三角函数易错题-----教师版
高中三角函数精选易错题-含答案
![高中三角函数精选易错题-含答案](https://img.taocdn.com/s3/m/5b7246c5250c844769eae009581b6bd97f19bc7f.png)
高中三角函数精选易错题-含答案一、选择题:一、选择题:1.为了得到函数÷øöçèæ-=62sin p x y 的图象,可以将函数x y 2cos =的图象(的图象( )A 向右平移6pB 向右平移3pC 向左平移6pD 向左平移3p2.函数÷øöçèæ×+=2tan tan 1sin x x x y 的最小正周期为的最小正周期为 ( ) A p B p 2 C 2pD23p3.曲线y=2sin(x+)4p cos(x-4p )和直线y=21在y 轴右侧的交点按横坐标从小到大依次记为P1P1、、P2P2、、P3P3……,则……,则|P2P4|等于等于 ( ))A .pB .2pC .3pD .4p4.下列四个函数y=tan2x y=tan2x,,y=cos2x y=cos2x,,y=sin4x y=sin4x,,y=cot(x+4p ),),其中以点其中以点其中以点((4p ,0),0)为中心对称的三角函数有为中心对称的三角函数有( )个)个)个A .1B .2C .3D .45.函数y=Asin(w x+j )(w >0,A ¹0)0)的图象与函数的图象与函数y=Acos(w x+j )(w >0, A ¹0)0)的图象在区间的图象在区间的图象在区间(x0,x0+(x0,x0+w p )上(上()A .至少有两个交点.至少有两个交点B .至多有两个交点.至多有两个交点C .至多有一个交点.至多有一个交点D .至少有一个交点.至少有一个交点6. 在D ABC 中,中,2sinA+cosB=22sinA+cosB=22sinA+cosB=2,,sinB+2cosA=3,则ÐC 的大小应为的大小应为( ) ( )A .6p B .3p C .6p 或p 65D .3p 或32p7.已知tan a tan b 是方程x2+33x+4=0的两根,若a ,bÎ(-2,2pp),则a +b =( ))A .3p B .3p 或-p 32C .-3p 或p 32D .-p 321010.. ABC D 中,A 、B 、C 对应边分别为a 、b 、c .若x a =,2=b ,°=45B ,且此三角形有两解且此三角形有两解,,则x 的取值范围为值范围为 ( ) ( )A.)22,2(B.22C.),2(+¥D. ]22,2( 1111..已知函数已知函数 y=sin( y=sin(w x+F )与直线y =21的交点中距离最近的两点距离为3p,那么此函数的周期是( ))p]]]2214.函数.函数]324pp pp pppk21-k21-k 21-21k -p p p22,22p个单位长度,再将所得图象作关于π-π) 2x+ 2π2π) ])3 )3xx cossin]p](](p ]]],2)3,2)3的最小正周期为sin sin ppp,43pp 23724p p b a +aa3])p的值域是的值域是 .的值域为.a](3(tan 3)的最小正周期是的最小正周期是 q q sin 1sin 1+-)cos(p上述四个命题中,正确的命题是上述四个命题中,正确的命题是 ④ 1-t 22的取值范围是)(p )的整数倍。
高中数学三角函数易错题
![高中数学三角函数易错题](https://img.taocdn.com/s3/m/1703fb6184868762cbaed561.png)
高中数学易做易错题 专题一:三角比1.假设角α终边上一点P 的坐标为〔θcos ,θsin 〕〔Z k k ∈+≠,2ππθ〕,那么θα-=。
错解:由θαtan tan =得πθαk =-〔Z k ∈〕。
正解:同时θαsin sin =,θαcos cos =,∴πθαk 2=-〔Z k ∈〕。
2.βαβαtan 3tan ,sin 2sin ==,求α2cos 。
错解:由1cot csc 22=-ββ消去β得1cot 9csc 422=-αα,解得83cos 2=α。
分析:遗漏0sin =α的情形。
还有1cos 2=α的情形。
3.α、β∈〔0,π〕,135)sin(,212tan=+=βαα,求βcos 。
错解:544112122tan 12tan 2sin 2=+⨯=+=ααα,534114112tan 12tan 1cos 22=+-=+-=ααα ∵α、β∈〔0,π〕,∴1312169251)(sin 1)cos(2±=-±=+-±=+βαβα, ∴αβααβααβαβsin )sin(cos )cos(])cos[(cos +++=-+=∴6516cos -=β,或6556cos =β。
分析:∵)sin(13554sin βαα+=>=,∴2πβα>+,∴1312)cos(-=+βα,∴6516cos -=β。
4.设πα<<0,21cos sin =+αα,那么α2cos 的值为。
错解:432sin -=α,∵πα220<<,∴472cos ±=α。
正解:∵0cos ,0sin <>αα且021cos sin >=+αα, ∴432παπ<<,∴232παπ<<,∴472cos -=α。
4-1.π<≤=+x x x 0,137cos sin ,那么=x tan 。
三角函数易错题
![三角函数易错题](https://img.taocdn.com/s3/m/1215da8fcc22bcd126ff0cfa.png)
高中数学易做易错题(三角函数)1.若角α终边上一点P 的坐标为(θcos ,θsin )(Z k k ∈+≠,2ππθ),则θα-= 。
错解:由θαtan tan =得πθαk =-(Z k ∈)。
正解:同时θαsin sin =,θαcos cos =,∴πθαk 2=-(Z k ∈)。
2.已知βαβαtan 3tan ,sin 2sin ==,求α2cos 。
错解:由1cot csc 22=-ββ消去β得1cot 9csc 422=-αα,解得83cos 2=α。
分析:遗漏0sin =α的情形。
还有1cos 2=α的情形。
3.已知α、β∈(0,π),135)sin(,212tan=+=βαα,求βcos 。
错解:544112122tan12tan2sin 2=+⨯=+=ααα,534114112tan12tan 1cos 22=+-=+-=ααα∵α、β∈(0,π),∴1312169251)(sin 1)cos(2±=-±=+-±=+βαβα,∴αβααβααβαβsin )sin(cos )cos(])cos[(cos +++=-+= ∴6516cos -=β,或6556cos =β。
分析:∵)sin(13554sin βαα+=>=,∴2πβα>+,∴1312)c o s (-=+βα,∴6516cos -=β。
4.设πα<<0,21cos sin =+αα,则α2cos 的值为 。
错解:432sin -=α,∵πα220<<,∴472cos ±=α。
正解:∵0cos ,0sin <>αα且021cos sin >=+αα,∴432παπ<<,∴232παπ<<,∴472cos -=α。
4-1.已知π<≤=+x x x 0,137cos sin ,则=x tan 。
第五章 三角函数典型易错题集(解析版)
![第五章 三角函数典型易错题集(解析版)](https://img.taocdn.com/s3/m/58d78b0c657d27284b73f242336c1eb91a3733d2.png)
第五章 三角函数典型易错题集易错点1.忽略顺时针旋转为负角,逆时针旋转为正角。
【典型例题1】(2022·全国·高一专题练习)将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是( ) A .6πB .3π C .6π-D .3π-【错解】B将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ⨯=. 点评:学生对角的理解还是局限在0360之间,把角都当成正数,容易忽视角的定义,顺时针旋转为负,逆时针旋转为正。
【正解】D 【详解】将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ-⨯=-. 故选:D.易错点2.在三角函数定义中,忽略点坐标值的正负。
【典型例题2】(2022·湖北襄阳·高一期中)设α是第三象限角,(),4P x -为其终边上的一点,且1cos 5x α=,则tan α=( ) A .43-或43B .34C .43D .34-【错解】A解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:3x =±,所以(3,4)P ∴--或者(3,4)P ∴-,所以44tan 33α-∴==-或者44tan 33α-∴==-点评:学生在解此类问题时往往忽略了角α15x=方程时容易造成两种错误:①293a a =⇒=,这类错误往往学生只能看到正根,没有负根。
②第二类错误,本题也解出了3x =±,但是忽视了本题α是第三象限角,此时x 是负数,要舍去其中的正根。
【答案】C 【详解】解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:0x =或3x =±, 又α是第三象限角,0x ∴<,3x ∴=-,(3,4)P ∴--, 44tan 33α-∴==-. 故选:C .易错点3.分数的分子分母同乘或者同除一个数,分数的值不变(分数基本性质)【典型例题3】(2022·安徽省五河第一中学高二月考)已知tan 2θ=则22sin sin cos 2cos θθθθ+-的值为________. 【错解】4222222sin sin cos 2cos (sin sin cos 2cos )cos tan tan 24θθθθθθθθθθθ+-=+-÷=+-=点评:学生在此类问题时多数出现分式问题,习惯了分子分母同除以cos θ(或者2cos θ),但本题是一个整式,要先化成分式,才能进一步同时除以cos θ(或者2cos θ)。
三角函数典型超级易错题
![三角函数典型超级易错题](https://img.taocdn.com/s3/m/1ebfc55624c52cc58bd63186bceb19e8b9f6ec53.png)
三角函数典型超级易错题三角函数是高中数学中的一个重要章节,涉及到许多概念和性质。
