2011年上海市高考数学试题(理科)

合集下载

2011年高考试题(全国新课标)数学(理科)试卷及答案

2011年高考试题(全国新课标)数学(理科)试卷及答案

2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数212ii+-的共轭复数是(A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数、又在(0,)+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2xy -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ= (A )45-(B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的 侧视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A )2 (B )3 (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40 (9)由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于 (A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.(13)若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 。

2011年高考新课标全国卷理科数学试题(附答案)

2011年高考新课标全国卷理科数学试题(附答案)

2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数212ii +=- (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B ) 720 (C ) 1440 (D ) 5040 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B ) 12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ= (A ) 45-(B )35- (C ) 35 (D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A (B (C ) 2 (D ) 3(8)51()(2)ax x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )—20 (C )20 (D )40(9)曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C ) 163(D ) 6 (10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题1:||1p +>a b ⇔2[0,)3πθ∈ 2:p ||+a b 1>⇔θ∈2(,]3ππ 3:||1p ->a b ⇔θ∈[0,)3π 4:||1p ->a b ⇔θ∈(,]3ππ其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-剟的图象所有交点的橫坐标之和等于(A )2 (B )4 (C )6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =锥O ABCD -的体积为_____________.(16)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为_________. 三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式.(II )设31323log log log n n b a a a =+++ ,求数列1{}nb 的前n 项和.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD(I )证明:PA BD ⊥;(II )若PD AD =,求二面角A PB C --的余弦值.(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).(20)(本小题满分12分)在平面直角坐标系xOy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值;(II )如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:,,,C B D E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当1a =时,求不等式()32f x x ≥+的解集. (II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学答案(1)C 【解析】212i i+-=(2)(12),5i i i ++=共轭复数为C . (2)B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .(3)B 【解析】框图表示1n n a n a -=⋅,且11a =所求6a =720,选B .(4)A 【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,选A . (5)B 【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .(6)D 【解析】条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。

2011年高考理科数学试题及答案—全国课标版

2011年高考理科数学试题及答案—全国课标版

2011年高考理科数学试题—全国课标版第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每个小题给出的5个选项中,只有一项是符合题目要求的.1.复数212ii +-的共轭复数是 (A )35i - (B)35i (C)i - (D) i2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A )3y x = (B)||1y x =+ (C) 21y x =-+ (D)||2x y -= 3.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B)720 (C)1440 (D)50404.有3个兴趣小组,甲、乙两位同学各参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一兴趣小组的概率为(A )13 (B)12 (C)23 (D)345.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45-(B)35- (C) 35 (D) 456.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A,B 两点,||AB 为C 的实轴长2倍,则C 的离心率为(A (B)(C)2 (D)38.51()(2ax x x x+-)的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C)20 (D)409.由曲线y =,直线2y x =-及y 轴围成的图形的面积为(A )103 (B)4 (C)163(D)610.已知a 与b 均为单位向量,其中夹角为θ,有下列四个命题1p :||1+>a b ⇔θ∈[0,23π) 2p :||1+>a b ⇔θ∈(23π,π] 3p : ||1->a b ⇔θ∈[0, 3π) 4p :||1->a b ⇔θ∈(3π,π]其中真命题是(A )1p ,4p (B) 1p ,3p (C) 2p ,3p (D) 3p ,4p 11.设函数()f x =sin()cos()x x ωϕωϕ+++(ω>0,||ϕ<2π)的最小正周期为π,且()f x -=()f x ,则()f x(A )在(0,2π)单调递减 (B)在(4π,34π)单调递减(C) 在(0,2π)单调递增 (D)在(4π,34π)单调递增12.函数11y x=-的图像与函数2sin y x π=(-2≤x ≤4)的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个考题考生都必须作答,第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4个小题,每小题5分. 13.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点1F ,2F 在x 轴上,,过1F 作直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为 .15.已知矩形ABCD 的顶点都在半径为4的球面上,且AB =6,BC =,则棱锥O ABCD -的体积为 .16.在ABC ∆中,060B =,AC =则2AB BC +的最大值为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等比数列{n a }的各项均为整数,且1223a a +=1,23a =269a a ,(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n b =31323log log log n a a a +++ ,求数列{1nb }的前n 项和.18. (本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,DAB ∠=060,AB =2AD ,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若PD =AD ,求二面角A PB C --的余弦值.19. (本小题满分12分)某种产品以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A 配方,B 配方生产产品的优质品率;(Ⅱ)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值的关系为y = 2 942 941024 102t t t -<⎧⎪≤<⎨⎪≥⎩,从用B 配方生产的产品中任取一件,其利润记为ξ(单位:元),求ξ的分布列与数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).20. (本小题满分12分)在平面直角坐标系xOy 中,已知A(0,-1),B 点在直线3y =-上,M 点满足MB ∥OA ,MA AB =MB BA,M 点的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.21. (本小题满分12分)已知函数()f x =ln 1a x bx x++,曲线y=()f x 在点(1,(1)f )处的切线方程为230x y +-=. (Ⅰ)求a ,b 的值;(Ⅱ)如果当x >0,且x ≠1时,()f x >ln 1x kx x+-,求k 的取值范围.请考生在第22、23、24题中任选一题做答,如果多做,则按所作第一题记分,作答时请写清题号.22. (本小题满分12分)选修4—1:几何选讲如图,D ,E 分别是ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合,已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两根. (Ⅰ)证明:C ,B ,D ,E 四点共圆;(Ⅱ)若A ∠=090,且m =4,n =6,求C ,B ,D ,E 所在圆的半径.23. (本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足OP =2OM,P 点的轨迹为2C .(Ⅰ)求2C 的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .24. (本小题满分10分)选修4—5:不等式选讲 设函数()f x =||3x a x -+,其中a >0.(Ⅰ)当a =1时,求不等式()f x ≥32x +的解集; (Ⅱ)若不等式()f x ≤0的解集为{|1x x ≤-},求a 的值.2011年高考理科数学试题—全国课标版答案一、选择题CBBABD BDCAAD 二、填空题13.-6 14.221168x y +=15.16.三、解答题17.【命题意图】本题考查等比数列的通项公式、性质、等差数列的前n 项和公式及拆项相消求和法,是容易题目.【解析】(Ⅰ)设数列{n a }的公比为q ,由23a =269a a 得23a =249a ,所以2q =19, 由条件可知q >0,故q =13. 由122+3a a =1得112+3a a q =1,所以1a =13, 故数列{n a }的通项公式为n a =13n. (Ⅱ)n b =31323log log log n a a a +++ =(12)n -+++ =(1)2n n +- 故1nb =2(1)n n -+=112()1n n --+, 12111nb b b +++ =111112[(1)()()]2231n n --+-++-+ =21n n -+ 所以数列{1nb }的前n 项和为21n n -+.【解题指导】数列题目由压轴题调整为大题第一题,题目难度降了很多,符合课标对这部分的要求,数列题重点考查等差数列、等比数列的概念、性质、通项公式、前n 项和公式,简单递推数列问题、分组求和、拆项相消、错位相减、倒序求和等常见数列求和方法.18. 【命题意图】本题考查了线面、线线垂直的判定与性质、利用向量法求二面角的方法,是容易题目.【解析】(Ⅰ) ∵DAB ∠=060,AB =2AD ,由余弦定理得BD, ∴22BD AD +=2AB , ∴BD ⊥AD ,又∵PD ⊥面ABCD , ∴BD ⊥PD , ∴BD ⊥面PAD , ∴PA BD ⊥(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴正半轴建立空间直角坐标系D xyz -,则A (1,0,0),B (00),P (0,0,1),AB =(-10),PB =(01),BC =(-1,0,0).设平面PAB 的法向量为n =(1x ,1y ,1z ),则0AB PB ⎧=⎪⎨=⎪⎩n n ,即1110x z ⎧-=⎪-=,取1y =1,则1x1z= ∴n设平面PBC 的法向量为m =(2x ,2y ,2z ),则0BC PB ⎧=⎪⎨=⎪⎩m m,即2100x z =⎧⎪-=,取2y =-1,则2x =0,2z =m =(0,-1,,cos m,n=7-,故二面角A PB C --的余弦值为. 【解题指导】空间几何体重点考查空间线线、线面、面面的平行、垂直判定与性质,利用向量法和几何法求异面直线所成角、线面角、二面角问题,难度与大纲版要求变化不大,是拿分题目.19. 【命题意图】本题主要考查给出试验结果的频数分布计算相应的频率,将频率当概率计算随机变量的分布列与数学期望.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为228100+=0.3, ∴用A 配方生产的产品中优质品率的估计值为0.3. 由试验结果知,用B 配方生产的产品中优质品的频率为3210100+=0.42, ∴用B 配方生产的产品中优质品率的估计值为0.42.(Ⅱ)用B 配方生产的100件产品中,其质量指标值落入[90,94),[94,102),[102,110]的频率分别额为0.04,0.54,0.42,∴(2)P ξ=-=0.04,(2)P ξ==0.54,(4)P ξ==0.42, 即ξ的分布列为ξ的数学期望ξE =-20.04+20.54+40.42⨯⨯⨯=2.68.【解题指导】概率统计是每年必考的题目,侧重考查在统计下的概率计算,重点要掌握抽样方法、数据处理方法茎叶图、直方图,会利用茎叶图、直方图中的信息计算期望、方差、中位数、众数等,掌握离散型随机变量的常见分布:二项分布、两点分布、几何分布、超几何分布等,会求简单随机变量的分布列、数学期望、方差,会根据正态分布的图像解正态分布问题,掌握线性回归分析、独立性检验的思想方法.20. 【命题意图】本题以向量为载体考查求曲线方程的方法,考查了抛物线的切线、点到直线的距离公式、利用基本不等式求最值等,是中档题目. 【解析】(Ⅰ)设M (x ,y ),由已知得B (x ,-3),A (0,—1), ∴MA =(x -,1y --),MB =(0,3y --),AB=(x ,-2),由题意可知()MA MB AB + =0,即(,42)(,2)x y x ----=0,化简整理得2124y x =-, ∴曲线C 的方程为2124y x =-;(Ⅱ)设P (0x ,0y )为曲线C :2124y x =-上一点,∴200122y x =-,y '=12x ,∴l 的斜率为012x , ∴直线l 的方程为0y y -=001()2x x x -,即2000220x x y y x -+-=∴O 点到l 的距离d=22014x +12≥2,当x =0时取等号,∴O 点到l 的距离的最小值为2.【解题指导】本题以向量为载体给出曲线上的点满足的条件,故用直接法求方程,抛物线的切线可用导数求切线方程,然后利用点到直线的距离公式化为函数问题,再用函数求最值的方法求解.21. 【命题意图】本题考查了利用导数解函数的切线问题、已知含参数的不等式在某个范围上成立求参数范围问题及分类讨论思想,是难题.【解析】(Ⅰ)()f x '=2221(ln )(1)x a x b x x x+--+, ∵直线23x y +-=0的斜率为12-,且过点(1,1),∴(1)f =1且(1)f '=12-, 即1122b a b =⎧⎪⎨-=-⎪⎩,解得a =1,b =1;(Ⅱ)由(Ⅰ)知()f x =ln 11x x x++, ∴ln ()()1x kf x x x -+-=221(1)1)(2ln )1k x x x x--+-( 设()h x =2(1)1)2ln k x x x--+((x >0),则()h x '=22(1)(1)2k x xx -++ ①当k ≤0时,由()h x '=222(1)(1)k x x x+--知,当1x ≠时,()h x '<0,而(1)h =0,故当x ∈(0,1)时,()h x >0,可得21()01h x x >-; 当x ∈(1,+∞)时,()h x <0,可得21()01h x x >-, 从而当x >0,且x ≠1时,ln ()()1x k f x x x -+->0,即()f x >ln 1x kx x +-; ②当0<k <1时,由于当x ∈(1,11k-)时,2(1)(1)2k x x -++>0,故()h x '>0,而(1)h =0,故x ∈(1,11k -)时,()h x >0,可得21()1h x x-<0与题设矛盾; ③当k ≥1时,此时()h x '>0,而(1)h =0,故当x ∈(1,+∞)时,()h x >0,可得21()01h x x <-,与题设矛盾, 综上所述,k 的取值范围为(—∞,0].【解题指导】对切线问题,从求切线入手求解;对已知不等成立求参数范围问题,若参变分离后,易求含未知数的一端的最值,常用此法,否则分类讨论,注意分类时要做到不重不漏.22. 【命题意图】本题考查了四点共圆的判定与圆的性质,是容易题.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,A D AB ⨯=mn =AE AC ⨯, 即AD AEAC AB=,又DAE CAB ∠=∠, ∴ADE ∆∽ACB ∆, ∴ADE ACB ∠=∠,∴C,B,D,E 四点共圆(Ⅱ)当m =4,n =6时,方程2140x x mn -+=的两根为1x =2,2x =12,故AD =2,AC =12,取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线交于H 点,连结DH ,由(Ⅰ)知C,B,D,E 四点共圆,∴C,B,D,E 四点所在圆的圆心为H ,半径为DH , ∵A ∠=090,∴GH ∥AB ,HF ∥AC , ∴HF =AG =5,DF =1(122)2-=5,∴C,B,D,E 四点所在圆的半径为【解题指导】对证明四点故圆问题,可证对角互补或一外角等于内对角或通过证明其中三点与非这四点中另外两点分别在两个圆上,因这两个圆的由不共线的三个公共点,必重合而得证,求圆的半径注意利用圆的性质.23. 【命题意图】本题考查了参数方程与极坐标,是容易题型。

