利用空间向量证明平行

合集下载

2利用空间向量证明平行垂直关系(学生版)

2利用空间向量证明平行垂直关系(学生版)

利用空间向量证明平行垂直关系(讲案)【教学目标】一、方向向量与法向量概念【知识点】1.直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量。

注:(1)在直线上取有向线段表示的向量,或在与它平行的直线上取有向线段表示的向量,均为直线的方向向量。

(2)在解具体立体几何题时,直线的方向向量一般不再叙述而直接应用,在直线上任取两点,所形成的向量即为该直线的方向向量,可参与向量运算或向量的坐标运算。

(3)直线的方向向量是非零向量且不唯一。

⊥,取直线l的方向向量a,则向量a叫做平面α的法向量。

2.平面的法向量:直线l a(注意:平面的法向量是非零向量且不唯一)3.确定平面的法向量的方法(1)直接法:几何体中有具体的直线与平面垂直,只需证明线面垂直,取该垂线的方向向量即得平面的法向量,即观察是否有垂直于平面的向量,若有,则此向量就是法向量。

(2)待定系数法:几何体中没有具体的直线,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:(i )设出平面的法向量为(,,)n x y z =(ii )找出(求出)平面内的两个不共线的向量的坐标a 111(,,)a b c =,222,,)(b a b c =(iii )根据法向量的定义建立关于,,x y z 的方程0n a n b ⎧⋅=⎪⎨⋅=⎪⎩ ;(iv )解方程组,取其中的一个解,即得法向量.由于一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量. 4. 空间位置关系的向量表示12,n n2l 1212//(n n n kn k R ⇔=∈2l ⊥12120n n n n ⊥⇔⋅=n , 的法向量为m l α0n m n m ⊥⇔⋅=α⊥//()n m n km k R ⇔=∈的法向量分别为,n mβ //()n m n km k R ⇔=∈β⊥0n m n m ⊥⇔⋅=【例题讲解】★☆☆例题1.(2020•和平区)若(1A -,0,1),(1B ,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2) C .(2,1,3) D .(3,2,1)★☆☆练习1.已知直线1l 的方向向量(2,,1)m m =,2l 的方向向量1(1,,2)2n =,且21l l ⊥,则(m = )A .8B .8-C .1D .1-★☆☆练习2.直线1l 、2l 的方向向量分别为(1a =,2,2)-,(2b =-,3,2),则( ) A .12//l l B .1l 与2l 相交,但不垂直C .12l l ⊥D .不能确定★☆☆练习3.若直线l 的方向向量为(2v =,1,3),且直线l 过(0A ,y ,3),(1B -,2-,)z 两点.则y = ,z = .★☆☆练习4.已知点(1A ,2-,0)和向量(3,4,6)a =-,||2||AB a =,且AB 与a 方向相反,则点B 坐标为( )A .(7-,6,12)B .(7,10-,12)-C .(7,6-,12)D .(7-,10,12)★☆☆例题2.已知(2AB =,2,1),(4AC =,5,3),则下列向量中是平面ABC 的法向量的是( ) A .(1,2,6)-B .(2-,1,1)C .(1,2-,2)D .(4,2-,1)★☆☆练习1.(2020•聊城)若直线l 的方向向量为m ,平面α的法向量为n ,则能使//l α的是( ) A .(1m =,2,1),(1n =,0,1) B .(0m =,1,0),(0n =,3,0)C .(1m =,2-,3),(2n =-,2,2)D .(0m =,2,1),(1n =-,0,1)-★☆☆练习2.(2020秋•和平区)如图,在单位正方体1111ABCD A B C D -中,以D 为原点,DA ,DC ,1DD 为坐标向量建立空间直角坐标系,则平面11A BC 的法向量是( )A .(1,1,1)B .(1-,1,1)C .(1,1-,1)D .(1,1,1)-★★☆练习3.(2020•辽宁)已知平面α上三点(3A ,2,1),(1B -,2,0),(4C ,2-,1)-,则平面α的一个法向量为( )A .(4,9-,16)-B .(4,9,16)-C .(16-,9,4)-D .(16,9,4)-★☆☆例题3.直线l 的方向向量(1a =,3-,5),平面α的法向量(1n =-,3,5)-,则有( ) A .//l α B .l α⊥C .l 与α斜交D .l α⊂或//l α★★☆练习1.(2019•杨浦区)空间直角坐标系中,两平面α与β分别以1(2n =,1,1)与2(0n =,2,1)为其法向量,若l αβ=,则直线l 的一个方向向量为 (写出一个方向向量的坐标)★☆☆练习2.若直线l 的方向向量为(4,2,)m ,平面α的法向量为(2,1,1)-,且l α⊥,则m = . ★☆☆练习3.(2020•菏泽)设平面α的法向量为(1,2-,)λ,平面β的法向量为(2,μ,4),若//αβ,则(λμ+= ) A .2 B .4C .2-D .4-二、利用空间向量证明平行关系【知识点】(1)线线平行:若空间不重合两条直线,a b 的方向向量分别为,a b ,则////a b a b ⇔⇔()a b R λλ=∈; (2)线面平行:若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔0a n a n ⇔⊥⇔⋅=;(3)面面平行:若空间不重合的两个平面,αβ的法向量分别为a b ,,则////a b αβ⇔⇔a b λ=.【例题讲解】★☆☆例题1.如图,在长方体1111OAEB O A E B -中,||3OA =,||4OB =,1||2OO =,点在棱1AA 上,且12AP PA =,点S 在棱1BB 上,且12SB BS =,点Q 、R 分别是11O B 、AE 的中点,求证://PQ RS .★☆☆例题2.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .建立适当的空间直角坐标系,利用空间向量方法解答以下问题: 求证://PA 平面EDB .★☆☆练习1. 如图,在长方体1111ABCD A B C D -中,12AD AA ==,6AB =,E 、F 分别为11A D 、11D C 的中点.分别以DA 、DC 、1DD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -. (1)求点E 、F 的坐标; (2)求证:1//EF ACD 平面.P★★☆练习2. 如图,在四棱锥P ABCD -中,PB ⊥平面ABCD ,AB AD ⊥,//AB CD ,且1AB =,2AD CD ==,E 在线段PD 上.若E 是PD 的中点,试证明://AE 平面PBC .★☆☆例题3.如图,在正方体1111ABCD A B C D -中,求证:平面11//AB D 平面1BDC .★☆☆练习1. 已知正方体1111ABCD A B C D -的棱长为2,E ,F 分别是1BB ,1DD 的中点,求证: (1)1//FC 平面ADE ; (2)平面//ADE 平面11B C F .★★☆练习2. 如图,已知棱长为4的正方体1111ABCD A B C D -中,M ,N ,E ,F 分别是棱11A D ,11A B ,11D C ,11B C 的中点,求证:平面//AMN 平面EFBD .三、利用空间向量证明垂直关系【知识点】(1)线线垂直:设直线,的方向向量分别为,,则要证明,只需证明,即。

(整理版)空间向量在平行中的应用

(整理版)空间向量在平行中的应用

空间向量在平行中的应用向量是研究图形性质的有力工具,任何一个空间向量都可用三个不在同一平面内的向量来表示,从而使得对空间图形性质的研究代数化,以棱柱、棱锥为依托,与空间角、距离等有关的问题,可采用空间向量的知识求解。

我们可以以空间不共面的〔特别是过一顶点的互相垂直的〕三个向量为基底,证共线、共面问题,线面平行问题。

例1、正方体1111D C B A ABCD -中,点E 、F 、G 、H 、K 、M 分别为所有棱的中点,如图,求证:EF 、GH 、KM 共面。

分析:证EF 、GH 、KM 共面,等价于证0=++KM GH EF . 证明:设c BB b BF a BE 2,,1===, 那么a b EF c GC -==,1,.,c b KM a c GH --=+=所以.0)(=--+++-=++c b a c a b KM GH EF所以MK HG EF +=,因为GH 与KM 不共线,所以KM GH EF ,,是共面向量 故EF 、GH 、KM 共面。

例2、如图,四边形ABCD ,ABEF 为两个正方形,M 、N 分别在其对角线BF 和AC 上,且FM =AN ,求证:MN//平面EBC.证明:在正方形ABCD ,ABEF 中,因为BE =AB ,FM =AN ,FB =AC ,所以存在实数λ,使.,AC AN BF MF λλ==所以EB AD AB BA BE AC EB BF AN FA MF MN ++++=++=++=)(λλλ .)1()()(BC BE BE BC BE EB AD BE λλλλ+-=-+=++=所以BC BE MN ,,共面,因为M 、N 不在平面EBC 内,所以MN//平面EBC.点评:向量p 与两个不共线的向量a 、b 共面的充要条件是存在实数对x ,y 使p =xa +yb ,利用共面向量定理可以证明线面平行问题。