虽然三角函数的基本理论并不难以理解,但由于其具有一些易错点,所以在做题过程中可能会遇到一些挑战。
本文将就三角函数中的一些典型易错题进行详细分析和解答,以帮助读者更好地理解和掌握这一知识点。
1. 题目:已知$\tan x=\frac{3}{4}$,求$\sin x$和$\cos x$的值。
解答:首先,根据定义,$\tan x=\frac{\sin x}{\cos x}$,所以我们可以得到一个等式:$$\frac{\sin x}{\cos x}=\frac{3}{4}$$接下来,我们可以利用三角函数的定义和性质,将$\sin x$和$\cosx$之间的关系进行转化。
通过三角函数的定义,我们知道$\sin x$和$\cos x$是有关的:$$\sin^2x+\cos^2x=1$$将其变形得到:$$\sin^2x=1-\cos^2x$$将上式代入第一个等式中,得到:$$\frac{1-\cos^2x}{\cos x}=\frac{3}{4}$$进一步整理,得到二次方程:$$4-4\cos^2x=3\cos x$$将其变形,得到:$$4\cos^2x+3\cos x-4=0$$这是一个关于$\cos x$的一元二次方程,我们可以使用求根公式求解。
令$a=4$,$b=3$,$c=-4$,带入求根公式:$$\cos x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$代入数值,我们可以解得:$$\cos x=\frac{-3\pm\sqrt{9+64}}{8}$$将其化简得到:$$\cos x=\frac{-3\pm\sqrt{73}}{8}$$但是我们需要注意的是,对于给定的条件$\tan x=\frac{3}{4}$,角$x$的值是有限制的。
在单位圆上,正切函数$\tan x$的定义域是$(-\infty, \infty)$,而我们已知$\tan x=\frac{3}{4}$,所以根据正切函数在单位圆上的性质,我们可以得到一个范围限制:$$0<x<\frac{\pi}{2}$$在这个范围内,$\cos x>0$,所以我们可以舍弃$\cos x<0$的解,只考虑$\cos x>0$的解。
高三复习三角函数经典错题集
![高三复习三角函数经典错题集](https://img.taocdn.com/s3/m/97e0428ab9d528ea81c779bc.png)
高中数学三角函数部分错题精选一、选择题:1.(如中)为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π 错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误.答案: B2.(如中)函数⎪⎭⎫ ⎝⎛⋅+=2tan tan 1sin x x x y 的最小正周期为 ( )Aπ B π2 C2π D 23π错误分析:将函数解析式化为x y tan =后得到周期π=T ,而忽视了定义域的限制,导致出错.答案: B3.(石庄中学) 曲线y=2sin(x+)4πcos(x-4π)和直线y=21在y 轴右侧的交点按横坐标从小到大依次记为P 1、P 2、P 3……,则|P 2P 4|等于 ( )A .πB .2πC .3πD .4π 正确答案:A 错因:学生对该解析式不能变形,化简为Asin(ωx+ϑ)的形式,从而借助函数图象和函数的周期性求出|P 2P 4|。
4.(石庄中学)下列四个函数y=tan2x ,y=cos2x ,y=sin4x ,y=cot(x+4π),其中以点(4π,0)为中心对称的三角函数有( )个A .1B .2C .3D .4正确答案:D 错因:学生对三角函数图象的对称性和平移变换未能熟练掌握。
5.(石庄中学)函数y=Asin(ωx+ϕ)(ω>0,A ≠0)的图象与函数y=Acos(ωx+ϕ)(ω>0, A ≠0)的图象在区间(x 0,x 0+ωπ)上( )A .至少有两个交点B .至多有两个交点C .至多有一个交点D .至少有一个交点正确答案:C 错因:学生不能采用取特殊值和数形结合的思想方法来解题。
6.(石庄中学) 在∆ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )A .6πB .3πC .6π或π65D .3π或32π正确答案:A 错因:学生求∠C 有两解后不代入检验。
高一下学期数学北师大版必修第二册第一章三角函数易错题精析课件
![高一下学期数学北师大版必修第二册第一章三角函数易错题精析课件](https://img.taocdn.com/s3/m/55e6b82a777f5acfa1c7aa00b52acfc788eb9f04.png)
13
13
12
5
∴ tan = − 或 .
5
12
12
5
sin =
sin = −
13
13
⇒
或
5
12
cos = −
cos = −
13
13
四、忽视角的范围致错
【例5】已知 ∈ 0 , + =
【正解】∵ + =
7
,
13
7
,求tanα的值.
−
11
,
2
三、复合函数单调区间时忽视自变量的符号
【例3】求函数 = 2sin
4
− 2 的递增区间.
4
【错解】令 = − 2 ,则 = 2sin在 2 −
8
∴ − ≤ ≤ +
∴函数 = 2sin
4
3
8
2
2 +
2
上是增函数,
∈ .
− 2 的递增区间为 −
8
+
3
8
∈ .
三、复合函数单调区间时忽视自变量的符号
【例3】求函数 = 2sin
4
− 2 的递增区间.
4
4
【正解】令 = − 2 ,则 = − 2在R上是减函数,要求 = 2sin
4
− 2 的增区间,
只需求y=2sin u的递减区间.
2
4
∴2 + ≤ − 2 ≤ 2 +
1
7
1
3
【例4】已知tan = , tan = , 、 均为锐角,求 α+2β 的值.
三角函数题型常见的八个易错点
![三角函数题型常见的八个易错点](https://img.taocdn.com/s3/m/f6a885a95022aaea998f0f88.png)
三角函数模块常见的八个易错点易错点1:不能正确理解三角函数的定义例题1: 角α的终边落在直线y =2x 上,则sin α的值为错解:在角的终边上取点P (1,2),∴r =|OP |=12+22=5,∴sin α=y r =25=255错因:当角的终边在一条直线上时,应注意到角的终边为两条射线,所以应分两种情况处理而错解中没有对两种情况进行讨论导致错误解析:当角的终边在第一象限时,在角的终边上取点P (1,2) 由r =|OP |=12+22=5,得sin α=25=255当角的终边在第三象限时,在角的终边上取点Q (-1,-2)∴r OQ ===sin α=-25=-255变式1: 已知角的终边过点P ,,则角的正弦值、余弦值分别为 解析:当0m <时,||,OP = 所以sin αα====当0m >时,||,OP =所以sin ,cos 55αα====总结:本题主要考查了三角函数的定义以及分类讨论思想方法,这也是高考考查的一个重点,在做题时容易遗忘0m <的情况α(,2)m m 0m ≠α易错点2 利用同角三角函数基本关系式时忽略参数取值例题2: 已知cos θ=t ,求sin θ、tan θ的值. 错解:①当0<t <1时,θ为第一或第四象限角.θ为第一象限角时,sin θ=1-cos 2θ=1-t 2,tan θ=sin θcos θ=1-t 2t ;θ为第四象限角时,sin θ=-1-cos 2θ=-1-t 2,tan θ=sin θcos θ=-1-t 2t. ②当-1<t <0时,θ为第二或第三象限角. θ为第二象限角时,sin θ=1-cos 2θ=1-t 2,tan θ=sin θcos θ=1-t 2t; θ为第三象限角时,sin θ=-1-cos 2θ=-1-t 2,tan θ=sin θcos θ=-1-t 2t.综上,sin θθθ=⎪⎩为第一、二象限角为第三、四象限角tan t θθθ=⎨⎪⎪⎩为第一、二象限角为第三、四象限角 错因:上述解法注意到了θ的余弦值含有参数t ,根据余弦函数的取值范围对t 进行分类讨论,但上述讨论不全面,漏掉了很多情况,如t =-1,t =0,t =1 解析:①当t =-1时,sin θ=0,tan θ=0 ②当-1<t <0时,θ为第二或第三象限角 若θ为第二象限角,则sin θ=1-t 2,tan θ=1-t 2t若θ为第三象限角,则sin θ=-1-t 2,tan θ=-1-t2t③当t =0时,sin θ=1,tan θ不存在或sin θ=-1,tan θ不存在 ④当0<t <1时,θ为第一或第四象限角若θ为第一象限角,则sin θ=1-t 2,tan θ=1-t 2t若θ为第四象限角,则sin θ=-1-t 2,tan θ=-1-t 2t⑤当t =1时,sin θ=0,tan θ=0综上得:变式2: 如果,那么解析:()222sin801cos 801cos 801k =-=--=-sin80tan100tan80cos80k∴=-=-=-总结:要作出正确选择,需认真选择诱导公式,不能错用公式.对于nπ+α,若n 是偶数,则角nπ+α的三角函数值等于角α的同名三角函数值;若n 为奇数,则角nπ+α的三角函数值等于角π+α的同名三角函数值.cos(80)k -︒=tan100︒=易错点3 不能准确运用诱导公式进行化简求值例题3: 若sin θ=33,求cos(π)cos(2π)3ππ3πcos [sin()1]cos(π)sin()sin()222θθθθθθθ--+--++-+的值错解:原式=cos cos (sin 1)θθθ--+cos θcos θsin θ+cos θ=-cos θcos θsin θ+cos θ+cos θcos θsin θ+cos θ=0. 错因:错解中混淆了诱导公式sin(3π2-θ)=-cos θ,sin(3π2+θ)=-cos θ,cos(π-θ)=-cos θ,cos(π+θ)=-cos θ. 解析:原式=cos cos (cos 1)θθθ---+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=2sin 2θ,因为sin θ=33,所以所求三角函数式的值为6=.变式3: 若n ∈Z ,在①sin ⎝⎛⎭⎫n π+π3;②sin ⎝⎛⎭⎫2n π±π3;③πsin[π(1)]3n n +-;④πcos[2π(1)]6n n +-中,与sin π3相等的是A .①②B .③④C .①④D .