2019-2020年高一数学寒假复习一 含答案

合集下载

【2019-2020高一数学试题】人教A版必修4《正弦函数、余弦函数的性质(1)》试题 答案解析

【2019-2020高一数学试题】人教A版必修4《正弦函数、余弦函数的性质(1)》试题     答案解析

正弦函数、余弦函数的性质(1)——基础巩固类——一、选择题1.下列函数中,最小正周期为π的是( ) A .y =sin x B .y =cos x C .y =sin x2D .y =cos2x2.函数f (x )=x +sin x ,x ∈R ( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数3.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( )A .1B .-1C .0D .24.函数y =sin ⎝ ⎛⎭⎪⎫2x +π3图象的对称轴方程可能是( ) A .x =-π6 B .x =-π12 C .x =π6 D .x =π12 5.下列四个函数中,是以π为周期的偶函数的是( )A .y =|sin x |B .y =|sin2x |C .y =|cos2x |D .y =cos3x6.如果函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,则ω的值为( )A .3B .6C .12D .24二、填空题7.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的周期为π4,则ω= .8.已知函数f (x )=ax +b sin x +1,若f (2 015)=7,则f (-2 015)= . 9.已知函数f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)= .三、解答题10.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性.11.已知函数y =12sin x +12|sin x |. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.——能力提升类——12.已知函数y =2sin ⎝⎛⎭⎪⎫x +π4+φ是奇函数,则φ的值可以是( )A .0B .-π4 C.π2 D .π13.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )14.设函数f (x )=3sin ⎝ ⎛⎭⎪⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为 .15.已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.正弦函数、余弦函数的性质(1)(答案解析)——基础巩固类——一、选择题1.下列函数中,最小正周期为π的是( D ) A .y =sin x B .y =cos x C .y =sin x2D .y =cos2x解析:A 项,y =sin x 的最小正周期为2π,故A 项不符合题意;B 项,y =cos x 的最小正周期为2π,故B 项不符合题意;C 项,y =sin x2的最小正周期为T =2πω=4π,故C 项不符合题意;D 项,y =cos2x 的最小正周期为T =2πω=π,故D 项符合题意.故选D.2.函数f (x )=x +sin x ,x ∈R ( A ) A .是奇函数,但不是偶函数 B .是偶函数,但不是奇函数 C .既是奇函数又是偶函数 D .既不是奇函数又不是偶函数解析:函数f (x )=x +sin x 的定义域为R ,f (-x )=-x +sin(-x )=-x -sin x =-f (x ),则f (x )为奇函数.故选A.3.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( B )A .1B .-1C .0D .2解析:∵T =π,且为奇函数.∴f ⎝ ⎛⎭⎪⎫34π=f ⎝ ⎛⎭⎪⎫34π-π=f ⎝ ⎛⎭⎪⎫-π4=-f ⎝ ⎛⎭⎪⎫π4=-1. 4.函数y =sin ⎝⎛⎭⎪⎫2x +π3图象的对称轴方程可能是( D )A .x =-π6 B .x =-π12 C .x =π6D .x =π12解析:令2x +π3=k π+π2(k ∈Z ),得x =k π2+π12(k ∈Z ).故选D. 5.下列四个函数中,是以π为周期的偶函数的是( A ) A .y =|sin x | B .y =|sin2x | C .y =|cos2x |D .y =cos3x解析:A 中的函数周期为π.B 中的函数周期为π2.C 中的函数周期为π2.D 中的函数周期为23π.故选A.6.如果函数f (x )=cos ⎝⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,则ω的值为( B )A .3B .6C .12D .24解析:函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,∴T =2×π6=π3,又2πω=π3,∴ω=6.选B.二、填空题7.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的周期为π4,则ω=8. 解析:π4=2πω,∴ω=8.8.已知函数f (x )=ax +b sin x +1,若f (2 015)=7,则f (-2 015)=-5. 解析:由f (2 015)=2 015a +b sin2 015+1=7, 得2 015a +b sin2 015=6,∴f (-2 015)=-2 015a -b sin2 015+1=-(2 015a +b sin2 015)+1=-6+1=-5.9.已知函数f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=-1.解析:因为T =2,则f (x )=f (x +2).又f (-1)=f (-1+2)=f (1),且x ∈[1,3)时,f (x )=x -2,所以f (-1)=f (1)=1-2=-1.三、解答题10.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性. 解:由题意知函数定义域为R .f (-x )=lg(-sin x +1+sin 2x )=lg 1sin x +1+sin 2x=-lg(sin x +1+sin 2x )=-f (x ),∴函数f (x )=lg(sin x +1+sin 2x )为奇函数. 11.已知函数y =12sin x +12|sin x |. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 解:(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π)(k ∈Z ).函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的最小正周期是2π.——能力提升类——12.已知函数y =2sin ⎝ ⎛⎭⎪⎫x +π4+φ是奇函数,则φ的值可以是( B ) A .0 B .-π4 C.π2D .π解析:y =2sin ⎝⎛⎭⎪⎫x +π4+φ为奇函数,则只需π4+φ=k π,k ∈Z ,从而φ=k π-π4,k ∈Z .显然当k =0时,φ=-π4满足题意.13.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( B )解析:A 项,由f (-x )=f (x )知函数f (x )为偶函数,故A 错.B 项,由函数f (x )为偶函数,周期为2,故B 正确.C 项,由函数f (x )为偶函数,故C 错.D 项,由函数f (x )周期为2.故D 错.14.设函数f (x )=3sin ⎝⎛⎭⎪⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为±45. 解析:由题意得2πω=π2, ∴ω=4,∴f (x )=3sin ⎝ ⎛⎭⎪⎫4x +π6∴f ⎝ ⎛⎭⎪⎫α4+π12=3sin ⎝ ⎛⎭⎪⎫α+π2=3cos α=95. ∴cos α=35,∴sin α=±1-⎝ ⎛⎭⎪⎫352=±45. 15.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.解:当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2=cos ⎝⎛⎭⎪⎫x +π3.因为x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以由g (x )=32 解得x +π3=-π6或π6, 即x =-π2或-π6.又因为g (x )的最小正周期为π.所以g (x )=32的解集为 ⎩⎨⎧⎭⎬⎫x|x =k π-π2或x =k π-π6,k ∈Z .。

2019-2020学年高一下学期课后复习卷数学试题(平面向量)含答案

2019-2020学年高一下学期课后复习卷数学试题(平面向量)含答案

六安一中高一线上学习课后复习卷平面向量自学巩固练习(时间:90分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.设21,e e 是两不共线的向量,下列四组向量中,不能作为平面向量的一组基底的是( ) A .21e e +和21e e - B .212e e +和122e e + C .2123e e -和1264e e - D .2e 和21e e +2.已知向量(4,1),(2,)m =-=a b ,且()+a a b P ,则m =( ) A .12B .2C .12-D .2- 3.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( )A .AC AB 4143- B .AC AB 4341- C .AC AB 4143+ D .AC AB 4341+4.对任意向量,a b ,下列关系式中不恒成立的是( )A .||||||⋅≤a b a bB .||||||||--≤a b a bC .22()||+=+a b a b D .22()()+-=-a b a b a b 5.设02θπ≤<,已知两个向量,,则向量21P P 长度的最大值是( )2 3 C.32 D.36.设向量,a b 满足||1,||2==a b ,且()⊥+a a b ,则向量a 在向量b 方向上的投影为( )A .1B 13C .1-D .12-7.已知向量(,6)x =a ,(3,4)=b ,且a 与b 的夹角为锐角,则实数x 的取值范围为( ) A .),8(+∞-B .),29()29,8(+∞-YC .),8[+∞-D .),29()29,8[+∞-Y8.点O 是△ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是△ABC的( )A .三条高的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三个内角的角平分线的交点9.已知向量2,3==OB OA ,OB n OA m OC +=,若OA u u u r 与OB uuu r的夹角为60°,且AB OC ⊥,则实数mn 的值为( )A .21 B .31 C .41 D .61 10.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是( )A .2-B .32-C .43- D .1-二、填空题11.已知向量a 与b 的夹角为120o ,3=a ,13+=a b ,则=b .12.如图所示,一力作用在小车上,其中力F 的大小为10N ,方向与水平面成60︒角.当小车向前运动10m 时,则力F 做的功为 .13.已知12,e e 是夹角为60°的两个单位向量,则a =2e 1+e 2和b =2e 2-3e 1的夹角为_______. 14.设ABC ∆是边长为2的正三角形,E 是BC 的中点,F 是AE 的中点,则)(+⋅的值为 .15.在平行四边形ABCD 中,1=AD ,60BAD ︒∠=,E 为CD 的中点.若1=⋅, 则AB 的长为 .三、解答题(解答应写出文字说明、证明过程或演算步骤)16.已知平面向量)0,5(),3,4(=-=b a . (1)求a 与b的夹角的余弦值;(2)若向量b k a +与b k a -互相垂直,求实数k 的值.17.设a 、b 是两个不共线的向量,(1)记OA =a ,OB =tb ,OC =13(a +b ),当实数t 为何值时,A 、B 、C 三点共线?(2)若|a |=|b |=1且a 与b 的夹角为120°,那么实数x 为何值时,|a -x b |的值最小?18.如图,在平面直角坐标系中,点1(,0)2A -,3(,0)2B ,锐角α的终边与单位圆O 交于点P .(1)当41-=⋅时,求α的值; (2)在x 轴上是否存在定点M MP AP 21=恒成立?若存在,求出点M 坐标;若不存在,说明理由.六安一中高一线上学习课后复习卷平面向量自学巩固练习(时间:90分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.设21,e e 是两不共线的向量,下列四组向量中,不能作为平面向量的一组基底的是(C ) A .21e e +和21e e - B .212e e +和122e e + C .2123e e -和1264e e - D .2e 和21e e +2.已知向量(4,1),(2,)m =-=a b ,且()+a a b P ,则m =( C ) A .12B .2C .12-D .2- 3.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( A )A .AC AB 4143- B .AC AB 4341- C .AC AB 4143+ D .AC AB 4341+4.对任意向量,a b ,下列关系式中不恒成立的是( B ) A .||||||⋅≤a b a b B .||||||||--≤a b a b C .22()||+=+a b a b D .22()()+-=-a b a b a b 5.设02θπ≤<,已知两个向量,,则向量21P P 长度的最大值是( B)2 3 C.32 D.36.设向量,a b 满足||1,||2==a b ,且()⊥+a a b ,则向量a 在向量b 方向上的投影为( D ) A .1B 13C .1-D .12-7.已知向量(,6)x =a ,(3,4)=b ,且a 与b 的夹角为锐角,则实数x 的取值范围为( C B )A .),8(+∞-B .),29()29,8(+∞-YC .),8[+∞-D .),29()29,8[+∞-Y8.点O 是△ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是△ABC的( B A )A .三条高的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三个内角的角平分线的交点9.已知向量2,3==OB OA ,OB n OA m OC +=,若OA u u u r 与OB uuu r的夹角为60°,且AB OC ⊥,则实数mn 的值为( C D )A .21 B .31 C .41 D .6110.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是( A B )A .2-B .32-C .43- D .1-二、填空题11.已知向量a 与b 的夹角为120o ,3=a ,13+=a b ,则=b 4 . 12.如图所示,一力作用在小车上,其中力F 的大小为10N ,方向与水平面成60︒角.当小车向前运动10m 时,则力F 做的功为 50 .13.已知12,e e 是夹角为60°的两个单位向量,则a =2e 1+e 2和b =2e 2-3e 1的夹角为____120⁰____.14.设ABC ∆是边长为2的正三角形,E 是BC 的中点,F 是AE 的中点,则)(+⋅的值为 2 3 .15.在平行四边形ABCD 中,1=AD ,60BAD ︒∠=,E 为CD 的中点.若1=⋅, 则AB 的长为 1/3 1/2 .三、解答题(解答应写出文字说明、证明过程或演算步骤)16.已知平面向量)0,5(),3,4(=-=.(1)求与的夹角的余弦值;(2)若向量k+与k-互相垂直,求实数k的值.⑴解:由题意:a(4,-3),b(5,0)∴cosa,b=a·b/|a||b|=20/5×5=4/5∴a与b夹角的余弦值为4/5⑵解:由题意知:(a+kb)·(a-kb)=a²-k²b²=0∵a²=25=b²∴25-25k²=0∴k=1或-117.设a、b是两个不共线的向量,(1)记=a,=tb,=13(a+b),当实数t为何值时,A、B、C三点共线?(2)若|a|=|b|=1且a与b的夹角为120°,那么实数x为何值时,|a-x b|的值最小?⑴解:由题意知:AB=λAC,即-a+tb=λ(b-a)解得:t=1∴当t=1时,A,B,C三点共线⑵解:由题意知:|a-xb|=√(a-xb)²解得x=-1/2∴当x=-1/2时,其最小值为√3/218.如图,在平面直角坐标系中,点1(,0)2A -,3(,0)2B ,锐角α的终边与单位圆O 交于点P .(1)当41-=⋅时,求α的值; (2)在x 轴上是否存在定点M MP AP 21=恒成立?若存在,求出点M 坐标;若不存在,说明理由.⑴解:设点p (cosα,sinα),AP=(cosα+1/2,sinα),BP=(cosα-3/2,sinα) ∵AP·BP=-1/4,解得cosα=1/3∵α是锐角∴α=π/3 ⑵解:设M 点坐标为(t,0),则MP=(cosα-t,sinα) 由题意知(4+2t )cosα-t²+4=0恒成立,解得t=-2 ∴M (-2,0)。

高一数学完美假期寒假作业答案

高一数学完美假期寒假作业答案

2019高一数学完美假期寒假作业答案我们从一出生到耋耄之年,一直就没有离开过数学,或者说我们根本无法离开数学,这一切有点像水之于鱼一样。

以下是查字典数学网为大家整理的高一数学完美假期寒假作业答案,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。

一、选择题(每小题4分,共16分)1.(2019济南高一检测)若圆(x-3)2+(y+5)2=r2上有且仅有两个点到直线4x-3y-2=0的距离为1,则半径长r的取值范围是()A.(4,6)B.[4,6)C.(4,6]D.[4,6]【解析】选A.圆心(3,-5)到直线的距离为d= =5,由图形知42.(2019广东高考)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()A.x+y- =0B.x+y+1=0C.x+y-1=0D.x+y+ =0【解析】选A.由题意知直线方程可设为x+y-c=0(c0),则圆心到直线的距离等于半径1,即 =1,c= ,故所求方程为x+y- =0.3.若曲线x2+y2+2x-6y+1=0上相异两点P,Q关于直线kx+2y-4=0对称,则k的值为()A.1B.-1C.D.2【解析】选D.由条件知直线kx+2y-4=0是线段PQ的中垂线,所以直线过圆心(-1,3),所以k=2.4.(2019天津高一检测)由直线y=x+1上的一点向(x-3)2+y2=1引切线,则切线长的最小值为()A.1B.2C.D.3【解题指南】切线长的平方等于直线上的点到圆心的距离的平方减去半径的平方,所以当直线上的点到圆心的距离最小时,切线长最小.【解析】选C.设P(x0,y0)为直线y=x+1上一点,圆心C(3,0)到P点的距离为d,切线长为l,则l= ,当d最小时,l 最小,当PC垂直于直线y=x+1时,d最小,此时d=2 ,所以lmin= = .二、填空题(每小题5分,共10分)5.(2019山东高考)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得的弦的长为2 ,则圆C的标准方程为________.【解题指南】本题考查了直线与圆的位置关系,可利用圆心到直线的距离、弦长一半、半径构成直角三角形求解.【解析】设圆心,半径为a.由勾股定理得 + =a2,解得a=2.所以圆心为,半径为2,所以圆C的标准方程为 + =4.答案: + =4.6.已知圆C:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆C挡住,则a的取值范围是____________.【解析】由题意可得TAC=30,BH=AHtan 30= .所以,a的取值范围是 .答案:三、解答题(每小题12分,共24分)7.(2019江苏高考)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上. (1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程.(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.【解题指南】(1)先利用题设中的条件确定圆心坐标,再利用直线与圆相切的几何条件找出等量关系,求出直线的斜率.(2)利用MA=2MO确定点M的轨迹方程,再利用题设中条件分析出两圆的位置关系,求出a的取值范围.【解析】(1)由题设知,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意得, =1,解得k=0或- ,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心C在直线y=2x-4上,设C点坐标为(a,2a-4),所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为MA=2MO,所以 =2 ,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意知,点M(x,y)在圆C上,所以圆C与圆D有公共点,则2-12+1,即13.由5a2-12a+80,得a由5a2-12a0,得0 .所以圆心C的横坐标a的取值范围为 .8.已知圆的圆心在x轴上,圆心横坐标为整数,半径为3.圆与直线4x+3y-1=0相切.(1)求圆的方程.(2)过点P(2,3)的直线l交圆于A,B两点,且|AB|=2 .求直线l的方程.【解析】(1)设圆心为M(m,0),mZ,因为圆与直线4x+3y-1=0相切,所以 =3,即|4m-1|=15,又因为mZ,所以m=4.所以圆的方程为(x-4)2+y2=9.(2)①当斜率k不存在时,直线为x=2,此时A(2, ),B(2,- ),|AB|=2 ,满足条件.②当斜率k存在时,设直线为y-3=k(x-2)即kx-y+3-2k=0,设圆心(4,0)到直线l的距离为d,所以d= =2.所以d= =2,解得k=- ,所以直线方程为5x+12y-46=0.综上,直线方程为x=2或5x+12y-46=0.【变式训练】(2019大连高一检测)设半径为5的圆C满足条件:①截y轴所得弦长为6.②圆心在第一象限,并且到直线l:x+2y=0的距离为 .(1)求这个圆的方程.(2)求经过P(-1,0)与圆C相切的直线方程.【解析】(1)由题设圆心C(a,b)(a0,b0),半径r=5,因为截y轴弦长为6,所以a2+9=25,因为a0,所以a=4.由圆心C到直线l:x+2y=0的距离为,所以d= = ,因为b0,所以b=1,所以圆的方程为(x-4)2+(y-1)2=25.(2)①斜率存在时,设切线方程y=k(x+1),由圆心C到直线y=k(x+1)的距离 =5.所以k=- ,所以切线方程:12x+5y+12=0.②斜率不存在时,方程x=-1,也满足题意,由①②可知切线方程为12x+5y+12=0或x=-1.最后,希望小编整理的高一数学完美假期寒假作业答案对您有所帮助,祝同学们学习进步。