例3、正方体1111D C B A ABCD -中,求证://1BD A 平面.11D CB证明:如图,分别以D D C D A D 11111,,三边所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,那么)1,0,0(),1,1,0(),0,1,1(),0,0,1(11D C B A ,那么)1,0,1(),1,0,1(11--C B D A ,所以C B D A 11//,即直线C B D A 11//,所以//1D A 平面.11D CB同理可证//1B A 平面.11D CB 又 D A 111A B A ,所以//1BD A 平面.11D CB点评:由于三种平行关系可以相互转化,所以此题可用逻辑推理来证明,用向量法将逻辑论证转化为代数问题的计算,在应用向量法时需要合理地建立空间直角坐标系。

空间几何线面平行的证明方法

空间几何线面平行的证明方法

空间几何线面平行的证明方法
空间几何中,线和面的平行是一个重要的概念,也是许多定理和问题的基础。

下面介绍几种证明线和面平行的方法。

1. 通过投影法证明。

将线和面分别在一个平面上投影,如果它们的投影线段平行,则可以证明它们在空间中也是平行的。

2. 通过向量法证明。

将线和面各取一点,用向量表示它们的方向向量,如果两个向量互相垂直,则可以证明这条线和这个面平行。

3. 通过距离法证明。

如果线和面之间的距离始终保持不变,则可以证明它们是平行的。

4. 通过夹角法证明。

如果线和面之间的夹角是90度,则可以证明它们是平行的。

以上是几种证明空间几何线面平行的方法,需要根据具体情况选择合适的方法进行证明。

- 1 -。

利用空间向量证明平行、垂直问题PPT精品课件

利用空间向量证明平行、垂直问题PPT精品课件

②∵u=(0,3,0),v=(0,-5,0),∴u=-
3 5
v,
∴u∥v,∴α∥β.
③∵u=(2,-3,4),v=(4,-2,1),
∴u与v不共线,也不垂直,
∴α与β相交但不垂直.
(3)①∵u=(2,2,-1),a=(-3,4,2),
∴u·a=-6+8-2=0,
∴u⊥a,∴l⊂α或l∥α.
②∵u=(0,2,-3),a=(0,-8,12),∴u=-
贝 多 芬
你知道托尔斯泰哪些 文学代表作?
它们在俄国历史上起 过什么作用?
托尔斯泰晚年为什么 选择“平民化”的道
“我要扼住命运的咽喉,它决不能使我 完全屈服”
——贝多芬
1.当时贝多芬遇到了怎样的厄 运?
2.他是怎样“扼住命运的咽 喉”?
《吃土豆的人》
哪一首乐曲标志着贝多芬在艺术 上和思想上的成熟?
b,∴a∥b,∴l1∥l2.
②∵a=(5,0,2),b=(0,4,0),
∴a·b=0,∴a⊥b,
∴l1⊥l2.
③∵a=(-2,1,4),b=(6,3,3),
∴a与b不共线,也不垂直,∴l1与l2相交或异面.
(2)①u=(1,-1,2),v=3,2,-12 ,
∴u·v=3-2-1=0,∴u⊥v,∴α⊥β.
A.(2,3,1)
B.(1,-1,2)
C.(1,2,1)
D.(1,0,3)
解析:A→D=xA→B+yA→C=(x+y,x+2y,x-y), 对四个选项逐个检验,只有当(x+y,x+2y,x-y)=
(1,0,3)时有解xy= =2-1 . 答案:D
1.注意用向量中的有关公式及变形,借助建立直角坐 标系将复杂的几何问题化为简单的代数问题.

空间向量的应用-证明平行与垂直

空间向量的应用-证明平行与垂直

∴MN⊥n, 又∵MN⊄平面 A1BD,∴MN∥平面 A1BD.

1 → 1 → 方法二:∵MN=C1N-C1M=2C1B1-2C1C
→ → → → 1 → 1 → =2(D1A1-D1D)=2DA1,
∴MN∥DA1,又∵MN⊄平面 A1BD. ∴MN∥平面 A1BD.
[点评与警示] 证明线面平行可以用几何法,也可以用向 量法.用向量法的关键在于构造向量并用共线向量定理或共面
→ → → → →
∴DM⊥PB,即DM⊥PB. 又∵PA∩PB=P,∴DM⊥平面PAB, ∵DM⊂ 平面PAD.∴平面PAD⊥平面PAB.

[点评与警示] 用向量的方法解决垂直问题即几何问题代
数化,这种方法降低了思维的抽象性,使很多思维量较大的证
明与计算简单化,突出了向量方法的优点.
1.用向量解决立体几何问题时,首先要选择恰当的基 向量,然后将立体几何中的平行、垂直、距离等问题转化为 向量的运算, ①证明线线平行就利用 a∥b(b≠0)⇔a=λb; ② 证明线线垂直,就利用 a⊥b⇔a· b=0;③在求立体几何中线 段的长度时,就利用|a|2=a2 来求;④求角度时就用 cosθ= a· b . |a||b|
所以D1F⊥面AED.
又因为D1F⊂面A1FD1,所以面AED⊥面A1FD1.
[点评与警示 ] 用空间坐标运算证明 “ 面面垂直 ” ,一般
先求出其中一个平面的一个法向量,然后证明它垂直于另一个
平面的法向量.因为本例有(1)、(2)作铺垫,所以直接利用其结 果便可.
在正方形 ABCD - A1B1C1D1 中, E 、 F 分别是 BB1 、 CD 的中
连接EO.
因为底面ABCD是正方形,所以点O是AC的中点.

专题08 利用空间向量证明平行、垂直(解析版)

专题08 利用空间向量证明平行、垂直(解析版)