②③解析:①sin ⎝⎛⎭⎫n π+π3=⎩⎨⎧sin π3,n 为偶数sin ⎝⎛⎭⎫π+π3,n 为奇数=⎩⎨⎧sin π3,n 为偶数-sin π3,n 为奇数.②sin ⎝⎛⎭⎫2n π±π3=sin(±π3)=±sin π3. ③ππsin[(1)],sin ,π33sin[π(1)]=πππ3sin[π(1)],sin(π)sin ,333n nn n n n n n ⎧⎧-⎪⎪⎪⎪+-=⎨⎨⎪⎪+--=⎪⎪⎩⎩为偶数为偶数为奇数为奇数 . ④ππππcos[2π(1)]cos[(1)]cos sin 6663nn n +-=-⋅==. 故③④与sin π3相等,应选B .易错点4 不能正确理解三角函数图象变换规律例题4: 为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象 A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位错解:y =cos(2x +π3)=sin(2x +π3+π2)=sin2(x +5π12),因此向右平移5π12个长度单位,故选B . 错因:没有注意到变换方向导致了错解,目标是y =cos(2x +π3)的图象.解析:y =cos(2x +π3)=sin(2x +π3+π2)=sin(2x +5π6)=sin2(x +5π12),因此将函数y =sin2x 的图象向左平移5π12个长度单位即可.故选A .变式4: 将函数()()ππsin 2()22f x x θθ=+-<<的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若()f x ,()g x的图象都经过点P ,则ϕ的值可以是 A .53π B .56π C .2πD .6π 解析:依题意()()()sin 2sin 22g x x x ϕθθϕ=-+=+-⎡⎤⎣⎦,因为()f x ,()g x的图象都经过点P ,所以()sin sin 22θθϕ⎧=⎪⎪⎨⎪-=⎪⎩, 又因为22θππ-<<,所以3θπ=,所以2233k ϕππ-=π+或22233k ϕππ-=π+,k ∈Z , 解得k ϕ=-π或ππ6k ϕ=--,k ∈Z , 在6k ϕπ=-π-,k ∈Z 中,取1k =-,即得56ϕ=π,故选B.易错点5 注意符号对三角函数性质的影响例题5: 已知函数f (x )=2cos ⎝⎛⎭⎫π3-x 2.(1)求f (x )的单调递增区间;(2)若x ∈[-π,π],求f (x )的最大值和最小值.错解:(1)由-π≤π3-x 2≤0得,2π3≤x ≤8π3,∴f (x )的单调递增区间为⎣⎡⎦⎤2π3,8π3. (2)∵-1≤cos ⎝⎛⎭⎫π3-x 2≤1,∴[f (x )]ma x =2,[f (x )]min =-2.错因:(1)忽略了函数f (x )的周期性;(2)忽略了x ∈[-π,π]对函数f (x )的最值的影响 解析:(1)∵f (x )=2cos ⎝⎛⎭⎫π3-x 2=2cos ⎝⎛⎭⎫x 2-π3.由2k π-π≤x 2-π3≤2k π得,4k π-4π3≤x ≤4k π+2π3(k ∈Z ).故f (x )的单调增区间为[4k π-4π3,4k π+2π3](k ∈Z ).(2)由-π≤x ≤π⇒-5π6≤x 2-π3≤π6.当x 2-π3=0,即x =2π3时,f (x )ma x =2,当x 2-π3=-5π6,即x =-π时,f (x )min =-3变式5: (1)函数tan(2)3y x π=-的单调递减区间是______(2)已知函数y =a sin x +2,x ∈R 的最大值为3,则实数a 的值是______(3)若函数y =tan(2x +θ)的图象的一个对称中心为(π3,0),且-π2<θ<π2,则θ的值是_____解析:(1)把函数tan(2)3y x π=-变为tan(2)3y x π=--由2,232k x k k ππππ-<-<π+∈Z ,得2,66k x k k π5ππ-<<π+∈Z 即5,212212k k x k ππππ-<<+∈Z,tan(2)3y x π=-减区间为5(,)()212212k k k ππππ-+∈Z (2)若a >0时,当sin x =1时,函数y =a sin x +2取最大值a +2,∴a +2=3,∴a =1 若a <0,当sin x =-1时,函数y =a sin x +2(x ∈R )取得最大值-a +2=3,∴a =-1 综上可知,a 的值为±1(3)易知函数y =tan x 的图象的对称中心为(k π2,0),其中k ∈Z所以2x +θ=k π2,其中x =π3,即θ=k π2-2π3,k ∈Z因为-π2<θ<π2,所以当k =1时,θ=-π6;当k =2时,θ=π3.即θ=-π6或π3易错点6 三角恒等变换中忽略角的范围致误例题6: 已知α、β为三角形的两个内角,cos α=17,sin (α+β,则β=错解:∵0<α<π,cos α=17,∴sin α7=.又∵sin (α+β)=14,∴cos (α+β11.14-∴sin β=sin[(α+β)-α]=sin (α+β)cos α-cos (α+β)sin α 又∵0<β<π,∴β=233ππ或. 错因:(1)不能根据题设条件缩小α、β及α+β取值范围,在由同角基本关系式求sin (α+β)时不能正确判断符号,产生两角(2)结论处应由cos β的值确定β的取值,由sin β确定结论时易出现两解而造成失误解析:因为0<α<π,cos α=17,所以sin α=,故32αππ<<又因为0<α+β<π,sin (α+β)=142<,所以0<α+β<3π或32π<α+β<π由3π<α<2π知32π<α+β<π,所以cos (α+β1114∴cos β=cos[(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=12.又0<β<π,∴β=3π变式6: (1)已知△ABC 中,sin(A +B )=45,cos B =-23,则cos A 的值为(2)已知sin α-sin β=-23,cos α-cos β=23,且α、β∈⎝⎛⎭⎫0,π2,则tan(α-β)的值为 解析:(1)在△ABC 中,∵cos B =-23<0,∴B 为钝角,且sin B =53,∴A +B 为钝角由sin(A +B )=45,得cos(A +B )=-35∴cos A =cos[(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B =-35×⎝⎛⎭⎫-23+45×53=6+4515(2)由题知sin α-sin β=-23①, cos α-cos β=23②由于sin α-sin β=-23<0,所以-π2<α-β<0由①2+②2,得cos(α-β)=59,所以sin(α-β)=-2149.所以tan(α-β)=-2145易错点7 求函数y=Asin(ωx+φ)的性质时出错例题7: 函数y =5sin(x +20°)+4cos(x +50°)的最大值为 错解:函数的最大值为52+42=41.错因:形如y =asin x +bcos x 的函数的最大值为a 2+b 2,而函数y =5sin(x +20°)+4cos(x +50°)不符合上述形式.解析:y =5sin(x +20°)+4cos(x +50°)=5sin(x +20°)+4cos[(x +20°)+30°] =5sin(x +20°)+4cos(x +20°)cos30°-4sin(x +20°)sin30°=5sin(x +20°)+23cos(x +20°)-2sin(x +20°)=3sin(x +20°)+23cos(x +20°),∴max y ==变式7: 已知函数2()sin 22sin f x x x =-(1)求函数()f x 的最小正周期(2)求函数()f x解析:(1)因为2()sin 22sin f x x x =-sin 2(1cos2x x =--所以函数()f x(2所以()f x [1]-易错点8 解三角形时忽略角的取值范围致误例题8: 在ABC △中,若3C B =,则c b的取值范围为 错解:由正弦定理,可得2222sin sin 3sin 2cos cos2sin =2cos cos24cos 1sin sin sin 0cos 1,14cos 13,0,0,03c C B B B B B B B B b B B BcB B b c b+===+=-≤<∴-≤-<>><<由可得错因:错解中没有考虑角B 的取值范围,误认为角B 的取值范围为()0,180︒︒ 解析:由正弦定理可得222sin sin 3sin 2cos cos2sin =2cos cos24cos 1sin sin sin 180,3,045,cos 1214cos 13,13c C B B B B B B B B b B B BA B C C B B B cB b+===+=-++=︒=∴︒<<︒<<∴<-<<<即变式8: 已知,21,21a a a -+是钝角三角形的三边,则实数a 的取值范围为解析:因为,21,21a a a -+是三角形的三边,所以01210,2210a a a a >⎧⎪->>⎨⎪+>⎩即①所以21a +是三角形的最大边,设其所对的角为θ(钝角)则222(21)(21)cos 02(21)a a a a a θ+--+=<-,化简得280a a -<,解得08②a <<要使,21,21a a a -+构成三角形,需满足21212121,2121a a a a a a a a a ++>-⎧⎪+->+⎨⎪-++>⎩即2③a >结合①②③,可得28.a <<。
三角函数典型超级易错题
![三角函数典型超级易错题](https://img.taocdn.com/s3/m/9198f7ec77eeaeaad1f34693daef5ef7ba0d12f5.png)
三角函数典型超级易错题在学习三角函数时,有一些典型的超级易错题需要我们格外注意。
这些题目通常会使用一些常见的三角函数关系和恒等式,但可能涉及一些巧妙的代数推导或几何图形的变换,容易让人产生困惑。
在本篇文章中,我将针对其中的一个典型题目进行详细分析,帮助大家理解和解答。
题目:已知角A满足cos(A) = sin(75°),求A的取值范围。
Step 1:将sin(75°)转化为cos的形式根据三角函数的基本性质,我们知道sin(90°-θ) = cos(θ)。
因此,sin(75°) = cos(90°-75°) = cos(15°)。