2011新课标全国卷数学(理科)(含答案)

2011新课标全国卷数学(理科)(含答案)

2011年普通高等学校招生全国统一考试理科数学(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是 (A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13(B )12(C )23(D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45- (B )35- (C )35(D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A(B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C )20 (D )40 (9)由曲线y =2y x =-及y 轴所围成的图形的面积为 (A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则 (A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫ ⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8 二、填空题:本大题共4小题,每小题5分。

2011年全国统一高考数学试卷(理科)(大纲版)(含解析版)

 2011年全国统一高考数学试卷(理科)(大纲版)(含解析版)

2011年全国统一高考数学试卷(理科)(大纲版)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数z=1+i,为z 的共轭复数,则z•﹣z﹣1=()A.﹣2i B.﹣i C.i D.2i2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)3.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b34.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.55.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.96.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()A.B.C.D.17.(5分)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种8.(5分)曲线y=e﹣2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为()A.B.C.D.19.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.10.(5分)已知抛物线C:y2=4x的焦点为F,直线y=2x﹣4与C交于A,B两点,则cos∠AFB=()A.B.C.D.11.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π12.(5分)设向量,,满足||=||=1,=﹣,<﹣,﹣>=60°,则||的最大值等于()A.2B.C.D.1二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)的二项展开式中,x的系数与x9的系数之差为.14.(5分)已知α∈(,π),sinα=,则tan2α=.15.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=.16.(5分)已知E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于.三、解答题(共6小题,满分70分)17.(10分)△ABC的内角A、B、C的对边分别为a、b、c.已知A﹣C=,a+c=b,求C.18.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.19.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.20.(12分)设数列{a n}满足a1=0且.(Ⅰ)求{a n}的通项公式;(Ⅱ)设,记,证明:S n<1.21.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.22.(12分)(Ⅰ)设函数,证明:当x>0时,f(x)>0.(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p,证明:.2011年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数z=1+i,为z 的共轭复数,则z•﹣z﹣1=()A.﹣2i B.﹣i C.i D.2i【考点】A5:复数的运算.【专题】11:计算题.【分析】求出复数z的共轭复数,代入表达式,求解即可.【解答】解:=1﹣i,所以=(1+i)(1﹣i)﹣1﹣i﹣1=﹣i故选:B.【点评】本题是基础题,考查复数代数形式的混合运算,考查计算能力,常考题型.2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)【考点】4R:反函数.【专题】11:计算题.【分析】由原函数的解析式解出自变量x的解析式,再把x 和y交换位置,注明反函数的定义域(即原函数的值域).【解答】解:∵y=(x≥0),∴x=,y≥0,故反函数为y=(x≥0).故选:B.【点评】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.3.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b3【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】利用不等式的性质得到a>b+1⇒a>b;反之,通过举反例判断出a>b推不出a>b+1;利用条件的定义判断出选项.【解答】解:a>b+1⇒a>b;反之,例如a=2,b=1满足a>b,但a=b+1即a>b推不出a>b+1,故a>b+1是a>b成立的充分而不必要的条件.故选:A.【点评】本题考查不等式的性质、考查通过举反例说明某命题不成立是常用方法.4.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.5【考点】85:等差数列的前n项和.【专题】11:计算题.【分析】先由等差数列前n项和公式求得S k+2,S k,将S k+2﹣S k=24转化为关于k的方程求解.【解答】解:根据题意:S k+2=(k+2)2,S k=k2∴S k+2﹣S k=24转化为:(k+2)2﹣k2=24∴k=5故选:D.【点评】本题主要考查等差数列的前n项和公式及其应用,同时还考查了方程思想,属中档题.5.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.9【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】56:三角函数的求值.【分析】函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果.【解答】解:f(x)的周期T=,函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以,k∈Z.令k=1,可得ω=6.故选:C.【点评】本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.6.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()A.B.C.D.1【考点】MK:点、线、面间的距离计算.【专题】11:计算题;13:作图题;35:转化思想.【分析】画出图形,由题意通过等体积法,求出三棱锥的体积,然后求出D到平面ABC的距离.【解答】解:由题意画出图形如图:直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离转化为三棱锥D﹣ABC的高为h,所以AD=,CD=,BC=由V B﹣ACD=V D﹣ABC可知所以,h=故选C.【点评】本题是基础题,考查点到平面的距离,考查转化思想的应用,等体积法是求解点到平面距离的基本方法之一,考查计算能力.7.(5分)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种【考点】D3:计数原理的应用.【专题】11:计算题.【分析】本题是一个分类计数问题,一是3本集邮册一本画册,让一个人拿一本画册有4种,另一种情况是2本画册2本集邮册,只要选两个人拿画册C42种,根据分类计数原理得到结果.【解答】解:由题意知本题是一个分类计数问题,一是3本集邮册一本画册,从4位朋友选一个有4种,另一种情况是2本画册2本集邮册,只要选两个人拿画册C42=6种,根据分类计数原理知共10种,故选:B.【点评】本题考查分类计数问题,是一个基础题,这种题目可以出现在选择或填空中,也可以出现在解答题目的一部分中.8.(5分)曲线y=e﹣2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为()A.B.C.D.1【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】根据导数的几何意义求出函数f(x)在x=0处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成一般式,然后求出与y轴和直线y=x的交点,根据三角形的面积公式求出所求即可.【解答】解:∵y=e﹣2x+1∴y'=(﹣2)e﹣2x∴y'|x=0=(﹣2)e﹣2x|x=0=﹣2∴曲线y=e﹣2x+1在点(0,2)处的切线方程为y﹣2=﹣2(x﹣0)即2x+y﹣2=0令y=0解得x=1,令y=x解得x=y=∴切线与直线y=0和y=x围成的三角形的面积为×1×=故选:A.【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及两直线垂直的应用等有关问题,属于基础题.9.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.【考点】3I:奇函数、偶函数;3Q:函数的周期性.【专题】11:计算题.【分析】由题意得=f(﹣)=﹣f(),代入已知条件进行运算.【解答】解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故选:A.【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.10.(5分)已知抛物线C:y2=4x的焦点为F,直线y=2x﹣4与C交于A,B两点,则cos∠AFB=()A.B.C.D.【考点】KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】根据已知中抛物线C:y2=4x的焦点为F,直线y=2x﹣4与C交于A,B两点,我们可求出点A,B,F的坐标,进而求出向量,的坐标,进而利用求向量夹角余弦值的方法,即可得到答案.【解答】解:∵抛物线C:y2=4x的焦点为F,∴F点的坐标为(1,0)又∵直线y=2x﹣4与C交于A,B两点,则A,B两点坐标分别为(1,﹣2)(4,4),则=(0,﹣2),=(3,4),则cos∠AFB===﹣,故选:D.【点评】本题考查的知识点是直线与圆锥曲线的关系,其中构造向量然后利用向量法处理是解答本题的重要技巧.11.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π【考点】MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先求出圆M的半径,然后根据勾股定理求出求出OM的长,找出二面角的平面角,从而求出ON的长,最后利用垂径定理即可求出圆N的半径,从而求出面积.