2020年高考数学立体几何突破性讲练08利用空间向量证明平行、垂直一、考点传真:能用向量语言表述线线、线面、面面的平行和垂直关系二、知识点梳理:证明平行、垂直问题的思路(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.3其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.三、例题:例1. (2019江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【解析】证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .例2.(2016年北京卷) 如图,在四棱锥中,平面PAD ⊥平面,,,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【解析】(1)∵面PAD面ABCD AD =,面PAD ⊥面ABCD ,∵AB ⊥AD ,AB ⊂面ABCD ,∴AB ⊥面PAD ,P ABCD -ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP∵PD ⊂面PAD , ∴AB ⊥PD , 又PD ⊥PA ,∴PD ⊥面PAB , (2)取AD 中点为O ,连结CO ,PO ,∵CD AC == ∴CO ⊥AD , ∵PA PD =, ∴PO ⊥AD ,以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,则(111)PB =-,,,(011)PD =--,,,(201)PC =-,,,(210)CD =--,,, 设n 为面PDC 的法向量,令00(,1)n x y =,.011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩,,则PB 与面PCD 夹角θ有,sin cos ,1n PB n PB n PBθ⋅=<>== (3)假设存在M 点使得BM ∥面PCD , 设AMAPλ=,()0,','M y z , 由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-,()1,1,0B ,()0,'1,'AM y z =- 有()0,1,AM AP M λλλ=⇒- ∴()1,,BM λλ=--∵BM ∥面PCD ,n 为PCD 的法向量, ∴0BM n ⋅=,即102λλ-++=,∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求. 例3.(2011安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==OAB ∆,OAC ∆,ODE ∆,ODF ∆都是正三角形. (Ⅰ)证明直线BC ∥EF ; (Ⅱ)求棱锥F OBED -的体积.【解析】(Ⅰ)(综合法)证明:设G 是线段DA 与EB 延长线的交点. 由于OAB ∆与ODE∆都是正三角形,所以OB ∥DE 21,OG=OD=2, 同理,设G '是线段DA 与线段FC 延长线的交点,有.2=='OD G O 又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.在GED ∆和GFD 中,由OB ∥DE 21和OC ∥DF 21,可知B 和C 分别是GE 和GF 的中点,所以BC 是GEF ∆的中位线,故BC ∥EF .(向量法)过点F 作AD FQ ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系. 由条件知).23,23,0(),0,23,23(),3,0,0(),0,0,3(--C B F E则有33(,0,),(3,0,BC EF =-=- 所以,2=即得BC ∥EF .(Ⅱ)由OB=1,OE=2,23,60=︒=∠EOB S EOB 知,而O E D ∆是边长为2的正三角形,故.3=OED S 所以.233=+=OED EOB OBED S S S过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED 的高,且FQ=3,所以.2331=⋅=-OBED OBED F S FQ V 例4.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点. 求证:(Ⅰ)直线EF ∥平面PCD ;(Ⅱ)平面BEF ⊥平面PAD .【证明】(Ⅰ)在△PAD 中,因为E 、F 分别为AP ,AD 的中点,所以EF//PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF//平面PCD .(Ⅱ)连结DB ,因为AB=AD ,∠BAD=60°,所以ABD ∆为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD 平面ABCD=AD ,所以BF ⊥平面PAD .又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .例5.(2010广东)如图,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =.(Ⅰ)证明:EB FD ⊥;(Ⅱ)已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值.【证明】:(Ⅰ)连结CF ,因为¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,所以EB AC ⊥.在RT BCE ∆中,EC ===.在BDF ∆中,BF DF ==,BDF ∆为等腰三角形, 且点C 是底边BD 的中点,故CF BD ⊥.在CEF ∆中,222222)(2)6CE CF a a EF +=+==,所以CEF ∆为Rt ∆,且CF EC ⊥.因为CF BD ⊥,CF EC ⊥,且CE BD C =I ,所以CF ⊥平面BED , 而EB ⊂平面BED ,CF EB ∴⊥.因为EB AC ⊥,EB CF ⊥,且AC CF C =I ,所以EB ⊥平面BDF , 而FD ⊂平面BDF ,EB FD ∴⊥.(Ⅱ)设平面BED 与平面RQD 的交线为DG .由23FQ FE =,23FR FB =,知//QR EB . 而EB ⊂平面BDE ,∴//QR 平面BDE , 而平面BDE I 平面RQD = DG , ∴////QR DG EB .由(Ⅰ)知,BE ⊥平面BDF ,∴DG ⊥平面BDF , 而,DR DB ⊂平面BDF ,∴DG DR ⊥,DG DQ ⊥, ∴RDB ∠是平面BED 与平面RQD 所成二面角的平面角. 在Rt BCF ∆中,2CF a ===,sin FC RBD BF ∠===cos RBD ∠==. 在BDR ∆中,由23FR FB =知,133BR FB ==,由余弦定理得,RD== 由正弦定理得,sin sin BR RD RDB RBD=∠∠,即332sin RDB =∠,sin RDB ∠=故平面BED 与平面RQD 所成二面角的正弦值为29.为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .【解析】证明 取BC 中点H ,连接OH ,则OH ∥BD ,又四边形ABCD 为正方形, ∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0).BC →=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3). (1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·CF →=0,即⎩⎨⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE →=BF →=(-1,-2,3), ∴AE →=AD →+DE →=BC →+BF →=(-2,-2,0)+(-1,-2,3)=(-3,-4,3), ∴AE →·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0, ∴CF →⊥AF →,CF →⊥AE →, 即CF ⊥AF ,CF ⊥AE , 又AE ∩AF =A , AE ,AF ⊂平面AEF , ∴CF ⊥平面AEF .2.如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .【解析】证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱,所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎪⎨⎪⎧-x 1+2y 1=0,x 1+2z 1=0,,令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 3.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,DE =2,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M -CDE 的体积; (2)求证:DM ⊥平面ACE .【解析】(1)设AC ∩BD =O ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则C (0,3,0),D (-1,0,0),E (-1,0,2),M (1,0,1), DE →=(0,0,2),DC →=(1,3,0),DM →=(2,0,1), ∵DE →·DC →=0, ∴DE ⊥DC ,∴S △DEC =12×DE ×DC =12×2×2=2,设平面DEC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DE →=2z =0,n ·DC →=x +3y =0,取x =3,得n =(3,-1,0),∴M 到平面DEC 的距离h =|DM →·n ||n |=233+1=3,∴三棱锥M -CDE 的体积V =13×S △CDE ×h =13×2×3=233.(2)证明:A (0,-3,0),AC →=(0,23,0),AE →=(-1,3,2), AC →·DM →=0,AE →·DM →=-2+2=0, ∴AC ⊥DM ,AE ⊥DM ,∵AC ∩AE =A ,∴DM ⊥平面ACE .4.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .【解析】证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD . 因为P A =PD =22AD , 所以P A ⊥PD ,OP =OA =a2.以O 为原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a 2,0,D ⎝⎛⎭⎫-a2,0,0, P ⎝⎛⎭⎫0,0,a 2,B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点,所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4,且OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0, 又因为EF ⊄平面P AD , 所以EF ∥平面P AD .(2)因为P A →=⎝⎛⎭⎫a 2,0,-a 2,CD →=(0,-a,0), 所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD . 又P A ⊥PD ,PD ∩CD =D , PD ,CD ⊂平面PDC , 所以P A ⊥平面PDC . 又P A ⊂平面P AB , 所以平面P AB ⊥平面PDC .5.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【解析】证明 如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).(1)∵AP →=(0,3,4),BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0,AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125. 又AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则A P →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,BM ∩BC =B , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .6. 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .【解析】证明 (1)取BC 的中点O ,连接PO ,△PBC 为等边三角形,即PO ⊥BC , ∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .7.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱A 1A =2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得AP →=λP A 1→且面AB 1C 1⊥面PB 1C 1.【解析】 如图所示,以DA ,DC ,DA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),D 1(-1,0,3),B 1(0,1,3),C 1(-1,1,3).(1)证明:AC →=(-1,1,0),A 1B →=(1,1,-3), ∴AC →·A 1B →=0,∴AC ⊥A 1B . (2)假设存在, ∵AP →=λP A 1→, ∴P ⎝⎛⎭⎪⎫11+λ,0,3λ1+λ. 设平面AB 1C 1的一个法向量为n 1=(x 1,y 1,z 1), ∵AB 1→=(-1,1,3),AC 1→=(-2,1,3), ∴⎩⎪⎨⎪⎧n 1·AB 1→=-x 1+y 1+3z 1=0,n 1·AC 1→=-2x 1+y 1+3z 1=0.令z 1=3,则y 1=-3,x 1=0.∴n 1=(0,-3,3).同理可求面PB 1C 1的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,3λ+1,-1, ∴n 1·n 2=0.∴-331+λ-3=0,即λ=-4.∵P 在棱A 1A 上,∴λ>0,矛盾. ∴这样的点P 不存在.8.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3), 则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .。

利用空间向量证明平行

利用空间向量证明平行

利用空间向量证明平行平行是向量的重要性质之一,通过利用空间向量可以证明向量之间的平行关系。

在三维空间中,我们可以用向量表示空间中的点和线,向量的方向和长度性质可以用来描述空间中的各种几何关系,包括平行。

首先,让我们定义两个向量$\vec{a}$和$\vec{b}$,它们的起点都在原点$O$。

假设这两个向量平行,我们可以利用以下空间向量的性质进行证明。

根据向量的叉乘公式,我们可以得到以下等式:$(a_2b_3-a_3b_2)\vec{i}+(a_3b_1-a_1b_3)\vec{j}+(a_1b_2-a_2b_1)\vec{k}=0$由于向量$\vec{i}$,$\vec{j}$,$\vec{k}$是线性无关的,所以上述等式成立的充分必要条件是:$a_2b_3-a_3b_2=0$$a_3b_1-a_1b_3=0$$a_1b_2-a_2b_1=0$以上等式即为判断向量$\vec{a}$和$\vec{b}$平行的条件式。

如果这三个条件式都成立,那么我们可以断定$\vec{a}$和$\vec{b}$平行。

在利用空间向量证明平行时,还需要注意以下几点:1.向量的起点需要相同,因为平行关系是两个向量共线的特殊情况,共享起点是判断平行性的前提条件。

2.以上证明的方法适用于三维空间,对于二维空间中的向量,只需要考虑平面内的坐标,即去掉$z$轴的分量即可。

证明的方法和步骤类似。

3.利用向量的坐标分量进行证明时,要注意考虑向量的方向。

如果两个向量的方向相反,那么它们的叉积为零,同样能够证明它们是平行的。

总之,通过利用空间向量的共线性和叉乘公式,我们可以证明两个向量是否平行。

这是一种简单但有效的方法,在几何学和向量分析中得到了广泛应用。

利用空间向量证明平行问题

利用空间向量证明平行问题

例题2:在正方体ABCD-A1B1C1D1 中,求证:平面A1BD//平面CB1D1
以A为坐标原点建立空间坐标系如图, 证明:
z
A1
D1 C1
设正方体棱长为1,则 A(0, 0, 0), B(1, 0, 0), C (1,1, 0), D(0,1, 0)
B1
A B
D
y
A1 (0, 0,1), B1 (1, 0,1), C1 (1,1,1), D1 (0,, , 0), F (0, , )., EF (a, 0, ) 2 2 2 2
平面SAD的法向量为 EF / /平面SAD.
n (0,1,0)
b EF n a 0 0 1 0 0 2
EF n
P
M
A
D N C
B
设平面CB1 D1的法向量为n ( x, y, z),
x
C
在平面A1 BD中, A1 B (1,0, 1), A1 D (0,1, 1) n A1 B 11 1 0 1 (1) 0 n A1 D 1 0 11 1 (1) 0
CB1 (0, 1, 1), CD1 (1,0,1). n CB1 y z 0 , 令z 1, 则n (1,1,1) n CD1 x z 0
n A1 B, n A1 D
即n也是平面A1 BD的法向量。
平面A1 BD / /平面CB1 D1
归纳:运用空间向量的知识来证明平行问题 的步骤 1.在空间图形中建立适当的空间直角坐标系。 ---即寻找三条两两垂直且相交于一点的直线, 若有,则建立满足右手系的空间直角坐标系; 若没有,则需要作辅助线。 2.写出空间图形中各点的空间坐标。