Step 2:利用三角函数之间的恒等式化简根据三角函数之间的一些常见的恒等式,我们可以化简cos(A) = cos(15°),然后将A的取值范围进行推导。
首先,根据cos函数的周期性质,我们可以得到cos(A) = cos(2πn ± 15°),其中n为整数。
此时,我们可以得到一个取值范围:A = 2πn ± 15°,其中n为整数。
但需要注意的是,余弦函数在一周期内是一个有界函数,其取值范围在[-1,1]之间。
因此,我们需要利用这个限制条件对取值范围进行进一步的推导。
对于cos(A) = cos(15°),我们可以通过在单位圆上绘制出cosθ = cos(15°)的图像,注意到cos取值范围在[-1, 1]之间,从而推导出A的取值范围。
在以原点为中心的单位圆上,我们找到cos(15°)所对应的角度。
由于cos(15°) = cos(-15°),我们只需在单位圆上找到这两个角度对应的弧度。
我们可以观察到,当我们从单位圆上的(1, 0)点逆时针旋转15°或者顺时针旋转15°时,所得到的点都落在单位圆上,即(1, 0)点的左侧。
三角函数的易错题专题及答案
![三角函数的易错题专题及答案](https://img.taocdn.com/s3/m/1a387ec705a1b0717fd5360cba1aa81145318f5f.png)
三角函数的易错题专题及答案三角函数易错题专题一、选择题1.___α的终边落在直线x+y=0上,则sinα1-cos2α的值等于( )解析:由于终边在直线x+y=0上,所以sinα=-cosα,代入原式得:-cosα-cos2α。
再利用余弦的半角公式cos2α=2cos^2α-1,得到原式化简为-2cos^2α-cosα。
选项B。
2.将函数y=sin2x的图像向右平移π/4个单位,得到的解析式为( )解析:向右平移π/4个单位相当于将原来的自变量x替换成x-π/8,所以新的解析式为y=sin2(x-π/8)。
根据正弦的平移公式sin(x-π/8)=sinxcos(π/8)-cosxsin(π/8)=cos(π/8)sinx-sin(π/8)cosx,所以新的解析式为y=cos(π/8)sin2x-sin(π/8)cos2x。
选项D。
3.在△ABC中,锐角A满足sin4A-cos4A≤sinA-cosA,则( )解析:利用正弦的平方和余弦的平方公式,将不等式右边化简为2sin^2A-2sinAcosA,左边化简为2sin^2A-2cos^2A。
所以原不等式化简为sin^2A+2cos^2A-2sinAcosA≤0,即(sinA-cosA)^2≤0,只有当sinA=cosA时等号成立。
所以A=π/4,选项B。
4.在△ABC中,角A,B,C的对边分别为a,b,c,且a=1,A=60°,若三角形有两解,则b的取值范围为( )解析:根据正弦定理a/sinA=b/sinB=c/sinC,代入数据得sinB=√3/2,所以B=π/3或5π/3.由于三角形有两解,所以B的取值范围为(π/3,π)∪(5π/3,2π),即选项D。
5.将函数y=3sin(2x+π/7)的图像向右平移1/2个单位长度,得到的图像对应的函数( )解析:向右平移1/2个单位相当于将原来的自变量x替换成x-1/4,所以新的解析式为y=3sin(2(x-1/4)+π/7)。
数学易错题:三角函数
![数学易错题:三角函数](https://img.taocdn.com/s3/m/978a9e14ff00bed5b9f31d65.png)
三角函数一、选择题:1.为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π 错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误.答案: B2.函数⎪⎭⎫ ⎝⎛⋅+=2tan tan 1sin x x x y 的最小正周期为 ( )Aπ B π2 C2πD 23π错误分析:将函数解析式化为x y tan =后得到周期π=T ,而忽视了定义域的限制,导致出错. 答案: B 3.曲线y=2sin(x+)4πcos(x-4π)和直线y=21在y 轴右侧的交点按横坐标从小到大依次记为P 1、P 2、P 3……,则|P 2P 4|等于 ( )A .πB .2πC .3πD .4π正确答案:A 错因:学生对该解析式不能变形,化简为Asin(ωx+ϑ)的形式,从而借助函数图象和函数的周期性求出|P 2P 4|。
4.下列四个函数y=tan2x ,y=cos2x ,y=sin4x ,y=cot(x+4π),其中以点(4π,0)为中心对称的三角函数有( )个A .1B .2C .3D .4正确答案:D 错因:学生对三角函数图象的对称性和平移变换未能熟练掌握。
5.函数y=Asin(ωx+ϕ)(ω>0,A ≠0)的图象与函数y=Acos(ωx+ϕ)(ω>0, A ≠0)的图象在区间(x 0,x 0+ωπ)上( )A .至少有两个交点B .至多有两个交点C .至多有一个交点D .至少有一个交点正确答案:C 错因:学生不能采用取特殊值和数形结合的思想方法来解题。
6. 在∆ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )A .6πB .3πC .6π或π65D .3π或32π正确答案:A 错因:学生求∠C 有两解后不代入检验。
7.已知tan α tan β是方程x 2+33x+4=0的两根,若α,β∈(-2,2ππ),则α+β=( )A .3πB .3π或-π32 C .-3π或π32D .-π32正确答案:D 错因:学生不能准确限制角的范围。
(精选试题附答案)高中数学第五章三角函数重点易错题
![(精选试题附答案)高中数学第五章三角函数重点易错题](https://img.taocdn.com/s3/m/0d5f89033868011ca300a6c30c2259010202f3f1.png)
(名师选题)(精选试题附答案)高中数学第五章三角函数重点易错题单选题1、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值.sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A.2、已知扇形的圆心角为3π4,半径为4,则扇形的面积S 为( ) A .3πB .4πC .6πD .2π 答案:C解析:利用S =12αr 2即可求得结论. 由扇形面积公式得:S =12×3π4×42=6π.故选:C.3、要得到函数y =3sin(2x +π4)的图象,只需将函数y =3sin2x 的图象( ). A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π8个单位长度D .向右平移π8个单位长度分析:根据函数图象平移的性质:左加右减,并结合图象变化前后的解析式判断平移过程即可. 将y =3sin2x 向左移动π8个单位长度有y =3sin2(x +π8)=3sin(2x +π4),∴只需将函数y =3sin2x 的图象向左平移π8个单位长度,即可得y =3sin(2x +π4)的图象.故选:C4、已知函数f (x )=Asin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像如下图所示.则能够使得y =2sinx 变成函数f (x )的变换为( )A .先横坐标变为原来的12倍,再向左平移π24B .先横坐标变为原来的2倍,再向左平移π12 C .先向左平移π6,再横坐标变为原来的12倍D .先向左平移π24,再横坐标变为原来的2倍答案:C分析:先根据给定图象求出函数f (x )的解析式,再求出由y =2sinx 到f (x )的变换即得. 观察图象知A =2,f (x )周期为T ,则T4=5π12−π6=π4,即T =π,ω=2πT=2,又f (π6)=2,即2⋅π6+φ=2kπ+π2(k ∈Z),而|φ|<π2,则k =0,φ=π6, 所以f (x )=2sin(2x +π6),把y =2sinx 图象向左平移π6得y =2sin(x +π6)图象,再把所得图象上每一点的横坐标变为原来的12倍即得f (x ).5、记函数f(x)=sin(ωx +π4)+b(ω>0)的最小正周期为T .若2π3<T <π,且y =f(x)的图象关于点(3π2,2)中心对称,则f(π2)=( )A .1B .32C .52D .3答案:A分析:由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 由函数的最小正周期T 满足2π3<T <π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k ∈Z ,且b =2, 所以ω=−16+23k,k ∈Z ,所以ω=52,f(x)=sin (52x +π4)+2, 所以f (π2)=sin (54π+π4)+2=1. 故选:A6、阻尼器是一种以提供运动的阻力,从而达到减振效果的专业工程装置.深圳第一高楼平安金融中心的阻尼器减震装置,是亚洲最大的阻尼器,被称为“镇楼神器”.由物理学知识可知,某阻尼器模型的运动过程可近似为单摆运动,其离开平衡位置的位移s (cm )和时间t (s )的函数关系式为s =2sin(ωt +φ),其中ω>0,若该阻尼器模型在摆动过程中连续三次位移为s 0(−2<s 0<2)的时间分别为t 1,t 2,t 3,且t 3−t 1=2,则ω=( ) A .π2B .πC .3π2D .2π 答案:B分析:利用正弦型函数的性质画出函数图象,并确定连续三次位移为s 0的时间t 1,t 2,t 3,即可得T =t 3−t 1,可求参数ω.由正弦型函数的性质,函数示意图如下:所以T =t 3−t 1=2,则2πω=2,可得ω=π. 故选:B7、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( ) A .向右平移π12个单位长度B .向左平移π12个单位长度 C .向右平移π6个单位长度D .向左平移π6个单位长度答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果. 因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3),而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A.8、已知角α的终边经过点P (−3,4),则sinα−cosα−11+tanα的值为( )A .