(完整版)韦达定理教学案例

合集下载

教案韦达定理

教案韦达定理

教案韦达定理TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】教案:韦达定理(一)王伟光一、教学目标1.通过根与系数的关系的发现与推导,进一步培养学生分析、观察、归纳、猜想的能力和推理论证的能力;2.通过本节课的学习,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。

培养逻辑思维及创新思维能力。

二、教学重点、难点1.教学重点:根与系数的关系的发现及其推导.2.教学难点:韦达定理的灵活应用.x2+2x﹣4=0 3x2+2x﹣6=0 2x2﹣5x﹣3=0x 1+x2=? x1+x2=? x1+x2=?x 1x2=? x1x2=? x1x2=?问题1:对于一元二次方程的一般式ax2+bx+c=0(a≠0)是否也具备这个特征?x1+x2=-,x1·x2=,如何推导一元二次方程两根和与两根积和系数的关系?设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.∴aacbbx2421-+-=,aacbbx2422---=.()042≥-acb由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系)—韦达定理三:韦达定理内容:韦达定理说的是:设一元二次方程()2ax +bx+c=0a 0≠有二实数根12x x ,,则1212b cx +x =x x =a a-⋅,。

这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c 的关系。

其逆命题:如果12x x ,满足1212bc x +x =x x =a a-⋅,,那么12x x ,是一元二次方程()2ax +bx+c=0a 0≠的两个根也成立。

四:韦达定理应用:韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。

金鼎培训将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值; ⑤在平面几何中的应用;⑥在二次函数中的应用等。

教案韦达定理

教案韦达定理

教案:韦达定理(一)王伟光一、教学目标1.通过根与系数的关系的发现与推导,进一步培养学生分析、观察、归纳、猜想的能力和推理论证的能力;2.通过本节课的学习,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。

培养逻辑思维及创新思维能力。

二、教学重点、难点1.教学重点:根与系数的关系的发现及其推导.2.教学难点:韦达定理的灵活应用.(一)定理的发现及论证问题1:对于一元二次方程的一般式ax2+bx+c=0(a≠0)是否也具备这个特征?x 1+x2=-,x1·x2=,如何推导一元二次方程两根和与两根积和系数的关系?设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.∴a acbbx24 21-+-=,aacbbx2422---=.()042≥-acb由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系)—韦达定理三:韦达定理内容:韦达定理说的是:设一元二次方程()2ax +bx+c=0a 0≠有二实数根12x x ,,则1212b cx +x =x x =a a-⋅,。

这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c 的关系。

其逆命题:如果12x x ,满足1212bc x +x =x x =a a-⋅,,那么12x x ,是一元二次方程()2ax +bx+c=0a 0≠的两个根也成立。

四:韦达定理应用:韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。

金鼎培训将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值;⑤韦达(法国1540-1603)在平面几何中的应用;⑥在二次函数中的应用等。

(1)、不解方程求方程的两根和与两根积:已知一元二次方程,可以直接根据韦达定理求得两根和与两根积。

例题1:若x 1,x 2是一元二次方程x 2﹣7x-2007=0的两根,则x 1+x 2与x 1?x 2的值分别是【 】练习:①下列一元二次方程两实数根和为﹣4的是【 】A .x 2+2x ﹣4=0B .x 2﹣4x+4=0C .x 2+4x+10=0D .x 2+4x ﹣5=0②若关于x 的方程022=+-m x x 的一个根为1-,则另一个根为【 】 A .3- B .1- C .1 D .3(2)、求对称代数式的值:应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。

初中数学韦达定理教案

初中数学韦达定理教案

教案:初中数学韦达定理教学目标:1. 理解并掌握韦达定理的内容及应用。

2. 能够运用韦达定理解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学重点:1. 韦达定理的内容及应用。

2. 运用韦达定理解题的方法和技巧。

教学难点:1. 理解并掌握韦达定理的推导过程。

2. 灵活运用韦达定理解决实际问题。

教学准备:1. 教师准备PPT或黑板,展示韦达定理的推导过程和应用实例。

2. 准备一些练习题,用于巩固学生的理解和应用能力。

教学过程:一、导入(5分钟)1. 引导学生回顾一元二次方程的解法,例如因式分解、配方法等。

2. 提问:解一元二次方程时,我们能否直接得到方程的根与系数之间的关系呢?二、新课讲解(15分钟)1. 介绍韦达定理的背景和意义。

2. 推导韦达定理的公式:对于一元二次方程ax^2+bx+c=0(a≠0),如果方程有两个实数根x1、x2,那么x1+x2=-b/a,x1x2=c/a。

3. 解释韦达定理的推导过程,引导学生理解并掌握。

三、实例讲解(15分钟)1. 通过具体的例子,展示如何运用韦达定理解题。

2. 引导学生观察方程的根与系数之间的关系,并运用韦达定理进行解答。

四、练习与讨论(15分钟)1. 让学生独立完成一些练习题,巩固对韦达定理的理解和应用能力。

2. 鼓励学生相互讨论,共同解决问题。

五、总结与拓展(5分钟)1. 对本节课的内容进行总结,强调韦达定理的重要性和应用范围。

2. 提出一些拓展问题,激发学生的学习兴趣和思考能力。

教学反思:通过本节课的教学,学生应该能够理解和掌握韦达定理的内容及应用。

在教学过程中,要注意引导学生积极参与,鼓励他们提出问题和解决问题。

同时,通过练习题的设置,检验学生对韦达定理的理解和应用能力。

在教学过程中,要注意关注学生的学习情况,及时进行反馈和指导。

对于学习有困难的学生,可以适当给予个别辅导,帮助他们理解和掌握韦达定理。

韦达定理教案

韦达定理教案

一元二次方程根与系数的关系(韦达定理)教学设计——191403228周小凤1. 韦达公式的定义及推导。

设一元二次方程中ax²+bx+c=0(a,b,c∈R,a≠0),两根x₁、x₂有如下关系:,。

利用求根公式代入推导换算。

2. 韦达定理应用。

(1)简单练习训练求方程两根的和与积(2)经典例题a,已知方程一根,求另一根与待定系数(3)经典例题b,利用两根和,积去求相关代数式的值(4)经典例题c,根与系数的关系与根的判别式综合运用(5)课后巩固师:同学们,在我们已经学习了一元二次方程的基础上,今天我将和大家一起探究一元二次方程根与系数的关系。