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。

两空间向量平行的公式

两空间向量平行的公式

两空间向量平行的公式空间向量是一个有方向性和大小的数学实体,用来描述或表示某种物理过程或空间结构。

它表示一个方向,也可以用来表示一个距离或某种力的大小。

在计算机图形学和机器人控制中,空间向量是普遍使用的工具,它也可以用来研究物理问题。

两个空间向量之间的关系可以由它们的夹角来表示,当夹角为0时,表示这两个空间向量是相互平行的。

两空间向量平行的公式就是判断两个空间向量是否相互平行的手段。

首先,要根据坐标变换,找出三维空间中两个空间向量的构成元素。

一般情况下,我们可以将两个空间向量分别记为 a = (a1,a2,a3) b = (b1,b2,b3),其中 a1, a2, a3 b1, b2, b3别表示空间向量 a b x,y,z标分量。

接下来,要计算出两个空间向量平行的公式,需要用到数学知识。

根据数学公式,两个空间向量 a b相互平行的,当且仅当其夹角θ为0时,即 ab=|a||b|,其中|a|表示空间向量 a模,|b|表示空间向量 b模。

因此,两个空间向量平行的公式为:ab=|a||b|,其中ab表示两个空间向量 a b点乘,|a|表示空间向量 a模,|b|表示空间向量 b 模。

此外,还有一种更简便的方法可以来判断两个空间向量是否相互平行,即 a/|a|=b/|b|,也就是将两个空间向量的模都化简成1,看看空间向量是否相等,如果相等,则表明它们是相互平行的。

两个空间向量相互平行能够有效地表达某种物理过程或空间结构,如平面,曲面,向量组之间的关系以及向量组中的每一个向量到原点的关系等。

而两空间向量平行的公式就是用来判断两个空间向量是否相互平行的手段之一,它将帮助我们准确分析物理过程或空间结构的结构特征。

另外,两个空间向量的平行关系还能帮助我们计算多维空间中物体之间的距离,从而帮助我们解决在计算机图形学,机器人控制,空间几何等领域中经常遇到的机器视觉,物体检测等问题。

总之,两个空间向量平行的公式是一个比较重要的数学概念,它能够有效地判断两个空间向量的平行关系,并且在计算机图形学,机器人控制,空间几何等领域中有着广泛的应用。

2020年高考数学复习题:利用空间向量证明平行与垂直关系

2020年高考数学复习题:利用空间向量证明平行与垂直关系

利用空间向量证明平行与垂直关系[基础训练]1.设a =(x,4,3),b =(3,2,z ),且a ∥b ,则xz =( )A .-4B .9C .-9 D.649答案:B 解析:因为a ∥b ,所以x 3=42=3z ,所以x =6,z =32,所以xz =9.2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( )A.⎝ ⎛⎭⎪⎫33,33,-33B.⎝ ⎛⎭⎪⎫33,-33,33 C.⎝ ⎛⎭⎪⎫-33,33,33 D.⎝⎛⎭⎪⎫-33,-33,-33 答案:D 解析:AB →=(-1,1,0),AC →=(-1,0,1),设平面ABC 的一个法向量n =(x ,y ,z ),∴⎩⎪⎨⎪⎧-x +y =0,-x +z =0. 令x =1,则y =1,z =1,∴n =(1,1,1). 单位法向量为:±n |n |=±⎝ ⎛⎭⎪⎫33,33,33. 3.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是( )A .a ∥b ,a ∥cB .a ∥b ,a ⊥cC .a ∥c ,a ⊥bD .以上都不对答案:C 解析:因为a ·b =0,c =2a ,所以a ∥c ,a ⊥b .4.若平面α,β的法向量分别为n 1=(2,4,5),n 2=(8,1,-4),则( )A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不正确答案:B5.已知向量a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ).若a ,b ,c 三个向量共面,则实数λ=( )A.627B.637C.607D.657答案:D 解析:由题意,得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),所以⎩⎪⎨⎪⎧ 7=2t -μ,5=-t +4μ,λ=3t -2μ,解得⎩⎪⎨⎪⎧ t =337,μ=177,λ=657.故选D.6.[2019山东泰安模拟]已知长方体ABCD -A 1B 1C 1D 1,下列向量的数量积一定不为0的是()A.AD 1→·B 1C →B.BD 1→·AC →C.AB →·AD 1→D.BD 1→·BC → 答案:D 解析:当侧面BCC 1B 1是正方形时,可得AD 1→·B 1C →=0,所以排除A. 当底面ABCD 是正方形时,AC 垂直于对角面BD 1,所以排除B.显然排除C.由图可得BD 1与BC 所成的角小于90°.7.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4B.407,-157,4C.407,-2,4 D .4,407,-15答案:B 解析:∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4,又BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,又∵BC →=(3,1,4),则⎩⎪⎨⎪⎧ (x -1)+5y +6=0,3(x -1)+y -12=0, 解得⎩⎪⎨⎪⎧ x =407,y =-157.8.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,M 分别是棱AD ,DD 1,D 1A 1,A 1A ,AB 的中点,点N 在四边形EFGH 的四边及其内部运动,则当N 只需满足条件________时,就有MN ⊥A 1C 1;当N 只需满足条件________时,就有MN ∥平面B 1D 1C .答案:点N 在EG 上 点N 在EH 上 解析:以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则M ⎝ ⎛⎭⎪⎫1,12,0,N (x,0,z ),A 1C 1→=(-1,1,0), 因此MN →·A 1C 1→=⎝ ⎛⎭⎪⎫x -1,-12,z ·(-1,1,0)=1-x -12=0,即x =12, 故点N 在EG 上,就有MN ⊥A 1C 1.设平面B 1D 1C 的一个法向量为n =(-1,1,1),若MN ∥平面B 1D 1C ,则MN →·n =⎝ ⎛⎭⎪⎫x -1,-12,z ·(-1,1,1) =1-x -12+z =0,即x -z -12=0,故点N 在EH 上,就有MN ∥平面B 1D 1C .9.点B (3,0,0)是点A (m,2,5)在x 轴上的射影,则点A 到原点的距离为________.答案:42 解析:点B (3,0,0)是点A (m,2,5)在x 轴上的射影, 所以m =3,所以点A 到原点的距离为d =(3)2+22+52=32=4 2.10.[2019河南南阳模拟]已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.答案:α∥β 解析:设平面α的法向量m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1,所以m =(1,1,1),m =-n ,所以m ∥n ,所以α∥β.11.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ;(2)求证:平面P AB ⊥平面PDC .证明:如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点,所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD .因为P A =PD =22AD ,所以P A ⊥PD ,OP =OA =a 2.以O 为原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间建立直角坐标系,则A ⎝ ⎛⎭⎪⎫a 2,0,0,F ⎝ ⎛⎭⎪⎫0,a 2,0,D ⎝ ⎛⎭⎪⎫-a 2,0,0,P ⎝⎛⎭⎪⎫0,0,a 2,B ⎝ ⎛⎭⎪⎫a 2,a ,0,C ⎝ ⎛⎭⎪⎫-a 2,a ,0.因为E 为PC 的中点,所以E ⎝ ⎛⎭⎪⎫-a 4,a 2,a 4. (1)易知平面P AD 的一个法向量为OF →=⎝ ⎛⎭⎪⎫0,a 2,0, 因为EF →=⎝ ⎛⎭⎪⎫a 4,0,-a 4,且OF →·EF →=⎝ ⎛⎭⎪⎫0,a 2,0·⎝ ⎛⎭⎪⎫a 4,0,-a 4=0, 所以EF ∥平面P AD .(2)因为P A →=⎝ ⎛⎭⎪⎫a 2,0,-a 2,CD →=(0,-a ,0), 所以P A →·CD →=⎝ ⎛⎭⎪⎫a 2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,所以P A ⊥平面PDC .又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC .[强化训练]1.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于 ( )A .ACB .BDC .A 1D D .A 1A答案:B 解析:以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),A 1(0,0,1),E ⎝ ⎛⎭⎪⎫12,12,1, 所以CE →=⎝ ⎛⎭⎪⎫-12,-12,1,AC →=(1,1,0), BD →=(-1,1,0),A 1D →=(0,1,-1),A 1A →=(0,0,-1).显然CE →·BD →=12-12+0=0,所以CE →⊥BD →,即CE ⊥BD .2.[2019河北石家庄模拟] 如图所示,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=23A1D,AF=13AC,则()A.EF至多与A1D,AC之一垂直B.EF⊥A1D,EF⊥ACC EF与BD1相交D.EF与BD1异面答案:B解题指南:建立空间直角坐标系,用向量法求解.解析:以D点为坐标原点,以DA,DC,DD1所在直线分别为x 轴、y轴、z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E⎝⎛⎭⎪⎫13,0,13,F⎝⎛⎭⎪⎫23,13,0,B(1,1,0),D1(0,0,1),A1D→=(-1,0,-1),AC→=(-1,1,0),EF→=⎝⎛⎭⎪⎫13,13,-13,BD1→=(-1,-1,1),EF→=-13BD1→,A1D→·EF→=AC→·EF→=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.3.[2019广东清城区一模]已知向量a=(2m+1,3,m-1),b=(2,m,-m),且a∥b,则实数m的值等于()A.32B.-2 C.0 D.32或-2答案:B 解析:∵向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b .∴存在实数λ,使得(2m +1,3,m -1)=λ(2,m ,-m )=(2λ,λm ,-λm ),∴⎩⎪⎨⎪⎧ 2m +1=2λ,3=λm ,m -1=-λm ,解得m =-2.4.已知三点A (2,1,2),B (1,2,3),C (1,1,1),O 是坐标原点,点Q在直线OC 上的运动,则当QA →·QB →取得最小值时,点Q 的坐标是( )A.⎝ ⎛⎭⎪⎫23,23,23 B.⎝ ⎛⎭⎪⎫116,116,116 C.⎝ ⎛⎭⎪⎫113,113,113 D.⎝ ⎛⎭⎪⎫43,43,43 答案:B 解析:设OQ →=λOC →=(λ,λ,λ),则QA →·QB →=(2-λ,1-λ,2-λ)·(1-λ,2-λ,3-λ)=3λ2-11λ+10,当λ=116时取得最小值,点Q 的坐标为⎝ ⎛⎭⎪⎫116,116,116. 5.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1, -4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.答案:①②③ 解析:因为AB →·AP →=0,AD →·AP →=0,所以AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,所以AP →是平面ABCD 的法向量,则③正确.因为BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),所以BD →与AP →不平行,故④错.6.[2019山东济南质检] 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明: (1)如图,以O 为原点,以射线OD 为y 轴正半轴,以射线OP 为z 轴正半轴,建立空间直角坐标系O -xyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4). AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)由(1),知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125, 又BA →=(-4,-5,0),∴BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125, ∴AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0. ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论,知AP ⊥BC ,∴AP ⊥平面BMC ,于是AM ⊥平面BMC .又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .7.[2019河南洛阳一模]如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面P AC ⊥平面BCEF ?若存在,求出|BP ||PE |的值;若不存在,请说明理由.(1)证明:∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AF ⊥AD ,AF ⊂平面ADEF ,∴AF ⊥平面ABCD .∵AC ⊂平面ABCD ,∴AF ⊥AC .∴过A 作AH ⊥BC 于H ,则BH =1,AH =3,CH =3, ∴AC =23,∴AB 2+AC 2=BC 2,∴AC ⊥AB ,∵AB ∩AF =A ,∴AC ⊥平面F AB ,∵BF ⊂平面F AB ,∴AC ⊥BF .(2)解:存在.由(1)知,AF ,AB ,AC 两两垂直.以A 为坐标原点,AB →,AC →,AF →的方向分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,23,0),E (-1,3,2).假设在线段BE 上存在一点P 满足题意,则易知点P 不与点B ,E 重合,设|BP ||PE |=λ,则λ>0,P ⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ. 设平面P AC 的法向量为m =(x ,y ,z ).由AP →=⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ,AC →=(0,23,0), 得⎩⎪⎨⎪⎧ m ·AP →=2-λ1+λx +3λ1+λy +2λ1+λz =0,m ·AC →=23y =0,即⎩⎨⎧ y =0,z =λ-22λx ,令x =1,则z =λ-22λ,所以m =⎝ ⎛⎭⎪⎫1,0,λ-22λ为平面P AC 的一个法向量. 同理,可求得n =⎝ ⎛⎭⎪⎫1,33,1为平面BCEF 的一个法向量. 当m ·n =0,即λ=23时,平面P AC ⊥平面BCEF ,故存在满足题意的点P ,此时|BP ||PE |=23.。