−65B .1C .2D .3答案:A分析:由三角函数的定义可得sinα=45,cosα=−35,tanα=−43,将其代入即可求解. 由√(−3)2+42=5,得sinα=45,cosα=−35,tanα=−43,代入原式得=45−(−35)−11+(−43)=−65.故选:A9、将函数y =2sin (x +π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于原点对称,则m 的最小值是( )A .π12B .π6C .π3D .2π3 答案:D分析:由三角函数平移变换可得平移后函数为y =2sin (x +m +π3),根据对称性得到m +π3=kπ(k ∈Z ),结合m >0可得所求最小值.将y =2sin (x +π3)向左平移m (m >0)个单位长度得:y =2sin (x +m +π3), ∵y =2sin (x +m +π3)图象关于原点对称,∴m +π3=kπ(k ∈Z ),解得:m =−π3+kπ(k ∈Z ),又m >0, ∴当k =1时,m 取得最小值2π3. 故选:D.10、已知简谐振动f (x )=Asin (ωx +φ)(|φ|<π2)的振幅是32,图象上相邻最高点和最低点的距离是5,且过点(0,34),则该简谐振动的频率和初相是( ) A .16,π6B .18,π3 C .18,π6D .16,π3答案:C分析:根据正弦型函数的图象与性质求出振幅、周期,再由过点(0,34)求出初相即可得解. 由题意可知,A =32,32+(T2)2=52,则T =8,ω=2π8=π4, ∴ y =32sin (π4x +φ). 由32sin φ=34,得sin φ=12.∵|φ|<π2,∴φ=π6.因此频率是18,初相为π6.故选:C 填空题11、已知sinθ−cosθ=12,则sin 3θ−cos 3θ=______. 答案:1116分析:根据sinθ−cosθ=12平方可得sinθ⋅cosθ=38,结合立方差公式即可代入求值. 因为sinθ−cosθ=12,平方得(sinθ−cosθ)2=14,所以sinθ⋅cosθ=38,所以sin 3θ−cos 3θ=(sinθ−cosθ)⋅(sin 2θ+sinθcosθ+cos 2θ)=12×(1+38)=1116.所以答案是:111612、已知函数f(x)=3sin (ωx +π6)(ω>0) 在(0,π12) 上单调递增,则ω的最大值是____. 答案:4分析:根据正弦型函数的单调性即可求解.由函数f(x)=3sin (ωx +π6)(ω>0)在区间(0,π12)上单调递增, 可得ω⋅π12+π6≤π2,求得ω≤4,故ω的最大值为4,所以答案是:4 13、已知cos (π6+α)=√33,则cos (5π6−α)=________.答案:−√33分析:本题可根据诱导公式得出结果.cos (5π6−α)=cos [π−(π6+α)]=−cos (π6+α)=−√33,所以答案是:−√3314、函数f(x)=sinx的图象向左平移π6个单位得到函数g(x)的图象,则下列函数g(x)的结论:①一条对称轴方程为x=7π6;②点(5π6,0)是对称中心;③在区间(0,π3)上为单调增函数;④函数g(x)在区间[π2,π]上的最小值为−12.其中所有正确的结论为______.(写出正确结论的序号)答案:②③④解析:先求得g(x),然后利用代入法判断①②,根据单调区间和最值的求法判断③④.函数f(x)=sinx的图象向左平移π6个单位得到函数g(x)=sin(x+π6),g(7π6)=sin(7π6+π6)=sin4π3=sin(π+π3)=−sinπ3=−√32≠±1,所以①错误.g(5π6)=sin(5π6+π6)=sinπ=0,所以②正确.由2kπ−π2≤x+π6≤2kπ+π2,解得2kπ−2π3≤x≤2kπ+π3,k∈Z.令k=0得−2π3≤x≤π3,所以g(x)在区间(0,π3)上为单调增函数,即③正确.由π2≤x≤π得2π3≤x+π6≤7π6,所以当x=π,x+π6=7π6时,g(x)有最小值为sin7π6=sin(π+π6)=−sinπ6=−12,所以④正确.所以答案是:②③④小提示:解决有关三角函数对称轴、对称中心的问题,可以考虑代入验证法.考查三角函数单调区间的问题,可以考虑整体代入法.15、设函数f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在区间[π6,π2]上单调,且f(π2)=f(2π3)=−f(π6),则f(x)的最小正周期为____.答案:π分析:根据单调性可确定0<ω≤3,结合f(π2)=f(2π3)=−f(π6),可得x=7π12,(π3,0)分别为对称轴和对称中心,即可结合周期求解.函数f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在区间[π6,π2]上单调,则T 2=πω≥π2-π6,∴0<ω≤3.∵f (π2)=f (2π3)=−f (π6),∴x =π2+2π32=7π12为f (x )=sin (ωx +φ)的一条对称轴,且(π6+π22,0)即(π3,0)为f (x )=sin (ωx +φ)的一个对称中心,只有当T4=14⋅2πω=7π12−π3=π4时,解得ω=2∈(0,3],∴T=2π2=π,故答案为:π 解答题16、已知cosα=35,α∈(−π2,0).(1)求tanα,sin2α的值; (2)求sin (π3−α)的值.答案:(1)−43,−2425;(2)3√3+410分析:(1)首先利用同角三角函数关系求出sinα=−45,从而得到tanα=−43,再利用正弦二倍角公式计算sin2α即可.(2)利用正弦两角差公式展开计算即可得到答案.(1)因为cosα=35,α∈(−π2,0),所以sinα=−√1−(35)2=−45,所以tanα=sinαcosα=−4535=−43,sin2α=2sinαcosα=−2425.(2)sin (π3−α)=sin π3cosα−cos π3sinα=√32×35−12×(−45)=3√3+410. 小提示:本题主要考查三角函数的恒等变换,同时考查同角三角函数关系,属于简单题. 17、已知函数f (x )=sin(ωx +π3)(ω>0). (1)当ω=2时,求f (x )在[0,π2]的值域;(2)若至少存在三个x 0∈(0,π3),使得f (x 0)=−1,求f (x )最小正周期的取值范围;(3)若f(x)在(π2,π)上单调递增,且存在m∈(π2,π),使得f(2m−π3ω)>√22,求ω的取值范围.答案:(1)[−√32,1](2)(0,4π31)(3)18<ω≤16分析:(1)当ω=2时,求出2x+π3的范围,根据三角函数的性质,可得答案;(2)由题意,设f(x)最小正周期为T,则可得T满足的不等式,由此求得T的范围.(3)由题意f(x)在(π2,π)上单调递增,列出相应不等式组,可得0<ω≤16,再根据存在m∈(π2,π),使得f(2m−π3ω)>√22能成立,列出不等式,即可求得ω的范围.(1)当ω=2时,f(x)=sin(ωx+π3)(ω>0),由x∈[0,π2]知π3≤2x+π3≤4π3,−√32≤sin(2x+π3)≤1,∴f(x)的值域为[−√32,1].(2)∵对于函数f(x)=sin(ωx+π3)(ω>0),至少存在三个x0∈(0,π3),使得f(x0)=−1,设f(x)最小正周期为T,∴(2π−π32π⋅T+T+34⋅T)<π3,即3112T<π3,∴0<T<4π31,∴f(x)的最小正周期的取值范围为(0,4π31).(3)若f(x)在(π2,π)上单调递增,ωx+π3∈(ωπ2+π3,ωπ+π3) ,∴{ωπ+π3≤π2+2kπ2kπ−π2≤ωπ2+π3,k ∈Z ,∴4k −53≤ω≤16+2k,k ∈Z , 当k =0时,−53≤ω≤16,又ω>0,故0<ω≤16, 当k =1时, 73≤ω≤136,ω 不存在,同理k 取其它整数时,ω不存在,故0<ω≤16∵存在m ∈(π2,π),使得f(2m −π3ω)>√22, 即sin[ω(2m −π3ω)+π3]>√22能成立, 即sin2ωm >√22能成立. ∵2ωm ∈(ωπ,2ωπ),∴需π4+2kπ<2ωπ<3π4+2kπ,k ∈Z ,∴18+k <ω<38+k,k ∈Z .,而0<ω≤16,故18<ω≤16 综上可得,18<ω≤16.18、函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图:(1)求f (x )解析式;(2)写出函数f (x )在[0,π2]上的单调递减区间. 答案:(1)y =2sin (2x +π4)(2)[π8,π2]分析:(1)根据图象求得A,ω,φ,从而求得f (x )解析式.(2)利用整体代入法求得f (x )在区间[0,π2]上的单调递减区间. (1)由图象知A =2,T =7π8−(−π8)=π,所以ω=2,又过点(−π8,0), 令−π8×2+φ=2kπ,φ=2kπ+π4,由于|φ|<π2,故φ=π4,所以y =2sin (2x +π4). (2)由2kπ+π2≤2x +π4≤2kπ+3π2(k ∈Z ), 可得kπ+π8≤x ≤kπ+5π8(k ∈Z ), 当k =0时π8≤x ≤5π8, 故函数f (x )在[0,π2]上的单调递减区间为[π8,π2].19、已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过函数f (x )=−3−a x−3(a >0且a ≠1)的定点M .(1)求sinα−2cosα的值;(2)求sin (π+α)+cos(π2+α)cos (2π+α)+sin (−α)−tan (5π+α)的值.答案:(1)−2(2)5221分析:(1)易知函数f (x )=−3−a x−3的定点M 的坐标为(3,−4),利用三角函数的定义则可求出sinα=−45,cosα=35则可求出答案;(2)利用诱导公式化简,再将sinα=−45,cosα=35,tanα=−43代入,即可得出答案.(1)∵函数f (x )=−3−a x−3(a >0且a ≠1)的定点M 的坐标为(3,−4),∴角α的终边经过点M (3,−4),∴OM =√32+(−4)2=5(O 为坐标原点), 根据三角函数的定义可知sinα=−45,cosα=35, ∴sinα−2cosα=−45−2×35=−2.(2)sin (π+α)+cos(π2+α)cos (2π+α)+sin (−α)−tan (5π+α)=−sinα−sinαcosα−sinα−tanα=−2sinαcosα−sinα−(−43) =−2×(−45)35−(−45)+43=87+43=5221.。