集合及其运算寒假作业-高一上学期数学人教A版(2019)必修第一册

集合及其运算寒假作业-高一上学期数学人教A版(2019)必修第一册

高一数学寒假作业专题01集合及其运算1.给出下列表述:①联合国常任理事国;②充分接近√2的实数的全体;③方程x2+x−1=0的实数根④全国著名的高等院校.以上能构成集合的是()A.①③B.①②C.①②③D.①②③④2.设集合U={1,2,3,4,5},M={1,2},N={2,3},则∁U(M⋃N)=()A.{4,5}B.{1,2}C.{2,3}D.{1,3,4,5}3.若集合A={x|−1<x<1},B={x|0≤x≤2},则A⋂B=()A.{x|−1<x<1}B.{x|−1<x<2}C.{x|0≤x<1}D.{x|−1<x<0}4.已知集合A满足{1}⊆A⫋{1,2,3,4},这样的集合A有()个A.5B.6C.7D.85.已知集合A={x|y=log2(x+1)},B={x∈Z||x−1|≤1},则A⋂B=()A.{x|−1<x<2}B.{x∈Z|0≤x≤2}C.{x|0≤x<2}D.{0,1}6.60名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有40名,参加乙项的学生有35名,则仅参加了一项活动的学生人数为()A.50B.35C.40D.457.已知全集U=R,集合A={x|0≤x≤2},B={x|x2−x>0},则图中的阴影部分表示的集合为()A.{x|x≤1或x>2}B.{x|x<0或1<x<2}C.{x|1≤x<2}D.{x|1<x≤2}8.若函数f(x)=√x2−5x+6的定义域是F,g(x)=√x−2+√x−3的定义域是G,则F 和G的关系是()A.G⊂F B.F⊂G C.F=G D.F∩G=∅9.设P={x|x≤3},a=2√2,则下列关系中正确的是()A.a⊆P B.a∈P C.{a}⊆P D.{a}∈P10.如图所示的阴影部分表示的集合是()A.M∩(N∩P)B.(C U M)∩(N∩P)C.P∩[C U(M∪N)]D.P∩(C U M)∩(C U N)11.已知集合M={2,4},集合M⊆N {1,2,3,4,5},则集合N可以是()A.{2,4}B.{2,3,4}C.{1,2,3,4}D.{1,2,3,4,5}12.集合A,B是实数集R的子集,定义A−B={x|x∈A,x∉B},A∗B=(A−B)∪(B−A)叫做集合的对称差.若集合A={y|y=(x−1)2+1,0≤x≤3},B={y|y=x2+1,1≤x ≤3},则以下说法正确的是()A.A={y|−1≤y≤5}B.A−B={y|1≤y<2}C.B−A={y|5<y≤10}D.A∗B={y|1<y≤2}∪{y|5<y≤10}三、填空题13.已知集合M={y|y=x,x≥0},N={x|y=lg(2x−x2)},则M⋂N=______.14.若集合A={x∈R|ax2−2x+1=0}中只有一个元素,则a=_________.15.我们将b−a称为集合{x|a≤x≤b}的“长度”.若集合M={x|m≤x≤m+2022},N= {x|n−2023≤x≤n},且M,N都是集合{x|0≤x≤2024}的子集,则集合M∩N的“长度”的最小值为______.16.当两个集合中有一个集合为另一集合的子集时称这两个集合之间构成“全食”,当两个集合有公共元素,但互不为对方子集时称两集合之间构成“偏食”.对于集合A={−12,12,1},B={x|ax2+1=0,a≤0},若A与B构成“全食”,或构成“偏食”,则a的取值集合为__________ _.17.已知集合A={x|1≤x≤4},B={x|2<x<5},C={x|a−1≤x≤a+1},且B∪C= B.(1)求实数a的取值范围;(2)若全集U=A⋃(B⋃C),求∁U B.18.设全集U=R,集合A={x|x−6x+5≤0},B={x|x2+5x−6≥0},求:(1)A∩∁U B;(2)(∁U A)∪(∁U B).19.已知集合A={x|log2(x+1)<4},B={x|4x>8},C={x|a−1≤x≤2a+1}.(1)计算A⋂B;(2)若C⊆(A∩B),求实数a的取值范围.20.已知集合A={x|a≤x≤a+3},B={x|x<−6或x>1}.(1)若A⋂B=∅,求a的取值范围;(2)若A∪B=B,求a的取值范围.21.已知集合P={x|x2+4x=0},Q={x|x2−4mx−m2+1=0}.(1)若1∈Q,求实数m的值;(2)若P⋃Q=P,求实数m的取值范围.22.已知集合A={x|3−a≤x≤3+a},B={x|x2−4x≥0}.(1)当a=2时,求A⋂B;(2)若a>0,且“x∈A”是“x∈∁R B”的充分不必要条件,求实数a的取值范围.高一数学寒假作业专题01集合及其运算答案1.【答案】A【解析】①联合国的常任理事国有:中国、法国、美国、俄罗斯、英国.所以可以构成集合.②中的元素是不确定的,不满足集合确定性的条件,不能构成集合.③方程x2+x−1=0的实数根是确定,所以能构成集合.④全国著名的高等院校.不满足集合确定性的条件,不构成集合.故选:A2.【答案】A【解析】根据题意,易得M⋃N={1,2,3},故∁U(M∪N)={4,5}.故选:A.3.【答案】C【解析】因为A={x|−1<x<1},B={x|0≤x≤2},所以A⋂B={x|0≤x<1}.故选:C.4.【答案】C【解析】由题得集合A={1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}.故选:C5.【答案】B【解析】因为A={x|x>−1},B={x∈Z|0≤x≤2},所以A∩B={x∈Z|0≤x≤2}故选:B.6.【答案】D【解析】用集合A表示参加甲项体育活动的学生,用集合B表示参加乙项体育活动的学生,用card(A)来表示有限集合A中的元素个数,于是有:card(A∪B)=card(A)+card(B)−card(A∩B),即:60=40+35−card(A⋂B)⇒card(A⋂B)=15,因此仅参加了一项活动的学生人数为:60−15=45,故选:D7.【答案】A【解析】解不等式可得B ={x |x <0或x >1},由题意可知阴影部分表示的集合为∁U (A⋂B )⋂(A⋃B ), 且A⋂B ={x|1<x ≤2},A⋃B =R , ∴∁U (A⋂B )={x |x ≤1或x >2},所以∁U (A⋂B )⋂(A⋃B )={x |x ≤1或x >2}, 故选:A. 8.【答案】A 【解析】由题设,x 2−5x +6=(x −2)(x −3)≥0,可得F ={x|x ≤2或x ≥3}, 又{x −2≥0x −3≥0,可得G ={x|x ≥3}, ∴G ⊂F . 故选:A.9.【答案】BC 【解析】 因为2√2≤3, 所以2√2∈{x|x ≤3}, 即a ∈P ,{a }⊆P 故选:BC10.【答案】CD 【解析】A 选项表示的是图1的部分,不合题意,B 选项表示的是图2的部分,不合题意CD选项表示的是题干中的阴影部分故选:CD11.【答案】ABC【解析】因为集合M={2,4},对于A:N={2,4}满足M⊆N {1,2,3,4,5},所以选项A符合题意;对于B:N={2,3,4}满足M⊆N {1,2,3,4,5},所以选项B符合题意;对于C:N={1,2,3,4}满足M⊆N {1,2,3,4,5},所以选项C符合题意;对于D:N={1,2,3,4,5}不是{1,2,3,4,5}的真子集,故选项D不符合题意,故选:ABC.12.【答案】BC【解析】A={y|y=(x−1)2+1,0≤x≤3}={y|1≤y≤5},A错误;B={y|y=x2+1,1≤x≤3}={y|2≤y≤10},A−B={x|1≤x<2},B正确;B−A={y|5<y≤10},C正确;A∗B=(A−B)∪(B−A)={y|1≤y<2}∪{y|5<y≤10},D错误.故选:BC.13.【答案】(0,2)【解析】M={y|y=x,x≥0}={y|y≥0},N={x|y=lg(2x−x2)}={x|2x−x2⟩0}={x|x2−2x<0}={x|0<x<2},所以M∩N={x|0<x<2}=(0,2),故答案为:(0,2).14.【答案】0或1或0【解析】因集合A ={x ∈R |ax 2−2x +1=0}中只有一个元素,则当a =0时,方程为−2x +1=0,解得x =12,即集合A ={12},则a =0, 当a ≠0时,由Δ=22−4a =0,解得a =1,集合A ={1},则a =1, 所以a =0或a =1. 故答案为:0或1 15.【答案】2021 【解析】由题意得,M 的“长度”为2022,N 的“长度”为2023,要使M ∩N 的“长度”最小,则M ,N 分别在{x |0≤x ≤2024}的两端. 当m =0,n =2024时,得M ={x |0≤x ≤2022},N ={x |1≤x ≤2024}, 则M ∩N ={x |1≤x ≤2022},此时集合M ∩N 的“长度”为2022−1=2021; 当m =2,n =2023时,M ={x |2≤x ≤2024},N ={x |0≤x ≤2023}, 则M ∩N ={x |2≤x ≤2023},此时集合M ∩N 的“长度”为2023−2=2021. 故M ∩N 的“长度”的最小值为2021. 故答案为:202116.【答案】{0,−1,−4} 【解析】当A 与B 构成“全食”即B ⊆A 时, 当a =0时,B =∅;当a ≠0时,B ={√−1a ,−√−1a }, 又∵B ⊆A , ∴a =−4;当A 与B 构成构成“偏食”时,A ⋂B ≠∅且B ⊈A , ∴a =−1.故a 的取值为:0,−1,−4, 故答案为:{0,−1,−4}17.【答案】 (1)(3,4);(2)∁U B ={x |1≤x ≤2}. 【解析】(1)由B ∪C =B ,可知C ⊆B ,又∵B ={x |2<x <5},C ={x |a −1≤x ≤a +1},∴2<a −1<a +1<5,解得:3<a <4, ∴实数a 的取值范围是(3,4).(2)依题意得,U =A⋃(B⋃C)=A⋃B , 又A ={x |1≤x ≤4},B ={x |2<x <5}, ∴U ={x |1≤x <5}, ∴∁U B ={x |1≤x ≤2}. 18.【答案】(1)A⋂∁U B ={x|−5<x <1}; (2)(∁U A )∪(∁U B )={x|x <1或x >6}. 【解析】(1)由x−6x+5≤0可得{(x −6)(x +5)≤0x +5≠0,解得:−5<x ≤6,所以A ={x|−5<x ≤6},由x 2+5x −6≥0,可得(x −1)(x +6)≥0,解得:x ≤−6或x ≥1, 所以B ={x|x ≤−6或x ≥1},所以∁U B ={x|−6<x <1}, 所以A⋂∁U B ={x|−5<x <1}.(2)由(1)知A ={x|−5<x ≤6},所以∁U A ={x|x ≤−5或x >6}, 所以(∁U A )∪(∁U B )={x|x <1或x >6}. 19.【答案】(1){x ∣32<x <15} (2)(−∞,−2)∪(52,7) 【解析】(1)由log 2(x +1)<4得log 2(x +1)<log 224, 又函数y =log 2x 在(0,+∞)上单调递增, 则0<x +1<24即A ={x ∣−1<x <15}, 由4x >8,得x >32,即B ={x ∣x >32}, 则A ∩B ={x ∣32<x <15}. (2)因为C ⊆(A ∩B ),当C =∅时,2a +1<a −1,即a <−2; 当C ≠∅时,由C ⊆(A ∩B ),可得 {2a +1⩾a −1,a −1>32,2a +1<15,即52<a <7, 综上,a 的取值范围是(−∞,−2)∪(52,7). 20.【答案】(1){a|−6≤a ≤−2}; (2){a|a <−9或a >1}. 【解析】(1)因为A⋂B =∅,所以{a ≥−6a +3≤1,解得:−6≤a ≤−2,所以a 的取值范围是{a|−6≤a ≤−2}.(2)因为A ∪B =B ,所以A ⊆B ,所以a +3<−6或a >1,解得:a <−9或a >1, 所以a 的取值范围是{a|a <−9或a >1}. 21.【答案】 (1)m =−2±√6.(2)−√55<m <√55或m =−1.【解析】(1)由1∈Q 得1−4m −m 2+1=0,即m 2+4m −2=0, 解得m =−2±√6;(2)因为P⋃Q =P ,所以Q ⊆P ,由P ={0,−4}知Q 可能为∅,{0},{−4},{0,−4};①当Q =∅,即x 2−4mx −m 2+1=0无解,所以Δ=16m 2+4m 2−4=20m 2−4<0, 解得−√55<m <√55;②当Q ={0},即x 2−4mx −m 2+1=0有两个等根为0,所以依据韦达定理知{Δ=0,0=4m,0=1−m 2所以m 无解;③当Q ={−4},即x 2−4mx −m 2+1=0有两个等根为−4,所以依据韦达定理知{Δ=0,−8=4m,16=1−m 2所以m 无解; ③当Q ={0,−4},即x 2−4mx −m 2+1=0有两个根为0,−4,所以依据韦达定理知{Δ>0,−4=4m,0=1−m 2解得m =−1; 综上,−√55<m <√55或m =−1.22.【答案】 (1)[4,5] (2)0<a <1 【解析】(1)x 2−4x =x (x −4)≥0,解得x ≤0或x ≥4, 所以B =(−∞,0]∪[4,+∞)a=2时,A=[1,5],所以A∩B=[4,5].(2)∁R B=(0,4),因为“x∈A”是“x∈∁R B”的充分不必要条件,所以A是∁R B的真子集,且A≠∅;∴{3−a>03+a<4所以实数a的取值范围为:0<a<1.11/ 11。

2019-2020学年高一数学人教A版必修1练习:2.2.2 对数函数及其性质 Word版含解析

2019-2020学年高一数学人教A版必修1练习:2.2.2 对数函数及其性质 Word版含解析

2.2.2 对数函数及其性质课后篇巩固提升基础巩固1.y=2x与y=log2x的图象关于( )A.x轴对称B.直线y=x对称C.原点对称D.y轴对称y=2x与y=log2x互为反函数,故函数图象关于直线y=x对称.2.函数y=ln(1-x)的图象大致为( )(-∞,1),且函数在定义域上单调递减,故选C.3.已知函数y=log a(x+c)(a,c为常数,且a>0,a≠1)的图象如图所示,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1y=log a (x+c )的图象是由y=log a x 的图象向左平移c 个单位长度得到的,结合题图知0<c<1.根据单调性易知0<a<1.4.已知a>0且a ≠1,函数y=log a x ,y=a x ,y=x+a 在同一坐标系中的图象可能是( )函数y=a x 与y=log a x 的图象关于直线y=x 对称,再由函数y=a x 的图象过(0,1),y=log a x 的图象过(1,0),观察图象知,只有C 正确.5.已知a=,b=log 2,c=lo ,则( )2-1313g 1213A.a>b>cB.a>c>bC.c>b>aD.c>a>b0<a=<20=1,b=log 2<log 21=0,c=lo >lo =1,∴c>a>b.故选D .2-1313g 1213g 12126.若对数函数f (x )的图象经过点P (8,3),则f = .(12)f (x )=log a x (a>0,a ≠1),则log a 8=3,∴a 3=8,∴a=2.∴f (x )=log 2x ,故f =log 2=-1.(12)1217.将y=2x 的图象先 ,再作关于直线y=x 对称的图象,可得到函数y=log 2(x+1)的图象( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度,可求出解析式或利用几何图形直观推断.8.已知函数f (x )=直线y=a 与函数f (x )的图象恒有两个不同的交点,则a 的取值范围{log 2x ,x >0,3x ,x ≤0,是 .f (x )的图象如图所示,要使直线y=a 与f (x )的图象有两个不同的交点,则0<a ≤1.9.作出函数y=|log 2x|+2的图象,并根据图象写出函数的单调区间及值域.y=log 2x 的图象,如图甲.再将y=log 2x 在x 轴下方的图象关于x 轴对称翻折到x 轴上方(原来在x 轴上方的图象不变),得函数y=|log 2x|的图象,如图乙;然后将y=|log 2x|的图象向上平移2个单位长度,得函数y=|log 2x|+2的图象,如图丙.由图丙得函数y=|log 2x|+2的单调递增区间是[1,+∞),单调递减区间是(0,1),值域是[2,+∞).10.已知对数函数y=f(x)的图象经过点P(9,2).(1)求y=f(x)的解析式;(2)若x∈(0,1),求f(x)的取值范围.(3)若函数y=g(x)的图象与函数y=f(x)的图象关于x轴对称,求y=g(x)的解析式.设f(x)=log a x(a>0,且a≠1).由题意,f(9)=log a9=2,故a2=9,解得a=3或a=-3.又因为a>0,所以a=3.故f(x)=log3x.(2)因为3>1,所以当x∈(0,1)时,f(x)<0,即f(x)的取值范围为(-∞,0).g1(3)因为函数y=g(x)的图象与函数y=log3x的图象关于x轴对称,所以g(x)=lo x.3能力提升1.函数y=log a(x+2)+1(a>0,且a≠1)的图象过定点( )A.(1,2)B.(2,1)C.(-2,1)D.(-1,1)x+2=1,得x=-1,此时y=1.2.若函数f (x )=log 2x 的反函数为y=g (x ),且g (a )=,则a=( )14A.2 B.-2 C. D.-1212,得g (x )=2x .∵g (a )=,∴2a =,∴a=-2.14143.若函数f (x )=log 2(x 2-ax-3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,4)∪[2,+∞)D.[-4,4)t (x )=x 2-ax-3a ,则由函数f (x )=log 2t 在区间(-∞,-2]上是减函数,可得函数t (x )在区间(-∞,-2]上是减函数,且t (-2)>0,所以有-4≤a<4,故选D .4.已知函数f (x )=a x +log a (x+1)在[0,1]上的最大值与最小值之和为a ,则a 的值等于( )A. B.2 C.3D.1213y=a x 与y=log a (x+1)在[0,1]上的单调性相同,所以f (x )在[0,1]上的最大值与最小值之和为f (0)+f (1)=(a 0+log a 1)+(a 1+log a 2)=a ,整理得1+a+log a 2=a ,即log a 2=-1,解得a=.故选A .125.已知a=log 23.6,b=log 43.2,c=log 43.6,则a ,b ,c 的大小关系为 .a==2log 43.6=log 43.62,又函数y=log 4x 在区间(0,+∞)上是增函数,3.62>3.6>3.2,log 43.6log 42∴log 43.62>log 43.6>log 43.2,∴a>c>b.6.已知a>0且a ≠1,则函数y=a x 与y=log a (-x )在同一直角坐标系中的图象只能是下图中的 (填序号).方法一)首先,曲线y=a x 位于x 轴上方,y=log a (-x )位于y 轴左侧,从而排除①③.其次,从单调性考虑,y=a x 与y=log a (-x )的增减性正好相反,又可排除④.故只有②满足条件.(方法二)若0<a<1,则曲线y=a x 下降且过点(0,1),而曲线y=log a (-x )上升且过点(-1,0),所有选项均不符合这些条件.若a>1,则曲线y=a x 上升且过点(0,1),而曲线y=log a (-x )下降且过点(-1,0),只有②满足条件.(方法三)如果注意到y=log a (-x )的图象关于y 轴的对称图象为y=log a x 的图象,又y=log a x 与y=a x 互为反函数(两者图象关于直线y=x 对称),则可直接选②.7.已知函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 .f (x )的解析式为f (x )=其图象如右图所示.{lg x ,x >0,0,x =0,-lg (-x ),x <0,由函数图象可得不等式f (x )>0时,x 的取值范围为(-1,0)∪(1,+∞).-1,0)∪(1,+∞)8.设函数f (x )=ln(ax 2+2x+a )的定义域为M.(1)若1∉M ,2∈M ,求实数a 的取值范围;(2)若M=R ,求实数a 的取值范围.由题意M={x|ax 2+2x+a>0}.由1∉M ,2∈M 可得{a ×12+2×1+a ≤0,a ×22+2×2+a >0,化简得解得-<a ≤-1.{2a +2≤0,5a +4>0,45所以a 的取值范围为.(-45,-1](2)由M=R 可得ax 2+2x+a>0恒成立.当a=0时,不等式可化为2x>0,解得x>0,显然不合题意;当a ≠0时,由二次函数的图象可知Δ=22-4×a×a<0,且a>0,即化简得解得a>1.{4-4a 2<0,a >0,{a 2>1,a >0,所以a 的取值范围为(1,+∞).9.已知函数f (x )=log 2(a 为常数)是奇函数.1+ax x -1(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x-1)>m 恒成立,求实数m 的取值范围.∵函数f (x )=log 2是奇函数,1+axx -1∴f (-x )=-f (x ).∴log 2=-log 2.1-ax -x -11+ax x -1即log 2=log 2,∴a=1.ax -1x +1x -11+ax 令>0,解得x<-1或x>1.1+x x -1所以函数的定义域为{x|x<-1或x>1}.(2)f (x )+log 2(x-1)=log 2(1+x ),当x>1时,x+1>2,∴log 2(1+x )>log 22=1.∵x ∈(1,+∞),f (x )+log 2(x-1)>m 恒成立,∴m ≤1.故m 的取值范围是(-∞,1].。

2023年高一数学寒假作业答案

2023年高一数学寒假作业答案

2023年高一数学寒假作业答案新的学期即将来临,在剩下的美好的寒假时光,我们要认真完成自己的寒假作业,那么高一数学寒假作业答案有哪些呢下面是小编给大家整理的2023年高一数学寒假作业答案,欢迎大家来阅读。

高一数学寒假作业答案一、1~5 CABCB6~10 CBBCC11~12 BB二、13 ,14 (1) ;(2){1,2,3} N; (3){1} ;(4)0 ;15 -116.略。

三、17 .{0.-1,1};18.略;19. (1) a2-4b=0 (2) a=-4, b=320.略.p2一.1~5 C D B B D6~10 C C C C A11~12 B B二. 13. (1,+∞) 14.13 15 16,三.17.略18、略。

19.解:⑴ 略。

⑵略。

20.略。

p3一、选择题:1.B2.C3.C4.A5.C6.A7.A8.D9.A 10.B 11.B 12.C二、填空题:13. 14. 12 15. ; 16.4-a,三、解答题:17.略18.略19.解:(1)开口向下;对称轴为 ;顶点坐标为 ;(2)函数的值为1;无最小值;(3)函数在上是增加的,在上是减少的。

20.Ⅰ、Ⅱ、p4一、1~8 C B C D A A C C 9-12 B B C D二、13、[—,1] 14、 15、 16、x 2或0三、17、(1)如图所示:(2)单调区间为, .(3)由图象可知:当时,函数取到最小值18.(1)函数的定义域为(—1,1)(2)当a 1时,x (0,1) 当019. 略。

p5一、1~8 C D B D A D B B9~12 B B C D13. 19/6 14. 15. 16.17.略。

20. 解:p7一、选择题:1.D2. C3.D4.C5.A6.C7.D8. A9.C 10.A 11.D 1.B二、填空题13.(-2,8),(4,1) 14.[-1,1] 15.(0,2/3)∪(1,+∞) 16.[0.5,1)17.略 18.略19.略。