专题六 立体几何 第三讲 利用空间向量证明平行与垂直关系——2024届高考数学二轮复习

专题六 立体几何 第三讲 利用空间向量证明平行与垂直关系——2024届高考数学二轮复习

的值为( )
A. 11
6
√B. 11 6
C. 1
2
D. 1
3
设 D(x, y, z) ,则 AD (x 1, y 1, z 2), AB (2, 1, 3), DB (1 x, y, 1 z) . AD 2DB ,
x 1 2(1 x),
x
1 3
,
y
z
1 2
2 y, 2
2z.
y
z
1, 3 0,
D
1 3
,
1 3
,0
, CD
1 3
,
,
1
.
CD
AB,CD
AB
2
1 3
3(1
)
0,
11 6
.故选
B.
(二)核心知识整合
考点 2:向量法求线线角、线面角、面面角 1.向量法求空间角 (1)异面直线所成的角:设 a,b 分别为异面直线 a,b 的方向向量,
则两异面直线所成的角满足 cos = | a b | .
则 B(0,0,0) , A(1,0,1) ,C(0,1,1) ,N(1,1,0) ,因此 BA (1, 0,1) ,BC (0,1,1) ,BN (1,1,0) .设平面 ABC
的一个法向量为
n
(
x,
y,
z)
,则
n
BA
x
z
0,

x
1,得
n
(1,1,
1)
.易知三棱锥
S
ABC
的外
n BC y z 0
√A.-1
B.1
C.2
D.3
a c ,a c 2x 4 2 0 ,解得 x 1,又 b//c , 1 y 1 ,

高考数学空间向量证明平行问题

高考数学空间向量证明平行问题

4.2 直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用1、直线的方向向量直线的方向向量就是指和这条直线所对应向量平行(或共线)的向量,显然一条直线的方向向量可以有无数个.2、直线方向向量的应用利用直线的方向向量,可以确定空间中的直线和平面.(1)若有直线l , 点A 是直线l 上一点,向量a 是l 的方向向量,在直线l 上取AB a =,则对于直线l 上任意一点P ,一定存在实数t ,使得AP t AB =,这样,点A 和向量a 不仅可以确定l 的位置,还可具体表示出l 上的任意点.(2)空间中平面α的位置可以由α上两条相交直线确定,若设这两条直线交于点O,它们的方向向量分别是a 和b ,P 为平面α上任意一点,由平面向量基本定理可知,存在有序实数对(x ,y ),使得OP =xa yb +,这样,点O 与方向向量a 、b 不仅可以确定平面α的位置,还可以具体表示出α上的任意点.1.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为( )A .(1,2,3)B .(1,3,2)C .(2,1,3)D .(3,2,1)2. 从点A (2,-1,7)沿向量a =(8,9,-12)的方向取线段长AB =34,则B 点的坐标为( )A .(-9,-7,7)B .(18,17,-17)C .(9,7,-7)D .(-14,-19,31)二、平面的法向量1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.2、在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的.三、直线方向向量与平面法向量在确定直线、平面位置关系中的应用1、若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1// l 2⇔1u //2u ,l 1⊥l 2⇔1u ⊥2u .2、若两平面α、β的法向量分别是1v 、2v ,则有α//β⇔1v //2v ,α⊥β⇔1v ⊥2v .若直线l 的方向向量是u ,平面的法向量是v ,则有l //α⇔u ⊥v ,l ⊥α⇔u //v1. 设→→b a 、分别是直线l 1、l 2的方向向量,根据下列条件判断l 1与l 2的位置关系。

专题7.6 利用空间向量证明平行与垂直-2021届高考数学一轮复习学霸提分秘籍(解析版)

专题7.6 利用空间向量证明平行与垂直-2021届高考数学一轮复习学霸提分秘籍(解析版)
|a||b|
n1∥n2⇔n1=λn2 n1⊥n2⇔n1·n2=0 n⊥m⇔n·m=0
n∥m⇔n=λm n∥m⇔n=λm n⊥m⇔n·m=0
l1 与 l2 所成的角θ 0,π 2
cos θ=|cos β|=|a·b| |a||b|
1

4.求直线与平面所成的角 设直线 l 的方向向量为 a,平面α的法向量为 n,直线 l 与平面α所成的角为θ,则 sin θ=|cos〈a,n〉|=|a·n|.
法二 P→B=(2,0,-2),F→E=(0,-1,0), F→G=(1,1,-1).设P→B=sF→E+tF→G,
6

