、教学评价1. 课堂问答:检查学生对正弦定理的理解和掌握程度。
2. 练习题:布置一些有关正弦定理的应用题,检验学生运用知识解决问题的能力。
3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力。
七、教学反思1. 教师需要反思教学过程中的优点和不足,如教学方法、课堂组织等。
2. 针对学生的学习情况,调整教学策略,提高教学效果。
数学正弦定理优秀教案及教学设计
数学正弦定理优秀教案及教学设计人教版数学正弦定理优秀教案及教学设计导语:什么是正弦定理?关于正弦定理的教案设计要怎么写?以下是品才网小编整理的人教版数学正弦定理优秀教案及教学设计,欢迎阅读参考!人教版数学正弦定理优秀教案及教学设计【教学目的】1理解并掌握正弦定理,能运用正弦定理解斜三角形,解决实际问题,正弦定理在高考中的应用,熟悉高考题型。
2. 引导学习探索知识,学以致用,培养观察、归纳、猜想、探究的思维方法与能力。
通过对实际问题的探索,培养学生对数学的观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和数学交流能力,提升数形结合与转化思想。
【教学重点】理解掌握正弦定理,运用正弦定理解三角形,解决实际应用问题【教学难点】正弦定理的熟练运用,提升正弦定理的综合运用能力,解决实际生活中的有关问题。
【教学方法】启发引导、观察发现、精讲多练,双主体互动,多媒体辅助教学【教学过程】一. 引入:1.三角形中有几个要素?2.三角形可分为直角三角形和斜三角形;3.三角形中的边角关系:A+B+C=π; A>B则a>b; a+b>c;4.直角三角形中A+B=90°;勾股定理 ;5.斜三角形ABC中的边角关系如何表示? 三角形中的大边对大角,正弦定理表示了边角关系的准确量化提问:正弦定理的内容?公式默写。
二.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即[理解定理](1)正弦定理适合于任何三角形;(2)正弦定理说明同一三角形中,边与其对角的正弦比值相等;即边与其对角的正弦成正比;(3) 等价于,,每个等式可视为一个方程:知三求一正弦定理的基本作用为:正弦定理可以解决三角形中两类问题:①已知三角形的两角和任意一边,求另一角和其他边;,如 ;②已知三角形的任意两边与其中一边的对角,求另一边的对角,进而可求其他的边和角,如一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
《正弦定理》教案(含答案)
《正弦定理》教案(含答案)第一章:正弦定理的引入1.1 实物的直观引入利用直角三角形和平行四边形模型,引导学生直观感受正弦定理的概念。
让学生通过观察和实验,发现正弦定理在几何图形中的普遍性。
1.2 数学定义与公式给出正弦定理的数学表达式:a/sinA = b/sinB = c/sinC,其中a, b, c分别为三角形的边长,A, B, C分别为对应的角度。
解释正弦定理的内涵,让学生理解各个参数之间的关系。
1.3 例题讲解选择具有代表性的例题,讲解正弦定理的应用方法。
引导学生通过正弦定理解决问题,培养学生的解题能力。
第二章:正弦定理的应用2.1 三角形内角和定理的推导利用正弦定理推导三角形内角和定理:A + B + C = 180°。
解释推导过程,让学生理解正弦定理与三角形内角和定理之间的关系。
2.2 三角形形状的判断利用正弦定理判断三角形的形状(直角三角形、锐角三角形、钝角三角形)。
引导学生通过正弦定理判断给定三角形的形状。
2.3 实际问题应用选择与生活实际相关的问题,引导学生利用正弦定理解决问题。
培养学生的实际问题解决能力,提高学生对正弦定理的应用意识。
第三章:正弦定理在测量中的运用3.1 角度测量讲解利用正弦定理进行角度测量的方法。
引导学生通过正弦定理进行角度测量,提高学生的实际操作能力。
3.2 距离测量讲解利用正弦定理进行距离测量的方法。
引导学生通过正弦定理进行距离测量,提高学生的实际操作能力。
3.3 实际测量案例提供实际测量案例,让学生利用正弦定理进行测量。
培养学生的实际测量能力,提高学生对正弦定理在测量中应用的理解。
第四章:正弦定理在三角函数中的应用4.1 三角函数的定义与关系讲解正弦定理与三角函数之间的关系。
引导学生理解正弦定理在三角函数中的应用。
4.2 三角函数图像的绘制利用正弦定理绘制三角函数图像。
培养学生的图像绘制能力,提高学生对正弦定理在三角函数中应用的理解。
4.3 三角函数问题的解决利用正弦定理解决三角函数问题。
正弦定理教案(精选3篇)
Any restriction starts from within.简单易用轻享办公(页眉可删)正弦定理教案(精选3篇)正弦定理教案1一、教材分析“解三角形”既是高中数学的基本内容, 又有较强的应用性, 在这次课程改革中, 被保留下来, 并独立成为一章。
这部分内容从知识体系上看, 应属于三角函数这一章, 从研究方法上看,也可以归属于向量应用的一方面。
从某种意义讲, 这部分内容是用代数方法解决几何问题的典型内容之一。
而本课“正弦定理”, 作为单元的起始课, 是在学生已有的三角函数及向量知识的基础上, 通过对三角形边角关系作量化探究, 发现并掌握正弦定理(重要的解三角形工具), 通过这一部分内容的学习, 让学生从“实际问题”抽象成“数学问题”的建模过程中, 体验“观察——猜想——证明——应用”这一思维方法, 养成大胆猜想、善于思考的品质和勇于求真的精神。
同时在解决问题的过程中, 感受数学的力量, 进一步培养学生对数学的学习兴趣和“用数学”的意识。
二、学情分析我所任教的学校是我县一所农村普通中学, 大多数学生基础薄弱, 对“一些重要的数学思想和数学方法”的应用意识和技能还不高。