函数零点易错题、三角函数重难点(教师版)
![函数零点易错题、三角函数重难点(教师版)](https://img.taocdn.com/s3/m/e3a2f6e63186bceb19e8bb9d.png)
函数零点易错题 三角函数重难点 教师版函数的零点是函数图象的一个重要的特征,同时也沟通了函数、方程、不等式以及算法等内容,在分析解题思路、探求解题方法中起着重要的作用,因此要重视对函数零点的学习.下面就函数的零点判定中的几个误区进行剖析,希望对大家有所帮助. 1. 因"望文生义"而致误例1.函数23)(2+-=x x x f 的零点是 ( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2错解:C错解剖析:错误的原因是没有理解零点的概念,"望文生义",认为零点就是一个点.而函数的零点是一个实数,即使()0=x f 成立的实数x ,也是函数()x f y =的图象与x 轴交点的横坐标.正解:由()0232=+-=x x x f 得,x =1和2,所以选D.点拨:求函数的零点有两个方法,⑴代数法:求方程()0=x f 的实数根,⑵几何法:由公式不能直接求得,可以将它与函数的图象联系起来,函数的图象与x 轴交点的横坐标. 即使所求.2. 因函数的图象不连续而致误例2.函数()xx x f 1+=的零点个数为 ( ) A.0 B.1 C.2 D.3错解:因为2)1(-=-f ,()21=f ,所以()()011<-f f ,函数()x f y =有一个零点,选B.错解剖析:分析函数的有关问题首先考虑定义域,其次考虑函数()xx x f 1+=的图象是不是连续的,这里的函数图像是不连续的,所以不能用零点判定定理.正解:函数的定义域为()()+∞⋃∞-,00,,当0>x 时,()0>x f ,当0<x 时,()0<x f 所以函数没有零点.也可由01=+xx 得012=+x 方程无实数解. 点拨:对函数零点个数的判定,可以利用零点存在性定理来判定,涉及多个零点的往往借助于函数的单调性.若函数()x f y =在区间[]b a ,上的图象是连续曲线,并且在区间端点的函数值符号相反,即()()0<b f a f ,则在区间()b a ,内,函数()x f 至少有一个零点,即相应的方程()0=x f 在区间()b a ,至少有一个实数解.然而对于函数的()x f ,若满足()()0<b f a f ,则()x f 在区间[]b a ,内不一定有零点;反之,()x f 在区间[]b a ,内有零点也不一定有()()0<b f a f .前者是因为图象不连续,后者是因为方程有重根.如下图所示:3. 因函数值同号而致误例3.判定函数()32-=x x f 在区间[]1,1-内是否有零点.错解:因为()()111-==-f f ,所以()()011>-f f ,函数()32-=x x f 在区间[]1,1-内没有零点.错解剖析:上述做法错误地用了函数零点判定定理,因为函数()x f 在区间[]b a ,上的函数图像是连续曲线,且()()0>b f a f ,也可能在[]b a ,内有零点.如函数()12-=x x g 在区间[]1,1-上有()()011>-g g ,但在[]1,1-内有零点21±=x . 正解:当∈x []1,1-时,()132-≤-=x x f ,函数()x f y =在[]1,1-上的图象与x 轴没有交点,即函数()32-=x x f 在区间[]1,1-内没有零点. 法二:由032=-x 得∉±=23x []1,1-,故函数()32-=x x f 在区间[]1,1-内没有零点.点拨:对有些函数,即使它的图象是连续不断的,当它通过零点时,函数值也不一定变号.如函数2)1(-=x y 有零点1,(如上图)但函数值没变号.对函数零点的判定一定要抓住两点:①函数()x f y =在区间[]b a ,上的图象是连续曲线,②在区间端点的函数值符号相反,即()()0<b f a f .4. 因忽略区间端点而致误例4.已知二次函数()m x m x x f 2)1(2+--=在[]1,0上有且只有一个零点,求实数m的取值范围.错解:由函数的零点的性质得()()010<f f ,即()022<+m m ,解得02<<-m . 所以实数m 的取值范围为()0,2-.错解剖析:错解的原因是只注意到函数零点的应用,而忽略问题的其它形式:①在[]1,0上有二重根;②终点的函数值可能为0.正解:⑴当方程02)1(2=+--m x m x 在[]1,0上有两个相等实根时,()0812=--=∆m m 且1210<-<m ,此时无解. ⑵当方程02)1(2=+--m x m x 有两个不相等的实根时,① 有且只有一根在[]1,0上时,有()()010<f f ,即()022<+m m ,解得02<<-m ②当()00=f 时,m =0,()02=+=x x x f ,解得1,021-==x x ,合题意.③当()01=f 时,2-=m ,方程可化为0432=-+x x ,解得4,121-==x x 合题意.综上所述,实数m 的取值范围为[]0,2-.点拨:在求参数时,要注意将函数零点的特殊性质与函数的有关性质相结合,进行分类讨论使复杂的问题简单化.本文已在《学苑新报》上发表方程的根与函数的零点1.函数2()41f x x x =--+的零点为( )A 、12-+B 、1--C 、1-±、不存在 2.函数32()32f x x x x =-+的零点个数为( )A 、0B 、1C 、2D 、33. 函数()ln 26f x x x =+-的零点一定位于区间( ).A. (1, 2)B. (2 , 3)C. (3, 4)D. (4, 5)1.C2.D3.易知函数()f x 在定义域(0,)+∞内是增函数.∵(1)ln12640f =+-=-<,(2)ln 246ln 220f =+-=-<,(3)ln366ln30f =+-=>. ∴ (2)(3)0f f <,即函数()f x 的零点在区间(2,3). 所以选B. 4. 求证方程231x xx -=+在(0,1)内必有一个实数根. 4. 证明:设函数2()31x xf x x -=-+. 由函数的单调性定义,可以证出函数()f x 在(1,)-+∞是减函数.而0(0)3210f =-=-<,115(1)3022f =-=>,即(0)(1)0f f <,说明函数()f x 在区间(0,1)内有零点,且只有一个. 所以方程231x xx -=+在(0,1)内必有一个实数根.点评:等价转化是高中数学解题中处理问题的一种重要思想,它是将不熟悉的问题转化为熟悉的问题,每个问题的求解过程正是这样一种逐步的转化. 此题可变式为研究方程231x x x -=+的实根个数.5. (1)若方程2210ax -=在(0,1)内恰有一解,则实数a 的取值范围是 .(2)已知函数()34f x mx =-,若在[2,0]-上存在0x ,使0()0f x =,则实数m 的取值范围是 . 5. 解:(1)设函数2()21f x ax =-,由题意可知,函数()f x 在(0,1)内恰有一个零点.∴ (0)(1)1(21)0f f a =-⨯-<, 解得12a >. (2)∵在[2,0]-上存在0x ,使0()0f x =, 则(2)(0)0f f -≤,∴ (64)(4)0m --⨯-≤,解得23m ≤-.所以, 实数m 的取值范围是2(,]3-∞-.6. 已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围.6. 解:令2()223f x x mx m =+++有图像特征可知方程f (x )=0的两根都在(0,2)内需满足的条件是解得3514m -<<-。
高中数学(三角函数)易错题专题汇编及解析(教师用)
![高中数学(三角函数)易错题专题汇编及解析(教师用)](https://img.taocdn.com/s3/m/2b7356ba9ec3d5bbfd0a74f6.png)
高中数学易错题专题汇编及解析(教师用)三角函数专题(五课时)第一课时例1.的值。
,求,已知απαπαcos )243(532sin -<<-= 例2.的值。
,求,,且已知xxx x tan 1tan 1)434(135)4sin(+-∈=+πππ例3.的值。
及、,求,,已知ααααπααα33cos sin cos sin )0(32cos sin +∈=+ 例4.的值。
,求,已知)42cos(22353)4cos(παπαπαπ--<<-=- 。
,,已知)20(2)tan 1(cos )cot 1(sin 22πθθθθθ∈=+++求θtan 的值。
的两根,是方程,且已知02140cos )40cos 2(sin ,sin 9002=-︒+︒-︒<<<︒x x βαβα的值。
求)2cos(βα-作业1.的值。
和,求,,已知βαβααπβπαcos sin 135)sin(53cos 20=+=<<<< 作业2.的值。
,求已知ααπα2cos )22cos(2tan +-=作业3.的值。
的两根,求是方程,若θθθθθθtan 1cos cot 1sin 0)13(2cos sin 2-+-=++-m x x作业4.,,,且,已知20221)2sin(772)2cos(πβπαπβαβα<<<<=--=-的值。
的值;求:)tan()2(2cos)1(βαβα++第二课时例1.已知11tan tan 73αβ==,,且αβ,为锐角,试求2αβ+的值。
例2.求证:222(3cos 4)tan cot 1cos 4x x x x++=-。
例3.求函数21sin cos (sin cos )y x x x x =++++的值域。
例4.已知sin y a x b =+的最大值为3,最小值为-1,求a b ,的值。
备用题1.已知11tan()tan (0)27αββαβπ-==-∈,,且,,,求2αβ-的值。
《三角函数的应用》易错易混题课件
![《三角函数的应用》易错易混题课件](https://img.taocdn.com/s3/m/399babe7b1717fd5360cba1aa8114431b90d8efd.png)
时刻振子处于点,经. 振子首次达到点.求:
(1)振幅、周期和频率.(2)弹簧振子在内通过的路程及位移.