首先,老师问一下大家,你们还记的一元二次方程的求根公式么?学:师:好,非常棒!一元二次方程ax²+bx+c=0(a≠0)的求根公式,不仅表示可以由方程的系数a,b,c决定根的值,而且反映了根与系数之间的联系,那么一元二次方程根与系数的联系还有其他表现方式么?学:(同学们大多答不上来)或答不清楚师:同学们,看老师的板书。

同学们最后我们得出了一个这样的关系:,这表明任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比。

以上引出一个概念“韦达定理”,是由法国数学家弗朗索瓦·韦达提出的,设一元二次方程中ax²+bx+c=0(a,b,c∈R,a≠0),两根x₁、x₂有如下关系:。

应用该定理时,我们一定要注意两个前提条件:一是a≠0,二是满足根的判别式b² - 4ac ≥0.如果当a=0,它是一个一元一次方程与我们探究的一元二次方程与根的关系无关,那么如果当b² - 4ac ‹0,无根,就没有关系上的探究了。

(1)简单练习训练求方程两根的和与积师:接下来我们就要运用到这个定理。

请同学们完成例四,有同学敢上黑板来展示么示(较为简单代入,直接对答案,给予同学表扬)(2)经典例题a,已知方程一根,求另一根与待定系数师:大家学的都很不错,下面我们将更深入的去应用韦达定理。

一元二次方程之韦达定理教学文案

一元二次方程之韦达定理教学文案
二、判别一元二次方程两根的符号。
例1:不解方程,判别方程 两根的符号。
分析:对于 来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定 或 的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定 或 的正负情况。
说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中 <0,所以可判定方程的根为一正一负;倘若 >0,仍需考虑 的正负,方可判别方程是两个正根还是两个负根。
6、已知方程 和 有一个相同的根,求 的值及这个相同的根。
三、能力提升题:
1、实数 在什么范围取值时,方程 有正的实数根?
2、已知关于 的一元二次方程
(1)求证:无论 取什么实数值,这个方程总有两个不相等的实数根。
(2)若这个方程的两个实数根 、 满足 ,求 的值。
3、若 ,关于 的方程 有两个相等的正的实数根,求 的值。
当 时, ,两方程相同,方程的另一根也相同,所以4个根的相乘积为: ;
(2)既然本题是讨论一元二次方程的实根问题,就应首先确定方程有实根的条件:

另外还应注意:求得的 的值必须满足这两个不等式才有意义。
当堂练习
1、如果关于 的方程 的两根之差为2,那么 。
2、已知关于 的一元二次方程 两根互为倒数,则 。
4、是否存在实数 ,使关于 的方程 的两个实根 ,满足 ,如果存在,试求出所有满足条件的 的值,如果不存在,请说明理由。
5、已知关于 的一元二次方程 ( )的两实数根为 ,若 ,求 的值。
6、实数 、 分别满足方程 和 ,求代数式 的值。.
二、求值题:
1、已知 是方程 的两个根,利用根与系数的关系,求 的值。