【解答】解:∵圆M的面积为4π∴圆M的半径为2根据勾股定理可知OM=∵过圆心M且与α成60°二面角的平面β截该球面得圆N∴∠OMN=30°,在直角三角形OMN中,ON=∴圆N的半径为则圆的面积为13π故选:D.【点评】本题主要考查了二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于基础题.12.(5分)设向量,,满足||=||=1,=﹣,<﹣,﹣>=60°,则||的最大值等于()A.2B.C.D.1【考点】9P:平面向量数量积的坐标表示、模、夹角.【专题】11:计算题;16:压轴题.【分析】利用向量的数量积求出的夹角;利用向量的运算法则作出图;结合图,判断出四点共圆;利用正弦定理求出外接圆的直径,求出最大值.【解答】解:∵,∴的夹角为120°,设,则;=如图所示则∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2故选:A.【点评】本题考查向量的数量积公式、向量的运算法则、四点共圆的判断定理、三角形的正弦定理.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)的二项展开式中,x的系数与x9的系数之差为0.【考点】DA :二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出通项,令x 的指数分别取1,9求出x的系数与x9的系数;求出值.【解答】解:展开式的通项为令得r=2;令得r=18∴x的系数与x9的系数C202,C2018∴x的系数与x9的系数之差为C202﹣C2018=0故答案为:0【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.14.(5分)已知α∈(,π),sinα=,则tan2α=﹣.【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.【专题】11:计算题.【分析】利用题目提供的α的范围和正弦值,可求得余弦值从而求得正切值,然后利用二倍角的正切求得tan2α.【解答】解:由α∈(,π),sinα=,得cosα=﹣,tanα==∴tan2α==﹣故答案为:﹣【点评】本题考查了二倍角的正切与同角三角函数间的基本关系,是个基础题.15.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=6.【考点】KC:双曲线的性质.【专题】16:压轴题.【分析】利用双曲线的方程求出双曲线的参数值;利用内角平分线定理得到两条焦半径的关系,再利用双曲线的定义得到两条焦半径的另一条关系,联立求出焦半径.【解答】解:不妨设A在双曲线的右支上∵AM为∠F1AF2的平分线∴=又∵|AF1|﹣|AF2|=2a=6解得|AF2|=6故答案为6【点评】本题考查内角平分线定理;考查双曲线的定义:解有关焦半径问题常用双曲线的定义.16.(5分)已知E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题;31:数形结合.【分析】由题意画出正方体的图形,延长CB、FE交点为S连接AS,过B作BP⊥AS连接PE,所以面AEF与面ABC所成的二面角就是:∠BPE,求出BP与正方体的棱长的关系,然后求出面AEF与面ABC所成的二面角的正切值.【解答】解:由题意画出图形如图:因为E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,延长CB、FE交点为S连接AS,过B作BP⊥AS连接PE,所以面AEF与面ABC所成的二面角就是∠BPE,因为B1E=2EB,CF=2FC1,所以BE:CF=1:2所以SB:SC=1:2,设正方体的棱长为:a,所以AS=a,BP=,BE=,在RT△PBE中,tan∠EPB===,故答案为:【点评】本题是基础题,考查二面角的平面角的正切值的求法,解题的关键是能够作出二面角的棱,作出二面角的平面角,考查计算能力,逻辑推理能力.三、解答题(共6小题,满分70分)17.(10分)△ABC的内角A、B、C的对边分别为a、b、c.已知A﹣C=,a+c=b,求C.【考点】HU:解三角形.【专题】11:计算题.【分析】由A﹣C等于得到A为钝角,根据诱导公式可知sinA与cosC相等,然后利用正弦定理把a+c=b化简后,把sinA换为cosC,利用特殊角的三角函数值和两角和的正弦函数公式把左边变为一个角的正弦函数,给方程的两边都除以后,根据C和B的范围,得到C+=B或C++B=π,根据A为钝角,所以C++B=π不成立舍去,然后根据三角形的内角和为π,列出关于C的方程,求出方程的解即可得到C的度数.【解答】解:由A﹣C=,得到A为钝角且sinA=cosC,利用正弦定理,a+c=b可变为:sinA+sinC=sinB,即有sinA+sinC=cosC+sinC=sin(C+)=sinB,又A,B,C是△ABC的内角,故C+=B或C++B=π(舍去),所以A+B+C=(C+)+(C+)+C=π,解得C=.【点评】此题考查学生灵活运用诱导公式、特殊角的三角函数值以及两角和的正弦函数公式化简求值,是一道中档题.学生做题时应注意三角形的内角和定理及角度范围的运用.18.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(Ⅰ)首先求出购买乙种保险的概率,再由独立事件和对立事件的概率求出该车主甲、乙两种保险都不购买的概率,然后求该车主至少购买甲、乙两种保险中的1种的概率即可.(Ⅱ)每位车主甲、乙两种保险都不购买的概率均相等,故为独立重复试验,X服从二项分布,由二项分布的知识求概率即可.【解答】解:(Ⅰ)设该车主购买乙种保险的概率为P,则P(1﹣0.5)=0.3,故P=0.6,该车主甲、乙两种保险都不购买的概率为(1﹣0.5)(1﹣0.6)=0.2,由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率1﹣0.2=0.8(Ⅱ)甲、乙两种保险都不购买的概率为0.2,X~B(100,0.2)所以EX=100×0.2=20【点评】本题考查对立事件独立事件的概率、独立重复试验即二项分布的期望等知识,考查利用所学知识分析问题、解决问题的能力.19.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角.【专题】11:计算题;14:证明题.【分析】(1)利用线面垂直的判定定理,即证明SD垂直于面SAB中两条相交的直线SA,SB;在证明SD与SA,SB的过程中运用勾股定理即可(Ⅱ)求AB与平面SBC所成的角的大小即利用平面SBC的法向量,当为锐角时,所求的角即为它的余角;当为钝角时,所求的角为【解答】(Ⅰ)证明:在直角梯形ABCD中,∵AB∥CD,BC⊥CD,AB=BC=2,CD=1∴AD==∵侧面SAB为等边三角形,AB=2∴SA=2∵SD=1∴AD2=SA2+SD2∴SD⊥SA同理:SD⊥SB∵SA∩SB=S,SA,SB⊂面SAB∴SD⊥平面SAB(Ⅱ)建立如图所示的空间坐标系则A(2,﹣1,0),B(2,1,0),C(0,1,0),作出S在底面上的投影M,则由四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形知,M点一定在x轴上,又AB=BC=2,CD=SD=1.可解得MD=,从而解得SM=,故可得S (,0,)则设平面SBC的一个法向量为则,即取x=0,y=,z=1即平面SBC的一个法向量为=(0,,1)又=(0,2,0)cos<,>===∴<,>=arccos即AB与平面SBC所成的角的大小为arcsin【点评】本题考查了直线与平面垂直的判定,直线与平面所成的角以及空间向量的基本知识,属于中档题.20.(12分)设数列{a n}满足a1=0且.(Ⅰ)求{a n}的通项公式;(Ⅱ)设,记,证明:S n<1.【考点】8E:数列的求和;8H:数列递推式;8K:数列与不等式的综合.【专题】11:计算题;16:压轴题.【分析】(Ⅰ)由是公差为1的等差数列,知,由此能求出{a n}的通项公式.(Ⅱ)由==,能够证明S n<1.【解答】解:(Ⅰ)是公差为1的等差数列,,∴(n∈N*).(Ⅱ)==,∴=1﹣<1.【点评】本题考查数列的性质和应用,解题时要注意裂项求和法的合理运用.21.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.【考点】9S:数量积表示两个向量的夹角;KH:直线与圆锥曲线的综合.【专题】15:综合题;16:压轴题;35:转化思想.【分析】(1)要证明点P在C上,即证明P点的坐标满足椭圆C的方程,根据已知中过F且斜率为﹣的直线l与C交于A、B两点,点P满足,我们求出点P的坐标,代入验证即可.(2)若A、P、B、Q四点在同一圆上,则我们可以先求出任意三点确定的圆的方程,然后将第四点坐标代入验证即可.【解答】证明:(Ⅰ)设A(x1,y1),B(x2,y2)椭圆C:①,则直线AB的方程为:y=﹣x+1 ②联立方程可得4x2﹣2x﹣1=0,则x1+x2=,x1×x2=﹣则y1+y2=﹣(x1+x2)+2=1设P(p1,p2),则有:=(x1,y1),=(x2,y2),=(p1,p2);∴+=(x1+x2,y1+y2)=(,1);=(p1,p2)=﹣(+)=(﹣,﹣1)∴p的坐标为(﹣,﹣1)代入①方程成立,所以点P在C上.(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.设线段AB的中点坐标为(,),即(,),则过线段AB的中点且垂直于AB的直线方程为:y﹣=(x﹣),即y=x+;③∵P关于点O的对称点为Q,故0(0.0)为线段PQ的中点,则过线段PQ的中点且垂直于PQ的直线方程为:y=﹣x④;③④联立方程组,解之得:x=﹣,y=③④的交点就是圆心O1(﹣,),r2=|O1P|2=(﹣﹣(﹣))2+(﹣1﹣)2=故过P Q两点圆的方程为:(x+)2+(y﹣)2=…⑤,把y=﹣x+1 …②代入⑤,有x1+x2=,y1+y2=1∴A,B也是在圆⑤上的.∴A、P、B、Q四点在同一圆上.【点评】本题考查的知识点是直线与圆锥曲线的关系,向量在几何中的应用,其中判断点与曲线关系时,所使用的坐标代入验证法是解答本题的关键.22.(12分)(Ⅰ)设函数,证明:当x>0时,f(x)>0.(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p,证明:.【考点】6B:利用导数研究函数的单调性.【专题】14:证明题;16:压轴题.【分析】(Ⅰ)欲证明当x>0时,f(x)>0,由于f(0)=0利用函数的单调性,只须证明f(x)在[0,+∞)上是单调增函数即可.先对函数进行求导,根据导函数大于0时原函数单调递减即可得到答案.(Ⅱ)先计算概率P=,再证明<<,即证明99×98× (81)(90)19,最后证明<e﹣2,即证>e2,即证19ln>2,即证ln,而这个结论由(1)所得结论可得【解答】(Ⅰ)证明:∵f′(x)=,∴当x>﹣1,时f′(x)≥0,∴f(x)在(﹣1,+∞)上是单调增函数,∴当x>0时,f(x)>f(0)=0.即当x>0时,f(x)>0.(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,连续抽取20次,则抽得的20个号码互不相同的概率为P=,要证P<<.先证:P=<,即证<即证99×98×…×81<(90)19而99×81=(90+9)×(90﹣9)=902﹣92<90298×82=(90+8)×(90﹣8)=902﹣82<902…91×89=(90+1)×(90﹣1)=902﹣12<902∴99×98×…×81<(90)19即P<再证:<e﹣2,即证>e2,即证19ln>2,即证ln>由(Ⅰ)f(x)=ln(1+x)﹣,当x>0时,f(x)>0.令x=,则ln(1+)﹣=ln(1+)﹣>0,即ln>综上有:P<<【点评】本题主要考查函数单调性的应用、函数的单调性与导数的关系等,考查运算求解能力,函数、导数、不等式证明及等可能事件的概率等知识.通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力.祝福语祝你考试成功!。