高一数学寒假作业(人教A版必修一)集合的概念与运算word版含解析

高一数学寒假作业(人教A版必修一)集合的概念与运算word版含解析

高一数学寒假作业(人教A版必修一)集合的概念与运算1.已知集合A={y|x2+y2=1}和集合B={y|y=x2},则A∩B等于( )A.(0,1) B.[0,1]C.(0,+∞) D.{(0,1),(1,0)}【答案】 B2.设全集U=M∪N={1,2,3,4,5},M∩∁UN={2,4},则N=( )A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}【解析】由M∩∁UN={2,4}可得集合N中不含有元素2,4,集合M中含有元素2,4,故N={1,3,5}.【答案】 B3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=( ).A.{1,4} B.{1,5} C.{2,3} D.{3,4}【解析】U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.【答案】 A4.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是( ).A.2 B.3 C.4 D.5【解析】B={x|x=n·m,m,n∈A,m≠n}={6,8,12}.【答案】 B5.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( ).A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【解析】若N⊆M,则需满足a2=1或a2=2,解得a=±1或a=± 2.故“a=1”是“N⊆M”的充分不必要条件.【答案】 A6.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 24+3y 24=1,B ={y |y =x 2},则A ∩B =( ). A .[-2,2]B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)}【解析】 A ={x |-2≤x ≤2},B ={y |y ≥0},∴A ∩B ={x |0≤x ≤2}=[0,2].【答案】 B7.已知集合M ={x|(x -1)2<4,x∈R},N ={-1,0,1,2,3},则M∩N=( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 【答案】 A8.若集合A ={x|x 2-2x -16≤0},B ={y|C 5y≤5},则A∩B 中元素个数为( )A .1个B .2个C .3个D .4个 【答案】 D【解析】 A =[1-17,1+17],B ={0,1,4,5},∴A∩B 中有4个元素.故选D.9.若集合M ={0,1,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y∈M},则N 中元素的个数为( )A .9B .6C .4D .2 【答案】 C【解析】 N ={(x ,y)|-1≤x-2y≤1,x ,y∈M},则N 中元素有:(0,0),(1,0),(1,1),(2,1).10.已知集合A ={1,3,zi}(其中i 为虚数单位),B ={4},A∪B=A ,则复数z 的共轭复数为( )A .-2iB .2iC .-4iD .4i 【答案】 D【解析】 由A∪B=A ,可知B ⊆A ,所以zi =4,则z =4i=-4i ,所以z 的共轭复数为4i ,故选D. 11.设集合M ={y|y =2sinx ,x∈[-5,5]},N ={x|y =log 2(x -1)},则M∩N=( )A .{x|1<x≤5}B .{x|-1<x≤0}C.{x|-2≤x≤0} D.{x|1<x≤2}【答案】 D【解析】∵M={y|y=2sinx,x∈[-5,5]}={y|-2≤y≤2},N={x|y=log2(x-1)}={x|x>1},∴M∩N={y|-2≤y≤2}∩{x|x>1}={x|1<x≤2}.12.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为( )A.[-1,0] B.(-1,0)C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)【答案】 D13.已知集合A={-1,0},B={0,1},则集合∁A∪B(A∩B)=( )A.∅B.{0}C.{-1,1} D.{-1,0,1}【答案】 C【解析】∵A∩B={0},A∪B={-1,0,1},∴∁A∪B(A∩B)={-1,1}.14.已知P={x|4x-x2≥0},则集合P∩N中的元素个数是( )A.3 B.4C.5 D.6【答案】 C【解析】因为P={x|4x-x2≥0}={x|0≤x≤4},且N是自然数集,所以集合P∩N中元素的个数是5,故选C.15.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.【解析】∵3∈B,又a2+4≥4,∴a+2=3,∴a=1.【答案】 116.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为________.【解析】 若a =4,则a2=16∉(A∪B),所以a =4不符合要求,若a2=4,则a =±2,又-2∉(A∪B),∴a =2.【答案】 217.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z}为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的序号是________.【答案】 ②18.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.【解析】 由6x +1≥1,得x -5x +1≤0, ∴-1<x ≤5,∴A ={x |-1<x ≤5}.又∵B ={x |x 2-2x -m <0},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.【答案】 819.若集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,求实数a ,b .解 ∵A =B ,∴B ={x |x 2+ax +b =0}={-1,3}.∴⎩⎪⎨⎪⎧ -a =-1+3=2,b = -1 ×3=-3,∴a =-2,b =-3.20.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9,∴a =5或a =-3或a =3,经检验a =5或a =-3符合题意.∴a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9},当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.∴a =-3.21.设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 组成的集合C .∴1a =3或1a =5,即a =13或a =15, ∴C =⎩⎨⎧⎭⎬⎫0,13,15. 22.设集合A ={x2,2x -1,-4},B ={x -5,1-x,9},若A∩B={9},求A∪B.解 由9∈A,可得x2=9或2x -1=9,解得x =±3或x =5.当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;当x =-3时,A ={9,-7,-4},B ={-8,4,9},A∩B={9}满足题意,故A∪B={-7,-4,-8,4,9}; 当x =5时,A ={25,9,-4},B ={0,-4,9},此时A∩B={-4,9}与A∩B={9}矛盾,故舍去.综上所述,A∪B={-8,-4,4,-7,9}.23.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈A∩B; (2){9}=A∩B .【答案】(1)a=5或a=-3 (2)a=-3【解析】(1)∵9∈A∩B且9∈B,∴9∈A.∴2a-1=9或a2=9.∴a=5或a=±3.而当a=3时,a-5=1-a=-2,故舍去.∴a=5或a=-3.(2)∵{9}=A∩B,∴9∈A∩B.∴a=5或a=-3.而当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9}≠{9},故a=5舍去.∴a=-3.讲评9∈A∩B与{9}=A∩B意义不同,9∈A∩B说明9是A与B的一个公共元素,但A与B允许有其他公共元素.而{9}=A∩B说明A与B的公共元素有且只有一个9.24.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁U A)∩B=∅,试求实数m的值.【答案】m=1或m=22};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2. 经检验知m=1和m=2符合条件.∴m=1或2.。

2019-2020学年高一数学苏教版必修1同步练习:2.3 映射的概念 Word版含答案

2019-2020学年高一数学苏教版必修1同步练习:2.3 映射的概念 Word版含答案

姓名,年级:时间:2.3 映射的概念1、下列对应是从集合M 到集合N 的映射的是( )①;:,,M N R f x y x M y N ==→=∈∈1x。

②2;:,,M N R f x y x x M y N ==→=∈∈ ③|:,,|;M N R f x y x M y N +==→=∈∈1x x。

④3;:,,M N R f x y x x M y N ==→=∈∈.A.①② B 。

②③ C.①④ D 。

②④2、已知:f A B →是集合A 到B 的映射,又A B ==R ,对应法则2:23,f x y x x k B →=+-∈且k 在A 中没有原象,则k 的取值范围是( )A 。

(),4-∞-B 。

(1,3)-C 。

[),?-+∞4D 。

(,1)(3,)-∞-⋃+∞3、已知集合A 中元素(),x y 在映射f 下对应B 中元素(),x y x y +-,则B 中元素()4,2-在A 中对应的元素为( ) A. ()1,3 B 。

(1,6) C 。

()2,4 D 。

()2,64、设集合{|02},{|12}A x x B y y =≤≤=≤≤,下列图中能表示从集合A 到集合B 的映射的是( )A 。

B.C. D 。

5、下列对应不是映射的是( )A. B 。

C 。

D 。

6、图中各图表示的对应能构成映射的个数有( )A.3个 B 。

4个 C 。

5个 D 。

6个 7、在下列各对集合M 和Y 中,使对应法则21:1f x x →-可以作为集合M 到Y 的映射的是( ) A 。

{}111,3,5,0,,824M Y ⎧⎫=---=⎨⎬⎩⎭B.{}1113,5,7,0,,,82448M Y ⎧⎫==⎨⎬⎩⎭C 。

{}111,2,3,0,,38M Y ⎧⎫==⎨⎬⎩⎭D 。

{}110,2,4,6,1,,315M Y ⎧⎫==-⎨⎬⎩⎭8、下列对应关系不是映射的是( )A 。

B. C. D.9、集合{04},{02}A x x B y y =≤≤=≤≤,下列不表示从A 到B 的函数的是( ) A.1:2f x y x →=B.1:3f x y x →= C.2:3f x y x →=D.:f x y x →=10、已知映射:,f A B →其中,A B R ==对应法则221:().3xxf x y +→=若对实数,m B ∈在集合A 中存在元素与之对应,则m 的取值范围是( ) A 。

吉林省长春市第八中学2020-2021学年高一数学人教A版(2019)寒假作业第一~五章(二)练习

吉林省长春市第八中学2020-2021学年高一数学人教A版(2019)寒假作业第一~五章(二)练习

第一~五章 综合(二)--测试卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2x x -2>1,B ={x|1<2x <8}则A ∩B 等于( )A .(2,3)B .(-3,3)C .(0,3)D .(1,3)2.函数f(x)=x +3+1x +1的定义域为( ) A .{x|x ≥-3且x ≠-1} B .{x|x>-3且x ≠-1} C .{x|x ≥-1} D .{x|x ≥-3} 3.sin 140°cos 10°+cos 40°sin 350°等于( )A .32B .-32C .12D .-124.函数f(x)=log 3x +x 3-9的零点所在区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)5.已知命题p :“∃x 0∈R ,使得x 20+2ax 0+a +2≤0”,若命题p 是假命题,则实数a 的取值范围是( )A .[-1,2]B .(-1,2)C .(-2,1)D .(0,2]6.函数x =ln π,y =log 52,z =e -12,则x ,y ,z 的大小关系为( ) A .x <y <z B .z <x <y C .y <z <x D .z <y <x7.将函数f (x )=sin(2x +φ)的图象向左平移π6个单位长度后,得到函数g (x )的图象,则“φ=π6”是“g (x )为偶函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件8.设f (x )为偶函数,且x ∈(0,1)时,f (x )=-x +2,则下列说法正确的是( )A .f (0.5)<f ⎝⎛⎭⎫π6B .f ⎝⎛⎭⎫sin π6>f (sin 0.5)C .f (sin 1)<f (cos 1)D .f (sin 2)>f (cos 2)二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下面各式中,正确的是( )A .sin ⎝⎛⎭⎫π4+π3=sin π4cos π3+32cos π4 B .cos 5π12=22sin π3-cos π4cos π3C .cos ⎝⎛⎭⎫-π12=cos π4cos π3+64 D .cos π12=cos π3-cos π410.函数f (x )=log a |x -1|在(0,1)上是减函数,那么( ) A .f (x )在(1,+∞)上递增且无最大值B .f (x )在(1,+∞)上递减且无最小值C .f (x )在定义域内是偶函数D .f (x )的图象关于直线x =1对称 11.下面选项正确的有( )A .存在实数x ,使sin x +cos x =π3B .α,β是锐角△ABC 的内角,是sin α>cos β的充分不必要条件C .函数y =sin ⎝⎛⎭⎫23x -7π2是偶函数D .函数y =sin 2x 的图象向右平移π4个单位,得到y =sin ⎝⎛⎭⎫2x +π4的图象12.若函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象不可以是( )三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若扇形的面积为3π8、半径为1,则扇形的圆心角为________.14.设x >0,y >0,x +y =4,则1x +4y 的最小值为________.15.定义在R 上的函数f (x )满足f (x )=3x -1(-3<x ≤0),f (x )=f (x +3),则f (2 019)=________.16.函数f (x )=⎩⎨⎧2x,x ≥0-x 2-2x +1,x <0,函数f (x )有________个零点,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值范围是________.(本题第一空2分,第二空3分)四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)设函数f (x )=6+x +ln(2-x )的定义域为A ,集合B ={x |2x >1}. (1)求A ∪B ;(2)若集合{x |a <x <a +1}是A ∩B 的子集,求a 的取值范围.18.(12分)已知sin ⎝⎛⎭⎫β-π4=15,cos (α+β)=-13,其中0<α<π2,0<β<π2.(1)求sin 2β的值;(2)求cos⎝⎛⎭⎫α+π4的值.19.(12分)已知f (x )=⎩⎨⎧2x+1,x ≤0,log 2(x +1),x >0.(1)作出函数f (x )的图象,并写出单调区间;(2)若函数y =f (x )-m 有两个零点,求实数m 的取值范围.20.(12分)已知函数f (x )=sin ⎝⎛⎭⎫2x -π6-2sin 2x +1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.21.(12分)2018年是中国改革开放40周年,改革开放40年来,从开启新时期到跨入新世纪,从站上新起点到进入新时代,我们党引领人民绘就了一幅波澜壮阔、气势恢宏的历史画卷,谱写了一曲感天动地、气壮山河的奋斗赞歌,40年来我们始终坚持保护环境和节约资源,坚持推进生态文明建设,郑州市政府也越来越重视生态系统的重建和维护,若市财政下拨一项专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数M(x)(单位:百万元):M(x)=50x10+x,处理污染项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数N(x)(单位:百万元):N(x)=0.2x.(1)设分配给植绿护绿项目的资金为x(百万元),则两个生态项目五年内带来的生态收益总和为y,写出y关于x的函数解析式和定义域;(2)生态项目的投资开始利润薄弱,只有持之以恒,才能功在当代,利在千秋,试求出y的最大值,并求出此时对两个生态项目的投资分别为多少?22.(12分)设函数f k(x)=2x+(k-1)·2-x(x∈R,k∈Z).(1)若f k(x)是偶函数,求k的值;(2)若存在x∈[1,2],使得f0(x)+mf1(x)≤4成立,求实数m的取值范围;(3)设函数g(x)=λf0(x)-f2(2x)+4,若g(x)在x∈[1,+∞)有零点,求实数λ的取值范围.第一~五章综合(二)--参考答案1.解析:因为A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2x x -2>1=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x +2x -2>0={x |x <-2或x >2},B ={x |1<2x <8}={x |0<x <3},因此A ∩B ={x |2<x <3}.故选A.答案:A2.解析:要使f (x )有意义,则⎩⎨⎧x +3≥0,x +1≠0,解得x ≥-3,且x ≠-1,∴f (x )的定义域为{x |x ≥-3,且x ≠-1}. 答案:A3.解析:sin 140°cos 10°+cos 40°sin 350° =sin 40°cos 10°-cos 40°sin 10°=sin (40°-10°)=sin 30°=12. 答案:C4.解析:∵f (2)=log 32-1<0, f (3)=log 33+27-9=19>0, ∴f (2)·f (3)<0,∴函数在区间(2,3)上存在零点. 答案:C5.解析:若命题p 是假命题,则“不存在x 0∈R ,使得x 20+2ax 0+a +2≤0”成立, 即“∀x ∈R ,使得x 2+2ax +a +2>0”成立,所以Δ=(2a )2-4(a +2)=4(a 2-a -2)=4(a +1)(a -2)<0,解得-1<a <2, 所以实数a 的取值范围是(-1,2),故选B. 答案:B6.解析:x =ln π>ln e =1,y =log 52<log 55=12,z =1e >14=12,且z <1,故y <z <x .答案:C7.解析:因为函数f (x )的图象向左平移π6个单位长度后得到函数g (x )的图象,所以g (x )=sin ⎝⎛⎭⎫2x +φ+π3,因为g (x )为偶函数,所以φ+π3=π2+k π(k ∈Z ),即φ=π6+k π(k ∈Z ),因为φ=π6可以推导出函数g (x )为偶函数,而函数g (x )为偶函数不能推导出φ=π6,所以“φ=π6”是“g (x )为偶函数”的充分不必要条件.答案:A8.解析:x ∈(0,1)时,f (x )=-x +2,则f (x )在(0,1)上单调递减,A :0.5<π6,所以f (0.5)>f ⎝⎛⎭⎫π6,A 错误;B :0.5<π6,∴0<sin 0.5<sin π6<1,∴f ⎝⎛⎭⎫sin π6<f (sin 0.5),B 错误;C :∵0<cos 1<sin 1<1,∴f (sin 1)<f (cos 1),C 正确;D :-1<cos 2<0,f (cos 2)=f (-cos 2),sin 2-(-cos 2)=sin 2+cos 2=2sin ⎝⎛⎭⎫2+π4>0,所以1>sin 2>(-cos 2)>0,所以f (sin 2)<f (-cos 2)=f (cos 2),D 错误.故选C.答案:C9.解析:∵sin ⎝⎛⎭⎫π4+π3=sin π4cos π3+cos π4sin π3=sin π4cos π3+32cos π4,∴A 正确;∵cos 5π12=-cos 7π12=-cos ⎝⎛⎭⎫π3+π4=22sin π3-cos π4cos π3,∴B 正确;∵cos ⎝⎛⎭⎫-π12=cos ⎝⎛⎭⎫π4-π3=cos π4cos π3+64,∴C 正确;∵cos π12=cos ⎝⎛⎭⎫π3-π4≠cos π3-cos π4,∴D 不正确.故选ABC.答案:ABC10.解析:由|x -1|>0得,函数y =log a |x -1|的定义域为{x |x ≠1}.设g (x )=|x -1|=⎩⎨⎧x -1,x >1-x +1,x <1,则g (x )在(-∞,1)上为减函数,在(1,+∞)上为增函数,且g (x )的图象关于直线x =1对称,所以f (x )的图象关于直线x =1对称,D 正确;因为f (x )=log a |x -1|在(0,1)上是减函数,所以a >1,所以f (x )=log a |x -1|在(1,+∞)上递增且无最大值,A 正确,B 错误; 又f (-x )=log a |-x -1|=log a |x +1|≠f (x ),所以C 错误.故选AD. 答案:AD11.解析:A 选项:sin x +cos x =2sin ⎝⎛⎭⎫x +π4,则sin x +cos x ∈[-2, 2 ].又-2<π3<2,∴存在x ,使得sin x +cos x =π3,可知A 正确;B 选项:∵△ABC 为锐角三角形,∴α+β>π2,即α>π2-β∵β∈⎝⎛⎭⎫0,π2,∴π2-β∈⎝⎛⎭⎫0,π2,又α∈⎝⎛⎭⎫0,π2且y =sin x 在⎝⎛⎭⎫0,π2上单调递增∴sin α>sin ⎝⎛⎭⎫π2-β=cos β,可知B 正确;C 选项:y =sin ⎝⎛⎭⎫23x -7π2=cos 2x 3,则cos 2(-x )3=cos 2x3,则y =sin ⎝⎛⎭⎫23x -7π2为偶函数,可知C 正确;D 选项:y =sin 2x 向右平移π4个单位得:y =sin 2⎝⎛⎭⎫x -π4=sin ⎝⎛⎭⎫2x -π2=-cos 2x ,可知D 错误.本题正确选项ABC. 答案:ABC12.解析:函数y =log a (|x |-1)是偶函数,定义域为(-∞,-1)∪(1,+∞),由函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数, 得0<a <1. 当x >1时,函数y =log a (|x |-1)的图象可以通过函数y =log a x 的图象向右平移1个单位得到,结合各选项可知只有D 选项符合题意.故选ABC.答案:ABC13.解析:设扇形的圆心角为α,则∵扇形的面积为3π8,半径为1, ∴3π8=12·α·12,∴α=3π4.答案:3π414.解析:∵x +y =4,∴1x +4y =14⎝⎛⎭⎫1x +4y (x +y )=14⎝⎛⎭⎫5+y x +4x y ,又x >0,y >0,则y x +4x y ≥2y x ·4xy =4⎝⎛⎭⎫当且仅当y x =4x y ,即x =43,y =83时取等号,则1x +4y ≥14×(5+4)=94.答案:9415.解析:∵f (x )=f (x +3), ∴y =f (x )表示周期为3的函数,∴f (2 019)=f (0)=3-1=13.答案:1316.解析:作出函数f (x )的图象如下图所示,由图象可知,函数f (x )有且仅有一个零点, 要使函数y =f (x )-m 有三个不同的零点,则需函数y =f (x )与函数y =m 的图象有且仅有三个交点,则1<m <2.答案:1 (1,2)17.解析:(1)由⎩⎨⎧6+x ≥02-x >0得,-6≤x <2;由2x >1得,x >0;∴A =[-6,2),B =(0,+∞); ∴A ∪B =[-6,+∞); (2)A ∩B =(0,2);∵集合{x |a <x <a +1}是A ∩B 的子集; ∴⎩⎨⎧a ≥0a +1≤2; 解得0≤a ≤1;∴a 的取值范围是[0,1].18.解析:(1)因为sin ⎝⎛⎭⎫β-π4=22(sin β-cos β)=15,所以sin β-cos β=25,所以(sin β-cos β)2=sin 2β+cos 2β-2sin βcos β=1-sin 2β=225,所以sin 2β=2325.(2)因为sin ⎝⎛⎭⎫β-π4=15,cos(α+β)=-13,其中0<α<π2,0<β<π2,所以cos ⎝⎛⎭⎫β-π4=265,sin(α+β)=223,所以cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4=⎝⎛⎭⎫-13×265+223×15=2(2-6)15. 19.解析:(1)画出函数f (x )的图象,如图所示:由图象得f (x )在(-∞,0],(0,+∞)上单调递增.(2)若函数y =f (x )-m 有两个零点, 则f (x )和y =m 有2个交点, 结合图象得1<m ≤2.20.解析:(1)f (x )=32sin 2x -12cos 2x +cos 2x=32sin 2x +12cos 2x =sin ⎝⎛⎭⎫2x +π6. 所以f (x )的最小正周期为T =2π2=π.(2)因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6.当2x +π6=π2,即x =π6时,f (x )取得最大值1;当2x +π6=7π6,即x =π2时,f (x )取得最小值-12.21.解析:(1)由题意可得处理污染项目投放资金为(100-x )百万元, 所以N (x )=0.2(100-x ),所以y =50x10+x+0.2(100-x ),x ∈[0,100].(2)由(1)可得,y =50x 10+x +0.2(100-x )=70-⎝ ⎛⎭⎪⎫50010+x +x 5 =72-⎝⎛⎭⎪⎫50010+x +10+x 5≤72-20=52, 当且仅当50010+x=10+x5,即x =40时等号成立.此时100-x =100-40=60.∴y 的最大值为52百万元,分别投资给植绿护绿项目、污染处理项目的资金为40百万元,60百万元.22.解析:(1)若y =f k (x )是偶函数,则f k (-x )=f k (x ),即2-x +(k -1)·2x =2x +(k -1)·2-x 即2-x -2x =(k -1)·2-x -(k -1)·2x =(k -1)(2-x -2x ),则k -1=1,即k =2; (2)∵f 0(x )+mf 1(x )≤4,即2x -2-x +m ·2x ≤4,即m 2x ≤4-2x +2-x ,则m ≤4-2x +2-x 2x=4·2-x +(2-x )2-1,设t =2-x, ∵1≤x ≤2,∴14≤t ≤12. 设4·2-x +(2-x )2-1=t 2+4t -1,则y =t 2+4t -1=(t +2)2-5,则函数y =t 2+4t -1在区间⎣⎡⎦⎤14,12上为增函数,∴当t =12时,函数取得最大值y max =14+2-1=54,∴m ≤54.因此,实数m 的取值范围是⎝⎛⎦⎤-∞,54;(3)f 0(x )=2x -2-x ,f 2(x )=2x+2-x ,则f 2(2x )=22x +2-2x =(2x -2-x )2+2, 则g (x )=λf 0(x )-f 2(2x )+4=λ(2x -2-x )-(2x -2-x )2+2,设t =2x -2-x ,当x ≥1时,函数t =2x -2-x 为增函数,则t ≥2-12=32,若y =g (x )在[1,+∞)有零点,即g (x )=λ(2x -2-x )-(2x -2-x )2+2=λt -t 2+2=0在t ≥32上有解,即λt =t 2-2,即λ=t -2t ,∵函数y =t -2t 在⎣⎡⎭⎫32,+∞上单调递增,则y min =32-2×23=16,即y ≥16.∴λ≥16,因此,实数λ的1取值范围是⎣⎡⎭⎫6,+∞.。