韦达定理教案

韦达定理教案

韦达定理教案教案标题:探索韦达定理教学目标:1. 了解并理解韦达定理的概念和应用。

2. 掌握使用韦达定理解决三角形相关问题的方法。

3. 培养学生的逻辑思维和问题解决能力。

教学重点:1. 韦达定理的定义和基本概念。

2. 韦达定理在解决实际问题中的应用。

教学难点:1. 学生对于韦达定理的应用理解深度。

2. 学生在解决实际问题时的思考和分析能力。

教学准备:1. 教师准备教学投影仪,展示相关示意图和计算过程。

2. 准备课本和练习题集等教材资料。

3. 给学生准备纸和笔,以及计算器。

教学过程:引入(5分钟):1. 教师可以通过一个简单有趣的问题来引起学生对韦达定理的兴趣。

例子:在平面内,有三条线段,它们分别连接一个点和一个普通的五边形的三个顶点。

这三个线段的长度分别是3、4和5,那么这个五边形的面积是多少呢?2. 引导学生思考可能的解决方法,引出韦达定理。

讲解与示范(15分钟):1. 通过示意图和具体的数学推导,讲解韦达定理的定义和公式表达方式。

2. 给出韦达定理的一些示例问题,并详细解答过程。

3. 强调韦达定理在解决实际问题中的应用,如测量三角形的边长、面积等。

实践与巩固(20分钟):1. 学生个别或分组完成一些练习题,检验对韦达定理的理解和应用能力。

2. 提供不同难度的问题,鼓励学生运用韦达定理解决实际场景中的三角形问题。

总结与拓展(10分钟):1. 教师与学生总结韦达定理的要点和应用方法。

2. 引导学生思考并讨论韦达定理的拓展应用,如四边形、多边形等。

课后作业:1. 布置一些与韦达定理相关的作业题,以巩固学生的学习成果。

2. 鼓励学生在实际生活中观察和应用韦达定理。

教学资源:1. 教师投影仪、示意图PPT等。

2. 课本和练习题集等教材。

3. 白板和彩色笔等。

评估与反馈:1. 教师针对学生的课堂表现和作业完成情况进行评估,并及时给予反馈。

2. 针对学生对韦达定理的理解程度和问题解决能力,进行个别指导和辅导。

韦达定理的教案

韦达定理的教案

韦达定理的教案教案标题:韦达定理的教案教学目标:1. 理解韦达定理的概念和应用。

2. 掌握使用韦达定理解决三角形边长和角度的方法。

3. 培养学生的逻辑思维和问题解决能力。

教学重点:1. 韦达定理的定义和公式推导。

2. 运用韦达定理解决实际问题。

3. 引导学生进行逻辑推理和问题解决。

教学难点:1. 理解韦达定理的几何意义。

2. 运用韦达定理解决复杂的三角形问题。

教学准备:1. 教师准备:教学投影仪、计算器、教学课件、实物三角形模型。

2. 学生准备:课本、笔记本、铅笔、直尺、量角器。

教学过程:引入:1. 引导学生回顾勾股定理的概念和应用,并与韦达定理进行对比。

2. 提问:你们知道韦达定理是什么吗?它有什么作用?讲解:1. 通过教学投影仪展示韦达定理的定义和公式推导过程,并解释其几何意义。

2. 引导学生理解韦达定理的应用场景,如计算三角形的边长和角度。

示范:1. 通过实物三角形模型,展示如何使用韦达定理计算三角形的边长和角度。

2. 指导学生进行模仿实践,自主解决一些简单的韦达定理问题。

练习:1. 分发练习题,包括计算三角形边长和角度的各种情况。

2. 引导学生在小组内讨论解题思路,并互相检查答案。

拓展:1. 提供一些复杂的韦达定理问题,鼓励学生进行深入思考和解决。

2. 鼓励学生在解题过程中进行逻辑推理和问题分析,培养其问题解决能力。

总结:1. 总结韦达定理的定义和应用,并强调其在几何问题中的重要性。

2. 鼓励学生将所学知识应用到实际生活中,如测量建筑物高度等。

作业:1. 布置相关的作业题目,巩固学生对韦达定理的理解和应用能力。

2. 鼓励学生在作业中提出自己的问题,并积极探索解决方法。

教学反思:1. 回顾本节课的教学过程和效果,总结教学中存在的问题和不足。

2. 提出改进措施,并在下一次教学中加以改进。

通过以上教案的设计和实施,学生将能够全面理解韦达定理的概念和应用,并能够运用韦达定理解决各种三角形问题。

同时,通过引导学生进行逻辑思维和问题解决的训练,培养其综合素质和学习能力。

韦达定理教案范文

韦达定理教案范文

韦达定理教案范文一、教案概述本教案针对高中数学课程中的韦达定理进行讲解和练习。

韦达定理是高中数学的重要内容之一,它是用来求解二次方程根的一种方法。

本教案以理论讲解和例题演练相结合的方式,旨在帮助学生深入理解韦达定理的原理和应用。

二、教学目标1.理解韦达定理的定义和原理;2.掌握使用韦达定理解二次方程的方法;3.能够灵活运用韦达定理求解实际问题。

三、教学内容1.韦达定理的定义和原理;2.韦达定理的应用;3.实际问题的解决方法。

四、教学步骤及教学方法1.引入新课(5分钟)通过引入类比,向学生介绍韦达定理,让学生从直观的例子中理解韦达定理的定义和原理。

2.理论讲解(25分钟)通过讲解例题和解题思路,详细阐述韦达定理的应用方法和步骤,包括如何列方程、如何计算韦达定理的公式、如何求解根等。

3.例题演练(15分钟)以课本上的习题为例,分组演练韦达定理的应用,教师抽取几道题目,引导学生进行讨论和解答,同时解答学生在解题过程中出现的疑惑和问题。

4.进一步拓展(10分钟)通过提供一道拓展习题,引导学生思考如何将韦达定理应用于实际问题的解决。

5.小结与作业布置(5分钟)对本节课的重点内容进行小结,鼓励学生进行课后练习,并布置相应的作业。

五、教学手段及教具教学手段:讲解、演练、互动探究。

教具:教师课件、习题、实物类比。

六、教学评估1.在课堂上观察学生的主动参与情况;2.检查学生在例题演练中的解题思路和结果;3.对学生的课堂表现进行口头评估。

七、教学资源教师课件、学生课本、习题集。

八、教学反思通过对学生课后作业的批改和教学评估,进一步了解学生对韦达定理的掌握情况。

在下节课中,可以根据学生的学习情况,进一步引导学生应用韦达定理解决更加复杂的实际问题。

同时,在讲解过程中,要注意与学生的互动,鼓励学生积极思考和提问,培养学生的解决问题的能力。

维达定理教案

维达定理教案

背景记载学校班级数学任课老师九年级数学,人民教育出版社出版2010-11-21课题名称:韦达定理及其应用教学目标:让学生进一步理解韦达定理的实质是反映出由n 个根与系数构成了n 个n 元方程组,与解一元n 次方程是完全等价的问题。

因而只利用根与系数之关系并不能解决一元n 次方程求根的问题。

只有当给出了各根之间满足的某些条件时才能应用韦选定理求方程的解集。

教学内容:教学重点和难点:重点是韦达定理的应用,难点是灵活应用韦达定理解综合性题。

课的类型:综合课教学方法:教材教具准备教学时间教学过程设计和板书设计【教学过程】一、复习提问1.韦达定理及其作用。

2.已知方程x3+p1x2+p2x+p3=0,的根为α、β、γ,则由韦达定理,得αβγ()αβαγβγ()αβγ()+ + = -p 1+ + = p 2= -p 323ìí ïî ï下面解含α、β、γ的方程组,结果说明什么问题?解:(1)×α2 得α3+α2β+α2γ=-p1α2 (4)(2)×(-α)得-α2β-αβγ-α2γ=-αp2 (5)(3)+(4)+(5)得α3+p1α2+p2α+p3=0 这个结果与原方程完全相同,说明如果我们没有办法解出原方程时,同样从这三个根与系数的关系仍不能解出它的根来,只有当给出各根之间具有某种特殊关系时,应用根与系数之关系才能求出方程的根。

二、引入新课——韦达定理的应用三、小结1.已知方程的根与系数具有某种关系时应用韦达定理转化为解方程组的问题求解,当未知数的个数少于方程组中方程个数时,要适当选择方程组求解,之后必须通过检验该解满足余下的方程才是原方程的解。