但是, 大多数学生对数学的兴趣较高, 比较喜欢数学, 尤其是象本节课这样与实际生活联系比较紧密的内容, 相信学生能够积极配合, 有比较不错的表现。
三、教学目标1.知识和技能: 在创设的问题情境中, 引导学生发现正弦定理的内容, 推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法:学生参与解题方案的探索, 尝试应用观察——猜想——证明——应用”等思想方法, 寻求最佳解决方案, 从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法, 通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
同时, 通过实际问题的探讨、解决, 让学生体验学习成就感, 增强数学学习兴趣和主动性, 锻炼探究精神。
正弦定理教学案例
教学案例(一)一节未按教学设计完成的课(正弦定理)汾西一中刘惠文正弦定理教学案例汾西一中刘惠文一、背景介绍结合新课标课改的精神和我校“以人为本”的教育理念的指导,高中数学教学不仅仅局限于接受、记忆、模仿和练习,更应该倡导自主探究、动手实践、合作交流、阅读自学等数学学习方式,使学生的学习过程成为教师引导下的“再创造”的过程。
2013年4月29日上午第一节在高二227班(重点班)讲的示范课,正弦定理第一课时。
本节内容安排在《普通高中课程标准实验教科书·数学必修5》(人教A版)第一章,正弦定理第一课时,是在高一学生了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中直角三角形内容的直接延伸,因而定理本身的应用又十分广泛。
本课“正弦定理”,作为单元的起始课,为后续内容作知识与方法的准备,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),解决简单的三角形度量问题。
本节教学重点:正弦定理的发现与证明;正弦定理的简单应用。
1、设计思想根据实际教学处理,本节课采用探究式课堂教学模式,辅以讨论法以及多媒体演示法。
即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容。
分为三个阶段:第一阶段教师通过引导学生学生对实际问题的探索,并大胆提出猜想;第二阶段由猜想入手,带着疑问,以及特殊三角形中;边角的关系的验证,通过“作高法”、“向量法”等多种方法证明正弦定理,验证猜想的正确性;第三阶段利用正弦定理解决引例,最后进行简单的应用。
学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察——实验——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。
人教版正弦定理教案
人教版正弦定理教案教案标题:探索人教版正弦定理教案目标:1. 理解正弦定理的概念和原理;2. 掌握正弦定理的运用方法;3. 能够应用正弦定理解决实际问题。
教学重点:1. 理解正弦定理的含义;2. 掌握正弦定理的运用方法。
教学难点:1. 能够应用正弦定理解决实际问题。
教学准备:1. 教材:人教版高中数学教材;2. 教具:投影仪、黑板、白板、教学PPT等。
教学过程:一、导入(5分钟)1. 引入正弦定理的概念,让学生回顾三角函数的定义和性质。
二、理解正弦定理(15分钟)1. 通过示意图,引导学生理解正弦定理的含义和原理;2. 通过实例计算,让学生感受正弦定理的运用方法。
三、运用正弦定理(20分钟)1. 给出一些实际问题,要求学生运用正弦定理进行解答;2. 引导学生分析问题,列出已知条件和所求量,然后运用正弦定理进行计算;3. 鼓励学生在解答问题的过程中思考,让他们发现问题的规律和解题的技巧。
四、拓展应用(10分钟)1. 提供更复杂的问题,要求学生运用正弦定理解决;2. 引导学生在解答问题的过程中,灵活运用正弦定理,培养他们的综合运用能力。
五、归纳总结(5分钟)1. 总结正弦定理的概念、原理和运用方法;2. 强调正弦定理在解决实际问题中的重要性。
六、作业布置(5分钟)1. 布置相关的练习题,要求学生运用正弦定理解答;2. 鼓励学生独立思考和解决问题,培养他们的自主学习能力。
教学反思:本节课通过引导学生理解正弦定理的含义和原理,培养了学生的数学思维和解决实际问题的能力。
通过实例计算和拓展应用的训练,学生对正弦定理的掌握和运用能力得到了提高。
在教学中,教师通过提问和讨论,积极激发学生的学习兴趣,培养了他们的合作意识和团队精神。
在今后的教学中,我将更加注重培养学生的实际应用能力,提升他们解决问题的能力。
正弦定理的导入例子
正弦定理的导入例子正弦定理是三角形中一个重要的定理,它可以用来求解三角形的边长和角度。
下面以一个导入例子来解释正弦定理的应用。
假设有一个三角形ABC,其中角A的度数为50°,边AB的长度为8cm,边AC的长度为10cm。
我们想要求解边BC的长度。
我们可以利用正弦定理来解决这个问题。
正弦定理的表达式如下:a/sinA = b/sinB = c/sinC其中a、b、c分别表示三角形的边长,A、B、C分别表示对应的角度。
根据这个公式,我们可以得到以下等式:8/sin50° = BC/sinC我们已经知道了边AB的长度和角A的度数,可以代入这些已知量:8/sin50° = BC/sinC接下来我们需要求解sinC。
根据三角形的内角和为180°的性质,可以得到角C的度数为180°-50°-C。
因此,我们可以得到以下等式:8/sin50° = BC/sin(180°-50°-C)现在,我们可以通过求解这个等式来得到边BC的长度。
我们需要求解sin(180°-50°-C)。