2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)

2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)

2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii +-的共轭复数是(A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是 (A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A )2 (B )3 (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40 (9)由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是 (A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增(12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。

2011年上海高考理科数学试卷

2011年上海高考理科数学试卷

2011年上海高考理科数学试卷一、填空题:每题4分,共14题56分。

1.函数1()2f x x =-的反函数为1()f x -=.2. 若全集U R=,集合{|1}{|0}A x x x x =≥≤U ,则U C A =.3. 设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = . 4.不等式13x x+<的解为 .5. 在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 .6. 在相距2千米的A 、B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是千米.7. 若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 . 8.函数sin()cos()26y x x ππ=+-的最大值为 .9. 马老师从课本上抄录一个随机变量ε的概率分布律如下表:?!?321P(ε=x )x请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E ε= .10. 行列式ab cd(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 .11. 在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅=u u u r u u u r .12. 随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001).13. 设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 .14. 已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记0Q R 的中点为1P ,取01Q P 和1P R 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,nP P P L L ,则0lim ||nn Q P →∞= .二、选择题:本大题满分20分.本大题共有4题,每题5分15. 若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( )A.222a b ab +> B.2a b ab+≥C.11a bab+> D.2b aa b+≥ 16. 下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( )A.1ln||y x = B.3y x =C.||2x y = D.cos y x =17. 设12345,,,,A A A A A 是空间中给定的5个不同的点,则使123450MA MA MA MA MA ++++=u u u u r u u u u r u u u u r u u u u r u u u u r r 成立的点M 的个数为( )A.0B.1C.5D.1018. 设{}na 是各项为正数的无穷数列,iA 是边长为1,i i a a +的矩形面积(1,2,i =L ),则{}nA 为等比数列的充要条件为( ) A.{}na 是等比数列B.1321,,,,n a a a-L L 或242,,,,na a aL L 是等比数列 C.1321,,,,n a a a -L L 和242,,,,na a a L L 均是等比数列 D.1321,,,,n a a a-L L和242,,,,na a aL L均是等比数列,且公比相同三、解答题:本大题满分74分.本大题共有5题,解答应写出文字说明、证明过程或演算步骤.19.(本题满分12分)已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,12z z ⋅是实数,求2z .20.(本题满分12分)已知函数()23xxf x a b =⋅+⋅,其中常数,a b 满足0ab ≠.(1)若0ab >,判断函数()f x 的单调性; ⑵ 若0ab <,求(1)()f x f x +>时x 的取值范围.21.(本题满分14分)已知1111ABCD A B C D -是底面边长为1的正四棱柱,1O 是11A C 和11B D 的交点.⑴ 设1AB 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β.求证:tan 2βα=;DCBA⑵ 若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A B C D 的高.22.(本题满分18分)已知数列{}na 和{}nb 的通项公式分别为36nan =+,27n b n =+(*n N ∈),将集合**{|,}{|,}nnx x a n N x x b n N =∈=∈U 中的元素从小到大依次排列,构成数列123,,,,,nc c c c L L .⑴ 求1234,,,c c c c ;⑵ 求证:在数列{}nc 中、但不在数列{}nb 中的项恰为242,,,,na a aL L;⑶ 求数列{}nc 的通项公式.23.(本题满分18分)已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l .⑴ 求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; ⑵ 设l 是长为2的线段,求点集{|(,)1}D P d P l =≤所表示图形的面积;⑶ 写出到两条线段12,l l 距离相等的点的集合12{|(,)(,)}P d P l d P l Ω==,其中12,lAB l CD==,,,,A B C D是下列三组点中的一组。

2011年上海高考数学理科试卷(带详解)

2011年上海高考数学理科试卷(带详解)