2.应用韦达定理确定方程中的参数。

作业(略)(王秋芳)。

韦达定理教案

韦达定理教案

教师一对一个性化教案学生姓名年级科目授课教师日期时间段课时授课类型新课/复习课/作业讲解课教学目标教学内容个性化学习问题解决教学重点、难点及考点分析教学过程求代数式的值求待定系数一元二次韦达定理应用构造方程方程的求解特殊的二元二次方程组根公式二次三项式的因式分解【内容分析】韦达定理:对于一元二次方程20(0)ax bx c a++=≠,如果方程有两个实数根12,x x,那么1212,b cx x x xa a+=-=说明:(1)定理成立的条件0∆≥(2)注意公式重12bx xa+=-的负号与b的符号的区别根系关系的三大用处(1)计算对称式的值例若12,x x是方程2220070x x+-=的两个根,试求下列各式的值:(1) 2212x x+;(2)1211x x+;(3)12(5)(5)x x--;(4)12||x x-.解:由题意,根据根与系数的关系得:12122,2007x x x x+=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x+=+-=---=(2) 121212112220072007x xx x x x+-+===-(3)121212(5)(5)5()2520075(2)251972x x x x x x--=-++=---+=-(4) 22212121212||()()4(2)4(2007)22008x x x x x x x x-=-=+-=---=说明:利用根与系数的关系求值,要熟练掌握以下等式变形:教学过程222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-, 2121212||()4x x x x x x -=+-,2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【课堂练习】1.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值为_________2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=3.已知方程2x 2-3x+k=0的两根之差为212,则k= ;4.若方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;5.若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;6. 设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值: (1)x 12x 2+x 1x 22(2) 1x 1 -1x 27.已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值:2221x 1x 1+(2)构造新方程理论:以两个数为根的一元二次方程是。

(完整版)韦达定理的应用

(完整版)韦达定理的应用

模块一 根的判别式1、定义:运用配方法解一元二次方程过程中得到 2224()24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=注:一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式. 2、判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则 ①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b acx -±-. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.练习:运用判别式,判定方程实数根的个数【例1】 不解方程,判断下列方程的根的情况:(1)22340x x +-=; (2)20ax bx +=(0a ≠)【巩固】不解方程,判别一元二次方程2261x x -=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定根的判别式与韦达定理【巩固】不解方程判定下列方程根的情况:(1)22340x x +-=; (2)232x +=; (321x x +=;(4)22(21)220m x mx +-+=;(5)2210x ax a ++-=;(6220+=;(7)4(1)30x x +-=; (8)2(1)(2)x x m --=【例2】 已知a ,b ,c 是不全为0的3个实数,那么关于x 的一元二次方程2222()()0x a b c x a b c ++++++= 的根的情况( ).A .有2个负根B .有2个正根C .有2个异号的实根D .无实根利用判别式建立等式、不等式,求方程中参数值或取值范围【例3】 m 取什么值时,关于x 的方程222(3)6x mx +-=有两个相等的实数根【巩固】如果关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,那么k 的取值范围是( )A . 1k <B . 0k ≠C .10k k <≠且D . 1k >【巩固】方程2610kx x -+=有两个不相等的实数根,则k 的取值范围是【巩固】若关于x 的二次方程2(1)220m x mx m -++-=有两个不相等的实数根,则m 的取值范围是【巩固】若关于x 的一元二次方程2(1)210k x x ++-=有实数根,则k 的最小整数值为【巩固】已知方程22(21)10m x m x +++=有实数根,求m 的范围.【例4】 关于x 的一元二次方程2(12)10k x ---=有两个不相等的实数根,求k 的取值范围.【巩固】关于x 的方程210x ++=有两个不相等的实数根,则k 的取值范围( ) 【巩固】已知关于x 的方程222(1)50x m x m ++++=有两个不相等的实数根,化简:|1|m -【巩固】已知关于x 的一元二次方程20x m -=有两个不相等的实数根,求m 的取值范围.【巩固】k 为何值时,方程2(1)(23)(3)0k x k x k --+++=有实数根.【例5】 关于x 的方程()26860a x x --+=有实数根,则整数a 的最大值是 .【巩固】若方程222(1)450x a x a a ++++-=有实数根,求:正整数a .【例6】 已知关于x 的方程()()2212102x a b x b b -+--+=有两个相等的实数根,且a 、b 为实数,则32a b +=________.【巩固】当a b 、为何值时,方程()2222134420x a x a ab b ++++++=有实根?【例7】 已知a ,b ,c 为正数,若二次方程20ax bx c ++=有两个实数根,那么方程22220a x b x c ++=的根的情况是( )A .有两个不相等的正实数根B .有两个异号的实数根C .有两个不相等的负实数根D .不一定有实数根【巩固】若方程2(2)2(1)0m x m x m +-++=只有一个实数根,那么方程2(1)220m x mx m +-+-=( ).A .没有实数根B .有2个不同的实数根C .有2个相等的实数根D .实数根的个数不能确定通过判别式,证明与方程相关的代数问题【例8】 对任意实数m ,求证:关于x 的方程222(1)240m x mx m +-++=无实数根.【巩固】求证:关于x 的一元二次方程2(2)10x m x m -+++=有两个实数根.【巩固】已知实数a 、b 、c 、r 、p 满足2pr >,20pc b ra -+=,求证:一元二次方程220ax bx c ++= 必有实根.【巩固】证明:无论实数m 、n 取何值时,方程2()0mx m n x n +++=都有实数根【巩固】已知:方程()22250mx m x m -+++=没有实数根,且5m ≠,求证:()()25220m x m x m --++=有两个实数根.模块二 韦达定理如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12bx x a +=-,12c x x a=.(隐含的条件:0∆≥)特别地,当一元二次方程的二次项系数为1时,设1x ,2x 是方程20x px q ++=的两个根,则12x x p +=-,12x x q ⋅=. 利用韦达定理求代数式的值【例9】 不解方程224)0x x +--,求两根之和与两根之积【巩固】设方程24730x x --=的两个根为1x 、2x ,不解方程求下列各式的值 (1)12(3)(3)x x --; (2)211211x xx x +++; (3)12x x -【巩固】已知方程22430x x +-=的两个根为1x 、2x (1)12x x += ; (2)12_______x x ⋅=; (3)1211_______x x +=; (4)2212_______x x += 【巩固】已知α、β是方程2520x x ++=的值.利用韦达定理求参数的值【例10】方程2610kx x -+=有两个不相等的实数根,则k 的取值范围是 【例11】若3-、2是方程20x px q -+=的两个根,则________p q +=【巩固】若方程210x px ++=的一个根为1,则它的另一根等于 ,p 等于【巩固】关于x 的方程2210x bx +-=的一个根为2-,则另一个根是 ,______b =【巩固】方程2380x x m -+=的两个根之比为3:1,则_______m =【巩固】已知2240x x k -+=的一个根,求另一个根和k 的值【例12】已知方程240x x m ++=的两个根的平方和是10,求m 的值。