根据三角函数的性质,sin(180°-x) = sin(x),我们可以得到以下等式:8/sin50° = BC/sin(50°+C)接下来,我们可以交叉相乘来求解边BC的长度:BC = (8 * sin(50°+C))/sin50°现在,我们已经得到了边BC的长度的表达式。
我们可以通过代入不同的角度C的值来计算边BC的长度。
例如,假设角C的度数为30°,我们可以代入这个值来计算边BC 的长度:BC = (8 * sin(50°+30°))/sin50°通过计算,我们可以得到边BC的长度约为10.47cm。
同样地,我们可以通过代入不同的角度C的值来计算边BC的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:《正弦定理》教学案例
韩店中学郑辉
一、教学内容:本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。
二、教材分析:1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。
2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。
三、教学目标:
1、知识目标:
把握正弦定理,理解证实过程。
2、能力目标:
(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。
(2)增强学生的协作能力和数学交流能力。
(3)发展学生的创新意识和创新能力。
3、情感态度与价值观:
(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。
(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。
四、教学设想:
本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。
让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。
设计思路如下:
五、教学过程:
(一)创设问题情景
课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,忽然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。
经研究,决定向其发射鱼雷给以威慑性打击。
已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰?
[设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!]
(二)启发引导学生数学地观察问题,构建数学模型。
用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题:
1、考察角A的范围,回忆“大边对大角”的性质
2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A
从而抽象出一个雏形:
3、测量角A的实际角度,与猜测有误差,从而产生矛盾:
定性研究如何转化为定量研究?
4、进一步修正雏形中的公式,启发学生大胆想象:以及等
[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!]
(三)引导学生用“特例到一般”的研究方法,猜想数学规律。
提出问题:
1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式
当△ABC为锐角三角形时,设AB边上的高为CD,根据三角函数的定义,得CD=asinB =bsinA,所以,同理.
(3)当△ABC为钝角三角形时,结论是否仍然成立?引导学生自己推出.(详细给出解答过程)事实上,当∠A为钝角时,由(2)易知.
设BC边上的高为CD,则由三角函数的定义,得
CD=asinB=bsin(180°-A).根据诱导公式,知sin(180°-A)=sinA,
∴asinB=bsinA,即.
2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。
3、让学生总坚固验结果,得出猜想:
在三角形中,角与所对的边满足关系
正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即
.[“特例→类比→猜想”是一种常用的科学的研究思路!] (四)让学生进行各种尝试,探寻理论证实的方法。
提出问题:
1、如何把猜想变成定理呢?使学生注重到猜想和定理的区别,强化学生思维的严密性。
2、怎样进行理论证实呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证实。
3、你能找出它们的比值吗?借以检验学生是否把握了以上的研究思路。
用几何画板动画演示,找到比值,突破难点。
4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。
[学生成为发现者,成为创造者!让学生享受成功的喜悦!]
(五)反思总结,布置作业
1、正弦定理具有对称和谐美
2、“类比→实验→猜想→证实”是一种常用的研究问题的思路和方法
课下思考:三角形中还有其它的边角定量关系吗?
3、作业
(1)已知:在△ABC中,已知b=60cm,c=34cm,A=41°,解三角形.(角精确到1°,边长精确到1cm)
(2)已知:在△ABC中,a=134.6cm,b=87.8cm,c=161.7cm,解三角形.(角精确到1′).
六、板书设计:
正弦定理﹕在一个三角形中,各边和它所对角的正弦值的比相等,即。