解析
(1)设振幅为,因为 = ,所以 =
.设周期为,则
= . , = , =
时刻振子处于点,经. 振子首次达到点.求:
(1)振幅、周期和频率.(2)弹簧振子在内通过的路程及位移.
易错分析
导致上述错解的原因为“路程”是数量,没有方向,而“位移”是矢量,既有大小,又
有方向,两者不能混为一谈.
() = +
.
,∴ = ,∴
易错易混题
高中数学
GAOZHONGSHUXUE
易错点1 不能正确书写三角函数的自变量取值范围
典例1 已知函数() = ( + ) ∈
,
,其图象向左平移 后,关于
轴对称.(1)求出函数 () 的解析式.(2)如果该函数表示一个振动量,指出其振幅、
频率及初相,并说明其图象是怎样由 = 的图象得到的.
解析
()() = ( + )
向左平移个单位
= +
+ = ቀ +
+ ቁ ,由 + = + , ( ∈ )得 = + ( ∈ ), ∵ ∈ ,
高中数学
GAOZHONGSHUXUE
人教A版同步教材名师课件
三角函数的应用
---易错易混题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数易错题1.在单位圆中,面积为1的扇形所对的圆心角的弧度数为( ) A.1 B.2 C.3 D.4 【答案】B 【解析】试题分析:根据扇形面积公式221r S α=,可得2=α. 考点:扇形面积公式.2.函数()si ()n f x A x ωϕ=+(000A ωϕπ>><<,,)的图象如图所示,则()4f π的值为( )A .2B .0C .1D .3 【答案】D 【解析】试题分析:由已知,4112,(),2,3126A T πππω==⨯-==,所以()2sin 2()f x x ϕ=+, 将(),26π代人得,()2,s 2si in(6)1n 23ππϕϕ==⨯++,所以,,326πππϕϕ==+, ()2sin 2()2sin 2(),()2co 364466s f x x f πππππ=⨯==+=+,故选D .考点:正弦型函数,三角函数诱导公式.3.若1tan()47πα+=,则tan α=( )(A )34 (B )43 (C )34- (D )43-【答案】(C )【解析】试题分析:由1tan()47πα+=所以tan 113,tan 1tan 74ααα+=∴=--.故选(C ). 考点:1.角的和差公式.2.解方程的思想.4.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是 ( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定 【答案】A. 【解析】试题分析:由222sin sin sin A B C +<,结合正弦定理可得,222c b a <+,由余弦定理可得02cos 222<-+=ab c b a C ,所以ππ<<C 2.所以ABC ∆是钝角三角形.考点:余弦定理的应用;三角形的形状判断. 5.已知点P(sin,cos)落在角θ的终边上,且θ∈[0,2π),则θ值为( )A. B. C. D.【答案】C 【解析】由sin>0,cos<0知角θ在第四象限,∵,选C.6.[2014·郑州质检]要得到函数y =cos2x 的图象,只需将函数y =sin2x 的图象沿x 轴( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移8π个单位 D.向左平移8π个单位【答案】B【解析】∵y =cos2x =sin(2x +2π),∴只需将函数y =sin2x 的图象沿x 轴向4π个单位,即得y =sin2(x +4π)=cos2x 的图象,故选B. 7.下列角中终边与330°相同的角是( ) A .30° B .-30° C .630° D .-630° 【答案】B 【解析】试题分析:与330°终边相同的角可写为{|360330}oox x k k Z =⋅+∈,当1k =-时,可得-30°.考点:终边相同的角之间的关系.8.函数⎪⎩⎪⎨⎧≤≤+<≤-+=)380(),sin(2)02(,1πϕωx x x kx y )20(πϕ<<的图象如下图,则( )A 、6,21,21πϕω===k B 、3,21,21πϕω===kC 、6,2,21πϕω==-=kD 、3,2,2πϕω==-=k【答案】A【解析】试题分析:在y 轴左侧,图象过点()0,2-,012=+-∴k ,解21=k ,在y 右侧,πππ435384=⎪⎭⎫ ⎝⎛-=T ,212==∴T πω,⎪⎭⎫ ⎝⎛0,35π为五点作图第三个点,πϕπ=+⨯∴2135,解得6πϕ=,故答案为A .考点:利用函数图象求函数解析式9.已知{}n a 是等比数列,其中18,a a 是关于x 的22sin 3sin 0x x -α-α=两根,且21836()26a a a a +=+,则锐角α的值为( )A.6π B.4π C.3π D.512π【答案】C. 【解析】试题分析:∵等比数列{}n a ,∴3618a a a a =,又∵18,a a 是关于x 的方程22sin 3sin 0x x -α-α=的两根,∴182sin a a α+=,183sin a a α=-,∴221836()264sin 23sin 6a a a a +=+⇒α=-α+,即3sin 2α=或sin 3α=-(舍去),又∵锐角α,∴3πα=. 考点:1.等比数列的性质;2.三角函数的性质.10.已知角θ的始边与x 轴非负半轴重合,终边在直线2y x =上,则cos2θ=( ) A.45-B.54C.35D.53-【答案】D 【解析】试题分析:因为角θ的始边与x 轴非负半轴重合,终边在直线2y x =上,所以.2tan =θcos2θ=.534141tan 1tan 1sin cos sin cos sin cos 22222222-=+-=+-=+-=-θθθθθθθθ 考点:弦化切11.已知点P (ααcos ,tan )在第三象限,则角α在 ( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】试题分析:由已知得,tan 0,cos 0αα<⎧⎨<⎩,故角α在第二象限.考点:三角函数的符号.12.若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 【答案】C 【解析】试题分析:由sin tan 0cos ααα=>,可得:sin ,cos αα同正或同负,即可排除A 和B ,又由sin 22sin cos ααα=⋅,故sin 20α>.考点:同角三角函数的关系 13.△ABC 中,若cos cos a bB A=,则该三角形一定是( ) A .等腰三角形但不是直角三角形 B .直角三角形但不是等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形 【答案】D【解析】 试题分析:由,得,得sin cos sin cos sin2sin2A A B B A B A B ⋅=⋅∴=∴=或D .考点:正弦定理和余弦定理的应用14,则sin()πα-=_____________.【解析】试题分析:因为α是锐角所以sin(π-α)=sin考点:同角三角函数关系,诱导公式. 15【解析】 试题分析:()()()βαβαβαtan tan tan tan 1tan 1tan -1++-=-,根据,1tan tan tan tan -=+∴βαβα,代入上式,得到原式=2.考点:两角和的正切公式的应用 16.若ABC ∆的面积为,则角C =__________.【解析】,∴角C 等于 考点:1.余弦定理;2.三角形的面积公式. 17.已知函数()sin f x x ω=,①当2ω=时,函数y =()()f x g x ②当1ω=时,()()f x g x +的最大值为③当2ω=时,将函数()f x 的图象向左平移可以得到函数()g x 的图象.其中正确命题的序号是 (把你认为正确的命题的序号都填上). 【答案】② 【解析】试题分析:①∵2ω=时,函数y =()()f x g x =sin(22x x π+=sin 2cos2x x =∴奇函数,故①不正确;②当1ω=时,()()f x g x +==2sin 12sin x x +-=2(sin -,故②正确;③当2ω=时,将函数()f x 的图象,不能得到函数()g x 的图象,故③不正确,故填②. 考点:1、函数sin y A x ωϕ=+()的图象变换;2、三角恒等变换. 18的所有零点之和为 . 【答案】8 【解析】试题分析:设x t -=1,则t x -=1]3,3[-∈t ,因)()(t g t g -=-,故)(x g 是奇函数,可知,共有4个不同的交点,故在]3,3[-∈t 时有8个不同的交点,其横坐标之和为0,即12780t t t t ++++=,从而12788x x x x ++++=.