(完整版)韦达定理教学案例

(完整版)韦达定理教学案例
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
教学案例
基本信息
题目
一元二次方程根与系数的关系
学科
数学
年级
九年级
教材内容
人教版九年级上册第二十三章第3节:一元二次方程根与系数的关系
个人信息
设计者
姓名
单位
徐跃鉴
江西省万年县石镇中学
教材分析
一元二次方程根与系数的关系的知识内x+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
回顾总结
板书设计
一元二次方程根与系数的关系
如果ax2+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。
问题6.在方程ax2+bx+c=0(a≠0)中,a、b、c的作用吗?
①二次项系数a是否为零,决定着方程是否为二次方程;
②当a≠0时,b=0,a、c异号,方程两根互为相反数;
③当a≠0时,△=b2<-4ac>可判定根的情况;
教学目标
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

人教版九年级数学上册教案:21.2.4韦达定理

人教版九年级数学上册教案:21.2.4韦达定理

武陟县实验中学教育集团群体智慧教学活动案学 科 数学 级九级设计者苗小林 授课人:刘小娟时 间 9.7课 题 一元二次方程根与系数的关系计划学时1重 点 理解根与系数的关系及应用课 标 要 求 知道一元二次方程根与系数的关系课 时 目 标 掌握一元二次方程根与系数的关系,能够灵活解决一些简单的有关的一元二次方程问题。

引 桥 突 破 公式法的求根公式教 法 先学后用,学用结合 学 法 先学后用,学用结合教学内容 及过程群体智慧设计个性化批注一 :温故知新:一元二次方程的一般式:(a,b,c 为常数,a≠0)一元二次方程的解法:直接开平方法, 配方法, 公式法,因式分解法一元二次方程的求根公式: (a ≠0, b2-4ac ≥0)二:探知求疑1.阅读提示(阅读教材15——16页) 小组交流重点内容和困惑。

2. 完成基训课前预习和课堂练习。

3. 学生扮演课堂练习5和课后训练2里的五个小题。

4.归纳韦达定理:通过三个提问,复习旧知,做好铺垫。

学生自主完阅读课本,动手推到公式。

总结规律,得出韦达定理。

20ax bx c ++=X=20ax bx c ++=两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比。

若ax2+bx+c=0(a≠0)的两个根是x1,x2,用式子表示你发现的规律为X1+x2 = X1x2=注意事项:应用一元二次方程根与系数的关系时,应注意:(1)根的判别式,(2)二次项系数不为零,才能应用根与系数的关系。

三:巩固提高不解方程求下列方程两个根的和与积X2-3x=15 3x2+2=1-4x5x2-1=4x2+x 2x2-x+2=3x-1判断对错,如果错了,说明理由。

1) 2x2-11x+4=0两根之和11,两根之积4。

2)x2+2=0两根之和0,两根之积2。

3)x2+x+1=0两根之和-1,两根之积1。

四:探究内化已知关于的方程的一个根为,则实数的值为()A.1B.C.2D.关于x的一元二次方程3x²-5x+ (m-1)=0,当m =___时,方程的两根为互为倒数.拓展延伸已知方程X2+kX+k+2=0的两个根是X1、X2,且X12+X22 = 4,求k的值。

05.韦达定理学案

05.韦达定理学案

2016届自主招生数学教学内容05.韦达定理学案【教学目标】1.通过具体特例获得韦达定理,从而渗透归纳猜想的思想.2.会用韦达定理解有关一元二次方程根与系数关系的问题,渗透化归的思想. 【教学重点】通过具体特例获得韦达定理,从而渗透归纳猜想的思想. 【教学难点】会用韦达定理解有关一元二次方程根与系数关系的问题. 【教学过程】 一.复习引入 1.问题(1)解方程0322=--x x ;051892=+-x x ,并分别求两根之和21x x +与两根之积21x x .问题(2)分别考察21x x +与21x x 方程系数的关系.2.归纳猜想:若21,x x 是一元二次方程)04,0(022≥-≠=++ac ba c bx ax 的两个根,则21x x +, 21x x 与c b a ,,的关系.二.韦达定理 1.韦达定理:若21,x x 是一元二次方程)04,0(022≥-≠=++ac b a c bx ax 的两个根,则ab x x -=+21,ac x x =21.反之,如果ab x x -=+21,ac x x =21,则21,x x 是一元二次方程)0(02≠=++a c bx ax 两个根. 2.学生给出证明:3.练习1:若下列方程有解,试分别写出两根之和与两根之积.(1)06322=-+x x ; (2)01442=+-x x ; (3)06322=++x x .练习2::已知方程022=++c bx x 两根和为23-,两积为-3,求a , b 的值.三.定理应用例1.已知21,x x 是方程02=++m mxx 的两个根.(1)求m 的取值范围;(2)当2-=m 时,求2221x x +的值;(3*)求2221x x +的取值范围.例2.已知抛物线322-+-=mx x y 与x 轴交于不同两点A 、B .(1)若A 点横坐标为1,求B 点的横坐标; (2)若A 、B 两点间距离为1,求m 的值.(或条件改为:方程0322=-+-mx x两根为21,x x )练习:已知方程06322=-+x x 两根为21,x x ,分别求221)(x x -;2221x x +;1221x x x x +;3231x x +的值.例3*.已知方程01)1(2=+-+x m x 有两个不同的实数解21,x x .(1)求实数m 的取值范围;(2)若0,021>>x x ,求m 的取值范围.四.小结与作业1.小结:韦达定理实质:反映了一元二次方程)04,0(022≥-≠=++ac b a c bx ax 根与系数的关系,在解决实际问题过程中,往往不通过求解方程的根而解决问题.注意的是:定理的前提是:方程有解(如例1、例3). 今后常会碰到:用a , b , c 表示2221x x +;||21x x -等.2.可给出韦达定理其他证明: (1)0,0122121=++=++c bx ax c bx ax 两式相减求得21x x +(注意21x x =的讨论);两式相加可得21x x . (2)由))((212x x x x a c bxax --=++比较可得.3.作业:见讲义。