2011年上海市高考数学试题(理科)一.填空题(56分) 1.函数1()2f x x =-的反函数为1()f x -= . 【测量目标】反函数.【考查方式】直接利用函数的表达式,解出用y 表示x 的式子,即可得到答案. 【难易程度】容易 【参考答案】12x+ 【试题解析】设12y x =-,可得21xy y -=, (步骤1) ∴12xy y =+,可得12y x y+=,将x 、y 互换得112()x f x x -+=. (步骤2)∵原函数的值域为{}|0y y y ∈≠,∴112()(0)xfx x x-+=≠. (步骤3) 2.若全集U =R ,集合{}{}=|1|0A x x x x 厔,则U A =ð .【测量目标】集合的基本运算(补集).【考查方式】集合的表示法(描述法)求集合的补集. 【难易程度】容易【参考答案】{|01}x x <<【试题解析】∵集合{}{}{}=|1|0|10A x x x xx x x = 或厔厔∴U A =ð{|01}x x <<. 3.设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = . 【测量目标】双曲线的简单几何性质.【考查方式】利用双曲线标准方程中的分母与焦点(非零坐标)的关系,列出关于m 的方程,通过解方程求出m 的值. 【难易程度】容易 【参考答案】16【试题解析】由于点(0,5)F 是双曲线2219y x m -=的一个焦点, 故该双曲线的焦点在y 轴上,从而0m >. 从而得出m +9=25,解得m =16. 4.不等式13x x+…的解为 . 【测量目标】解一元二次不等式.【考查方式】通过移项解一元二次不等式.【难易程度】容易【参考答案】0x <或12x …【试题解析】原不等式同解于130x x +-…,同解于(12)00x x x -⎧⎨≠⎩…,即2200x x x ⎧-⎨≠⎩…,解得 0x <或12x ….5.在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 . 【测量目标】简单曲线的极坐标方程.【考查方式】先转换得到直角坐标系,再利用直线的直角坐标方程求出它们的夹角即可. 【难易程度】容易 【参考答案】1arctan2【试题解析】∵(2cos sin )2ρθθ+=,cos 1ρθ=, ∴转化到直角坐标系得到:220x y +-=与x =1. (步骤1) ∴220x y +-=与x =1夹角的正切值为12, (步骤2) 直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为1arctan2.(步骤3) 6.在相距2千米的A 、B 两点处测量目标C ,若75,60CAB CBA ∠=∠= ,则A 、C 两点之间的距离是 千米.【测量目标】解三角形的实际应用.【考查方式】用三角形内角和求得ACB ∠,进而表示出AD ,进而在Rt ABD △中,表示出AB 和AD 的关系求得.【难易程度】容易【试题解析】由A 点向BC 作垂线,垂足为D ,设AC x =, (步骤1) ∵75,60CAB CBA ∠=∠= ,∴180756045ACB ∠=--=∴AD x =. (步骤2) ∴在Rt ABD △中,sin 602AB x ==(步骤3)x =. (步骤4)第6题图7.若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 .【测量目标】柱、锥、台、球的体积.【考查方式】求出圆锥的底面周长,然后利用侧面积求出圆锥的母线,求出圆锥的高,即可求出圆锥体积. 【难易程度】容易【试题解析】根据题意,圆锥的底面面积为π,则其底面半径是1,底面周长为2π.(步骤1)又π2πrl =,∴圆锥的母线为2(步骤2)所以圆锥的体积1π3= (步骤3) 8.函数ππsin()cos()26y x x =+-的最大值为 【测量目标】三角函数的最值.【考查方式】利用诱导公式和积化和差公式对解析式化简,进而根据正弦函数的值域求得函数的最大值. 【难易程度】容易【参考答案】24+ 【试题解析】ππsin()cos()26y x x =+-=πcos cos()6x x -=1ππcos cos(2)266x ⎡⎤+-⎢⎥⎣⎦=1πcos(2)26x -. 9.马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E ε= .【测量目标】离散型随机变量的期望与方差.【考查方式】(1)(3)(2)1P P P εεε=+=+==,然后根据期望求法即可求得结果. 【难易程度】容易 【参考答案】2【试题解析】设(1)(3),(2),P P a P b εεε====== 则21,232(2)2a b E a b a a b ε+==++=+=.10.行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 【测量目标】矩阵与行列式.【考查方式】按照行列式的运算法则,化简得ad bc -,再根据条件进行分析计算,比较可得其最大值. 【难易程度】容易 【参考答案】6 【试题解析】a bad bc c d=-, ∵,,,{1,1,2}a b c d ∈-∴ad 的最大值是:2⨯2=4,bc 的最小值是:122-⨯=-, ∴ad bc -的最大值是6.11.在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD =.【测量目标】平面向量在平面几何中的应用.【考查方式】把AD 用,AB BC表示出来,利用向量的数量积的运算法则即可求得AB AD 的值.【难易程度】容易【参考答案】152【试题解析】∵3AB =,1BD =,∴D 是BC 上的三等分点, (步骤1) ∴13AD AB BD AB BC =+=+, (步骤2)∴2111115()9933322AB AD AB AD AB AB BC AB AB BC ==+=+=-⨯⨯=. (步骤3) 12.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001).【测量目标】古典概型.【考查方式】先求事件发生总数,再求出所求事件的对立事件总数,继而得到结果. 【难易程度】容易 【参考答案】0.985【试题解析】事件发生总数为912,至少有2位同学在同一个月出生的对立事件是没有人生日在同一个月,共有912P 种结果,∴要求的事件的概率是9129P 3850110.98512248832-=-=.13.设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 . 【测量目标】函数的周期性;函数的值域.【考查方式】根据题意条件,研究函数()()f x x g x =+的性质,得()()11f x f x +-=,由此关系求出函数值域.【难易程度】容易 【参考答案】[15,11]-【试题解析】由题意()()f x x g x -=在R 上成立, 故()()()111f x x g x +-+=+ 所以()()11f x f x +-=,由此知自变量增大1,函数值也增大1 故()f x 在[10,10]-上的值域为[15,11]-14.已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P ……,则0lim ||n n Q P →∞= . 【测量目标】数列的极限与运算.【考查方式】由题意推导下去,则1122;Q R Q R 、、中必有一点在的左侧,一点在右侧,然后退出12n ,P P P ,的极限,继而求出结果. 【难易程度】中等【试题解析】由题意11(||2)(||2)0OQ OR --<,所以第一次只能取10PR 一条,22(||2)(||2)0OQ OR --<.依次下去,则1122;Q R Q R 、、…中必有一点在的左侧,一点在右侧,由于12n ,,,,P P P ,……是中点,根据题意推出12n ,P P P ,…,,…,的极限为:),所以001lim n n Q P Q P →∞==二、选择题(20分)15.若,a b ∈R ,且0ab >,则下列不等式中,恒成立的是 ( )A.222a b ab +> B.a b +… C.11a b +>D.2b a a b +… 【测量目标】基本不等式.【考查方式】根据基本不等式使用条件和定义逐个排除得到结果. 【难易程度】容易 【参考答案】D【试题解析】对于A ,222a b ab +…所以A 错;对于B ,C ,虽然0ab >,只能说明a ,b 同号,若a ,b 都小于0时,所以B ,C 错 ∵0ab >∴2b aa b+…,故选D. 16.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为 ( ) A.1ln||y x = B.3y x = C.||2x y = D.cos y x = 【测量目标】函数单调性的判断;函数奇偶性的判断.【考查方式】再结合偶函数的定义判断出为偶函数;求出导函数判断出导函数的符号,判断出函数的单调性.【难易程度】容易 【参考答案】A 【试题解析】对于1ln||y x =,函数的定义域为x ∈R 且0x ≠,(步骤1) 将x 用x -代替,解析式不变,所以是偶函数. (步骤2) 当(0,)x ∈+∞时,11lnln ||y x x==,10y x '=-<∴1ln||y x =在区间(0,)+∞上单调递减的函数,故选A . (步骤3) 17.设12345,,,,A A A A A 是空间中给定的5个不同的点,则使123450MA MA MA MA MA ++++=成立的点M 的个数为 ( )A.0B.1C.5D.10 【测量目标】向量的线性运算.【考查方式】把M 的坐标用其他5个点的坐标表示出来,进而判断M 的坐标x 、y 的解的组数,进而转化可得答案【难易程度】容易 【参考答案】B【试题解析】根据题意,设M 的坐标为()x y ,,x 、y 解得组数即符合条件的点M 的个数, 再设12345,,,,A A A A A 的坐标依次为11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y ;若123450MA MA MA MA MA ++++= 成立,则123455x x x x x x ++++=,123455y y y y y y ++++=; 只有一组解,即符合条件的点M 有且只有一个;故选B .18.设{}n a 是各项为正数的无穷数列,i A 是边长为1,i i a a +的矩形面积(1,2,i = ),则{}n A 为等比数列的充要条件为 ( ) A . {}n a 是等比数列.B . 1321,,,,n a a a -……或242,,,,n a a a ……是等比数列.C . 1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列.D . 1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相同. 【测量目标】充分、必要条件;等比数列的性质.【考查方式】结合等比数列的性质,先判断必要性,再判断充分性得到结果. 【难易程度】容易 【参考答案】D【试题解析】依题意可知1i i i A a a += ,∴12i i i A a a ++= , (步骤1) 若{}n A 为等比数列则12i i i iA a q A a ++==(q 为常数),则1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比均为q ; (步骤2) 反之要想{}n A 为等比数列则12i i i iA a A a ++=需为常数,即需要1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相等;(步骤3)故{}n A 为等比数列的充要条件是1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相同. 故选D. (步骤4) 三、解答题(74分)19.(12分)已知复数1z 满足1(2)(1i)1i z -+=-(i 为虚数单位),复数2z 的虚部为2,12z z 是实数,求2z .【测量目标】复数代数形式的运算.【考查方式】利用复数的除法运算法则求出1z ,设出复数2z ;利用复数的乘法运算法则求出12z z ;利用当虚部为0时复数为实数,求出2z . 【难易程度】中等【试题解析】1(2)(1i)1i z -+=-⇒12i z =- (步骤1)设22i,z a a =+∈R ,则12(2i)(2i)(22)(4)i z z a a a =-+=++-,(步骤2) ∵ 12z z ∈R ,a =4∴ 242i z =+ (步骤3)20.(12分)已知函数()23x x f x a b =+ ,其中常数,a b 满足0ab ≠. ⑴ 若0ab >,判断函数()f x 的单调性; ⑵ 若0ab <,求(1)()f x f x +>时x 的取值范围. 【测量目标】函数单调性的判断.【考查方式】先把0ab >分为0,0a b >>与0,0a b <<两种情况,然后根据指数函数的单调性即可作出判断;把0ab <分为0,0a b ><与0,0a b <>两种情况;然后由(1)()f x f x +>化简得223x xa b +,最后由指数函数的单调性求出x 的取值范围. 【难易程度】中等【试题解析】⑴ 当0,0a b >>时,任意1212,,x x x x ∈<R , 则121212()()(22)(33)x x x xf x f x a b -=-+-. (步骤1)∵ 121222,0(22)0xxxxa a <>⇒-<,121233,0(33)0xxxxb b <>⇒-<, ∴ 12()()0f x f x -<,函数()f x 在R 上是增函数. (步骤2) 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (步骤3) ⑵ (1)()223x x f x f x a b +-=+> (步骤4) 当0,0a b <>时,32()2xb a <-,则322log ()bx a >-; (步骤5) 当0,0a b ><时,32()2xb a >-,则322log ()bx a <-. (步骤6) 21.(14分)已知1111ABCD A BC D -是底面边长为1的正四棱柱,1O 是11AC 和11B D 的交点. ⑴ 设1AB 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β.求证:tan βα=; ⑵ 若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A BC D -的高.第21题图【测量目标】空间直角坐标系;点、线、面间的距离公式. 【考查方式】利用线面角及二面角的定义求出α,β;借助面面垂直找到点C 在平面11AB D 的位置,利用三角形的相似解出. 【难易程度】中等【试题解析】(1)设正四棱柱的高为h .连1AO ,1AA ⊥底面1111A B C D 于1A , ∴ 1AB 与底面1111A B C D 所成的角为11AB A ∠,即11AB A α∠=∵ 11AB AD =,1O 为11B D 中点,∴111AO B D ⊥,又1111AO B D ⊥, ∴ 11AO A ∠是二面角111A B D A --的平面角,即11AO A β∠= ∴ 111tan AA h A B α==,111tan AA AO βα===.第21题(1)图⑵ 建立如图空间直角坐标系,有11(0,0,),(1,0,0),(0,1,0),(1,1,)A h B D C h11(1,0,),(0,1,),(1,1,0)AB h AD h AC =-=-=设平面11AB D 的一个法向量为(,,)n x y z =,∵ 111100n AB n AB n AD n AD ⎧⎧⊥=⎪⎪⇔⎨⎨⊥=⎪⎪⎩⎩,取1z =得(,,1)n h h = ∴ 点C 到平面11AB D的距离为||43||n AC d n === ,则2h =.第21题(2)图22.(18分)已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(*n ∈N ),将集合**{|,}{|,}n n x x a n x x b n =∈=∈N N 中的元素从小到大依次排列,构成数列123,,,,,n c c c c .⑴ 求1234,,,c c c c ;⑵ 求证:在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ……; ⑶ 求数列{}n c 的通项公式.【测量目标】等差数列的通项公式;数列的概念及其表示.【考查方式】利用两个数列的通项公式求出前3项,按从小到大挑出4项;对于数列{}n a ,对n 进行分类讨论,判断是否能写成27n +的形式;对{}n a 中的n 进行分类讨论,对{}n b 中的n 从被3除的情况分类讨论,判断项的大小,求出数列的通项. 【难易程度】较难【试题解析】⑴ 13169a =⨯+=,12179b =⨯+=,232612a =⨯+=,222711b =⨯+=,333612a =⨯+=,323713b =⨯+=,12349,11,12,13c c c c ====;⑵ ① 任意*n ∈N ,设213(21)66327n k a n n b k -=-+=+==+,则32k n =-,即2132n n a b --=② 假设26627n k a n b k =+==+⇔*132k n =-∈N (矛盾),∴ 2{}n n a b ∉ ∴ 在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ……. ⑶ 32212(32)763k k b k k a --=-+=+=,3165k b k -=+,266k a k =+,367k b k =+∵ 63656667k k k k +<+<+<+ ∴ 当1k =时,依次有111222334,,,b a c b c a c b c =====,…∴ *63(43)65(42),66(41)67(4)n k n k k n k c k k n k k n k +=-⎧⎪+=-⎪=∈⎨+=-⎪⎪+=⎩N .23.(18分)已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l .⑴ 求点(1,1)P 到线段:30l x y --=(35x 剟)的距离(,)d P l ;⑵ 设l 是长为2的线段,求点集{|(,)D P d P l =…}1所表示图形的面积;⑶ 写出到两条线段12,l l 距离相等的点的集合12{|(,)(,)}P d P l d P l Ω==,其中12,l AB l CD ==, ,,,A B C D 是下列三组点中的一组.对于下列三组点只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分.①(1,3),(1,0),(1,3),(1,0)A B C D --.②(1,3),(1,0),(1,3),(1,2)A B C D ---.③(0,1),(0,0),(0,0),(2,0)A B C D .【测量目标】点到直线的距离公式;空间中点、线、面的位置关系.【考查方式】用两点之间的距离公式求解;集合{|(,)D P d P l =}1…表示一个半圆,据此求出面积;写出两条直线的方程,从直线方程中看出这两条直线之间的平行关系,得到结果.【难易程度】较难【试题解析】⑴ 设(,3)Q x x -是线段:30l x y --=(35x 剟)上一点,则||PQ ==35x 剟),当3x =时,min (,)||d P l PQ =⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系,则(1,0),(1,0)A B -,点集D 由如下曲线围成12:1(1),:1(1)l y x l y x==-剟,221:(1)1C x y ++=,(1)x -…,222:(1)1C x y -+=,(1)x …其面积为4πS =+.第23题(2)图⑶ ① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω==第23题(3)图② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---. {}{}{}2(,)|0,0(,)|4,20(,)|10,1x y x y x y y x y x y x y x Ω===-<++=> 厔第23题(3)图③ 选择(0,1),(0,0),(0,0),(2,0)A B C D .{}{}(,)|0,0(,)|,01x y x y x y y x x Ω==< 剟?{}{}2(,)|21,12(,)|4230,2x y x y x x y x y x =-<--=> …第23题(3)图。