2019-2020学年高一数学人教A版必修1练习:1.1.3 第1课时 并集和交集 Word版含解析.pdf

2019-2020学年高一数学人教A版必修1练习:1.1.3 第1课时 并集和交集 Word版含解析.pdf

1.1.3 集合的基本运算第1课时 并集和交集课后篇巩固提升基础巩固1.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}M和N,如图所示,则M∪N={x|x<-5,或x>-3}.2.(2018全国3高考,理1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}A={x|x≥1},B={0,1,2},∴A∩B={1,2}.3.已知集合A={x|x=2n-3,n∈N},B={-3,1,4,7,10},则集合A∩B中元素的个数为( )A.5B.4C.3D.2,当n=0时,2n-3=-3;当n=2时,2n-3=1;当n=5时,2n-3=7.所以A∩B={-3,1,7}.故选C.4.若A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影部分表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}{1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.5.已知集合S={直角三角形},集合P={等腰三角形},则S∩P= .∩P表示集合S和集合P的公共元素组成的集合,故S∩P={等腰直角三角形}.等腰直角三角形}6.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m= .A∩B={2,3},则3∈B,又B={2,m,4},则m=3.7.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是 .A,B,如图所示,因为A∪B=R,则在数轴上实数a与1重合或在1的左边,所以a≤1.≤18.已知集合A=,集合B={x|2x-1<3},求A ∩B ,A ∪B.{x |{3-x >0,3x +6>0}得-2<x<3,{3-x >0,3x +6>0,即A={x|-2<x<3}.解不等式2x-1<3,得x<2,即B={x|x<2},在数轴上分别表示集合A ,B ,如图所示.则A ∩B={x|-2<x<2},A ∪B={x|x<3}.9.已知集合M={x|2x-4=0},集合N={x|x 2-3x+m=0},(1)当m=2时,求M ∩N ,M ∪N ;(2)当M ∩N=⌀时,求实数m 的取值范围.由题意得,M={2},当m=2时,N={x|x 2-3x+2=0}={1,2},则M ∩N={2},M ∪N={1,2}.(2)M={2}≠⌀,则2不是方程x 2-3x+m=0的解,所以4-6+m ≠0,即m ≠2.所以实数m 的取值范围为m ≠2.能力提升1.设集合A={1,2,4},B={x|x 2-4x+m=0}.若A ∩B={1},则B=( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}A ∩B={1},∴1∈B.∴1-4+m=0,即m=3.∴B={x|x 2-4x+3=0}={1,3}.故选C .2.已知集合A={x|-3≤x ≤8},B={x|x>a },若A ∩B ≠⌀,则a 的取值范围是( )A.a<8B.a>8C.a>-3D.-3<a ≤8{x|-3≤x ≤8},B={x|x>a },要使A ∩B ≠⌀,借助数轴可知a<8.3.设A ,B 是非空集合,定义A*B={x|x ∈A ∪B 且x ∉A ∩B },已知A={x|0≤x ≤3},B={x|x ≥1},则A*B 等于( )A.{x|1≤x<3}B.{x|1≤x ≤3}C.{x|0≤x<1或x>3}D.{x|0≤x ≤1或x ≥3},A ∪B={x|x ≥0},A ∩B={x|1≤x ≤3},则A*B={x|0≤x<1或x>3}.4.已知集合M={(x ,y )|x+y=2},N={(x ,y )|x-y=4},那么集合M ∩N= .解得{x +y =2,x -y =4,{x =3,y =-1.∴M ∩N={(3,-1)}.-1)}5.已知集合A={x|x<1,或x>5},B={x|a ≤x ≤b },且A ∪B=R ,A ∩B={x|5<x ≤6},则2a-b= .,可知a=1,b=6,2a-b=-4.46.若集合A={x|3ax-1=0},B={x|x 2-5x+4=0},且A ∪B=B ,则a 的值是 .B={1,4},A ∪B=B ,∴A ⊆B.当a=0时,A=⌀,符合题意;当a ≠0时,A=,{13a }∴=1或=4,13a 13a ∴a=或a=.13112综上,a=0,.13,1120,13,1127.设集合A={x|-1≤x ≤2},B={x|x 2-(2m+1)x+2m<0}.(1)当m<时,化简集合B ;12(2)若A ∪B=A ,求实数m 的取值范围.x 2-(2m+1)x+2m<0,得(x-1)(x-2m )<0.(1)当m<时,2m<1,12∴集合B={x|2m<x<1}.(2)若A ∪B=A ,则B ⊆A ,①当m<时,B={x|2m<x<1},12此时-1≤2m<1,解得-≤m<;1212②当m=时,B=⌀,有B ⊆A 成立;12③当m>时,B={x|1<x<2m },12此时1<2m ≤2,解得<m ≤1.12综上所述,所求m 的取值范围是.{m |-12≤m ≤1}8.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?A ,B ,C ,同时参加数学和化学小组的有x 人,由题意可得如图所示的Venn 图.由全班共36名同学参加课外探究小组可得(26-6-x )+6+(15-10)+4+(13-4-x )+x=36,解得x=8,即同时参加数学和化学小组的有8人.。

专题01 平面向量的概念(解析版)

专题01 平面向量的概念(解析版)