即(2,0,-2)=s(0,-1,0)+t(1,1,-1), t=2,
∴ t-s=0, 解得 s=t=2. -t=-2,
∴P→B=2F→E+2F→G, 又∵F→E与F→G不共线,∴P→B,F→E与F→G共面. ∵PB⊄平面 EFG,∴PB∥平面 EFG. 考点二 利用空间向量证明垂直问题 【例 2】 如图所示,已知四棱锥 P-ABCD 的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC =2CD,侧面 PBC⊥底面 ABCD.证明:
-2 -4 k 6.(2019·烟台月考)若直线 l 的方向向量为 a=(1,0,2),平面α的法向量为 n=(-2,0,-4),则直线 l 与平
面α的位置关系为______.
【答案】 l⊥α 【解析】 因为 a=-1n,所以 l⊥α.
2 【考点聚焦】
考点一 利用空间向量证明平行问题
【例 1】 如图,在四面体 ABCD 中,AD⊥平面 BCD,BC⊥CD,AD=2,BD=2 2,M 是 AD 的中点,P
2.(选修 2-1P104 练习 2 改编)已知平面α,β的法向量分别为 n1=(2,3,5),n2=(-3,1,-4),则( )

8.7空间向量在立体几何中的应用——证明平行与垂直

8.7空间向量在立体几何中的应用——证明平行与垂直

1.用向量表示直线或点在直线上的位置(1)给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 以t 为参数的参数方程.向量a 称为该直线的方向向量.(2)对空间任一确定的点O ,点P 在直线l 上的充要条件是存在唯一的实数t ,满足等式OP →=(1-t )OA →+tOB →,叫做空间直线的向量参数方程. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2 B.-4 C.4 D.-2 答案 C解析 ∵α∥β,∴两平面法向量平行, ∴-21=-42=k-2,∴k =4. 2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1) B.(1,-1,1) C.(-33,-33,-33) D.(33,33,-33) 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.3.已知直线l 的方向向量为v =(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是____________. 答案 l ∥α或l ⊂α解析 ∵v ·u =0,∴v ⊥u ,∴l ∥α或l ⊂α.4.(教材改编)设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.5.(教材改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________. 答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0, ∴ON 与AM 垂直.题型一 利用空间向量证明平行问题例1 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). ∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,FG ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC .证明:PQ ∥平面BCD .证明 方法一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线分别为y 、z轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同方法一建立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎨⎧x =34x 0y =24+34y∴OF →=(34x 0,24+34y 0,0)又由方法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .题型二 利用空间向量证明垂直问题 命题点1 证线面垂直例2 如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直例3 如图,在三棱锥P ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC . 证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0), B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125, 又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则AP →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BM ∩BC =C , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(1)如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证: ①DE ∥平面ABC ; ②B 1F ⊥平面AEF .证明 ①如图建立空间直角坐标系Axyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC . 故DE ∥平面ABC .②B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .(2)如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.①求证:CM ∥平面P AD ; ②求证:平面P AB ⊥平面P AD .证明 ①以C 为坐标原点,分别以CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2), M (32,0,32), ∴DP →=(0,-1,2),DA →=(23,3,0),CM →=(32,0,32),令n =(x ,y ,z )为平面P AD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,∴⎩⎨⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面P AD , ∴CM ∥平面P AD .②取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又P A ∩DA =A ,∴BE ⊥平面P AD , 又∵BE ⊂平面P AB , ∴平面P AB ⊥平面P AD .题型三 利用空间向量解决探索性问题例4 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)求二面角D -A 1A -C 的余弦值;(3)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由. (1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)解 由于OB ⊥平面AA 1C 1C ,∴平面AA 1C 1C 的一个法向量为n 1=(1,0,0). 设n 2=(x ,y ,z )为平面DAA 1D 1的一个法向量, 则⎩⎪⎨⎪⎧n 2·AA 1→=0,n 2·AD →=0, 即⎩⎨⎧y +3z =0,-3x +y =0,取n 2=(1,3,-1),则〈n 1,n 2〉即为二面角D -A 1A -C 的平面角,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=55,所以,二面角D -A 1A -C 的余弦值为55. (3)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3=(x 3,y 3,z 3)⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论. (1)证明 如图,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0), A (a,0,0),B (a ,a,0), C (0,a,0),E ⎝⎛⎭⎫a ,a2,0, P (0,0,a ),F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(a,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a2;由FG →·CP →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a 2,0,0,即G 点为AD 的中点.17.利用向量法解决立体几何问题典例 (12分)(2014·湖北)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由. 规范解答解 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系Dxyz .[1分]由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →=(-1,0,λ-2).[3分] (1)证明 当λ=1时,FP →=(-1,0,1), 因为BC 1→=(-2,0,2), 所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .[7分](2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧ FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0. 于是可取n =(λ,-λ,1).[9分]同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.[11分] 故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.[12分] 温馨提醒 (1)利用向量法证明立体几何问题,可以建坐标系或利用基底表示向量;(2)建立空间直角坐标系时,要根据题中条件找出三条互相垂直的直线;(3)利用向量除了可以证明线线平行、垂直,线面、面面平行、垂直外,还可以利用向量求夹角、距离,从而解决线段长度问题、体积问题等.[方法与技巧]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.[失误与防范]用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.A 组 专项基础训练(时间:40分钟)1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A.l ∥αB.l ⊥αC.l ⊂αD.l 与α相交答案 B解析 ∵n =-2a ,∴a 与α的法向量平行,∴l ⊥α.2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内A.P (2,3,3)B.P (-2,0,1)C.P (-4,4,0)D.P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A.相交B.平行C.在平面内D.平行或在平面内答案 D解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面,∴AB 与平面CDE 平行或在平面CDE 内.4.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A.(1,1,1)B.(23,23,1) C.(22,22,1) D.(24,24,1) 答案 C解析 设M 点的坐标为(x ,y,1),AC ∩BD =O ,则O (22,22,0), 又E (0,0,1),A (2,2,0),∴OE →=(-22,-22,1),AM →=(x -2,y -2,1), ∵AM ∥平面BDE ,∴OE →∥AM →,∴⎩⎨⎧ x -2=-22,y -2=-22,⇒⎩⎨⎧ x =22,y =22.5.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是___________________________________.解析 设平面α的法向量为m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1,∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.6.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.7.如图,四棱锥P -ABCD 的底面为正方形,侧棱P A ⊥底面ABCD ,且P A =AD=2,E ,F ,H 分别是线段P A ,PD ,AB 的中点.求证:(1)PB ∥平面EFH ;(2)PD ⊥平面AHF .证明 建立如图所示的空间直角坐标系Axyz .∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0).(1)∵PB →=(2,0,-2),EH →=(1,0,-1),∴PB →=2EH →,∴PB ∥EH .∵PB ⊄平面EFH ,且EH ⊂平面EFH ,∴PB ∥平面EFH .(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),∴PD →·AF →=0×0+2×1+(-2)×1=0,PD →·AH →=0×1+2×0+(-2)×0=0,∴PD ⊥AF ,PD ⊥AH ,又∵AF ∩AH =A ,∴PD ⊥平面AHF .8.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 、DP 、DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系Dxyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .9.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ;(2)求证:平面P AD ⊥平面PDC .证明 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB , 又AB ⊂平面P AB ,EF ⊄平面P AB ,∴EF ∥平面P AB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,∴DC ⊥平面P AD .∵DC ⊂平面PDC ,∴平面P AD ⊥平面PDC .B 组 专项能力提升(时间:25分钟)10.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.答案 1解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.11.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.答案 2解析 建立如图的空间直角坐标系,设正方体的边长为2,则P (x ,y,2),O (1,1,0),∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1, 又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x +y =1.∴有2个符合题意的点P ,即对应有2个λ.12.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0).使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0. 取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. 13.如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 连接BD ,设AC ∩BD =O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0, B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,OC →=⎝⎛⎭⎫0,22a ,0, SD →=⎝⎛⎭⎫-22a ,0,-62a ,则OC →·SD →=0. 故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E ,使BE ∥平面P AC .理由如下:由已知条件知DS →是平面P AC 的一个法向量,且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a ,BC →=⎝⎛⎭⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS → =⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE →·DS →=0⇔t =13. 即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面P AC 内,故BE ∥平面P AC .∴存在一点E ,使得BE ∥平面P AC ,此时SE ∶EC =2.。