2011年全国普通高等学校招生统一考试 上海 数学试卷(理工农医类)

2011年全国普通高等学校招生统一考试 上海 数学试卷(理工农医类)
为— — .
1. 4 已知点o(,) oO1和R (,)记 o0、Q (,) o31,
Qo o 中点为 , Q ・1 P 0 R 的 取 c 和 1 中的一条, P
1 的一个焦点, m =— 则 4 不等式 .

. — .
≤3 的解为 —
记其端点为Q1 , 、 使之满足( l [ I )IR1 OQ1 ( ) I 一2 ( 二 2 )< 0 ;记 Q1 1 R 的中点为 P ,取 Q1 2 2 P 和
该 圆锥 的体积为—


1.若 a 5 、b∈R, 0 > 0 则下列不等式 且 6 ,
8 数 一i吾 c(一) . n +)s1 的 函 ( o7 -
最大值为 — — . 9 .马老师从课本上抄录一个随机变 量 ∈ 的 概率分布律如下表:
中, 恒成立的是
[ () 答]
二、 选择 题 ( 本大题满分 2 分) 0 本大题共有
4 题, 每题有且 只有一个正确答案, 考生应在答 题纸 的相应编号 上, 将代表答案 的小方格涂黑,
选对得 5 分, 否则一律得零分.
6 在相距 2 . 千米的 、B两点处测量 目标点 C, 若 B = 7 。 CBA = 6 。 则 、 两 5, 0, 点之间的距离为— — 千米. 7 若圆锥 的侧面积为 2 , . 丌 底面面积为 丌 则 ,
( ) l0 , ,2一 , B 0 ,3 … 0他 l… 0 ,4 ・・ 2, 20 ,・ 0扎 , 是等 比数列. ( ) 10 ,・ 0n 1… 和 n ,4 ・・ 2, C n ,3・・ 2一 , , 20 ,・ 0扎 , 均是等 比数列.
已知数列{n 和 {n. 0 ) b】 的通项公式分别是a 3 n+6b ,n=2 +7n∈N . n ( )将集合 { = I a, n∈N . xx=b, ] u{ l n∈N [的元素从 )p

2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)

2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)

2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是(A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40(9)由曲线y =2y x =-及y 轴所围成的图形的面积为 (A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。

2011年高考试题(新课标卷理科数学)含答案

2011年高考试题(新课标卷理科数学)含答案

2011年普通高等学校招生全国统一考试理科数学第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数_2」的共轲复数是12i(A) 3i (B) -i (Q i (D) i5 5(2)下列函数中,既是偶函数又在(0,+ )单调递增的函数是3 2 IX(A) y x (B) y x 1 (C) y X 1 (D) y 2 rl(3)执行右面的程序框图,如果输入的N是6,那么输出的p是(A)120(B)720(C)1440(D)5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为1 12 3(A) - (B) —(C) —(D)-3 2 3 4(5)已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y 2x上,则cos2 =,人、4 3 3 .C、4(A) —(B) —(C) 一(D)一5 5 5 5(A)P,P 4(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为(A) (B) (C)(D)(7)设直线L 过双曲线C 的一个焦点,且与 C 的一条对称轴垂直,L 与C 交于A , B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A) 22(B) 73 (0 2 (D) 3a 1 (8) x a 2x - 的展开式中各项系数的和为 2,则该展开式中常数项为xx(9)由曲线y Jx,直线y x 2及y 轴所围成的图形的面积为(B) P,P 3 (C) P 2,P 3(D) P 2,P 4第2页共11页(A) -40(B) -20(C) 20(D) 40(B) 4(10)已知a 与b 均为单位向量,其夹角为(C) -63,有下列四个命题(D) 6P 1 : a b 10,— 3 P 2: a b 1P 3: a b 1 其中的真命题是0,3P 4: a b 1f( x) f (x),则(A) f (x)在0,-单调递减2. 3 __ ,,(B) f(x)在—,3—单调递减4 4(C) f (x)在0,-单调递增23 、一 •一(D) f (x)在一J 单调递增 4'4(A) 2 (B) 4 (C) 6 (D)8第II 卷本卷包括必考题和选考题两部分。