专题01 平面向量的概念一、单选题1.下列说法正确的是A .单位向量都相等B .若a b ≠,则a b ≠C .若a b =,则//a bD .若a b ≠,则a b ≠ 【试题来源】山西省忻州市第一中学北校2019-2020学年高一下学期3月月考【答案】D【分析】根据向量的概念,向量的两个要素:大小和方向性,即可判断各选项.【解析】对于A ,单位向量的大小都相等,但方向不一定相同,所以单位向量不一定都相等,所以A 错误;对于B ,两个向量不相等,可以大小相等,方向不同,因而当a b ≠时可能a b =,所以B 错误; 对于C ,两个向量的模相等,但方向可以不同,因而当a b =时a 和b 不一定平行,所以C 错误;对于D ,若两个向量的模不相等,则两个向量一定不相同,所以若a b ≠,则a b ≠成立,所以D 正确.综上可知,D 为正确选项,故选D 【名师点睛】本题考查了向量的概念,向量的两个要素:大小和方向性,属于基础题. 2.给出下列四个说法:①若||0a =,则0a =;②若||||a b =,则a b =或a b =-;③若//a b ,则||||a b =;④若//a b ,//b c ,则//a c .其中错误的说法有A .1B .2C .3D .4【试题来源】安徽省六安市第一中学2019-2020学年高一上学期期末(文)【答案】D【解析】①只有零向量的模是0,因此应有0a =,不是0,错;②模相等的向量方向不确定,不一定相同或相反,错;③两向量平行,只要方向相同或相反或有一个为零向量,模不作要求,错;④当0b =时,,a c 不一定共线,错.故选D .【名师点睛】本题考查向量的概念,掌握向量的定义是解题关键.3.下列关于向量的命题正确的是A .若||||a b =,则a b =B .若||||a b =,则//a bC .若a b =,b c =,则a c =D .若//a b ,//b c ,则//a c【试题来源】2020-2021学年高一数学十分钟同步课堂专练(人教A 版必修4)【答案】C【分析】利用向量的知识对每一个选项逐一分析判断得解.【解析】A . 若||||a b =,则,a b 不一定相等,因为向量是既有大小,又有方向的,||||a b =只能说明向量的大小相等,不能说明方向相同,所以该选项错误;B . 若||||a b =,则,a b 不一定平行,所以该选项错误;C . 若a b =,b c =,则a c =,所以该选项是正确的;D . 若//a b ,//b c ,则//a c 错误,如:=0b ,,a c 都是非零向量,显然满足已知,但是不一定满足//a c ,所以该选项错误.故选C【名师点睛】本题主要考查平面向量的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.4.下列命题正确的是A .若||0a =,则0a =B .若||||a b =,则a b =C .若||||a b =,则//a bD .若//a b ,则a b =【试题来源】2020-2021学年【补习教材寒假作业】高一数学(人教A 版2019)【答案】A【分析】根据零向量的定义,可判断A 项正确;根据共线向量和相等向量的定义,可判断B ,C ,D 项均错.【解析】模为零的向量是零向量,所以A 项正确;||||=时,只说明向,a b的长度相等,无法确定方向,a b所以B,C均错;a b 时,只说明,a b方向相同或相反,没有长度关系,不能确定相等,所以D错.故选A.【名师点睛】本题考查有关向量的基本概念的辨析,属于基础题.5.下列说法中,正确的个数是①时间、摩擦力、重力都是向量;②向量的模是一个正实数;③相等向量一定是平行向量;④向量a→与b→不共线,则a→与b→都是非零向量A.1B.2C.3D.4【试题来源】湖北省武汉市第六中学2018-2019学年高一下学期2月月考【答案】B【分析】根据向量的相关概念,逐项判定,即可得出结果.【解析】①时间没有方向,不是向量,摩擦力,重力都是向量,故①错误;②零向量的模为零,故②错;③相等向量的方向相同,模相等,所以一定是平行向量,故③正确;④零向量与任意向量都共线,因此若向量a→与b→不共线,则a→与b→都是非零向量,即④正确.故选B.【名师点睛】本题主要考查向量有关命题的判定,熟记向量的相关概念即可,属于基础题型.6.下列说法中正确的是A.平行向量就是向量所在的直线平行的向量B.长度相等的向量叫相等向量C.零向量的长度为零D.共线向量是在一条直线上的向量【试题来源】吉林省长春市第二十九中学2019-2020学年高一下学期线上检测数学试卷【答案】C【分析】直接根据共线向量、相等向量、零向量的概念判断即可.【解析】平行向量也叫共线向量,是指方向相同或相反的两个向量,另外规定零向量与任意向量平行,故A,D错;相等向量是指长度相等、方向相同的向量,故B错;长度为零的向量叫零向量,故C对;故选C.【名师点睛】本题主要考查平面向量的有关概念,属于基础题.7.下列命题正确的是A.若,a b都是单位向量,则a b=B.两个向量相等的充要条件是它们的起点和终点都相同C.向量AB与BA是两个平行向量A B C D四点是平行四边形的四个顶点D.若AB DC=,则,,,【试题来源】2021年新高考数学一轮复习讲练测【答案】C【分析】利用单位向量的定义可判断A;利用向量相等的定义可判断B;利用平行向量的定义可判断C;利用向量相等的定义可判断D.【解析】对于A,单位长度为1的向量为单位向量,,a b都是单位向量,但方向可能不同,故A不正确;对于B,模相等,方向相同的向量为相等向量,故B不正确;对于C,向量AB与BA为相反向量,所以两个为平行向量,故C正确;A B C D四点在同一条直线上,对于D,AB DC=,若,,,A B C D 不能构成平行四边形,故D不正确;故选C,,,【名师点睛】本题考查了向量的基本概念,需理解单位向量、相等向量、共线向量的概念,属于基础题.8.下列说法错误的是A.向量OA的长度与向量AO的长度相等B.零向量与任意非零向量平行C.长度相等方向相反的向量共线D.方向相反的向量可能相等【试题来源】2021年新高考数学一轮复习讲练测【答案】D【分析】向量有方向、有大小,平行包含同向与反向两种情况.向量相等意味着模相等且方向相同,根据定义判断选项.【解析】A.向量OA与向量AO的方向相反,长度相等,故A正确;B .规定零向量与任意非零向量平行,故B 正确;C .能平移到同一条直线的向量是共线向量,所以长度相等,方向相反的向量是共线向量,故C 正确;D .长度相等,方向相同的向量才是相等向量,所以方向相反的向量不可能相等,故D 不正确.【名师点睛】本题主要考查向量的基本概念及共线(平行)向量和相等向量的概念,属于基础概念题型.9.有下列命题:①若向量a 与b 同向,且||||a b >,则a b >;②若四边形ABCD 是平行四边形,则AB CD =;③若m n =,n k =,则m k =;④零向量都相等.其中假命题的个数是A .1B .2C .3D .4【试题来源】2021年高考数学复习一轮复习笔记【答案】C【分析】分别根据每个命题的条件推论即可判断.【解析】对于①,因为向量是既有大小又有方向的量,不能比较大小,故①是假命题; 对于②,在平行四边形ABCD 中,,C AB D 是大小相等,方向相反的向量,即AB CD =-,故②是假命题;对于③,显然若m n =,n k =,则m k =,故③是真命题;对于④,因为大小相等,方向相同的向量是相等向量,而零向量的方向任意,故④是假命题.故选C .【名师点睛】本题主要考查平面向量的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.10.下列说法中正确的是.A .零向量没有方向B .平行向量不一定是共线向量C .若向量a 与b 同向且a b =,则a b =D .若向量a ,b 满足a b >且a 与b 同向,则a b >【试题来源】吉林省松原市扶余市第一中学2019-2020学年高一下学期期中考试【答案】C【分析】由零向量,平行向量,相等向量的定义逐一判断可得选项.【解析】对于A ,零向量的方向是任意的,故A 错误;对于B ,平行向量就是共线向量,故B 错误;对于C ,由相等向量的定义:两向量的方向相同,大小相等可知,C 正确;对于D ,两个向量不能比较大小,故D 错误.故选C .【名师点睛】本题考查向量的基本定义,在判断关于向量的命题时注意向量的方向,属于基础题.11.以下说法正确的是A .若两个向量相等,则它们的起点和终点分别重合B .零向量没有方向C .共线向量又叫平行向量D .若a 和b 都是单位向量,则a b =【试题来源】2020-2021学年高一数学十分钟同步课堂专练(人教A 版必修4)【答案】C【分析】根据向量的基本概念逐一判断即可.【解析】只要两个向量的方向相同,模长相等,这两个向量就是相等向量,故A 错误, 零向量是没有方向的向量,B 错误; 共线向量是方向相同或相反的向量,也叫平行向量,C 正确;若a ,b 都是单位向量,两向量的方向不定,D 错误;故选C .12.给出下列命题:①零向量的长度为零,方向是任意的;②若,a b 都是单位向量,则a b =;③向量AB 与BA 相等.则所有正确命题的序号是A .①B .③C .①③D .①②【试题来源】2020-2021学年高一数学单元测试定心卷(人教B 版2019必修第二册)【答案】A【分析】根据零向量和单位向量的概念可以判定①②,注意相等向量不仅要长度相等,方向要相同,可否定③.【解析】根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向AB 与BA 互为相反向量,故③错误.故选A .【名师点睛】本题考查零向量和单位向量的概念,相等向量的概念,属概念辨析,正确掌握概念即可.13.下列关于平面向量的命题中,正确命题的个数是(1)长度相等、方向相同的两个向量是相等向量;(2)平行且模相等的两个向量是相等向量;(3)若a b ≠,则a b →→≠;(4)两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3 【答案】B【分析】根据相等向量的有关概念判断.【解析】由相等向量的定义知(1)正确;平行且模相等的两个向量也可能是相反向量,(2)错;方向不相同且长度相等的两个是不相等向量,(3)错;相等向量只要求长度相等、方向相同,而表示两个向量的有向线段的起点不要求相同,(4)错,所以正确答案只有一个.故选B .14.下列命题中,正确命题的个数是①单位向量都共线;②长度相等的向量都相等;③共线的单位向量必相等;④与非零向量a 共线的单位向量是||a a .A .0B .1C .2D .3【试题来源】天津市和平区耀华中学2019-2020学年高一下学期期中【答案】A【分析】根据单位向量,相等向量,共线向量的定义进行判断即可.【解析】因为不同的单位向量的方向可能不相同,所以①错误;相反向量的长度相等,但方向相反,则②错误;因为共线的单位向量方向可能相反,所以它们不一定相等,则③错误;与非零向量a 共线的单位向量是||a a 或||a a -,则④错误;故选A 【名师点睛】本题主要考查了对单位向量,相等向量,共线向量的辨析,属于基础题. 15.有下列命题:①若a b →→=,则a b →→=;②若AB DC →→=,则四边形ABCD 是平行四边形;③若m n →→=,n k →→=,则m k →→=;④若//a b →→,//b c →→,则//a c →→.其中,假命题的个数是A .1B .2C .3D .4 【试题来源】宁夏育才中学2019-2020学年高一5月教学质量检测 【答案】C 【分析】根据平面向量的概念及向量平行的相关知识逐个判断即可.【解析】a b →→=,则a b →→,的方向不确定,则a b →→,不一定相等, ①错误;若AB DC →→=,则,AB DC →→的方向不一定相同,所以四边形ABCD 不一定是平行四边形,②错误;若m n →→=,n k →→=,则m k →→=,③正确;若//a b →→,//b c →→,则0b →→=时,//a c →→不一定成立,所以④错误.综上,假命题的是①②④,共3个.故选C .【名师点睛】本题主要考查平面向量的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.16.下列说法不正确的是A .平行向量也叫共线向量B .两非零向量平行,则它们所在的直线平行或重合C .若a 为非零向量,则a a是一个与a 同向的单位向量 D .两个有共同起点且模相等的向量,其终点必相同【试题来源】安徽省六安市第一中学2019-2020学年高一上学期期末(理)【答案】D【分析】根据共线向量的定义判断AB ;由a a 的模长为1,10a >得出a a是一个与a 同向的单位向量;举例排除D .【解析】由于任一组平行向量都可以平移到一条直线上,则平行向量也叫共线向量,A 正确; 两非零向量平行,则它们所在的直线平行或重合,由共线向量的定义可知,B 正确; a a 的模长为1,10a >,则a a是一个与a 同向的单位向量,C 正确; 从同一点出发的两个相反向量,有共同的起点且模长相等,但终点不同,D 错误;故选D【名师点睛】本题主要考查了共线向量概念的辨析,属于基础题.17.下列四个命题正确的是A .两个单位向量一定相等B .若a 与b 不共线,则a 与b 都是非零向量C .共线的单位向量必相等D .两个相等的向量起点、方向、长度必须都相同【试题来源】辽宁省阜新市第二高级中学2019-2020学年高一下学期第一次学考【答案】B【分析】由相等向量、共线向量的概念逐一核对四个选项得答案.【解析】两个单位向量一定相等错误,可能方向不同;若a与b不共线,则a与b都是非零向量正确,原因是零向量与任意向量共线;共线的单位向量必相等错误,可能是相反向量;两个相等的向量的起点、方向、长度必须相同错误,原因是向量可以平移.故选B.【名师点睛】本题考查命题的真假判断与运用,考查了平行向量、向量相等的概念,属于基础题.18.有下列说法:①若两个向量不相等,则它们一定不共线;②若四边形ABCD是平行四边形,则AB CD=;③若//a c;b c,则//a b,//AB CD.④若AB CD=,则AB CD且//其中正确说法的个数是A.0B.1C.2D.3【试题来源】2021年新高考数学一轮专题复习(新高考专版)【答案】A【分析】对于①,根据向量相等的定义以及向量共线的定义可知结论不正确;对于②,根据向量相等的定义可知结论不正确;对于③,找特殊向量,当0b=时,可知结论不正确;对于④,AB与CD不一定平行,AB与CD可能在一条直线上,可知结论不正确.【解析】对于①,当两个向量不相等时,可能方向相反,所以可能共线,故①不正确;对于②,若四边形ABCD是平行四边形,则AB DC=,故②不正确;对于③,当0b=时,a与c可以不共线,故③不正确;AB CD或AB与CD在一条直线上”,故④不对于④,“若AB CD=,则AB CD且//正确.故选A.【名师点睛】本题考查了向量相等的定义,考查了向量共线的定义,属于基础题.19.下列说法正确的是A .单位向量都相等B .若//a b ,则a b =C .若a b =,则a b =D .若λa b ,(0b ≠),则a 与b 是平行向量 【试题来源】山西省大同市灵丘县豪洋中学2019-2020学年高一下学期期中 【答案】D 【分析】根据相等向量,共线向量的定义判断可得;【解析】对于A ,单位向量的模长相等,但方向不一定相同,所以A 错误;对于B ,当//a b 时,其模长a 与b 可能相等或a b λ=0λ≥,或b a λ=0λ≥,所以B 错误;对于C ,当a b =时,不一定有a b =,因为a b =要a b =且a 与b 同向,所以C 错误; 对于D ,λa b ,(0b ≠),则a 与b 是平行向量,D 正确.故选D . 【名师点睛】本题考查了平面向量的基本概念应用问题,属于基础题.20.如图所示,在正ABC 中,D ,E ,F 均为所在边的中点,则以下向量中与ED 相等的是A .EFB .BEC .FBD .FC【试题来源】2020-2021学年【补习教材寒假作业】高一数学(人教A 版2019)【答案】D【分析】由题意先证明//DE CB 且12DE CB =,再利用中点找出所有与向量ED 相等的向量【解析】DE 是ABC 的中位线,//DE CB ∴且12DE CB =, 则与向量ED 相等的有BF ,FC .故选D .【名师点睛】本题考查了相等向量的定义,利用中点和中位线找出符合条件的所求的向量,属于基础题.21.已知a 、b 是平面向量,下列命题正确的是A .若||||1a b ==,则a b =B .若||||a b <,则a b <C .若0a b +=,则//a bD .零向量与任何非零向量都不共线【试题来源】备战2021年新高考数学一轮复习考点微专题【答案】C【分析】A ,根据向量的定义判断;B .向量不能比较大小判断;C ,若0a b +=,则b a =-,由共线向量定理判断;D ,由零向量与任一向量共线判断.【解析】对于A ,向量方向不相同则向量不相等,选项A 错误;对于B .向量不能比较大小,选项B 错误;对于C ,若0a b +=,则b a =-,//b a ∴,选项C 正确;对于D ,零向量与任一向量共线,选项D 错误.故选C .【名师点睛】本题主要考查平面向量的概念及线性运算,还考查了理解辨析的能力,属于基础题.22.下列命题中正确的是A .若||a b |=|,则a b =B .若a b ≠,则a b ≠C .若||a b |=|,则a 与b 可能共线D .若a b ≠,则a 一定不与b 共线【试题来源】考点18 平面向量的概念及其线性运算-备战2021年高考数学(理)一轮复习考点一遍过【答案】C【分析】利用共线向量、模的计算公式,即可得出.【解析】因为向量既有大小又有方向,所以只有方向相同、大小(长度)相等的两个向量才相等,因此A 错误;两个向量不相等,但它们的模可以相等,故B 错误;无论两个向量的模是否相等,这两个向量都可能共线,故C正确,D错误.故选C【名师点睛】本题考查了共线向量、模的计算公式,考查了理解能力,属于基础题.23.下列关于向量的概念叙述正确的是A.方向相同或相反的向量是共线向量B.若//a ca b,//b c,则//C.若a和b都是单位向量,则a b=D.若两个向量相等,则它们的起点和终点分别重合【试题来源】山西省2019-2020学年高一下学期期末(理)【答案】A【分析】由向量共线的定义,可知A正确;当0b=时,可知B不正确;单位向量,方向不定,不相等;向量相等即大小和方向相同即可.【解析】由向量共线的定义可知,A正确;当0b=时,可知B不正确;单位向量,方向不确定,故C不正确;向量是自由的,向量相等,只需大小和方向相同即可,不需起点终点重合,故D不正确.故选A【名师点睛】本题考查了向量的定义和基本性质,考查了理解辨析能力,属于基础题目.24.已知向量a与b共线,下列说法正确的是A.a b=或a b=-B.a与b平行C.a与b方向相同或相反D.存在实数λ,使得λa b【试题来源】安徽省合肥市庐江县2019-2020学年高一下学期期末【答案】B【分析】根据向量共线的概念,以及向量共线定理,逐项判断,即可得出结果.【解析】向量a与b共线,不能判定向量模之间的关系,故A错;向量a与b共线,则a与b平行,故B正确;a为零向量,则满足a与b共线,方向不一定相同或相反;故C错;当0a ≠,0b =时,满足a 与b 共线,但不存在实数λ,使得λa b ,故D 错.故选B .【名师点睛】本题主要考查向量共线的有关判定,属于基础题型.25.下列关于平面向量的命题中,正确命题的个数是①任一向量与它的相反向量都不相等;②长度相等、方向相同的两个向量是相等向量;③平行且模相等的两个向量是相等向量;④若a b ≠,则||||a b ≠;⑤两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3【答案】B【分析】根据平面向量的基本概念,对选项中的命题进行分析、判断正误即可.【解析】零向量与它的相反向量相等,①错;由相等向量的定义知,②正确;两个向量平行且模相等,方向不一定相同,故不一定是相等向量,例如,在平行四边形ABCD 中,//AB CD ,且=AB CD ,但AB CD ≠,故③错; a b ≠,可能两个向量模相等而方向不同,④错;两个向量相等,是指它们方向相同,大小相等,向量可以自由移动,故起点和终点不一定相同,⑤错.故选B .26.判断下列命题:①两个有共同起点而且相等的非零向量,其终点必相同; ②若//a b ,则a 与b 的方向相同或相反; ③若//a b 且//b c ,则//a c ; ④若a b =,则2a b >.其中正确的命题个数为A .0B .1C .2D .3【试题来源】四川省凉山州2019-2020学年高一下学期期末考试(文)【答案】B【分析】根据相等向量、共线向量、零向量等知识确定正确命题的个数.【解析】①,两个有共同起点而且相等的非零向量,其终点必相同,根据相等向量的知识可知①是正确的.②,若//a b ,则可能b 为零向量,方向任意,所以②错误.③,若//a b 且//b c ,则可能b 为零向量,此时,a c 不一定平行,所以③错误.④,向量既有长度又有方向,所以向量不能比较大小,所以④错误.故正确的命题有1个.故选B【名师点睛】本题主要考查相等向量、共线向量、零向量等知识,属于基础题. 27.设,a b 是非零向量,则“2a b =”是“a a b b =” 成立的 A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【试题来源】山东省济南市莱芜第一中学2020-2021学年高三上学期11月月考【答案】B 【分析】结合共线向量、单位向量的知识,以及充分、必要条件的概念,判断出正确选项.【解析】依题意,a b 是非零向量,a a 表示与a 同向的单位向量,b b 表示与b 同向的单位向量,当2a b =时,,a b 的方向相同,所以a a b b =, 当a a b b =时,,a b 的方向相同,但不一定有2a b =,如3a b =也符合, 所以“2a b =”是“a a b b=” 成立的充分不必要条件.故选B【名师点睛】本题主要考查共线向量的知识、单位向量的知识,考查充分、必要条件的判断,属于基础题.28.若四边形ABCD 是矩形,则下列说法不正确的是A .AB →与CD →共线B .AC →与BD →共线 C .AD →与CB →模相等,方向相反 D .AB →与CD →模相等【试题来源】2020-2021学年【补习教材寒假作业】高一数学(苏教版)【答案】B【分析】根据向量的共线及模的概念即可求解.【解析】因为四边形ABCD 是矩形,所以AB →与CD →共线,AD →与CB →模相等,方向相反,AB →与CD →模相等正确, AC →与BD →共线错误,故选B29.设,a b →→是两个平面向量,则“a b →→=”是“||||a b →→=”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【试题来源】浙江省金华市曙光学校2020-2021学年高二上学期期中【答案】A【分析】根据充分条件、必要条件的定义及向量的概念判断即可.【解析】因为a b →→=,则一定有||||a b →→=,而||||a b →→=推不出a b →→=,所以“a b →→=”是“||||a b →→=”的充分不必要条件,故选A30.下列关于向量的结论:(1)若||||a b =,则a b =或a b =-;(2)向量a 与b 平行,则a 与b 的方向相同或相反;(3)起点不同,但方向相同且模相等的向量是相等向量;(4)若向量a 与b 同向,且||||a b >,则a b >.其中正确的序号为A .(1)(2)B .(2)(3)C .(4)D .(3) 【试题来源】专题07 平面向量的实际背景及基本概念(重点练)-2020-2021学年高一数学十分钟同步课堂专练(人教A 版必修4)【答案】D【分析】根据向量的定义可判断(1)(4)错误,向量,a b 都是零向量时,由向量,a b 平行得不出方向相同或相反,从而判断(2)错误,根据相等向量的定义可判断(3)正确.【解析】(1)若||||a b =,由于,a b 的方向不清楚,故不能得出a b =或a b =-,故(1)不正确.(2)由零向量与任何向量平行,当向量a 与b 平行时,不能得出a 与b 的方向相同或相反,故(2)不正确.(3)由向量的相等的定义,起点不同,但方向相同且模相等的向量是相等向量;故(3)正确.(4)向量不能比较大小,故(4)不正确.故选D .二、多选题1.下面的命题正确的有.A .方向相反的两个非零向量一定共线B .单位向量都相等C .若a ,b 满足a b >且a 与b 同向,则a b >D .“若A 、B 、C 、D 是不共线的四点,且AB DC =”⇔“四边形ABCD 是平行四边形”【试题来源】备战2021年新高考数学一轮复习考点一遍过【答案】AD【分析】根据向量的概念:方向相反或相同的非零向量共线,模相等且方向相同的向量相等,向量除了相等的情况不能比较大小,即可判断选项正误;【解析】方向相反的两个非零向量必定平行,所以方向相反的两个非零向量一定共线,故A 正确;单位向量的大小相等,但方向不一定相同,故B 错误;向量是有方向的量,不能比较大小,故C 错误;A 、B 、C 、D 是不共线的点,AB DC =,即模相等且方向相同,即平行四边形ABCD 对边平行且相等,反之也成立,故D 正确.故选AD【名师点睛】本题考查了向量的基本概念,需要理解向量共线、相等的条件,属于简单题;2.若四边形ABCD 是矩形,则下列命题中正确的是A .,AD CB 共线B .,AC BD 相等 C .,AD CB 模相等,方向相反 D .,AC BD 模相等【试题来源】2020-2021学年高一数学单元测试定心卷(人教B 版2019必修第二册)【答案】ACD【分析】根据向量的加法和减法的几何意义(平行四边形法则),结合矩形的判定与性质进行分析可解.【解析】因为四边形ABCD 是矩形,,ADBC AC BD ∴=‖, 所以,AD CB 共线,,AC BD 模相等,故A 、D 正确;因为矩形的对角线相等,所以|AC|=|BD|,,AC BD 模相等,但的方向不同,故B 不正确;|AD|=|CB|且AD ∥CB ,所以,AD CB 的模相等,方向相反,故C 正确.【名师点睛】本题考查向量的共线,相等,模,向量的加减法的几何意义,属基础题,根据向量的加减法的平行四边形法则和矩形的性质综合判定是关键.3.在下列结论中,正确的有A .若两个向量相等,则它们的起点和终点分别重合B .平行向量又称为共线向量C .两个相等向量的模相等D .两个相反向量的模相等【试题来源】江苏省淮安市涟水县第一中学2019-2020学年高一上学期第二次月考【答案】BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【解析】A . 若两个向量相等,它们的起点和终点不一定不重合,故错误; B . 平行向量又称为共线向量,根据平行向量定义知正确;C . 相等向量方向相同,模相等,正确;。

人教版2019学年高一数学考试试卷含答案(共10套 )

人教版2019学年高一数学考试试卷含答案(共10套 )

人教版2019学年高一数学考试试题(一)一、选择题:(每小题5分,共50分) 1、下列计算中正确的是( )A 、633x x x =+ B 、942329)3(b a b a = C 、b a b a lg lg )lg(⋅=+ D 、1ln =e2、当时,函数和的图象只可能是( )3、若10log 9log 8log 7log 6log 98765⋅⋅⋅⋅=y ,则( )A 、()3,2∈yB 、()2,1∈yC 、()1,0∈yD 、1=y4、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A 、不增不减B 、增加9.5%C 、减少9.5%D 、减少7.84% 5、函数x x f a log )(= ( π≤≤x 2)的最大值比最小值大1,则a 的值( ) A 、2π B 、 π2 C 、 2π或π2D 、 无法确定 6、已知集合}1,)21(|{},1,log |{2>==>==x y y B x x y y A x,则B A ⋂等于( ) A 、{y |0<y <21} B 、{y |0<y <1} C 、{y |21<y <1} D 、 ∅ 7、函数)176(log 221+-=x x y 的值域是( )A 、RB 、[8,+∞)C 、]3,(--∞D 、[-3,+∞)8、若 ,1,10><<b a 则三个数ab b b P a N a M ===,log ,的大小关系是( )A 、P N M <<B 、P M N <<C 、N M P <<D 、M N P << 9、函数y = )A 、[12--,)] B 、(12--,)) C 、[12--,](1,2) D 、(12--,)(1,2)10、对于幂函数21)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( )A 、)2(21x x f +<2)()(21x f x f + B 、)2(21x x f +>2)()(21x f x f + C 、 )2(21x x f +=2)()(21x f x f +D 、无法确定二、填空题:(共7小题,共28分)11、若集合}1log |{},2|{25.0+====x y y N y y M x , 则N M 等于 __________;12、函数y =)124(log 221-+x x 的单调递增区间是 ;13、已知01<<-a ,则三个数331,,3a a a由小到大的顺序是 ;14、=+=a R e aa e x f xx 上是偶函数,则在)(______________; 15、函数=y (31)1822+--x x (3-1≤≤x )的值域是 ;16、已知⎩⎨⎧≥-<=-)2()1(log )2(2)(231x x x e x f x ,则=)]2([f f ________________; 17、方程2)22(log )12(log 122=+++x x 的解为 。

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。

高一数学寒假补习题精选(含答案) (9)

高一数学寒假补习题精选(含答案) (9)