利用空间向量证明线面平行垂直

利用空间向量证明线面平行垂直

利用空间向量证明线面平行垂直1.如图,在四棱柱ABCD−A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=√5,且点M和N分别为B1C和D1D的中点.求证:MN//平面ABCD2.如图,在四棱锥P−ABCD中,PA⊥平面ABCD,AB//CD,且CD=2,AB=1,BC=2√2,PA=1,AB⊥BC,N为PD的中点.求证:AN//平面PBC3.已知直三棱柱ABC−A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.(1)求证:DE//平面ABC;(2)求证:B1F⊥平面AEF.4.如图,在直三棱柱ABC−A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在棱BB1上,EB1=1,D,F,G分别为CC1,B1C1,A1C1的中点,EF与B1D相交于点H.求证:B1D⊥平面ABD5.如图所示,在正方体ABCDA1B1C1D1中,E,F,M分别为棱BB1,CD,AA1的中点.证明:(1)C1M//平面ADE6.如图,正方体ABCD−A1B1C1D1中,E,F,G分别是AB,CC1,AD中点.棱CD上是否存在点T,使得AT//平面B1EF?请证明你的结论.7.如图所示,在长方体AC1中,AB=BC=2,CC1=2√2,点E,F分别为棱CC1,AA1的中点.证明:直线AC//平面BED18.如图所示,在三棱台ABC−A1B1C1中,底面ABC为等腰直角三角形,侧面ACC1A1⊥平面ABC,AB⊥AC,CC1⊥AC,AB=2,A1C1=CC1=1.证明:CA1⊥平面ABB1A1答案和解析1.证明:如图,以A 为坐标原点,以AC 、AB 、AA 1所在直线分别为x 、y 、z 轴建立空间直角坐标系A −xyz , 则A(0,0,0),B(0,1,0),C(2,0,0),D(1,−2,0), A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,−2,2),又∵M 、N 分别为B 1C 、D 1D 的中点,∴M(1,12,1),N(1,−2,1).由题可知:n 0⃗⃗⃗⃗ =(0,0,1)是平面ABCD 的一个法向量,MN ⃗⃗⃗⃗⃗⃗⃗ =(0,−52,0), ∵n 0⃗⃗⃗⃗ ⋅MN ⃗⃗⃗⃗⃗⃗⃗ =0,∴n 0⃗⃗⃗⃗ ⊥MN ⃗⃗⃗⃗⃗⃗⃗ ,又∵MN ⊄平面ABCD ,∴MN//平面ABCD ;2.解:过A 作,垂足为E ,则DE =1,以A 为坐标原点,分别以AE,AB,AP 所在直线为x,y,z 轴建立空间直角坐标系,则A(0,0,0),B(0,1,0),E(2√2,0,0),D(2√2,−1,0),C(2√2,1,0),P (0,0,1), ∴N(√2,−12,12) ,)AN ⃗⃗⃗⃗⃗⃗ =(√2,−12,12), 设平面PBC 的一个法向量为n⃗ 1=(x,y,z), BP ⃗⃗⃗⃗⃗ =(0,−1,1),BC ⃗⃗⃗⃗⃗ =(2√2,0,0),{−y +z =02√2x =0, n 1⃗⃗⃗⃗ =(0,1,1)∴AN ⃗⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =−12+12=0,,AN ⊄平面PBC , ∴AN//平面PBC3.证明:如图建立空间直角坐标系O −xyz ,令AB =AA 1=4,则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0), B 1(4,0,4),D(2,0,2)(1)DE ⃗⃗⃗⃗⃗⃗ =(−2,4,0),面ABC 的法向量为OA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,4), ∵DE ⃗⃗⃗⃗⃗⃗ ⋅OA 1⃗⃗⃗⃗⃗⃗⃗⃗ =0,DE ⊄平面ABC , ∴DE//平面ABC ;(2)B 1F ⃗⃗⃗⃗⃗⃗⃗ =(−2,2,−4),EF⃗⃗⃗⃗⃗ =(2,−2,−2) B 1F ⃗⃗⃗⃗⃗⃗⃗ ⋅EF ⃗⃗⃗⃗⃗ =(−2)×2+(−2)+(−4)×(−2)=0 B 1F ⋅⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ AF⃗⃗⃗⃗⃗ =(−2)×2+2×2+(−4)=0 ∴B 1F ⃗⃗⃗⃗⃗⃗⃗ ⊥AF⃗⃗⃗⃗⃗ ,∴B 1F ⊥AF ∵AF ∩FE =F ,∴B 1F ⊥平面AEF . 4.证明:如图所示建立空间直角坐标系,设AB =a ,则A 1(a,0,0),B 1(0,0,0),C 1(0,2,0),F(0,1,0),E(0,0,1),A(a,0,4),B(0,0,4),D(0,2,2),G (a2,1,0).所以B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),AB ⃗⃗⃗⃗⃗ =(−a,0,0),BD ⃗⃗⃗⃗⃗⃗ =(0,2,−2).所以B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0+0+0=0,B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0+4−4=0.所以B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ⊥BD ⃗⃗⃗⃗⃗⃗ , 所以B 1D ⊥AB ,B 1D ⊥BD .又AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD , 所以B 1D ⊥平面ABD .5.解:(1)以D 为原点,向量DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴,y 轴,z 轴的正方向建立坐标系如图,设正方体的棱长为1.则D(0,0,0),A(1,0,0),E (1,1,12),C 1(0,1,1),M (1,0,12),DA ⃗⃗⃗⃗⃗ =(1,0,0),DE ⃗⃗⃗⃗⃗⃗ =(1,1,12),C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,−1,−12). 设平面ADE 的法向量为m ⃗⃗⃗ =(a,b ,c),则{DA ⃗⃗⃗⃗⃗ ·m ⃗⃗⃗ =0DE ⃗⃗⃗⃗⃗⃗ ·m ⃗⃗⃗ =0⇒{a =0,a +b +12c =0. 令c =2,得m⃗⃗⃗ =(0,−1,2),∵m ⃗⃗⃗ ·C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,−1,2)·(1,−1,−12)=0+1−1=0, ∴C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⊥m ⃗⃗⃗ .又C 1M ⊄平面ADE ,∴C 1M //平面ADE .6.解:以D 为坐标原点,可建立如下图所示的空间直角坐标系:设正方体棱长为2a ,则B (2a,2a,0),B 1(2a,2a,2a ),E (2a,a,0),G (a,0,0),C (0,2a,0),D (0,0,0),F (0,2a,a ),A (2a,0,0), 假设在棱CD 上存在点T (0,t,0),t ∈[0,2a ],使得AT//平面B 1EF , 则B 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,−a,−2a ),EF⃗⃗⃗⃗⃗ =(−2a,a,a ),AT ⃗⃗⃗⃗⃗ =(−2a,t,0), 设平面B 1EF 的法向量n⃗ =(x,y,z),∴{B 1E ⃗⃗⃗⃗⃗⃗⃗ ·n ⃗ =−ay −2az =0EF ⃗⃗⃗⃗⃗ ·n ⃗ =−2ax +ay +az =0,令z =1,则y =−2,x =−12 ,∴n⃗ =(−12,−2,1), ∴AT ⃗⃗⃗⃗⃗ ·n ⃗ =a −2t =0,解得:t =a2 ,∴DT =14DC , ∴棱CD 上存在点T ,满足DT =14DC ,使得AT//平面B 1EF .7.解:如图,以D 为原点,DA,DC,DD 1所在直线分别为x 轴,y 轴, z 轴建立如图所示的空间直角坐标系,则D(0,0,0),D 1(0,0,2√2),A(2,0,0),C(0,2,0),B(2,2,0),E(0,2,√2),F(2,0,√2),依题意得BE ⃗⃗⃗⃗⃗ =(−2,0,√2),ED 1⃗⃗⃗⃗⃗⃗⃗ =(0,−2,√2),AC⃗⃗⃗⃗⃗ =(−2,2,0),设平面BED 1的一个法向量为n ⃗ =(x,y,z), 则{n ⃗ ⋅BE ⃗⃗⃗⃗⃗ =0n ⃗ ⋅ED 1⃗⃗⃗⃗⃗⃗⃗ =0即{−2x +√2z =0−2y +√2z =0所以{z =√2x y =x,取x =1得y =1,z =√2,故n ⃗ =(1,1,√2),n ⃗ ·AC ⃗⃗⃗⃗⃗ =−2+2+0=0,所以n ⃗ ⊥AC ⃗⃗⃗⃗⃗ , 又直线AC ⊄平面BED 1,所以直线AC//平面BED 1.8.解:由知平面ACC 1A 1⊥平面ABC ,CC 1⊥AC ,又平面ACC 1A 1∩平面ABC =AC ,CC 1⊂平面ACC 1A 1所以CC 1⊥平面ABC .在平面ABC 内过C 作AB 的平行线CM ,则CM ⊥AC , 以C 为原点,CA ,CM ,CC 1所在直线分别为x 轴,y 轴, z 轴建立如图所示的空间直角坐标系,由已知棱台的上底面也是等腰直角三角形,腰长为1,则C(0,0,0),C 1(0,0,1),A(2,0,0), B(2,2,0),A 1(1,0,1),B 1(1,1,1),∴CA 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,1),AB ⃗⃗⃗⃗⃗ =(0,2,0),AA 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,1), ∵CA 1⃗⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0+0+0=0,CA 1⃗⃗⃗⃗⃗⃗⃗ ⋅AA 1⃗⃗⃗⃗⃗⃗⃗ =−1+0+1=0,,又∵AB ∩AA 1=A,AB,AA 1⊂平面ABB 1A 1,∴CA 1⊥平面ABB 1A 1.。