2011年全国统一高考数学试卷(理科)(新课标)含详细答案

2011年全国统一高考数学试卷(理科)(新课标)含详细答案

2011年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数的共轭复数是()A.B.C.﹣i D.i2.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|3.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.50404.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.5.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣ B.﹣ C.D.6.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.7.(5分)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C 交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.38.(5分)的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.409.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.610.(5分)已知与均为单位向量,其夹角为θ,有下列四个命题P1:|+|>1⇔θ∈[0,);P2:|+|>1⇔θ∈(,π];P3:|﹣|>1⇔θ∈[0,);P4:|﹣|>1⇔θ∈(,π];其中的真命题是()A.P1,P4B.P1,P3C.P2,P3D.P2,P411.(5分)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增12.(5分)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.2 B.4 C.6 D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)若变量x,y满足约束条件则z=x+2y的最小值为.14.(5分)在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过F l的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为.15.(5分)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为.16.(5分)在△ABC中,B=60°,AC=,则AB+2BC的最大值为.三、解答题(共8小题,满分70分)17.(12分)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20.(12分)在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.21.(12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当x>0,且x≠1时,f(x)>+,求k的取值范围.22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.24.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.2011年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2011•新课标)复数的共轭复数是()A.B.C.﹣i D.i【分析】复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,然后求出共轭复数,即可.【解答】解:复数===i,它的共轭复数为:﹣i.故选C2.(5分)(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|【分析】由函数的奇偶性和单调性的定义和性质,对选项一一加以判断,即可得到既是偶函数又在(0,+∞)上单调递增的函数.【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A;对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确;对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C;对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D.故选B.3.(5分)(2011•新课标)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040【分析】执行程序框图,写出每次循环p,k的值,当k<N不成立时输出p的值即可.【解答】解:执行程序框图,有N=6,k=1,p=1P=1,k<N成立,有k=2P=2,k<N成立,有k=3P=6,k<N成立,有k=4P=24,k<N成立,有k=5P=120,k<N成立,有k=6P=720,k<N不成立,输出p的值为720.故选:B.4.(5分)(2011•新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.5.(5分)(2011•新课标)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣ B.﹣ C.D.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.6.(5分)(2011•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.7.(5分)(2011•新课标)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.3【分析】不妨设双曲线C:,焦点F(﹣c,0),由题设知,,由此能够推导出C的离心率.【解答】解:不妨设双曲线C:,焦点F(﹣c,0),对称轴y=0,由题设知,,∴,b2=2a2,c2﹣a2=2a2,c2=3a2,∴e=.故选B.8.(5分)(2011•新课标)的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.40【分析】给x赋值1求出各项系数和,列出方程求出a;将问题转化为二项式的系数和;利用二项展开式的通项公式求出通项,求出特定项的系数.【解答】解:令二项式中的x为1得到展开式的各项系数和为1+a∴1+a=2∴a=1∴==∴展开式中常数项为的的系数和=(﹣1)r25﹣r C5r x5﹣2r∵展开式的通项为T r+1令5﹣2r=1得r=2;令5﹣2r=﹣1得r=3展开式中常数项为8C52﹣4C53=40故选D9.(5分)(2011•新课标)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.6【分析】利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=,直线y=x﹣2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.10.(5分)(2011•新课标)已知与均为单位向量,其夹角为θ,有下列四个命题P1:|+|>1⇔θ∈[0,);P2:|+|>1⇔θ∈(,π];P3:|﹣|>1⇔θ∈[0,);P4:|﹣|>1⇔θ∈(,π];其中的真命题是()A.P1,P4B.P1,P3C.P2,P3D.P2,P4【分析】利用向量长度与向量数量积之间的关系进行转化求解是解决本题的关键,要列出关于夹角的不等式,通过求解不等式得出向量夹角的范围.【解答】解:由,得出2﹣2cosθ>1,即cosθ<,又θ∈[0,π],故可以得出θ∈(,π],故P3错误,P4正确.由|+|>1,得出2+2cosθ>1,即co sθ>﹣,又θ∈[0,π],故可以得出θ∈[0,),故P2错误,P1正确.故选A.11.(5分)(2011•新课标)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【分析】利用辅助角公式将函数表达式进行化简,根据周期与ω的关系确定出ω的值,根据函数的偶函数性质确定出φ的值,再对各个选项进行考查筛选.【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)=,由于该函数的最小正周期为T=,得出ω=2,又根据f(﹣x)=f(x),得φ+=+kπ(k∈Z),以及|φ|<,得出φ=.因此,f(x)=cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选A.12.(5分)(2011•新课标)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.2 B.4 C.6 D.8【分析】的图象由奇函数的图象向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx 的图象的一个对称中心也是点(1,0),故交点个数为偶数,且每一对对称点的横坐标之和为2.由此不难得到正确答案.【解答】解:函数,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象如图当1<x≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在和上是减函数;在和上是增函数.∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H相应地,y1在(﹣2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D且:x A+x H=x B+x G═x C+x F=x D+x E=2,故所求的横坐标之和为8故选D二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2011•新课标)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.14.(5分)(2011•新课标)在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过F l的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为+=1.【分析】根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16,结合椭圆的定义,有4a=16,即可得a的值;又由椭圆的离心率,可得c的值,进而可得b的值;由椭圆的焦点在x轴上,可得椭圆的方程.【解答】解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即=,则a=c,将a=c,代入可得,c=2,则b2=a2﹣c2=8;则椭圆的方程为+=1;故答案为:+=1.15.(5分)(2011•新课标)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为8.【分析】由题意求出矩形的对角线的长,结合球的半径,球心到矩形的距离,满足勾股定理,求出棱锥的高,即可求出棱锥的体积.【解答】解:矩形的对角线的长为:,所以球心到矩形的距离为:=2,所以棱锥O﹣ABCD的体积为:=8.故答案为:816.(5分)(2011•新课标)在△ABC中,B=60°,AC=,则AB+2BC的最大值为2.【分析】设AB=c AC=b BC=a利用余弦定理和已知条件求得a和c的关系,设c+2a=m代入,利用判别大于等于0求得m的范围,则m的最大值可得.【解答】解:设AB=c AC=b BC=a由余弦定理cosB=所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a=,c=符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有====2,所以AB=2sinC,BC=2sinA.所以AB+2BC=2sinC+4sinA=2sin(120°﹣A)+4sinA=2(sin120°cosA﹣cos120°sinA)+4sinA=cosA+5sinA=2sin(A+φ),(其中sinφ=,cosφ=)所以AB+2BC的最大值为2.故答案为:2三、解答题(共8小题,满分70分)17.(12分)(2011•新课标)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.【分析】(Ⅰ)设出等比数列的公比q,由a32=9a2a6,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q 的值,然后再根据等比数列的通项公式化简2a1+3a2=1,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{a n}的通项公式代入设bn=log3a1+log3a2+…+log3a n,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到b n的通项公式,求出倒数即为的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,所以数列{}的前n项和为﹣.18.(12分)(2011•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可.【解答】(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.19.(12分)(2011•新课标)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为∴X的数学期望值EX=﹣2×0.04+2×0.54+4×0.42=2.6820.(12分)(2011•新课标)在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.【分析】(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1)并代入∥,=•,即可求得M点的轨迹C的方程;(Ⅱ)设P(x0,y0)为C上的点,求导,写出C在P点处的切线方程,利用点到直线的距离公式即可求得O点到l距离,然后利用基本不等式求出其最小值.【解答】解:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所=(﹣x,﹣1﹣y),=(0,﹣3﹣y),=(x,﹣2).再由题意可知()•=0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y=﹣2.(Ⅱ)设P(x0,y0)为曲线C:y=﹣2上一点,因为y′=x,所以l的斜率为x0,因此直线l的方程为y﹣y0=x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d=.又y0=﹣2,所以d==≥2,所以x02=0时取等号,所以O点到l距离的最小值为2.21.(12分)(2011•新课标)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当x>0,且x≠1时,f(x)>+,求k的取值范围.【分析】(I)求出函数的导数;利用切线方程求出切线的斜率及切点;利用函数在切点处的导数值为曲线切线的斜率及切点也在曲线上,列出方程组,求出a,b值.(II)将不等式变形,构造新函数,求出新函数的导数,对参数k分类讨论,判断出导函数的符号,得到函数的单调性,求出函数的最值,求出参数k的范围.【解答】解:由题意f(1)=1,即切点坐标是(1,1)(Ⅰ)由于直线x+2y﹣3=0的斜率为,且过点(1,1),故即解得a=1,b=1.(Ⅱ)由(Ⅰ)知,所以).考虑函数(x>0),则.(i)设k≤0,由知,当x≠1时,h′(x)<0.而h(1)=0,故当x∈(0,1)时,h′(x)<0,可得;当x∈(1,+∞)时,h′(x)<0,可得h(x)>0从而当x>0,且x≠1时,f(x)﹣(+)>0,即f(x)>+.(ii)设0<k<1.由于当x∈(1,)时,(k﹣1)(x2+1)+2x>0,故h′(x)>0,而h(1)=0,故当x∈(1,)时,h(x)>0,可得h(x)<0,与题设矛盾.(iii)设k≥1.此时h′(x)>0,而h(1)=0,故当x∈(1,+∞)时,h(x)>0,可得h(x)<0,与题设矛盾.综合得,k的取值范围为(﹣∞,0].22.(10分)(2011•新课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x 的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H 点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为523.(2011•新课标)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A 的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.24.(2011•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2参与本试卷答题和审题的老师有:qiss;双曲线;w3239003;涨停;sllwyn;zlzhan;wdnah;301137;ywg2058;danbo7801;zhwsd;394782;minqi5(排名不分先后)菁优网2017年2月3日。

2011年新课标高考数学理科试卷(带详解)

2011年新课标高考数学理科试卷(带详解)