高一数学寒假补习题精选9一、选择题(本大题共12小题,共60.0分)1.在下列选项中,能正确表示集合A={-2,0,2}和B={x|x2+2x=0}关系的是()A. A=BB. A⊇BC. A⊆BD. A∩B=∅2.若b<a<0,则下列结论不正确的是()A. a2<b2B. ab<b2C. D. |a|+|b|>|a+b|3.设函数f(x)=,则f(log39)=()A. 1B. 3C. 6D. 94.若,则的最小值是( )A. 0B. 1C. 2D. 45.函数f(x)=2x+log2x-3的零点所在区间()A. (0,1)B. (1,2)C. (2,3)D. (3,4)6.条件p:关于x的不等式(a-4)x2+2(a-4)x-4<0(a∈R)的解集为R;条件q:0<a<4,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.函数f(x)=2a x+2-1(a>0且a≠1)图象恒过的定点是()A. (-2,-1)B. (-2,1)C. (-1,-1)D. (-1,1)8.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A. m∥α,n∥α,则m∥nB. m⊂α,n∥α,则m∥nC. m⊥α,n⊥α,则m∥nD. α∥β,m⊂α,n⊂β,则m∥n9.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-x,则函数f(x)在R上的解析式是()A. f(x)=x2+xB. f(x)=x(|x|-1)C. f(x)=|x|(|x|-1)D. f(x)=|x|(x-1)10.在一个实心圆柱中挖去一个内接直三棱柱洞后,剩余部分几何体如右图所示,已知实心圆柱底面直径为2,高为3,内接直三棱柱底面为斜边长是2的等腰直角三角形,则剩余部分几何体的表面积为()A. 8π+6+6B. 6π+6+6C. 8π+4+6D. 6π+4+611.设,,,则a,b,c的大小关系是()A. a>b>cB. c>b>aC. c>a>bD. a>c>b12.对任意实数a,b定义运算“⊗”:设f(x)=(x2-1)⊗(4-x),若函数y=f(x)+k恰有三个零点,则实数k的取值范围是()A. (-2,1)B. [0,1]C. [-2,0)D. [-2,1)二、填空题(本大题共4小题,共20.0分)13.=______.14.已知函数f(x)=(2m-1)x m+1为幂函数,则f(4)=______.15.已知是定义在(-∞,+∞)上的减函数,则实数a的取值范围是______.16.若正四棱锥P-ABCD的底面边长及高均为a,则此四棱锥内切球的表面积为______.三、解答题(本大题共6小题,共70.0分)17.设全集U是实数集R,集合A={x|x2+3x-4<0},集合.(Ⅰ)求集合A,集合B;(Ⅱ)求A∩B,A∪B,(∁U A)∩B.18.已知定义域为R的函数是奇函数,且a,b∈R.(Ⅰ)求a,b的值;(Ⅱ)设函数,若将函数g(x)的图象作关于y轴的对称图形后得到函数k(x)的图象,再将函数k(x)的图象向右平移一个单位得到函数h(x)的图象,求函数h(x)的解析式.19.在2018年珠海国际航展中展示的由中国自主研制的新一代隐形战斗机歼-20以其优秀的机动能力,强大的作战性能引起举世惊叹.假设一台歼-20战斗机的制造费用为1250百万元.已知飞机的维修费用第一年为1百万元,之后每年比上一年增加1百万元,若用x表示飞机使用年限(取整数),则在x年中(含第x年)飞机维修费用总和为百万元,记飞机在x年中维修和制造费用的年平均费用为y百万元,即y=(飞机制造费用+飞机维修费用)÷飞机使用年限.(Ⅰ)求y关于x的函数关系式;20.如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=∠PCD=90°,∠BAC=∠CAD=60°,设E、F分别为PD、AD的中点.(Ⅰ)求证:CD⊥AC;(Ⅱ)求证:PB∥平面CEF;21.已知二次函数f(x)=ax2+bx+1(a,b是实数),x∈R,若f(-1)=4,且方程f(x)+4x=0有两个相等的实根.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)在区间上的最小值.22.已知函数,对任意a,恒有,且当时,有.Ⅰ求;Ⅱ求证:在R上为增函数;Ⅲ若关于x的不等式对于任意恒成立,求实数t的取值范围.答案和解析1.【答案】B【解析】解:解方程x2+2x=0,得:x=0或x=-2,B={-2,0},又A={-2,0,2},所以B⊆A,故选:B.解一元二次方程x2+2x=0,得:x=0或x=-2,可得B={-2,0},所以B⊊A,可得解本题考查了集合的包含关系判断及应用,属简单题2.【答案】D【解析】解:A:∵b<a<0,∴a2-b2=(a-b)(a+b)<0,故A正确,B:∵b<a<0,∴ab-b2=b(a-b)<0,故B正确,C:∵b<a<0,两边同除以ab,可得<,故C正确,D:a|+|b|=|a+b|,故D错误,故选:D.利用作差法证明A、B正确,根据不等式证明C正确,D错误本题考查了不等式的性质应用,以及作差法比较大小关系是属于基础题3.【答案】A【解析】解:.故选:A.可求出log39=2,而将x=2带入f(x)=3x-2即可求出f(2)的值,即得出f(log39)的值.考查对数的运算,已知函数求值的方法.4.【答案】D【解析】解:∵x>2,∴x-2>0,则=x-2++2=4,当且仅当x-2=即x=3时,取得最小值4,故选:D.由题意可知=x-2++2,利用基本不等式即可求解最值.本题主要考查了基本不等式在求解最值中的应用,属于基础试题.5.【答案】B【解析】解:∵f(1)=2+log1-3=-1<0,f(2)=22+log2-3=5-3=2>0,故选:B.通过计算x=1,x=2,的函数,并判断符号,由零点存在性定理可知选B本题考查了函数零点的判定定理,属基础题6.【答案】B【解析】解:条件p:关于x的不等式(a-4)x2+2(a-4)x-4<0(a∈R)的解集为R,当a=4时,-4<0恒成立,当a≠4时,则,解得0<a<4,综上所述p中a的取值范围为0≤a<4,所以则p是q的必要不充分条件,故选:B.先由二次函数的性质求出条件p中a的范围,再根据充分必要条件的定义即可判断.本题考查了函数恒成立的问题,以及充分必要条件,属于中档题7.【答案】B【解析】解:函数f(x)=2a x+2-1(a>0且a≠1),令x+2=0,解得x=-2,∴y=f(-2)=2×a0-1=2-1=1,∴f(x)的图象过定点(-2,1).故选:B.根据指数函数的图象恒过定点(0,1),求得f(x)的图象所过的定点.本题考查了指数函数恒过定点的应用问题,是基础题.8.【答案】C【解析】解:A,m,n也可能相交或异面;B,m,n也可能异面;C,同垂直与一个平面的两直线平行,正确;D,m,n也可能异面.故选:C.根据同垂直与一个平面的两直线平行,显然C正确.此题考查了线线,线面,面面之间的关系,属容易题.9.【答案】C【解析】解:设x<0,则-x>0,∵x≥0时,f(x)=x2-x,∴f(-x)=(-x)2+x=x2+x,∵f(x)是定义在R上的偶函数,∴f(-x)=f(x),∴f(x)=x2+x,∴f(x)=|x|2+|x|=|x|(|x|+1),故选:C.先设x<0,则-x>0,然后根据x≥0时函数的解析式及f(x)为偶函数f(-x)=f(x)即可求解.本题主要考查了利用偶函数的性质求解函数的解析式,属于基础试题.10.【答案】C【解析】解:剩余几何体的底面积为:2(π-)=2π-2,剩余几何体的侧面积为:(2+2)×3+2π×3=6+6+6π,∴剩余几何体的表面积为:8,故选:C.底面积由圆面积减三角形面积可得,侧面积由三角形周长和圆周长同乘以高可得,故容易得解.此题考查了柱体表面积,难度不大.11.【答案】D【解析】解:∵=20.6>20=1,<log31=0,0<<ln e=1,∴a>c>b.故选:D.利用指数函数、对数函数的单调性求解.本题考查对数的大小比较,考查了指数函数与对数函数的性质,是基础题.12.【答案】D【解析】解:当(x2-1)-(x+4)<1时,f(x)=x2-1,(-2<x<3),当(x2-1)-(x+4)≥1时,f(x)=x+4,(x≥3或x≤-2),函数y=f(x)=的图象如图所示:由图象得:-2≤k<1,函数y=f(x)与y=-k的图象有3个交点,即函数y=f(x)+k的图象与x轴恰有三个公共点;故选:D.化简函数f(x)的解析式,作出函数y=f(x)的图象,由题意可得,函数y=f(x)与y=-k 的图象有3个交点,结合图象求得结果..本题主要考查根据函数的解析式作出函数的图象,体现了化归与转化、数形结合的数学思想,属于基础题.13.【答案】19【解析】解:原式=(33)-3×log22-3+lg5•=3-3×(-3)+1=9+9+1=19故答案为:19利用有理指数幂及对数的性质运算可得.本题考查了对数的运算性质,属基础题.14.【答案】16【解析】解:函数f(x)=(2m-1)x m+1为幂函数,∴2m-1=1,解得m=1,∴f(x)=x2,∴f(4)=42=16,故答案为:16.根据幂函数的定义求出m的值,写出f(x)的解析式,计算f(4)的值.本题考查了幂函数的定义与应用问题,是基础题.15.【答案】[)【解析】解:∵f(x)是定义在R上的减函数;∴;解得;∴实数a的取值范围是.故答案为:.分段函数f(x)是R上的减函数,从而得出每段函数都是减函数,并且左段函数的右端点大于右段函数的左端点,即得出,解出a的范围即可.考查减函数的定义,分段函数、一次函数和对数函数的单调性.16.【答案】【解析】解:如图,M,N为AD,BC的中点,E,F为切点,则OE=OF=r,EN=NF=,PE=a,PN=,∴OP=a-r,PF==,在△OFP中,,得,∴内切球表面积为4πr2=4π×=,故答案为:.作出图形,利用内切圆半径,边长,高为已知条件建立关于r的方程,得解.此题考查了棱锥内切球问题,难度不大.17.【答案】(本题满分10分)解:(Ⅰ)由全集U是实数集R,集合A={x|x2+3x-4<0}={x|-4<x<1},-------------(2分)集合={x|-1<x≤2}.--------------(4分)(Ⅱ)A∩B={x|-1<x<1},--------------(6分)A∪B={x|-4<x≤2},--------------(8分)∁U A={x|x≤-4或x≥1},(∁U A)∩B={x|1≤x≤2}.--------------(10分)【解析】(Ⅰ)解不等式能求出集合A和集合B.(Ⅱ)利用交集、并集、补集定义能求出A∩B,A∪B和(∁U A)∩B.本题考查集合、交集、并集、补集的求法,考查交集、并集、补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.18.【答案】解:(Ⅰ)∵定义域为R的函数是奇函数,∴,即,解得;(Ⅱ)由(Ⅰ)知.∵,∴g(x)=3x+1.∵函数g(x)的图象作关于y轴的对称图形,得到k(x)的图象,∴k(x)=3-x+1.∵将k(x)的图象向右平移一个单位得到h(x)的图象,∴h(x)=3-(x-1)+1.【解析】(Ⅰ)利用f(0)=0,f(-1)=-f(1)列方程组解得;(Ⅱ)先由(1)求f(x)代入得g(x)=3x+1,然后关于y轴对称,把x换成-x即可得k(x)=3-x+1,最后按照左加右减平移可得.本题考查了函数奇偶性的性质与判断,属中档题.19.【答案】解:(Ⅰ)由题意可得-------------(6分)(不写x范围或写错扣2分)(Ⅱ)由(Ⅰ)可知,,--------(9分)当且仅当,即x=50时,等号成立.---------(11分)答:使用年限为50年时,年平均费用最低,最低的年平均费用为50.5百万元.---------(12分)【解析】(Ⅰ)由y=(飞机制造费用+飞机维修费用)÷飞机使用年限.可得y关于x 的函数关系式;(Ⅱ)由(Ⅰ)可知,即可.本题主要考查函数模型的建立与应用,还涉及了基本不等式求函数最值问题,属于中档题.20.【答案】证明:(Ⅰ)∵PA⊥平面ABCD,CD平面ABCD,∴PA⊥CD,∵∠PCD=90°,∴PC⊥CD,∵PA∩PC=P,PA,PC平面PAC,∴CD⊥平面PAC,∵AC⊂平面PAC,∴CD⊥AC.(Ⅱ)由(Ⅰ)得∠ACD=90°.∵CF⊄平面PAB,AB⊂平面PAB,∴CF∥平面PAB.∵E、F分别是PD、AD中点,∴EF∥PA,又∵EF⊄平面PAB,PA⊂平面PAB,∴EF∥平面PAB.∵CF∩EF=F,∴平面CEF∥平面PAB.∵PB⊂平面PAB,∴PB∥平面CEF.【解析】本题考查线线垂直,线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.(Ⅰ)推导出PA⊥CD,PC⊥CD,从而CD⊥平面PAC,由此能证明CD⊥AC.(Ⅱ)推导出CF∥AB,CF∥平面PAB,EF∥PA,EF∥平面PAB,从而平面CEF∥平面PAB,由此能证明PB∥平面CEF.21.【答案】解:(Ⅰ)根据题意,二次函数f(x)=ax2+bx+1,若f(-1)=4,则a-b+1=4,即b=a-3,又由方程f(x)+4x=0有两个相等的实根,即方程ax2+(a+1)x+1=0有两个相等的实根,则有△=(a+1)2-4a=0,解可得:a=1,b=-2,则f(x)=x2-2x+1;(Ⅱ)由(Ⅰ)的结论,f(x)=x2-2x+1,则f(x)对称轴为x=1,当时,f(x )在单调递减,∴f(x)最小值为f(t)=t2-2t+1;当t>1时,f(x )在单调递减,在(1,t]上单调递增,∴f(x)最小值为f(1)=0.【解析】本题考查二次函数的性质以及最值,关键是求出a、b的值,确定函数的解析式.(Ⅰ)根据题意,由f(-1)=4可得a-b+1=4,即b=a-3,又由方程f(x)+4x=0有两个相等的实根,即方程ax2+(a+1)x+1=0有两个相等的实根,分析可得△=(a+1)2-4a=0,解可得a、b的值,代入函数的解析式中即可得答案;(Ⅱ)由二次函数的解析式求出f(x)的对称轴,分情况讨论t的范围,结合二次函数的性质分析函数的最小值,综合即可得答案.22.【答案】解:(Ⅰ)根据题意,在f(a+b)=f(a)+f(b)-1中,令a=b=0,则f(0)=2f(0)-1,则有f(0)=1;(Ⅱ)证明:任取x1,x2∈R,且设x1<x2,则x2-x1>0,f(x2-x1)>1,又由f(a+b)=f(a)+f(b)-1,则f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1>1+f(x1)-1=f(x1),则有f(x2)>f(x1),故f(x)在R上为增函数.(Ⅲ)根据题意,,即,则,又由f(0)=1,则,又由f(x)在R 上为增函数,则,第11页,共12页令m=log2x,∵,则-3≤m≤-1,则原问题转化为2m2-2m+4t-4<0在m∈[-3,-1]上恒成立,即4t<-2m2+2m+4对任意m∈[-3,-1]恒成立,令y=-2m2+2m+4,只需4t<y最小值,而,m∈[-3,-1],当m=-3时,y最小值=-20,则4t<-20.故t的取值范围是t<-5.【解析】(Ⅰ)根据题意,由特殊值法分析:令a=b=0,则f(0)=2f(0)-1,变形可得f(0)的值,(Ⅱ)任取x1,x2∈R,且设x1<x2,则x2-x1>0,结合f(a+b)=f(a)+f(b)-1,分析可得f(x2)>f(x1),结合函数的单调性分析可得答案;(Ⅲ)根据题意,原不等式可以变形为,结合函数的单调性可得,令m=log2x,则原问题转化为2m2-2m+4t-4<0在m∈[-3,-1]上恒成立,即4t<-2m2+2m+4对任意m∈[-3,-1]恒成立,结合二次函数的性质分析可得答案.本题考查函数的恒成立问题,涉及抽象函数的单调性以及求值,注意特殊值法求出f(0)的值.第12页,共12页。

高一数学寒假作业

高一数学寒假作业

高一数学寒假天天练(腊月十八)1.若函数()2f x x ax b =-+的两个零点是2和3,则函数()21g x bx ax =--的零点是A .1-和16 B .1和16- C .12和13 D .12-2.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭3.设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00,x y ,则0x 所在的区间是( )A .0,1B .1,2C .()2,3D .()3,44.函数f (x )=ln(2x )-1的零点位于区间( ) A .(2,3) B .(3,4) C .(0,1)D .(1,2)5.函数1()()lg 2xf x x =-零点的个数为( ) A .0B .1C .2D .36.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos 25π3+tan )(415π-.高一数学寒假天天练(腊月十九)1、下列说法正确的个数是( ) ①小于90︒的角是锐角; ②钝角一定大于第一象限角;③第二象限的角一定大于第一象限的角; ④始边与终边重合的角为0︒. A .0B .1C .2D .32、把下列各角的弧度数化为度数,度数化为弧度数. (1)712π; (2)136π- ; (3)1125° ;(4)-225°. 3、已知下列各角:①120- ②240- ③180 ④495,其中第二象限角的是( ) A .①②B .①③C .②③D .②④4.一个半径是R 的扇形,其周长为3R ,则该扇形圆心角的弧度数为( ) A .1B .3C .πD .3π5.点()cos2018,sin 2018P ︒︒所在的象限是( )A .一B .二C .三D .四 6.求下列各式的值:(1)5sin902sin03sin 27010cos180︒+︒-︒+︒; (2)22ππ1ππsincos cos πtan cos πsin 64362---+高一数学寒假天天练(腊月二十)1.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( )A .B .C .D .2.已知扇形的面积为4,扇形圆心角的弧度数是2,则扇形的周长为( ) A .2B .4C .6D .83.下列转化结果正确的是( ) A .60化成弧度是rad 6πB .rad 12π化成角度是30C .1化成弧度是180rad πD .1rad 化成角度是180π⎛⎫⎪⎝⎭4.终边在y 轴的正半轴上的角的集合是( )A .π2π,2x x k k Z ⎧⎫=+∈⎨⎬⎩⎭B .ππ2x x k ⎧⎫=+⎨⎬⎩⎭C .π2π,2x x k k Z ⎧⎫=-+∈⎨⎬⎩⎭D .ππ,2x x k k Z ⎧⎫=-+∈⎨⎬⎩⎭5.设r 为圆的半径,弧长为r π的圆弧所对的圆心角为( ) 6、把下列各角的弧度数化为度数,度数化为弧度数. (1)712π; (2)136π- ; (3)1125° ;(4)-225°.1.若α是锐角,则k θπα=+,()k ∈Z 是( ) A .第一象限角B .第三象限角C .第一象限角或第三象限角D .第二象限角或第四象限角2.如图所示的时钟显示的时刻为4:30,设半个小时后时针与分针的夹角为(0)<≤ααπ,则α=( )A .1112πB .56π C .34π D .23π 3.函数πsin 33y x ⎛⎫=- ⎪⎝⎭的最小正周期是( )A .π2B .πC .2πD .2π34.在区间42ππ⎡⎤⎢⎥⎣⎦,上为减函数,且为奇函数的是( )A .sin y x =B .sin 2y x =C .cos y x =D .cos 2y x =5.若函数()2sin 23f x x πϕ⎛⎫=-+ ⎪⎝⎭是奇函数,则ϕ的值可以是( )A .56πB .2πC .23π- D .2π-6.计算:(1)257log 5log 7log 16⋅⋅.(2)()()2539log 3log 3log 5log 5lg2+⋅+.1、已知角α的终边经过点(4,3)-,则cos α=( ) A .45B .35C .35D .45-2、已知点()8,6cos60P m -在角α的终边上,且3tan 4α=,则m 的值为( )A .2-B .2C .-D .3、若sin tan 0αα<,且cos 0tan αα<,则角α是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角4.若-2π<α<0,则点P(tanα,cosα)位于 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限5.若θ=-5,则角θ的终边在( ) A .第四象限 B .第三象限 C .第二象限D .第一象限6.已知323,18.ab log ==(1)求()2a b -的值;(2)求214ba -+⨯的值.1.给出下列各三角函数值:①sin 1()00-︒;②cos 2()20-︒;③()tan 10-;④cos π. 其中符号为负的有( ) A .1个B .2个C .3个D .4个2.若5α=-,则( ) A .sin 0,cos 0αα>> B .sin 0,cos 0αα>< C .sin 0,cos 0αα<> D .sin 0,cos 0αα<<3.cos480︒的值为( )A .12B C . D .12-4. tan600=( )A .12B C D5.(多选)若角α的终边上有一点(4,)P a -,且sin cos αα⋅=则a 的值为( )A .BC .-D .6.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.(1)sin α≥2; (2)cos α≤-12.高一数学寒假天天练(腊月二十四)1、若α是第四象限角,则πα-是第( )象限角.A.一B.二C.三D.四2、已知角a 为第二象限角,点()tan ,sin P a a 在( ) A.第一象限B.第二象限C.第三象限D.第四象限3、若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为( )A.π6B.π3C.34、在平面直角坐标系xOy 中,角α以Ox 为始边,终边位于第四象限,且与单位圆交于点1,2y ⎛⎫⎪⎝⎭,则sin(4π)α+=( )A. B.12-C.125.下列各式中,值为1的是( ) A .122sin45-︒B .4222sin sin cos cos αααα++C .9tan π4D .lg2lg5⨯6.已知点(),P x y 为角α终边上一点.(1)若角α是第二象限角,y =cos 4α=,求x 的值; (2)若x y =,求sin 2cos αα+的值.1.下列选项正确的是( )A .3sin cos 2παα⎛⎫-= ⎪⎝⎭B .5rad 7512π=︒C .若α终边上有一点()43P ,-,则4sin 5α=-D .若一扇形弧长为2,圆心角为60°,则该扇形的面积为6π2.下列结论中,正确的有( ) A .sin(π)sin x x -= B .tan(π)tan x x +=- C .3πcos()sin 2x x -= D .3πcos()sin 2x x += 3、已知sin 3cos 53cos sin αααα+=-,则2cos sin cos ααα+的值是( ).A .35B .35C .3-D .34、若38sin cos α⋅α=,且42ππα<<,则cos sin αα-的值是A .12- B .12C .14D .14-5、已知1sin cos 5x x +=,且0πx <<,则sin cos x x -=( ) A .75B .75- C .15 D .15-6.定义在R 的函数()f x 满足对任意R x 、、∈恒有()()()f xy f x f y =+且()f x 不恒为0.(1)求(1)(1)f f -、的值;(2)判断()f x 的奇偶性并加以证明;(3)若0x ≥时,()f x 是增函数,求满足不等式(1)(2)0f x f x +--≤的x 的集合.1、下列各式中,不正确的是( ) A.cos(π)cos αα--=- B.sin(2π)sin αα-=- C.tan(5π2)tan 2αα-=-D.sin(π)(1)sin ()k k k αα+=-∈Z2( ) A.sin4cos4+B.sin4cos4-C.cos4sin4-D.sin4cos4--3、已知α为第二象限角,且3sin 5α=,则()tan πα+的值是( ) A.43B. 34C. 43-D. 34-4、(多选)下列说法正确的有( ) A .π9-与17π9的终边相同B .小于90︒的角是锐角C .若θ为第二象限角,则2θ为第一象限角D .若一扇形的中心角为2,中心角所对的弦长为2,则此扇形的面积为21sin 15.若7α=-,则角α是( )角 A .第一象限B .第二象限C .第三象限D .第四象限6.已知半径为O 中,弦AB 的长为4. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .1.已知角x 的终边上一点的坐标为(sin 56π,cos 56π),则角x 的最小正值为( ) A .56π B .53πC .116πD .23π 2.已知函数26()3x f x a -=+(0a >且1a ≠)的图像经过定点A ,且点A 在角θ的终边上,则sin cos sin cos θθθθ-=+( )A .17-B .0C .7D .173.记0cos(80)k -=,那么0tan100= AB.CD.4.已知|,2k x x x k Z π⎧⎫∈≠∈⎨⎬⎩⎭,则函数sin cos tan |sin ||cos ||tan |x x x y x x x =+-的值可能为( ) A .3B .-3C .1D .-15.已知条件π:4p α≠,条件:tan 1q α≠,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件6.已知sin(2)cos()cos()2()cos(2)3cos()cos()2f ππαπαααπαππαα+⋅-⋅-=+-+⋅+. (1)化简()f α; (2)若()f α= 11sin cos αα+的值.第11页高一数学寒假天天练(腊月二十八)1.在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点()1,P m -()0m ≠,则下列各式的值一定为负的是( ) A .cos α B .sin cos αα-C .sin cos ααD .sin 2πα⎛⎫- ⎪⎝⎭2.若4sin 5α,则( ) A .4cos 25πα⎛⎫-= ⎪⎝⎭B .3sin 25πα⎛⎫-= ⎪⎝⎭C .4sin()5πα+=D .4sin()5πα-=3.下列说法正确的是( )A .终边相同的角的同名三角函数的值相等B .终边不同的角的同名三角函数的值不等C .若sin 0α>,则α是第一、二象限的角D .若α是第二象限的角,且(),P x y是其终边上一点,则cos α=4.下列结论正确的是( ) A .76π-是第三象限角 B .若圆心角为3π的扇形的弧长为π,则该扇形面积为32πC .若角α的终边过点()3,4P -,则3cos 5α=-D .()3cos sin 2A A ππ⎛⎫-=+ ⎪⎝⎭5.已知2sin cos αα-=tan α的值可以是( ) A .13B .3-C .13-D .36、已知cos α=,3cos 5β=,其中,αβ都是锐角.求: (1)()sin αβ-的值; (2)()tan αβ+的值.12高一数学寒假天天练(腊月二十九)1.关于正弦函数y =sin x (x ∈R),下列说法正确的是( )A .值域为RB .最小正周期为2πC .在(0,π)上递减D .在(π,2π)上递增 2.已知扇形的半径为6,且扇形的弧长为2π.设其圆心角为α,则tan(π)α-等于( ) A .12B .13CD3.点()cos2023,tan8A ︒在平面直角坐标系中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.设a 是大于0的实数,角α的终边经过点()3,4a a -,则sin α的值为( ) A .45B .45-C .35±D .45±5.下列三角函数中,与sin 3π数值相同的是( )A .4sin 3n ππ⎛⎫+ ⎪⎝⎭B .cos 26n ππ⎛⎫+ ⎪⎝⎭C .sin 23n ππ⎛⎫+ ⎪⎝⎭D .cos 23n ππ⎛⎫+ ⎪⎝⎭E .4cos 3n ππ⎛⎫+ ⎪⎝⎭6、已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求sin()αβ+的值; (2)求tan β的值.131、下列区间中,函数π()7sin()6f x x =-单调递增的区间是( )A.π0,2⎛⎫ ⎪⎝⎭B.π,π2⎛⎫ ⎪⎝⎭C.3ππ,2⎛⎫ ⎪⎝⎭D.3π,2π2⎛⎫ ⎪⎝⎭2、下列函数中是奇函数,且最小正周期是π的函数是( ) A.cos |2|y x =B.|sin |y x =C.πsin 22y x ⎛⎫=+ ⎪⎝⎭D.3πcos 22y x ⎛⎫=- ⎪⎝⎭3、设ϕ∈R ,则“0ϕ=”是“()cos()()f x x x ϕ=+∈R 为偶函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 4、下列说法正确的是( )A.函数tan y x =在定义域内是增函数B.函数π()2tan 4f x x ⎛⎫=+ ⎪⎝⎭的单调递增区间是3πππ,π()44k k k ⎛⎫-+∈ ⎪⎝⎭ZC.函数π2tan 23y x ⎛⎫=+ ⎪⎝⎭的定义域是π|π,12x x k k ⎧⎫≠+∈⎨⎬⎩⎭ZD.函数tan 1y x =+在ππ,43⎡⎤-⎢⎥⎣⎦上的最大值为31+,最小值为05、与函数πtan 24y x ⎛⎫=- ⎪⎝⎭的图象不相交的直线是( )A.3π8x =B.π2x =-C.π4x =D.π8x =-6.已知函数.(1)求的最大值及取得最大值时的值; (2)求的单调递减区间.141、函数12sin 23y x π⎛⎫=+ ⎪⎝⎭,[2,2]x ∈-ππ的单调递增区间是( )A.52,3π⎛⎫-π- ⎪⎝⎭B.5,33ππ⎛⎫- ⎪⎝⎭C.5,33ππ⎛⎫⎪⎝⎭D.5,23π⎛⎫π ⎪⎝⎭2、函数()cos 4f x x π⎛⎫=+ ⎪⎝⎭的递增区间为( )A.37,44k k ⎡⎤π+ππ+π⎢⎥⎣⎦,k ∈ZB.5,44k k ππ⎡⎤π+π+⎢⎥⎣⎦,k ∈ZC.52,244k k π⎡⎤π+π+π⎢⎥⎣⎦,k ∈ZD.372,244k k ⎡⎤π+ππ+π⎢⎥⎣⎦,k ∈Z3、已知75tan 11a π=,52tan 11b π⎛⎫=- ⎪⎝⎭,则( )A.0a b <<B.0b a <<C.0b a <<D.0b a <<5、已知角α顶点在原点,始边与x 轴正半轴重合,点(1,P -在终边上,则πsin 3α⎛⎫+= ⎪⎝⎭( )A.0B.12-C. D.1-6.已知函数()12sin f x x =-(1)用“五点法”作法函数()f x 在[]0,2πx ∈上的简图; (2)根据图象求()1f x ≥在[]0,2π上的解集.。