《韦达定理》微课教学设计

《韦达定理》微课教学设计
教学
方法
微课讲解,运用公式求解例题,通过例题加深对公式的认识
教学
总结
通过讲解韦达定理公式及应用,大大提高了一元二次方程的解题效率
教学
反思
韦达定理的前提条件是方程有实数根,在这一点上讲得还不够透彻。
教学过程一导入韦达定理二主要讲解内容三总结韦达定理的公式解法与重要性课件设计教学方法教学总结教学反思运用ppt和录屏软件讲解公式和例题微课讲解运用公式求解例题通过例题加深对公式的认识通过讲解韦达定理公式及应用大大提高了一元二次方程的解题效率韦达定理的前提条件是方程有实数根在这一点上讲得还不够透彻
《韦达定理》微课教学设计微课来自称韦达定理知识来源
教材
教学时间
4分26秒
所属学科
数学
授课对象
初二
执教人
陈老师
教学
背景
学习一元二次方程a +bx+c=0 (a≠0),探究一元二次方程的根与系数的关系
教学
目标
知识与技能
自我探究的学习能力,应用理论于实践的能力
过程与方法
导入韦达定理公式,通过例题进一步加深了解
情感态度
与价值观
谨慎,认真
教学
重点
韦达定理公式
教学
难点
韦达定理公式,方程判别式△= -4ac≥0
教学
准备
研究一元二次方程的根与方程系数的关系
学生
分析
通过研究发现一元二次方程的两个根的和等于 ,两个根的乘积等于 。
教学
过程
一、导入韦达定理
二、主要讲解内容
三、总结韦达定理的公式解法与重要性
课件
设计
运用PPT和录屏软件讲解公式和例题

韦达定理教案(大全五篇)

韦达定理教案(大全五篇)

韦达定理教案(大全五篇)第一篇:韦达定理教案教案:韦达定理一、教学目标1.通过根与系数的关系的发现与推导,进一步培养学生分析、观察、归纳、猜想的能力和推理论证的能力;2.通过本节课的学习,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。

培养逻辑思维及创新思维能力。

二、教学重点、难点1.教学重点:根与系数的关系的发现及其推导.2.教学难点:韦达定理的灵活应用.三、教学过程(一)定理的发现及论证提出问题:已知α,β是方程2x2-3x-1=0的两根,如何求α3+β3的值1.你能否写出一个一元二次方程,使它的两个根分别为1)2和3 2)—4和7问题1:从求这些方程的过程中你发现根与各项系数之间有什么关系?观察、思考、探索:2x-5x+3=0,这个方程的两根之和,两根之积与各项系数之间有什么关系?请猜想? 2问题2;对于一元二次方程的一般式ax+bx+c=0(a≠0)是否也具备这个特征?22结论1.如果ax+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=-bc,x1x2=aa结论2.如果方程x+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q. 2结论1具有一般形式,结论2有时给研究问题带来方便.(二)定理的应用例1、关于x的方程x-2x+m=0 的一根为2,求另一根和m的值。

2例2.已知α,β是方程2x2-3x-1=0的两根,不解方程,求下列各式的值.11(1)+(2)(α+1)(β+1)αβ(3)α2+β2(5)α+β33(4)|α-β|例2、已知x1,x2是关于x的方程x2-6x+k=0的两个实数根且x1x2-(x1+x2)=115,求k值。

例3已知实数a,b分别满足a+2a=2,b+2b=2且a≠b,求222211+的值 ab(三)总结一元二次方程根与系数的关系的推导是在求根公式的基础上进行.它深化了两根的和与积和系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,为进一步学习使用打下坚实基础.韦达定理的内容2①如果ax+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=- ba,1·2=xxca②如果方程x+px+q=0的两个根是x1,x2,那么 x1+x2=-p,x1·x2=q. 2第二篇:韦达定理代数式的值教案根与系数的关系2教学目标:1、会利用韦达定理求出与根有关的代数式的值2、学会灵活多变的代数式变形3、会求作新方程一、知识回顾1、设、代数式是方程=。

根的判别式和韦达定理(教案)

根的判别式和韦达定理(教案)
通过这次教学反思,我深刻认识到教学过程中的不足,也明确了今后改进的方向。在今后的工作中,我将不断努力,提高自己的教学水平,为学生们提供更优质的教学服务。
(2)韦达定理的掌握和运用:韦达定理描述了一元二次方程根与系数之间的关系,即x1+x2=-b/a,x1x2=c/a。教师应强调韦达定理的记忆和应用,通过实际例题让学生学会运用韦达定理求解一元二次方程的根。
举例:方程x^2-3x-4=0,根据韦达定理,x1+x2=-(-3)/1=3,x1x2=(-4)/1=-4。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了根的判别式和韦达定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对这两个数学工具的理解。我希望大家能够掌握这些知识点,并在解决一元二次方程相关问题时能够灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三、教学难点与重点
1.教学重点
(1)根的判别式的理解和应用:本节课的核心内容是根的判别式Δ=b^2-4ac,以及其与一元二次方程根的关系。教师应重点讲解判别式的三种情况,并通过实例让学生掌握如何利用判别式判断一元二次方程的根的性质。
举例:方程x^2-5x+6=0,判别式Δ=(-5)^2-4×1×6=25-24=1>0,因此方程有两个不相等的实数根。
3.重点难点解析:在讲授过程中,我会特别强调根的判别式的推导和韦达定理的应用这两个重点。对于难点部分,我会通过实际例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与根的判别式和韦达定理相关的实际问题。