2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数2i12i+-的共轭复数是 ( ) A.3i 5- B.3i 5C.i -D.i 【测量目标】复数代数形式的四则运算. 【考查方式】给出复数,求其共轭复数. 【难易程度】容易 【参考答案】C 【试题解析】2i (2i)(12i)i 12i 5+++==-,共轭复数为-i,选C.2.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是 ( )A.3y x =B. 1y x =+C.21y x =-+D. 2x y -=【测量目标】函数奇偶性及单调性的判断.【考查方式】给出四个函数,判断其是否为偶函数并在定义域单调递增. 【难易程度】容易 【参考答案】B【试题解析】由3y x =不是偶函数,则A 错,(步骤1)21y x =-+在(0,)+∞单调递减,则C 错,(步骤2) 2xy -=在(0,)+∞单调递减,则D 错,所以选B.(步骤3)3.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 ( ) A.120 B.720 C.1440 D.5040第3题图【测量目标】循环结构的程序框图.【考查方式】给出程序框图,由输入值与p 和k 的关系求输出值. 【难易程度】容易 【参考答案】B【试题解析】框图表示1n n a n a -= ,且11a =所求6a =720,选B.4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34【测量目标】随机事件与概率.【考查方式】给出问题情境,根据列举法求解概率. 【难易程度】容易 【参考答案】A【试题解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为3193P ==,选A. 5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=( )A.45-B.35-C.35D.45【测量目标】诱导公式.【考查方式】由所给条件去化简求值. 【难易程度】容易 【参考答案】B 【试题解析】由题知,tan 2θ=,222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++,选B.6.在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为 ( )第6题图A Yxj 68B Yxj69C Yxj 70D Yxj71【测量目标】平面图形的三视图.【考查方式】已知平面图形的正视图和俯视图,求其侧视图. 【难易程度】容易 【参考答案】D【试题解析】条件对应的几何体是由底面棱长为r 的 正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的.故选D.7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为 ( )【测量目标】双曲线的几何性质及离心率.【考查方式】由直线与双曲线的位置关系求其离心率. 【难易程度】容易 【参考答案】B【试题解析】通径224b AB a a==,得22222222+3b a a b c c a e =⇒=⇒=⇒=,选B.8.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( )A.-40B.-20C.20D.40【测量目标】二项式定理.【考查方式】已知二项式的展开式各系数之和,求展开式的常数项. 【难易程度】中等 【参考答案】D【试题解析】方法 1.令1x =得1a =.故原式=511()(2)x x x x +-,51(2)x x-的通项为51552155C (2)()C (1)2r r r rr r r r T x x x ----+=-=-,(步骤1) 由5-2r =1得r =2,对应的常数项=80,由5-2r =-1得r =3,对应的常数项=-40,故所求的常数项为40 ,选D.(步骤2)方法2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x ,从余下的5个括号中选2个提出x ,选3个提出1x ;若第1个括号提出1x,从余下的括号中选2个提出1x,选3个提出x .(步骤3) 故常数项=223322335353111C (2)C ()C ()C (2)x x x x x x-+- =-40+80=40(步骤4)9.由曲线y ,直线2y x =-及y 轴所围成的图形的面积为 ( )A.103 B.4 C.163D.6 【测量目标】定积分及封闭图形面积的解法.【考查方式】已知曲线与直线方程,求其与y 轴围成的图形的面积. 【难易程度】中等 【参考答案】C【试题解析】用定积分求解32420421162)(2)0323S x dx x x x =+=-+=⎰,选C10.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题其中的真命题是 ( )12:10,3p θπ⎡⎫+>⇔∈⎪⎢⎣⎭a b 22:1,3p θπ⎛⎤+>⇔∈π ⎥⎝⎦a b3:10,3p θπ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3p θπ⎛⎤->⇔∈π ⎥⎝⎦a bA.14,p pB.13,p pC.23,p pD.24,p p【测量目标】不等式比较大小及向量的线性运算. 【考查方式】给出四个不等式,判断是否为真命题. 【难易程度】中等 【参考答案】A【试题解析】1+==a b 得, 1cos 2θ>-,2π0,3θ⎡⎫⇒∈⎪⎢⎣⎭,(步骤1)由1-==>a b 得1cos 2θ<π,π3θ⎛⎤⇒∈ ⎥⎝⎦, 选A (步骤2)11.设函数π()s i n ()c o s ()(0,)2f x x x ωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则 ( )A.()f x 在π0,2⎛⎫ ⎪⎝⎭单调递减B.()f x 在π3π,44⎛⎫⎪⎝⎭单调递减C.()f x 在π0,2⎛⎫⎪⎝⎭单调递增D.()f x 在π3π,44⎛⎫⎪⎝⎭单调递增【测量目标】三角函数的周期性、奇偶性、单调性.【考查方式】已知三角函数()f x 及其最小正周期、奇偶性,求其单调减区间或单调增区间. 【难易程度】中等 【参考答案】A【试题解析】π())4f x x ωϕ=++,所以2ω=,(步骤1)又()f x 为偶函数,πππππ,424k k k ϕϕ∴+=+⇒=+∈Z ,π())22f x x x ∴=+=,选A (步骤2)12.函数11y x =-的图象与函数2sin π(24)y x x =-剟的图象所有交点的横坐标之和等于 ( ) A.2 B.4 C. 6 D.8【测量目标】三角函数的图象.【考查方式】已知两函数的解析式,通过函数图象求解.【难易程度】中等 【参考答案】D 【试题解析】11y x =-的对称中心是(1,0)也是2sin π(24)y x x =-剟的中心,(步骤1)24x-剟他们的图象在1x =的左侧有4个交点,则1x =右侧必有4个交点.不妨把他们的横坐标由小到大设为12345678,,,,,,,x x x x x x x x ,则18273642x x x x x x x x +=+=+=+=,所以选D.(步骤2)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.若变量,x y 满足约束条件329,69,x y x y +⎧⎨-⎩剟剟则2z x y =+的最小值为 .【测量目标】二元线性规划求目标函数的最值.【考查方式】已知二元不等式组,通过图象解出目标函数的最小值. 【难易程度】容易 【参考答案】-6【试题解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.第13题图14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过1F 的直线l 交C 于,A B 两点,且2ABF △的周长为16,那么C 的方程为 .【测量目标】椭圆的标准方程.【考查方式】已知离心率及直线与椭圆的位置关系,求椭圆的标准方程. 【难易程度】容易【参考答案】221168x y += 【试题解析】由2416c a a ⎧=⎪⎨⎪=⎩得4,a c ==(步骤1)从而2228,1168x y b =∴+=为所求.(步骤2)15.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为【测量目标】立体几何中两点距离及体积的求解.【考查方式】已知立体几何中线段的长及直线的关系求棱锥的体积. 【难易程度】中等【参考答案】【试题解析】设ABCD 所在的截面圆的圆心为M ,则AM ==2OM ==,(步骤1)1623O ABCD V -=⨯⨯=.(步骤2)16.在ABC V中,60,B AC == 2AB BC +的最大值为 .【测量目标】正弦定理、利用三角函数求最值.【考查方式】给出三角形的边长及角的大小,求所给向量的最大值. 【难易程度】中等【参考答案】【试题解析】120120A C C A +=⇒=- ,(0,120)A ∈ ,22sin sin sin BC ACBC A A B==⇒=(步骤1)22sin 2sin(120)sin sin AB ACAB C A C B==⇒==-sin A A =+;(步骤2)25sin sin())AB BC A A A A ϕϕ∴+++=+,故最大值是.(步骤3)三、解答题:解答应写出文字说明,证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年上海市高考数学试题(理科)一、填空题(56分) 1、函数1()2f x x =-的反函数为1()f x -= 。

2、若全集U R =,集合{|1}{|0}A x x x x =≥≤ ,则U C A = 。

3、设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。

4、不等式13x x+<的解为 。

5、在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。

6、在相距2千米的A 、B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是 千米。

7、若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。

8、函数sin()cos()26y x x ππ=+-的最大值为。

9、马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。

据此,小牛给出了正确答案E ε= 。

10、行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。

11、在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅=。

12、随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。

13、设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 。

14、已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P ,则0lim ||n n Q P →∞= 。

二、选择题(20分)15、若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( ) A 222a b ab +> B a b +≥ C11a b +> D 2b a a b +≥16、下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( )?!?321P(ε=x )xA 1ln||y x = B 3y x = C ||2x y = D cos y x = 17、设12345,,,,A A A A A 是空间中给定的5个不同的点,则使123450MA MA MA MA MA ++++=成立的点M 的个数为( ) A 0 B 1 C 5 D 1018、设{}n a 是各项为正数的无穷数列,i A 是边长为1,i i a a +的矩形面积(1,2,i = ),则{}n A 为等比数列的充要条件为 ) A {}n a 是等比数列。

B 1321,,,,n a a a - 或242,,,,n a a a 是等比数列。

C 1321,,,,n a a a - 和242,,,,n a a a 均是等比数列。

D 1321,,,,n a a a - 和242,,,,n a a a 均是等比数列,且公比相同。

三、解答题(74分)19、(12分)已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,12z z ⋅是实数,求2z 。

20、(12分)已知函数()23xxf x a b =⋅+⋅,其中常数,a b 满足0ab ≠。

⑴ 若0ab >,判断函数()f x 的单调性;⑵ 若0ab <,求(1)()f x f x +>时x 的取值范围。

21、(14分)已知1111ABCD A BC D -是底面边长为1的正四棱柱,1O 是11AC 和11B D 的交点。

⑴ 设1AB 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β。

求证:tan βα; ⑵ 若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A BC D -的高。

22、(18分)已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(*n N ∈),将集合**{|,}{|,}n n x x a n N x x b n N =∈=∈ 中的元素从小到大依次排列,构成数列123,,,,,n c c c c 。

⑴ 求1234,,,c c c c ;DB D 11B 1⑵ 求证:在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ; ⑶ 求数列{}n c 的通项公式。

23、(18分)已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l 。

⑴ 求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; ⑵ 设l 是长为2的线段,求点集{|(,)1}D P d P l =≤所表示图形的面积;⑶ 写出到两条线段12,l l 距离相等的点的集合12{|(,)(,)}P d P l d P l Ω==,其中12,l AB l CD ==,,,,A B C D 是下列三组点中的一组。

对于下列三组点只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分。

① (1,3),(1,0),(1,3),(1,0)A B C D --。

② (1,3),(1,0),(1,3),(1,2)A B C D ---。

③ (0,1),(0,0),(0,0),A B C D 。

2011年上海高考数学理科(参考答案)一、填空题 1、12x +;2、{|01}x x <<;3、16;4、0x <或12x ≥;5、arccos 5;6;7、3;89、2;10、6;11、152;12、0.985;13、[15,11]-;14二、选择题15、D ;16、A ;17、B ;18、D 。

三、解答题19、解: 1(2)(1)1z i i -+=-⇒12z i =-………………(4分)设22,z a i a R =+∈,则12(2)(2)(22)(4)z z i a i a a i =-+=++-,………………(12分) ∵ 12z z R ∈,∴ 242z i =+ ………………(12分)20、解:⑴ 当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)x x x xf x f x a b -=-+- ∵ 121222,0(22)0xxxxa a <>⇒-<,121233,0(33)0xxxxb b <>⇒-<, ∴ 12()()0f x f x -<,函数()f x 在R 上是增函数。

当0,0a b <<时,同理,函数()f x 在R 上是减函数。

⑵ (1)()223xx f x f x a b +-=⋅+⋅>当0,0a b <>时,3()22x a b >-,则 1.5log ()2a x b >-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-。

21、解:设正四棱柱的高为h 。

⑴ 连1AO ,1AA ⊥底面1111A B C D 于1A ,∴ 1AB 与底面1111A B C D 所成的角为11AB A ∠,即11AB A α∠=∵ 11AB AD =,1O 为11B D 中点,∴111AO B D ⊥,又1111AO B D ⊥,D∴ 11AO A ∠是二面角111A B D A --的平面角,即11AO A β∠= ∴ 111tan AA h A B α==,111tan AA AO βα===。

⑵ 建立如图空间直角坐标系,有11(0,0,),(1,0,0),(0,1,0),(1,1,)A h B D C h11(1,0,),(0,1,),(1,1,0)AB h AD h AC =-=-=设平面11AB D 的一个法向量为(,,)n x y z =,∵ 11110n AB n AB n AD n AD ⎧⎧⊥⋅=⎪⎪⇔⎨⎨⊥⋅=⎪⎪⎩⎩,取1z =得(,,1)n h h = ∴ 点C 到平面11AB D的距离为||43||n AC d n ⋅=== ,则2h =。

22、⑴ 12349,11,12,13c c c c ====; ⑵ ① 任意*n N ∈,设213(21)66327n k a n n b k -=-+=+==+,则32k n =-,即2132n n a b --=② 假设26627n k a n b k =+==+⇔*132k n N =-∈(矛盾),∴ 2{}n n a b ∉ ∴ 在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a 。

⑶ 32212(32)763k k b k k a --=-+=+=,3165k b k -=+,266k a k =+,367k b k =+∵ 63656667k k k k +<+<+<+ ∴ 当1k =时,依次有111222334,,,b a c b c a c b c =====,……∴ *63(43)65(42),66(41)67(4)n k n k k n k c k N k n k k n k +=-⎧⎪+=-⎪=∈⎨+=-⎪⎪+=⎩。

23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则||5)PQ x ==≤≤,当3x =时,min (,)||d P l PQ ==⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成12:1(||1),:1(||1)l y x l y x =≤=-≤,222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥其面积为4S π=+。

⑶ ① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω==② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。

相关文档
最新文档