高一数学(必修二)寒假作业(立体几何)Word版含答案

高一数学(必修二)寒假作业(立体几何)Word版含答案

高一数学(必修二)寒假作业(立体几何)第Ⅰ卷(选择题,48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求。

)1.若α、β是不重合的平面,a 、b 、c 是互不相同的空间直线,则下列命题中为真命题的是 ( ) ① 若α//a ,α//b ,则b a // ; ② 若α//c ,α⊥b ,则b c ⊥ ; ③ 若α⊥c ,β//c ,则βα⊥ ;④ 若α⊂b ,α⊂c 且b a ⊥,c a ⊥,则α⊥a A.③④ B. ①② C. ①④ D. ②③2.下列四个命题:①平行于同一平面的两条直线相互平行 ②平行于同一直线的两个平面相互平行 ③垂直于同一平面的两条直线相互平行 ④垂直于同一直线的两个平面相互平行 其中正确的有A .4个 B.3个 C.2个 D.1个3.某几何体的三视图如图所示,则该几何体的体积为( )A 、163πB 、203πC 、403πD 、5π4.已知正四棱锥的各棱棱长都为23,则正四棱锥的外接球的表面积为( ) A .π12B .π36C .π72D .π1085.某几何体的三视图如图所示,则该几何体的体积为A.168π+B.88π+C.1616π+D.816π+6..a ,b 表示空间不重合两直线,α,β表示空间不重合两平面,则下列命题中正确的是( )A.若α⊂a ,β⊂b ,且b a ⊥,则βα⊥B.若βα⊥,α⊂a ,β⊂b 则b a ⊥C.若α⊥a ,β⊥b ,βα//则b a //D.若βα⊥,α⊥a ,β⊂b ,则b a //7.下列命题中为真命题的是( ) A .平行于同一条直线的两个平面平行 B .垂直于同一条直线的两个平面平行C .若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行.D .若三直线a 、b 、c 两两平行,则在过直线a 的平面中,有且只有—个平面与b ,c 均平行.8.如图是一个组合几何体的三视图,则该几何体的体积是 . A 36128π+ B 3616π+ C 72128π+ D 7216π+9.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,l m //,则m α⊥ C .若l α//,m α⊂,则l m // D .若l α//,m α//,则l m //10.已知某几何体的三视图如右图所示,其中,主(正)视图,左(侧)视图均是由直角三角形与半圆构成,俯视图由圆与内接直角三角形构成,根据图中的数据可得此几何体的 体积为( )16+ (B) 4136π+12+ (D)2132π+11.已知圆柱1OO 底面半径为1,高为π,ABCD 是圆柱的一个轴截面.动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.现将轴截面ABCD 绕着轴1OO 逆时针旋转 (0)θθπ<≤后,边11B C 与曲线Γ相交于点P ,设BP 的长度为()f θ,则()y f θ=的图象大致为( )12.某三棱锥的侧视图和俯视图如图--1所示,则该三棱锥的体积为( )A .4 3B .8 3C .12 3D .243第Ⅱ卷(非选择题,共72分)二、填空题(本大题共4个小题,每小题4分,共16分)13.如图,在三棱柱ABC C B A -111中, F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V _____.14. 已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 .15.如右图为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成..ABC1ADE F1B1C16.已知某个几何体的三视图如图(正视图中的弧线是半圆),图中标出的尺(单位:㎝), 可得这个几何体表面是 cm 2。

高一上学期数学寒假作业1

高一上学期数学寒假作业1

高一数学寒假作业(1)一、单项选择题(本题共8小题,每小题5分,共40分)1.设全集{}U Z|15x x =∈-≤≤,{}1,2,5A =,{}N |14B x x =∈-<<,则B ∩(∁U A)等于 A. {}3B.{}0,3,4C.{}0,4D.{}0,32.计算()1i (2i)i-++=-( )A .3i -B .3i +C .13i -+D .13i --3.设R x ∈,则“31x -<”是“x>2”成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.已知()f x 的一个零点()02,3x ∈,用二分法求精确度为0.01的0x 近似值时,判断各区间中点函数值的符号,最多需要等分的次数为A.6B.7C.8D.9 5.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A. 15B. 25C.825D.9256.下列说法中正确的是( )A. 若事件A 与事件B 是互斥事件,则P(A)+P(B)=1B. 对于事件A 和B ,P (A ∪B )=P (A )+P(B)C. 一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”是对立事件D. 把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁4人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件7.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( ) A .15B .13C .25D .238.已知()f x 是奇函数,且当0x <时,()232f x x x =++.若当[]1,3x ∈时,()n f x m ≤≤恒成立,则m n -的最小值为 A.94 B.2 C.34 D.14二、多项选择题(本题共4小题,每小题5分,共20分.全部选对的得5分,选部分选对的得2分,有选错的得0分)9.下列函数中,最小值是22的有A.2y x x =+B.y x x =C.22244y x x =+++D.e 2e x x y -=+ 10.已知函数()22log 1,0,0x x f x x x x +>⎧=⎨-≤⎩,若()2f a =,则()2f a +的值可能为A.1B.2C.3D.411.已知()2121x x f x -=+函数,下面说法正确的有A.()f x 的图象关于y 轴对称B.()f x 的图象关于原点对称C.()f x 的值域为()1,1-D.12,R x x ∀∈且12x x ≠,()()12120f x f x x x -<-恒成立12.先后抛掷两颗质地均匀的骰子,第一次和第二次出现的点数分别记为,a b ,则下列结论正确的是( ) A .7a b +=时的概率为536 B .2a b≥时的概率为16 C .6ab =时的概率为19D .a b +是6的倍数的概率是16三、填空题(本题共4小题,每小题5分,共20分) 13.计算()23log 5292log log 3++= .14.已知从某班学生中任选两人参加农场劳动,选中两人都是男生的概率是13,选中两人都是女生的概率是215,则选中两人中恰有一人是女生的概率为______. 15.已知函数(){}2max 4,2,3f x x x x =-+-++,则()f x 的最小值为 .16.数学老师给出一个函数()f x ,甲、乙、丙、丁四个同学各说出了这个函数的一条性质.甲:在(],0-∞上函数单调递减;乙:在[)0,+∞上函数单调递增;丙:在定义域R 上函数的图象关于直线1x =对称;丁:()0f 不是函数的最小值.老师:四个同学中恰好有三个人说的正确,那么,你认为 说的是错误的.四.解答题(本题共6小题,第17小题10分,第18~22小题各12分,共70分) 17.已知指数函数()y f x =的图象经过点()3,8 (1)求函数()f x 的解析式; (2)解不等式()()23f x x f x -≤+.18.某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.下表是甲流水线样本的频数分布表,下图是乙流水线样本的频率分布直方图.(Ⅰ)根据上图,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?19.某校计划在秋季运动会期间开展“运动与健康”知识大赛,为此某班开展了10次模拟测试,以此选拔选手代表班级参赛,下表为甲,乙两名学生的历次模拟测试成绩. 场次 12345678910甲 98 94 97 97 95 93 93 95 93 95 乙92 94 93 94 95 94 96 97 97 98甲,乙两名学生测试成绩的平均数分别记作,x y ,方差分别记作2212,s s . (1)求,x y ,2212,s s ;(2)以这10次模拟测试成绩及(1)中的结果为参考,请你从甲,乙两名学生中选出一人代表班级参加比赛,并说明你作出选择的理由.20. 2022年中央经济工作会议确定,重点做好“碳达峰,碳中和"调整产业结构,大力发展新能源,某企业调整经济策略,重视技术创新,计划引进新能源汽车生产设备通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需投人成本()C x (万元).由于生产能力有限,公不超过120,且()210100,040100005014500,40120x x x C x x x x ⎧+<<⎪=⎨+-≤≤⎪⎩.由市场调研知,刨去国家补贴费用,每辆车售价5万元,且全年内生产的车辆当年能全部销售完(1)求出2022年的利润L(x)(万元)关于年产量x(百辆)的函数关系式,(利润=销售额-成本) (2)2022年产量为多少百辆时,企业所获利润最大?并求出最大利润,21.已知函数()()2xf x x a x a=≠-(1)若()()211f f =--,求a 的值;(2)若2a =,用函数单调性定义证明()f x 在()2,+∞上单调递减;22.设函数()424xxf x =+.(1)用定义证明函数()f x 是R 上的增函数;(2)求证对任意的实数t ,都有()()11f t f t +-=.(3)求值:1231920202020f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.。

第01章 集合与函数的概念章末重难点题型(举一反三)-2019-2020学年高一数学必修一举一反三

第01章 集合与函数的概念章末重难点题型(举一反三)-2019-2020学年高一数学必修一举一反三

姓名,年级:时间:第一章集合与函数的概念章末重难点题型【举一反三系列】【考查角度1 集合中元素的个数】【考情分析】给定一个或多个集合和一些限制条件,求出其中某个特定集合中元素的个数,一般为选择题难度不大。

【考法解读】结合题设条件,利用枚举法列举出所有元素,剔除重复元素即可确定集合中元素的个数.【例1】(2019春•衡水校级月考)已知集合A={0,1,2,3},集合B={(x,y)|x∈A,y ∈A,x≠y,x+y∈A},则B中所含元素的个数为( )A.3 B.6 C.8 D.10【分析】通过x的取值,确定y的取值,推出B中所含元素的个数.【答案】解:当x=0时,y=1,2,3;满足集合B.当x=1时,y=0,2;满足集合B.当x=2时,y=0,1;满足集合B.当x=3时,y=0.满足集合B.共有8个元素.故选:C.【点睛】本题考查集合的基本运算,元素与集合的关系,考查计算能力.【变式1—1】(2019•嘉兴模拟)若集合A={1,2,3},B={(x,y)|x+y﹣4>0,x,y∈A},则集合B中的元素个数为()A.9 B.6 C.4 D.3【分析】通过列举可得x,y∈A的数对共9对,再寻找符合题意的(x,y),即为集合B中的元素个数.【答案】解:通过列举,可知x,y∈A的数对共9对,即(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共9种,∵B={(x,y)|x+y﹣4>0,x,y∈A},∴易得(2,3),(3,2),(3,3)满足x+y﹣4>0,∴集合B中的元素个数共3个.故选:D.【点睛】列举题目中的几种不同情况,注意做到不重不漏,考查学生的分析能力,属于基础题.【变式1-2】(2019秋•湖北校级月考)已知集合A={1,2,3,4,5},B={(x,y)丨x ∈A,y∈A,|x﹣y|∈A},则B中所含元素的个数为()A.6 B.12 C.16 D.20【分析】依题意,x∈A,y∈A,|x﹣y|∈A,可求得集合B的元素个数,从而可得答案.【答案】解:∵A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,|x﹣y|∈A},∴当|x﹣y|=1时,(1,2),(2,3),(3,4),(4,5),(2,1),(3,2),(4,3),(5,4);当|x﹣y|=2时,(1,3),(2,4),(3,5),(3,1),(4,2),(5,3);当|x﹣y|=3时,(1,4),(2,5),(4,1),(5,2),当|x﹣y|=4时,(1,5),(5,1)B={(x,y)丨x∈A,y∈A,|x﹣y|∈A},中元素的个数是20个.故选:D.【点睛】本题考查集合中元素个数的最值,理解题意是关键,考查排列组合的应用,考查分析运算能力,属于中档题.【变式1-3】(2019秋•沙坪坝区校级月考)已知A={1,2,3},B={2,3,4,5},D={(x,y)|x∈A∩B,y∈A∪B},则D中所含元素个数为()A.8 B.10 C.16 D.25【分析】求出A与B的交集,确定出x,求出A与B的并集,确定出y,即可确定出D,做出判断.【答案】解:∵A={1,2,3},B={2,3,4,5},∴A∩B={2,3},A∪B={1,2,3,4,5},∵D={(x,y)|x∈A∩B,y∈A∪B},则D中所含元素为(2,1);(2,2);(2,3);(2,4);(2,5);(3,1);(3,2);(3,3);(3,4);(3,5)个数为10.故选:B.【点睛】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.【考查角度2 判断集合间的关系】【考情分析】给定两个集合,考查两个集合间的包含、相等关系,这类试题难度很小,一般为送分题.【考法解读】认真分析两集合中的元素,结合集合间的包含、相等的定义即可获解.【例2】(2019春•和平区校级月考)已知集合M={x|(x﹣1)(x﹣2)≤0},N={x|x >0},则( )A.N⊆M B.M⊆N C.M∩N=∅D.M∪N=R【分析】利用集合的子集真子集关系,集合的基本运算可得正确选项.【答案】解:已知集合M={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},N={x|x>0},则由集合的运算和集合的关系可得:M⊆N,B正确;故选:B.【点睛】本题主要考查集合的基本运算,集合间的关系,比较基础.【变式2-1】已知集合M={x|x=+,k∈Z},N={x|x=+,k∈Z},则() A.M=N B.M⫋N C.N⫋M D.M∩N=∅【分析】将集合M,N中的表达式形式改为一致,由N的元素都是M的元素,即可得出结论.【答案】解:M={x|x=+,k∈Z}={x|,k∈Z},N={x|x=+,k∈Z}={x|,k∈Z},∵k+2(k∈Z)为整数,而2k+1(k∈Z)为奇数,∴集合M、N的关系为N⊊M.故选:C.【点睛】本题考查集合的关系判断,考查学生分析解决问题的能力,属基础题.【变式2-2】(2018秋•安庆期中)下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={1,2},N={(1,2)}【分析】根据题意,结合集合相等的意义,即其中的元素完全相同;依次分析选项,A中:M、N都是点集,但(2,3)与(3,2)是不同的点,则M、N是不同的集合,B中:M、N都是数集,都表示2,3两个数,是同一个集合,对于C:M是点集,而N是数集,则M、N是不同的集合,D中:M是数集,N是点集,则M、N是不同的集合,综合可得答案.【答案】解:根据集合的定义,依次分析选项可得:对于A:M、N都是点集,(2,3)与(3,2)是不同的点,则M、N是不同的集合,故不符合;对于B:M、N都是数集,都表示2,3两个数,是同一个集合,符合要求;对于C:M是点集,表示直线x+y=1上所有的点,而N是数集,表示函数x+y=1的值域,则M、N是不同的集合,故不符合;对于D:M是数集,表示1,2两个数,N是点集,则M、N是不同的集合,故不符合;故选:B.【点睛】本题考查集合的概念与集合相等的意义,解题的关键在于分析集合的意义,认清集合中元素的性质.【变式2-3】(2018秋•张家口期末)设集合P={y|y=x2+1),M={x|y=x2+1},则集合M与集合P的关系是()A.M=P B.P∈M C.M⊊P D.P⊊M【分析】由函数的定义域及值域得:P=,M=R,即P⊊M,得解【答案】解:因为y=x2+1≥1,即P=,M={x|y=x2+1}=R,所以P⊊M,故选:D.【点睛】本题考查了集合的表示及函数的定义域及值域,属简单题【考查角度3 集合间的运算】【考情分析】给你两个集合,考查两集合间的交、并、补或它们的综合运算的结果,这是高考中考查集合的最常见形式。

高一数学寒假补习题精选(含答案) (15)

高一数学寒假补习题精选(含答案) (15)