空间两个向量平行的公式

空间两个向量平行的公式

空间两个向量平行的公式
空间两个向量平行的公式是:x1/x2=y1/y2,两个坐标是
a=(x1,y1),b=(x2,y2)。

在数学中,向量指具有大小和方向的量。

它可以形象化地表示为带箭头的线段。

箭头所指代表向量的方向,线段长度代表向量的大小。

在物理学和工程学中,几何向量更常被称为矢量。

许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。

与之相对的是标量,即只有大小而没有方向的量。

一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

专题08 利用空间向量证明平行、垂直(原卷版)

专题08 利用空间向量证明平行、垂直(原卷版)

2020年高考数学立体几何突破性讲练 08利用空间向量证明平行、垂直一、考点传真:能用向量语言表述线线、线面、面面的平行和垂直关系 二、知识点梳理:证明平行、垂直问题的思路(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.3其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可. 三、例题:例1. (2019江苏卷)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .例2.(2016年北京卷) 如图,在四棱锥中,平面PAD ⊥平面,,P ABCD -ABCD PA PD ⊥,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.例3.(2011安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==OAB ∆,OAC ∆,ODE ∆,ODF ∆都是正三角形. (Ⅰ)证明直线BC ∥EF ; (Ⅱ)求棱锥F OBED -的体积.例4.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点. PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP求证:(Ⅰ)直线EF ∥平面PCD ;(Ⅱ)平面BEF ⊥平面PAD .例5.(2010广东)如图,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =.(Ⅰ)证明:EB FD ⊥;(Ⅱ)已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值.为GC的中点,FO=3,且FO⊥平面ABCD.(1)求证:AE∥平面BCF;(2)求证:CF⊥平面AEF.2.如图所示,在直三棱柱ABC-A1B1C1中,侧面AA1C1C和侧面AA1B1B都是正方形且互相垂直,M为AA1的中点,N为BC1的中点.求证:(1)MN∥平面A1B1C1;(2)平面MBC1⊥平面BB1C1C.3.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF 是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF的中点.(1)求M到平面DEC的距离及三棱锥M-CDE的体积;(2)求证:DM⊥平面ACE.4.如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且P A=PD=22AD,设E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)求证:平面P AB⊥平面PDC.5.如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.6. 如图所示,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.证明:(1)P A⊥BD;(2)平面P AD⊥平面P AB.7.如图所示,在四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得AP →=λP A 1→且面AB 1C 1⊥面PB 1C 1.8.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 b 2 a 2 0 0 0. 2
EF / / AB1, 即EF AB1,同理EF B1C. 又AB1 B1C B1, EF 平面B1AC.
第23页 共 61 页
方法3:设正方体的棱长为2,建立如下图所示的空间直角坐标 系,
第24页 共 61 页
则A 2, 0, 0, C0, 2, 0, B1 2, 2, 2, E 2, 2,1, F1,1, 2.
第22页 共 61 页
方法2 : 设AB a, AD c, AA1 b,
则EF
EB1
B1F
1 2
(BB1
B1D1 )
1 2
( AA1
BD)
1 2
(a
b
c),
AB1 AB AA1 a b. 1
EF AB1 2 (a b c) (a b)
1 b2 a2 c a c b 2
证明:以D为坐标原点,以DA,DC,DD1为坐标轴建系如右图, 则B(2,2,0),D1(0,0,3), E(1,2,0),C1(0,2,3),
第18页 共 611, 0,3).
设BD1 DE EC1,
即2, 2,3 1, 2, 0 1, 0,3,得
第12页 共 61 页
证明:
第13页 共 61 页
MN
C1N
C1M
1 2
C1B1
1 2
C1C
1
1
2 (D1A1 D1D) 2 DA1,
MN / /DA1. MN 平面A1BD,
MN 平面A1BD.
第14页 共 61 页
分析2 : 建立直角坐标系,证明MN
与平面A1BD的法向量垂直. 证明: 如上图,建立空间直角坐标系A xyz.
设棱长为1,则可求得A1 0, 0,1, B1, 0, 0, D 0,1, 0,
M (1,1, 1), N (1, 1 ,1).
2
2
MN (0, 1 , 1) 22
设平面A1BD的法向量为n x, y, z
则n?A1D 0且n A1B 0

y x
z z
0 取x 0
1,则y
1, z
第6页 共 61 页
7.证明面面垂直的方法 (1)转化为__线__线__垂_直___、___线__面__垂_直__; (2)证明两个平面的法向量___互_相__垂__直__.
第7页 共 61 页
名 师 讲 解 (学生用书P80)
第8页 共 61 页
1.利用空间向量证明线与面平行:只要在平面α内找到一条直 线的方向向量为b,已知直线的方向向量为a,问题转化为证 明a=λb即可.
2.利用空间向量证明两条异面直线垂直:在两条异面直线上各 取一个向量a、b,只要证明a⊥b,即a·b=0即可.
第9页 共 61 页
3.证明线面垂直:直线l,平面α,要让l⊥α,只要在l上取一个非零 向量p,在α内取两个不共线的向量a、b,问题转化为证明 p⊥a且p⊥b,也就是a·p=0且b·p=0.
3.2.2 利用空间向量证明平行、 垂直关系
第1页 共 61 页
自 学 导 引 (学生用书P80) 会用空间向量证明线与线、线与面、面与面之间的平行,垂
直关系,掌握用向量解决立体几何问题的方法步骤.
第2页 共 61 页
课 前 热 身 (学生用书P80)
第3页 共 61 页
1.空间中的平行关系主要有____线__线__平_行_、____线_面__平__行_、 __面_面__平__行___,空间中的垂直关系主要有__线__线_垂__直___、 __线__面__垂__直__、___面__面__垂_直__.
1
n 1,1,1.
第15页 共 61 页
MN n 0 1 1 0 22
MN n,又MN 平面A1BD. MN 平面A1BD.
第16页 共 61 页
变式训练1:ABCD-A1B1C1D1是正四棱柱,侧棱长为3,底面边 长为2,E是棱BC的中点,求证:BD1∥平面C1DE.
第17页 共 61 页
个不共线的向量是__共_面__向__量___.
第5页 共 61 页
4.证明面面平行的方法 (1)转化为__线__线__平__行__、___线_面__平__行__处理; (2)证明这两个平面的法向量是_共__线__向_量____. 5.证明线线垂直的方法是证明这两条直线的方向向量
__互__相__垂__直__. 6.证明线面垂直的方法 (1)证明直线的方向向量与平面的法向量是__共__线_向__量___; (2)证明直线与平面内的_两__条__不_共__线__向. 量互相垂直
第20页 共 61 页
分析:转化为线线垂直或利用直线的方向向量与平面的法向 量平行.
第21页 共 61 页
证明:方法1:设A1B1的中点为G, 连结EG,FG,A1B. 则FG∥A1D1,EG∥A1B. ∵A1D1⊥平面A1B.∴FG⊥平面A1B. ∴AB1⊂平面A1B,∴FG⊥AB1, ∴A1B⊥AB1,∴EG⊥AB1.∴EF⊥AB1. 同理EF⊥B1C.又AB1∩B1C=B1, ∴EF⊥平面B1AC.
2.证明两条直线平行,只要证明这两条直线的方向向量是 __共_线__向__量___即可.
第4页 共 61 页
3.证明线面平行的方法 (1)证明直线的方向向量与平面的法向量______垂__直___. (2)证明能够在平面内找到一个向量与已知直线的方向向量
______共__线__. (3)利用共面向量的定理,即证明直线的方向向量与平面内两
4.证明面面平行、面面垂直,最终都要转化为证明线线平行、 线线垂直.
第10页 共 61 页
典 例 剖 析 (学生用书P80)
第11页 共 61 页
题型一 证明线面平行 例1:在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的
中点,求证:MN∥平面A1BD. 分析:分析1,如下图,易知MN∥DA1 因此得方法1.
2,
2 2,
解得 1, 1.
3 3,
BD1与DE, EC1共面, 又 BD1 面C1DE,BD1 面C1DE.
第19页 共 61 页
题型二 证明线面垂直 例2:如下图所示,在正方体ABCD-A1B1C1D1中,E、F分别是
BB1、D1B1的中点. 求证:EF⊥平面B1AC.
相关文档
最新文档