4(新课)高一数学暑假班教案-韦达定理 -学生版

4(新课)高一数学暑假班教案-韦达定理 -学生版

高中数学韦达定理1、概念:形如()002≠=++a c bx ax 的方程为一元二次方程;2、配方法:对一元二次方程进行配方得到方程:222442a ac b a b x -=⎪⎭⎫ ⎝⎛+3、判别式∆从配方之后的方程可以看出:原方程有没有解,取决于代数式ac b 42-的正负;基于ac b 42-的重要性,令ac b 42-=∆称为该一元二次方程的判别式,它决定了一元二次方程解的个数问题;(1)若0>∆,原方程有两个不等的实数根,这两个根是a ac b b x 2421-+-=a ac b b x 2422---=;(2)若0=∆,原方程有两个相等的实数根,ab x x 221-==;(3)若0<∆,原方程没有实根;4、韦达定理当上述一元二次方程有实数解时,a ac b b x 2421-+-=a ac b b x 2422---=,(两个相等实根的情形也可以写成这样的形式)现在考察21x x +,21x x ⋅;利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-12121211x x x x x x ++=22121212()()4x x x x x x -=+-12||x x -=教学目标1、了解一元二次方程,并会用配方法求解一元二次方程;2、掌握一元二次方程的根的判别式∆,熟知根与∆之间的关系;3、掌握根与系数之间的关系——韦达定理;4、会用根与系数关系进行更深一层次的研究.重点1、根与系数之间的关系——韦达定理;2、韦达定理常见题型及解题思路.难点1、根与系数之间的关系——韦达定理;2、韦达定理常见题型及解题思路.(一)判别式,方程的解,韦达定理,运用韦达定理求值例1、若关于x 的一元二次方程210kx x -+=有实数根,则k 的取值范围是____________.例2、按指定的方法解方程()21(9)250x +-=(直接开平方法)()226160x x --=(配方法)()()()33121x x x -=-(因式分解法)()242720x x -+=(公式法)例3、已知关于x 的方程()24110x m x m +++-=.(1)求证:不论m 为任何实数,方程总有两个不相等的实数根;(2)若方程两根分别为1x 和2x ,且满足12111x x +=,求m 的值.例4、求证:若1x 和2x 分别是一元二次方程)0(02≠=++a c bx ax ,则ax x ∆=-21(其中ac b 42-=∆).例5、设12x x ,是方程22630x x -+=的两个根,利用根与系数的关系,求下列各式的值.(1)221212x x x x +;(2)212()x x -;(3)122111x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭;(4)221211x x +.例6、(1)设a ,b 是方程220190x x +-=的两个实数根,则22a a b ++的值为;(2)已知α、β是方程2520x x ++=的两根,求+的值例7、关于x 的一元二次方程22(23)10x k x k --++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)求证:10x <,20x <;(3)若1212||||6x x x x --=,求k 的值.例8、已知关于x 的一元二次方程2(21)10x k x k -+++=有二个不相等的实根1x 和2x ,(1)若122152xx x x +=,求k 的值;(2)求22212(1)(1)22m x x k k =--++的最大值.1、(1)如果-5是方程25100x bx +-=的一个根,求方程的另一个根及b 的值;(2)如果2是方程240x x c -+=的一个根,求方程的另一个根及c 的值.2、1x 、2x 是方程22350x x --=的两个根,不解方程,求下列代数式的值:(1)2212x x +(2)12x x -(3)2212233x x x +-3、设α、β是方程2201320x x +-=的两根,则22(20161)(20161)ααββ+-+-=.4、设α、β是方程(1)(4)5x x +-=-的两实数根,则33βααβ+=.5、已知一元二次方程220x x m -+=.(1)若方程有两个实数根,求m 的范围.(2)若方程的两个实数根为1x ,2x ,且1233x x +=,求m 的值.6、已知关于x 的方程222320x mx m m +++-=有两个实数根1x ,2x .(1)求m 的取值范围;(2)当m 为何值时,使得21212()x x x x ++的值为54.7、已知关于x 的方程22(2)04m x m x ---=.(1)求证:无论m 为何值,方程总有两个不相等实数根.(2)设方程的两实数根为1x ,2x ,且满足21212()||||2x x x x +=-+,求m 的值.(二)利用韦达定理逆定理,构造一元二次方程例9、求方程组1128x yxy+=⎧⎨=⎩①②的解.例10、设02=+-qpxx的两实根为βα,,若以33,βα为根的一元二次方程仍是02=+-qpxx,求所有这样的方程.例11、设方程02=++bcaxx和方程02=++acbxx)0(≠abc,有且仅有一个公共根,求以其余两根为根的方程.例12、若实数,a b满足22850,850a ab b-+=-+=,则1111b aa b--+--的值是()A.20-B.2C.2或20-D.12或20-例13、若1ab≠,且有25200190a a++=及29200150b b++=,则ab=,1ab+=.1、阅读材料:材料1.若一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则12b x x a +=-,12c x x a=材料2.已知实数m 、n 满足210m m --=、210n n --=,且m n ≠,求n m m n +的值.解:由题知m 、n 是方程210x x --=的两个不相等的实数根,根据材料1得1m n +=,1mn =-∴222()21231n m m n m n mn m n mn mn ++-++====--根据上述材料解决下面问题:(1)一元二次方程2430x x --=的两根为1x 、2x ,则12x x +=,12x x =.(2)已知实数m 、n 满足22210m m --=、22210n n --=,且m n ≠,求22m n mn +的值.(3)已知实数p 、q 满足232p p =+、2231q q =+,且2p q ≠,求224p q +的值.2、设实数,s t 分别满足2199910s s ++=,299190t t ++=并且1st ≠,求41st s t ++的值.3、已知实数m 、n 满足23650m m +-=,23650n n +-=,求m nn m +的值.。