上的所有解的和等于 .[0,2]x π∈,所以【考点】解三角方程. 20,则函数()f x 的最小值为 . 【答案】9【解析】由正弦函数的图像与性质可知1sin 21x -≤≤且sin 20x ≠,所以20sin 21x <≤,所以所以()189f x ≥+=(当且仅当sin 21x =±即. 考点:1.三角恒等变换;2.同角三角函数的基本关系式;3.三角函数的图像与性质.21(1(2【答案】(1)π;(2【解析】试题分析:(1)利用两角差的余弦公式,二倍角公式的降幂变形以及辅助角公式,可对)(x f 恒等变形:分分 6分 10分12分 考点:三角恒等变形.22.已知()()()3cos cos 2sin 223sin sin 2f αααααα⎛⎫⎛⎫+⋅-⋅-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫--+ ⎪⎝⎭πππππ.(1)化简()fα;(2)若α是第三象限角,且31cos 25α⎛⎫-=⎪⎝⎭π,求()f α的值. 【答案】(1)αcos -;(2)562. 【解析】 试题分析:解题思路:(1)利用诱导公式进行化简即可;(2)先用诱导公式得出51sin -=α,再利用同角三角函数基本关系式及角所在象限求出552cos -=α,进而求出)(αf . 规律总结:涉及三角函数的化简与求值问题,往往要利用三角函数基本关系式、诱导公式、两角和差的三角公式以及二倍角公式,进行恒等变形;一定要注意灵活选用公式.试题解析:(I )原式=αααααααπαπαπααcos cos sin cos cos sin )2sin()sin()2sin()cos(sin -=-=++⎥⎦⎤⎢⎣⎡----;(II )由51)23cos(=-πα得51sin =-α,即51sin -=α, 因为α是第三象限角,所以552sin 1cos 2-=--=αα,所以562cos )(=-=ααf .考点:1.诱导公式;2.三角函数基本关系式.23.如图,正三角形ABC 的边长为2,D ,E ,F 分别在三边AB ,BC 和CA 上,且D 为AB 的中点,090EDF ∠=,BDE θ∠=,00(090)θ<<.(1)当3tan 2DEF ∠=时,求θ的大小; (2)求DEF ∆的面积S 的最小值及使得S 取最小值时θ的值.【答案】(1)θ=60︒;(2)当θ=45︒时,S 取最小值6332-. 【解析】试题分析:本题主要考查正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,在EDF ∆中,3tan 2DF DEF DE ∠==,①,而在DBE ∆中,利用正弦定理,用θ表示DE ,在ADF ∆中,利用正弦定理,用θ表示DF ,代入到①式中,再利用两角和的正弦公式展开,解出tan θ,利用特殊角的三角函数值求角θ;第二问,将第一问得到的DF 和DE 代入到三角形面积公式中,利用两角和的正弦公式和倍角公式化简表达式,利用正弦函数的有界性确定S 的最小值.在△BDE 中,由正弦定理得000sin 603sin(120)2sin(60)BD DE θθ==-+ 在△ADF 中,由正弦定理得000sin 603sin(30)2sin(30)AD DF θθ==++. 4分 由tan ∠DEF =32,得00sin(60)3sin(30)2θθ+=+,整理得tan 3θ=, 所以θ=60︒. 6分 (2)S =12·DF =00338sin(60)sin(30)2(3cos sin )(cos 3sin )θθθθθθ=++++10分 当θ=45︒时,S12分 考点:正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式.24【答案】-3. 【解析】试题分析:首先利用诱导公式将各类函数化为单解,然后利用三角函数的基本关系中进行化简,将三角函数式化为关于tan α的表达式,然后代值即可求解.考点:1、三角函数的化简求值;2、诱导公式;3、同角三角函数的基本关系. 25.向量11(,sin a =(1,)b y =,已知//a b ,且有函数)(x f y =. (1)求函数)(x f y =的周期;(2)已知锐角ABC ∆的三个内角分别为C B A ,,,求AC 的长及ABC ∆的面积. 【答案】(1)2π;(2)2AC =, 【解析】试题分析:(1)利用b a //的充要条件得出)(x f y =,再化简成sin()y A x B ωϕ=++类型求周期;(2求出角A ,求AC ,然后只需求出AB 或sin C 即可求ABC ∆的面积.试题解析:解:由b a //得分 即分(1)函数)(xf 的周期为π2=T 6分(2∵ABC ∆是锐角三角形∴分10分又∵AAC AB AC AB BC cos 2222⋅⋅-+= 解得3=AB 11分 ∴ABC ∆的面积分 考点:1、平面向量与三角函数结合,2、正弦定理与余弦定理综合运用,3、三角形面积公式. 26的最大值为1. (Ⅰ)求常数a 的值;(Ⅱ)求函数()f x 的单调递增区间; (Ⅲ)若将()f x 的图象向左平移个单位,得到函数()g x 的图象,求函数()g x 在区间最大值和最小值. 【答案】(1)1-=a ;(2)-3.【解析】试题分析:(1)利用两角和正弦公式和降幂公式化简,得到()ϕω+=x A y sin 的形式,在计算所求.(2).(3)求三角函数的最小正周期一般化成()ϕω+=x A y sin ,()ϕω+=x A y cos ,()ϕω+=x A y tan 形式,利用周期公式即可.(4)求解较复杂三角函数的单调区间时,首先化成()ϕω+=x A y sin 形式,再()ϕω+=x A y sin 的单调区间,只需把ϕω+x 看作一个整体代入x y sin =相应的单调区间,注意先把ω化为正数,这是容易出错的地方. 试题解析:解:(1将()x f的图象向左平移个单位,得到函数()x g 的图象,∴当,()x g 取最大值,()x g 取最小值-3.考点:(1)求三角函数的单调区间;(2)求三角函数在闭区间上的最值. 27.已知sin(3)2cos(4)απαπ-=-;求.【解析】试题分析:由诱导公式可将sin(3)2cos(4)απαπ-=-可化为sin 2cos αα=-,再将所以求式子用,将sin 2cos αα=-代入可化为试题解析:解:sin(3)2cos(4)απαπ-=-,sin(3)2cos(4)παπα∴--=-分分考点:诱导公式.28sin(6x x πω-的最小正周期是π.(1)求()f x 的单调递增区间; (2)求()f x 在上的最大值和最小值.【答案】(k k Z π⎤∈⎥⎦(2) 最大值2、最小值【解析】试题分析:(1)sin(6x x πω-,然后根据周期公式确定ω的值.最后利用正弦函数的单调性求出()f x 的单调递增区间 (2)16π⎫-≤⎪⎭试题解析:解:分所以,1ω=从而分分所以函数()f x 的单调递增区间为分(2)分分所以()f x 在上的最大值和最小值分别为2、分考点:1、三角函数的恒等变换;2、函数()sin y A x ωϕ=+的性质; 29.已知.2tan =α (1)求ααααcos sin cos 2sin 3-+的值;(2)求)cos()sin()3sin()23sin()2cos()cos(αππααππααπαπ+-+-+-的值;(3)若α是第三象限角,求αcos的值. 【答案】(1)8;(2(3【解析】试题分析:(1)因为已知分子分母为齐次式,所以可以直接同除以cos a 转化为只含tan a 的式子即可求得;(2)用诱导公式将已知化简即可求得;(3)有tan 2a =,得sin 2cos αα=,再利用同角关系22sin cos 1αα=+,又因为α是第三象限角,所以cos 0a <;试题解析:⑴3sin 2cos 3tan 2sin cos tan 1αααααα=--++ 2分 322821⨯==-+. 3分 ⑵()()()()()()()()()()cos cos()sin()cos sin cos 22sin 3sin cos sin sin cos ααααααααααααπ3ππ----=π-ππ---+++ 9分 cos 11sin tan 2ααα=-=-=-. 10分 ⑶解法1:由sin tan 2cos ααα==,得sin 2cos αα=,又22sin cos 1αα=+,故224cos cos 1αα=+,即21cos 5α=, 12分因为α是第三象限角,cos 0α<,所以cos α= 14分解法2:222222cos 111cos cos sin 1tan 125ααααα====+++, 12分因为α是第三象限角,cos 0α<,所以cos α= 14分考点:1.诱导公式;2.同角三角函数的基本关系.。