韦达定理的应用学案

韦达定理的应用学案

«韦达定理的应用»学案学习目标1、 理解韦达定理的本质,会用两根和、两根积表示代数式;2、 会对韦达定理进行变形使用,会用韦达定理的逆定理;3、 理解韦达定理与一元二次方程根的正负的关系.学习重难点重点:韦达定理的应用难点:韦达定理的变形应用及逆定理应用学习方法自主学习与合作学习相结合学习过程一、 知识梳理韦达定理:若一元二次方程20 (0)ax bx c a ++=≠的两根根为12,x x ,则12+=x x ,12=x x .韦达定理成立的前提是 . 小试牛刀:2221212121,230=+=_______.x x x x x x x x --=⋅、若是方程的两个根,则______;212122,301)(-1)=x x x x x x +-=-⋅、若是方程的两个根,则(________.2360x x kx +-=、已知关于的方程5的一个根是2,则另一个根为________.二、 知识提升1、 巩固提升例1 已知关于x 的方程222(2)40x m x m +-++=有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值变式训练1 设方程22530xx +-=的两根为12,,x x (1)求12x x -;(2)求221211.x x +思考:你可以求3312x x +吗?例2 已知αβ,是方程210x x --=的两个实数根,求代数式22(2)ααβ+-的值.变式训练 2 设,m n 是方程220180x x +-=的两个实数根,则22m m n ++的值为 .2、 变式提升例3 如果,a b 互质,且22130,130a a m b b m -+=-+=,那么b a a b +的值为多少?变式训练3 已知两个数的和为2√3,积为2,求这两个数.3、 应用提升例4 (1)已知关于x 的一元二次方程2(1)0x x a a -+-=有两个不等的实根,求实数a 的取值范围.(2)已知关于x 的一元二次方程2(1)0x x a a -+-=有两个不等的正根,求实数a 的取值范围.变式训练4(1)已知关于x 的一元二次方程2(1)0a x x a --+=有两个不等的实根,求实数a 的取值范围.(2)已知关于x 的一元二次方程2(1)0a x x a --+=有一个正根一个负根,求实数a 的取值范围.三、课堂小结1、 使用韦达定理时要注意些什么?2、你认为本节课哪些地方值得你学习?四、作业1、已知关于x 的方程x 2-(2k-3)x+k 2+1=0.(1)当k 为何值时,此方程有实数根;(2)若此方程的两个实数根x 1,x 2满足︱x 1 ︱+ ︱x 2︱=3,求 k 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程
教学环节
教师活动
预设学生行为设计Βιβλιοθήκη 图问题引探解下列方程:
2x2+5x+3=0 3x2-2x-8=0
并根据问题2和以上的求解填写下表
请观察上表,你能发现两根之和、两根之积与方程的系数之间有什么关系吗?
问题4.请根据以上的观察发现进一步猜想:方程ax2+bx+c=0(a≠0)的根x1,x2与a、b、c之间的关系:____________。
学情分析
1.学生已学习用求根公式法解一元二次方程,。
2.本课的教学对象是初中三年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征,
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
4、使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。
⑤当a≠0,c=0时,方程必有一根为0。
学生交流探讨
本设计采用“实践——观察——发现——猜想——证明”的过程,使学生既动手又动脑,且又动口,教师引导启发,避免注入式地讲授一元二次方程根与系数的关系,体现学生的主体学习特性,培养了学生的创新意识和创新精神。
尝试发展
根据根与系数的关系写出下列方程的两根之和与两根之积(方程两根为x1,x2、k是常数)
④当a≠0,b2<-4ac>≥0时,x1+x2=,x1x2=。
⑤当a≠0,c=0时,方程必有一根为0。
学生学习活动评价设计
本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力
教学反思
1、一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。
问题5.你能证明上面的猜想吗?请证明,并用文字语言叙述说明。
分小组讨论以上的问题,并作出推理证明。
若方程ax2+bx+c=0(a≠0)的两根为
x1=,x2=。

x1+x2= + =;
x1x2= ·
此得出一元二次方程的根与系数的关系;还可以让学生用自己的语言表述这种关系,来加深理解和记忆。
这个关系是一个法国数学家韦达发现的,所以也称之为韦达定理。
探索发现
问题6.在方程ax2+bx+c=0(a≠0)中,a、b、c的作用吗?(引导学生反思性小结)
①二次项系数a是否为零,决定着方程是否为二次方程;
②当a≠0时,b=0,a、c异号,方程两根互为相反数;
③当a≠0时,△=b2<-4ac>可判定根的情况;
④当a≠0,b2<-4ac>≥0时,x1+x2=,x1x2=。
教学案例
基本信息
题目
一元二次方程根与系数的关系
学科
数学
年级
九年级
教材内容
人教版九年级上册第二十三章第3节:一元二次方程根与系数的关系
个人信息
设计者
姓名
单位
徐跃鉴
江西省万年县石镇中学
教材分析
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
1)2x2-3x+1=0 x1+x2= ________ x1x2= _________
(2)3x2+5x=0 x1+x2= ________ x1x2= __________
(3)5x2+x-2=0 x1+x2= _________ x1x2= __________
(4)5x2+kx-6=0 x1+x2= _________ x1x2= __________
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重点和难点
1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
回顾总结
板书设计
一元二次方程根与系数的关系
如果ax2+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。
问题6.在方程ax2+bx+c=0(a≠0)中,a、b、c的作用吗?
①二次项系数a是否为零,决定着方程是否为二次方程;
②当a≠0时,b=0,a、c异号,方程两根互为相反数;
③当a≠0时,△=b2<-4ac>可判定根的情况;
此试一试、巩固知识
拓展创新
利用根与系数的关系,求一元二次方程2x2-3x-1=0的两个根的(1)平方和,(2)倒数和。
讨论:解上面问题的思路是什么?
x12+ x22=( x1+x2)2-2 x1x2;
将平方和、倒数和转化为两根和与积的代数式
师生共同归纳小结
本课主要研究了什么?
1、方程的根是由系数决定的。2、a≠0时,方程ax2+bx+c=0是一元二次方程。3、当a≠0,b2-4ac≥0时,x1+x2=,x1x2=。4、b2-4ac的值可判定根的情况。5、方程根与系数关系的有关应用。
教学目标
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
相关文档
最新文档