高一数学寒假补习题精选15一、选择题(本大题共12小题,共60.0分)1.已知集合A={x∈N|-1≤x<3},B={0,2,3,7},则A∩B=()A. {0,1,2}B. {0,2}C. {2}D. {1,2,3}2.函数f(x)=的定义域为()A. (0,+∞)B. (0,1)∪(1,+∞)C. (1,+∞)D. (0,10)∪(10,+∞)3.已知角θ的终边经过点,则cosθ=()A. B. C. D.4.已知向量,,若,则实数m的值为()A. 1或-3B. -3C. -1D. 1或35.下列函数中,既是偶函数又存在零点的是()A. y=cos xB. y=sin xC. y=ln xD. y=x2+16.如图,=2,=,=,=,下列等式中成立的是()A. =B. =C. =2D. =2-7.(,)(,)(,)(,)8.将函数图象向左平移个单位,所得函数图象的一个对称中心是()A. B. C. D.9.设定义在R上的函数f(x)满足f(x)+f(-x)=0,且f(x)=f(x-4),当x∈[0,2)时,f(x)=3x-1,则f(3+log32)=()A. B. C. D.10.已知函数f(x)=x2-2|x|+2019.若a=f(-log25),b=f(20.8),,则a,b,c的大小关系为()A. a<b<cB. c<b<aC. b<a<cD. b<c<a11.若函数f(x)=ln(x2-ax+1)在区间(2,+∞)上单调递增,则实数a的取值范围是()A. (-∞,4]B.C.D.12.已知,方程有三个实根x1<x2<x3,若x3-x2=2(x2-x1),则实数a=()A. B. C. a=-1 D. a=1二、填空题(本大题共4小题,共20.0分)13.若f(x)=(m-1)2x m是幂函数且在(0,+∞)单调递增,则实数m=______.14.已知tanα=4,则=______.15.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈(12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为______.(写成区间形式)16.设θ为向量的夹角,且,,则cosθ的取值范围是______.三、解答题(本大题共6小题,共70.0分)17.已知全集U=R,若集合A={x|-2<x<4},B={x|x-m<0}.(1)若m=3,求A∩(∁U B);(2)若A∩B=A,求实数m的取值范围.18.已知A(4,0),B(0,4),C(cosα,sinα),O为坐标原点.(1)若,求tanα的值;(2)若,且α∈(0,π),求.19.已知.(1)求的值;(2)若α∈(0,π)且,求sin2α-cosα的值.20.已知函数f(x)=a x(a>0且a≠1)在[-1,1]上的最大值与最小值之差为.(Ⅰ)求实数a的值;(Ⅱ)若g(x)=f(x)-f(-x),当a>1时,解不等式g(x2+2x)+g(x-4)>0.21.如图是函数f(x)=A sin(ωx+φ)的部分图象,M、N是它与x轴的两个不同交点,D是M、N之间的最高点且横坐标为,点F(0,1)是线段DM的中点.(1)求函数f(x)的解析式及[π,2π]上的单调增区间;(2)若时,函数h(x)=f2(x)-af(x)+1的最小值为,求实数a 的值.22.已知(k∈R).(1)当k=0时,求关于x的不等式的解集;(2)若f(x)是偶函数,求k的值;(3)在(2)条件下,设,若函数f(x)与g(x)的图象有公共点,求实数b的取值范围.答案和解析1.【答案】B【解析】【分析】本题主要考查了交集及其运算,属于基础题.化简集合A,然后直接利用交集运算得答案.【解答】解:∵A={x∈N|-1≤x<3}={0,1,2},∴A∩B={0,1,2}∩{0,2,3,7}={0,2}.故选:B.2.【答案】D【解析】【分析】本题主要考查函数定义域的求法,属于基础题.利用分式分母不为0,对数式真数大于0即可得解.【解答】解:要使函数有意义,则,即,∴,故函数的定义域为(0,10)∪(10,+∞),故选D.3.【答案】D【解析】【分析】本题考查由终边上的点求三角函数值,属于基础题.由题意利用任意角的三角函数的定义,求得cosθ的值.【解答】解:角θ的终边经过点,则cosθ==-,故选D.4.【答案】A【解析】【分析】考查向量垂直的坐标表示,向量坐标的加法、数乘运算,属于简单题.可求出,根据可得,由垂直的坐标表示即可求出实数m的值.【解答】解:,∵,∴,解得m=1或-3.故选A.5.【答案】A【解析】【分析】本题考查了函数的奇偶性和零点的判断,属于简单题.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(-x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.【解答】解:对于A,定义域为R,并且cos(-x)=cos x,是偶函数并且有无数个零点;对于B,sin(-x)=-sin x,是奇函数,有无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,没有零点;故选:A.6.【答案】B【解析】【分析】本题考查了平面向量的基本定理的应用,是基础题.由已知中=2,结合向量减法的三角形法则,可得答案.【解答】解:∵=2,=,=,=,故-==2(-),∴=-,即=,故选:B.7.【答案】C【解析】【分析】本题主要考查函数零点的判断,结合根的存在性定理是解决本题的关键.根据根的存在性定理进行判断即可.【解答】解:设f(x)=ln x-x+2=ln x-(x-2),由表格数据得f(3)=ln3-(3-2)=1.099-1=0.099>0,f(4)=ln4-2=1.386-2<0,则f(3)f(4)<0,即在区间(3,4)之间函数f(x)存在一个零点,即方程ln x-x+2=0的一个根所在的区间为(3,4),故选:C.8.【答案】D【解析】【分析】本题主要考查函数y=A sin(ωx+φ)+B的图象变换规律,正弦型函数图象的对称性,属于中档题.利用函数y=A sin(ωx+φ)+B的图象变换规律,求得平移后的函数解析式y=3sin(2x+)-1,再令2x+=kπ,即可得出结论.【解答】解:将函数y=3sin(2x-)-1的图象向左平移个单位长度,可得y=3sin(2x+-)-1=3sin(2x+)-1的图象,再令2x+=kπ,求得x=-,k∈Z,令k=1,得到所得图象的一个对称中心为(,-1),故选D.9.【答案】C【解析】【分析】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力.推导出f(x)是R上以4为周期的奇函数,从而当x∈(-2,0]时,f(x)=-+1,进而f (3+log32)=f(log32-1)=-+1,由此能求出结果.【解答】∵定义在R上的函数f(x)满足f(x)+f(-x)=0,且f(x)=f(x-4),∴f(x)是R上以4为周期的奇函数,∵当x∈[0,2)时,f(x)=3x-1,∴当x∈(-2,0]时,-x∈[0,2),f(x)=-f(-x)=-(3-x-1)=-+1,0<log32<1,-1<log32-1<0,∴f(3+log32)=f(log32-1)=-+1=-+1=-.故选:C.10.【答案】C【解析】【分析】本题考查函数的奇偶性与单调性的判断以及性质的应用,属于中档题.根据题意得f(x)为偶函数,同时可得在(0,1)上为减函数,在(1,+∞)上为增函数,再由函数的指数函数和对数函数的单调性可得答案.【解答】解:根据题意,f(-x)=(-x)2-2|-x|+2019=x2-2|x|+2019=f(x),则函数f(x)为偶函数,则a=f(-log25)=f(log25),当x≥0,f(x)=x2-2x+2019=(x-1)2+2018,在(0,1)上为减函数,在(1,+∞)上为增函数,又由1<20.8<2<log25<,则有b<a<c.故选C.11.【答案】C【解析】【分析】本题主要考查对数型复合函数的单调性,二次函数的单调性的应用,属于中档题.根据复合函数内外函数单调性之间的关系进行求解即可.【解答】解:设g(x)=x2-ax+1,则要使f(x)=ln(x2-ax+1)在区间(2,+∞)上单调递增,则满足,即,解得a≤,即实数a的取值范围是,故选:C.12.【答案】B【解析】解:由1-x2≥0得x2≤1,则-1≤x≤1,当x<0时,由f(x)=2,即-2x=2,得1-x2=x2,即2x2=1,x2=,则x=-,①当-1≤x≤-时,有f(x)≥2,原方程可化为f(x)+2+f(x)-2-2ax-4=0,即-4x-2ax-4=0,得x=-,由-1≤-≤-,解得:0≤a≤2-2.②当-<x≤1时,f(x)<2,原方程可化为4-2ax-4=0,化简得(a2+4)x2+4ax=0,解得x=0,或x=-,又0≤a≤2-2,∴-<-<0,∴x1=-,x2=-,x3=0,由x3-x2=2(x2-x1),得=2(+),解得a=-(舍)或a=,因此,所求实数a=.故选B.判断f(x)与2的大小,化简方程求出x1、x2、x3的值,根据得x3-x2=2(x2-x1)得出a的值.本题主要考查函数与方程的应用,根据分段函数的表达式结合绝对值的应用,确定三个根x1、x2、x3的值是解决本题的关键.综合性较强,难度较大.13.【答案】2【解析】【分析】本题考查幂函数的定义和单调性,是基础题.利用幂函数的定义和单调性得,解之即可.【解答】解:∵f(x)=(m-1)2x m是幂函数且在(0,+∞)单调递增,∴,解得实数m=2,故答案为2.14.【答案】【解析】【分析】本题考查了同角的三角函数的关系,属于基础题.根据同角的三角函数的关系即可求出.【解答】解:∵tanα=4,所以===,故答案为:.15.【答案】(4,28)【解析】【分析】本题考查解析式的求法,考查不等式组的解法,解题时要认真审题,注意待定系数法的合理运用.当x∈(0,12]时,设f(x)=a(x-10)2+80,把点(12,78)代入能求出解析式;当x∈(12,40]时,设y=kx+b,把点B(12,78)、C(40,50)代入能求出解析式,结合题设条件,列出不等式组,能求出老师在什么时段内安排核心内容,能使得学生学习效果最佳.【解答】解:当x∈(0,12]时,设f(x)=a(x-10)2+80,将点(12,78)代入得,a=-则f(x)=-(x-10)2+80,当x∈(12,40]时,设y=kx+b,将点B(12,78)、C(40,50)代入,得,即y=-x+90,由题意得,或,得4<x≤12或12<x<28,所以4<x<28,则老师在x∈(4,28)时段内安排核心内容,能使学生学习效果最佳,故答案为(4,28).16.【答案】[,1]【解析】【分析】本题主要考查两个向量的数量积及向量的模,基本不等式的应用,余弦函数的值域,属于较难题.由题意利用两个向量的数量积的定义可得3•+3-10=0,再根据||=3以及基本不等式,求得cosθ的最小值.再根据余弦函数的值域,求得cosθ的取值范围.【解答】解:∵θ为向量的夹角,且,∴++2•=4(+-2•),即3•+3-10=0,∵,∴27+3-10×3×||×cosθ=0,即cosθ==+≥2=,当且仅当取到等号,则cosθ的取值范围为[,1],故答案为:[,1].17.【答案】解:(1)当m=3时,B={x|x<3},所以∁U B={x|x≥3},又集合A={x|-2<x<4},故A∩(∁U B)={x|3≤x<4}.(2)A∩B=A,得,A⊆B,故实数m的取值范围是m≥4.【解析】本题考查集合的交并补运算,以及由集合间的关系求参数的问题,属于基础题.(1)由集合B求出∁U B,再求出集合A与集合B的补集的交集即可;(2)由集合A是集合B的子集,求出m的取值范围.18.【答案】解:(1);∵;∴4cosα+4sinα=0;∴tanα=-1;(2);∴=;∴;∵α∈(0,π);∴;∴;∴;∴.【解析】考查根据点的坐标求向量坐标的方法,平行向量的坐标关系,根据向量坐标求向量长度的方法,以及向量数量积的坐标运算.(1)可得出,根据即可得出4cosα+4sinα=0,从而求出tanα的值;(2)根据即可求出,由α∈(0,π)即可求出,从而得出的坐标,进行数量积的坐标运算即可求出的值.19.【答案】解:(1)已知==-cosα,故f()=-cos=-.(2)∵α∈(0,π)且,∴-cosα-cos(-α)=-,即sinα+cosα=①,平方可得2sinαcosα=-,∴α∈(,π),∴(sinα-cosα)2=1-2sinαcosα=,∴sinα-cosα=②.由①②求得sinα=,cosα=-,∴sin2α-cosα=+=.【解析】(1)利用诱导公式,化简f(α)的解析式,可得的值.(2)由题意利用同角三角函数的基本关系求得sinα+cosα 和sinα-cosα 的值,可得sinα和cosα的值,从而求得sin2α-cosα的值.本题主要考查诱导公式,同角三角函数的基本关系,属于基础题.20.【答案】解:(Ⅰ)当a>1时,f(x)max=a,,则,解得a=2;当0<a<1时,,f(x)min=a,则,解得,综上所述,a=2或;(Ⅱ)当a>1时,由(Ⅰ)知a=2,g(x)=2x-2-x为奇函数且在R上是增函数,∵g(x2+2x)+g(x-4)>0,∴g(x2+2x)>-g(x-4)=g(4-x)由单调性得x2+2x>4-x,解得x>1或x<-4,所以不等式g(x2+2x)+g(x-4)>0的解集为(-∞,-4)∪(1,+∞).【解析】本题考查指数函数的解析式及单调性,函数单调性和奇偶性的运用,考查分类讨论思想,属于中档题.(Ⅰ)讨论a>1,0<a<1,运用指数函数的单调性,解方程可得a的值;(Ⅱ)当a>1时,由(Ⅰ)知a=2,g(x)=2x-2-x为奇函数且在R上是增函数,化简所求函数式,解二次不等式即可得到解集.21.【答案】解:(1)取MN的中点为H,则DH⊥MN,因为F为DM的中点,且F在y轴上,则OF∥DH且OF=DH,则OM=OH,所以D(,2),M(-,0),则A=2,T==4[)]=2π,所以ω=1所以f(x)=2sin(x+φ),由f()=2,解得:φ=2k,k∈z,由0<φ<,所以φ=,即f(x)=2sin(x+),令-+2kπ,解得:-,又x∈[π,2π],所以函数f(x)在[π,2π]上的单调增区间为:[,2π];(2)因为-,所以,所以sin(x)≤1,所以1≤f(x)≤2,令t=f(x),则t∈[1,2],则g(t)=t2-at+1=(t-)2+1-,①当≤1,即a≤2时,g(t)min=g(1)=,解得:a=,②当1,即2<a<4时,g(t)min=g()=1-=,解得:a=±(舍),③当≥2即a≥4时,g(t)min=g(2)=,解得a=(舍),综合①②③得:实数a的值为.【解析】(1)结合三角函数的图象得:D(,2),M(-,0),则A=2,T==4[)]=2π,所以ω=1所以f(x)=2sin(x+φ),由f()=2,解得:φ=2k,k∈z,由0<φ<,所以φ=,(2)由三角函数的值域得:sin(x)≤1,所以1≤f(x)≤2,由含参二次函数的值域问题,分情况讨论①当≤1,即a≤2时,g(t)min=g(1)=,解得:a=,②当1,即2<a<4时,g(t)min=g()=1-=,解得:a=±(舍),③当≥2即a≥4时,g(t)min=g(2)=,解得a=(舍),综合可得解.本题考查了三角函数的图象及周期,三角函数的值域及含参二次函数的值域问题,属中档题.22.【答案】解:(1)当k=0时,f()=log3(3x+1)>1得3x+1>3,即3x>2,得x>log32,所以原不等式的解集为{x|x>log32}.(2)因为f(x)的定义域为R且f(x)为偶函数,所以f(-1)=f(1)即log3(9-1+1)+k=log3(9+1)-k,2k=log310-log3=log39=2,所以k=1.(3)有(2)可得,f(x)=log3(9x+1)-x,因为函数f(x)与g(x)的图象有公共点,所以方程f(x)=g(x)有根,即log3(9x+1)-x=log3(b•3x-b)得log3=log3(b•3x-b)有根,令t=3x>0,且b(t-)>0,(b≠0),方程可化为(b-1)t2-bt-1=0(*)令h(t)=(b-1)t2-bt-1恒过定点(0,-1),(,-),①当b-1=0时,即b=1时,(*)在(,+∞)上有根,则h(t)=-t-1=0,得t=-∉(,+∞),(舍);②当b-1>0时,即b>1时,(*)在(,+∞)上有根因为H()=-<0,则(*)方程在(,+∞)上必有一根故b>1成立;③当0<b<1时,(*)在(,+∞)上有根则有⇒,则b无解.④当b<0时,(*)在(0,)上有根则有即,得到b≤-3综上可得:b的取值范围为(-∞,-3]∪(1,+∞).【解析】本题主要考查函数与方程的应用,以及对数函数的性质,函数奇偶性的应用,利用换元法以及转化法是解决本题的关键,综合性较强,难度较大.(1)利用对数不等式的解法进行求解即可.(2)利用偶函数的定义利用f(-1)=f(1)解方程即可.(3)利用换元法,结合函数与方程之间的关系,转化为f(x)=g(x)有解进行讨论求解即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高一数学寒假复习一含答案
一.填空题:
1.集合A=1,3,5,7,B=3,4,5,6,则A∩B=.
2.幂函数的图像过点3,,则=.
3.命题“如果=0或=0,那么=0”的逆否命题是.4.函数=的定义域是.
5.若函数=2+5,则=.
6.已知=+++8,=10,则=.
7.已知:函数是R上的偶函数,当<0时,=-,则当>0时,=.
8.已知=,=,则=.
9.若=-2+3在2,+∞上是增函数,则实数的取值范围是.
10.<的一个充分不必要条件是.
11.函数=的定义域是R,则实数的取值范围是.
12.记,=,则函数=|+1|,|-2|∈R的最小值是.
二.选择题:
13.集合A=|0<≤3,∈Z的真子集的个数是()
(A)8;(B)7;(C)6;(D)3.
14.函数=的值域是()
(A)0,1;(B)0,1;(C)-∞,1;(D)-∞,1.
15.下列函数中,在其定义域内既是奇函数又是减函数的是()
(A)=;(B)=;(C)=-;(D)=.
16.函数=|-2+|∈R,下列命题中正确的是()
(A)一定不是偶函数;(B)当=时,的图像关于直线=1对称;
(C)当-≤0时,在区间,+∞上是增函数;(D)有最小值|-|.
三.解答题:
17.若∈R,试比较与4+5的大小.
解:
18.求下列函数的定义域:
(1)=;(2)=.
解:解:
19.判断函数=的奇偶性.
解:
20.求下列函数的值域:
(1)=;(2)=-+1-2≤≤3.
解:解:
21.设=-|--4|,∈-4,4的图像经过点2,4.
(1)求常数的值;(2)写出函数的单调区间;(3)画出函数的图像.解:
22.设:函数=,计算:+++┅++的值.
解:
23.设=,∈0,+∞.
(1)若=4,求的最小值;
(2)若对任意的∈2,+∞,>0恒成立,求实数的取值范围.
解:
24.函数=++1,,∈R,
(1)若函数的最小值是=0,求的解析式;
(2)在(1)条件下,=-,∈2,5是单调函数,求实数的取值范围;
(3)若>0,为偶函数,实数,满足<0,+>0.定义函数=,试判断+>0能否成立,并说明理由.
解:
高一数学寒假复习一
一.填空题:
1.集合A=1,3,5,7,B=3,4,5,6,则A∩B=3,5 .
2.幂函数的图像过点3,,则=.
3.命题“如果=0或=0,那么=0”的逆否命题是若≠0,则≠0且≠0 .4.函数=的定义域是-3,1 .
5.若函数=2+5,则=2+7 .
6.已知=+++8,=10,则= 6 .
7.已知:函数是R上的偶函数,当<0时,=-,则当>0时,=--.8.已知=,=,则=-2,≥2 .
9.若=-2+3在2,+∞上是增函数,则实数的取值范围是-∞,2.
10.<的一个充分不必要条件是=.
11.函数=的定义域是R,则实数的取值范围是0,.
12.记,=,则函数=|+1|,|-2|∈R的最小值是.
二.选择题:
13.集合A=|0<≤3,∈Z的真子集的个数是( B )
(A)8;(B)7;(C)6;(D)3.
14.函数=的值域是( B )
(A)0,1;(B)0,1;(C)-∞,1;(D)-∞,1.
15.下列函数中,在其定义域内既是奇函数又是减函数的是( C )
(A)=;(B)=;(C)=-;(D)=.
16.函数=|-2+|∈R,下列命题中正确的是( C )
(A)一定不是偶函数;(B)当=时,的图像关于直线=1对称;
(C)当-≤0时,在区间,+∞上是增函数;(D)有最小值|-|.
三.解答题:
17.若∈R,试比较与4+5的大小.
解:∵-4+5=-,
∴当=2时,=4+5;
当≠2时,<4+5.
18.求下列函数的定义域:
(1)=; (2)=.
解:∵-1≥0, 解:∵-1≥0,∴≥0,
∴≥-. 即:>1或≤-1.
即定义域为:-,+∞. ∴定义域为:-∞,-1∪1,+∞.
19.判断函数=的奇偶性.
解:定义域为:-∞,+∞,
∵==-=-,
∴=是奇函数.
20.求下列函数的值域:
(1)=; (2)=-+1-2≤≤3.
解:=≥=, 解:=+,∈,8,
∴∈,+∞. 当=,即=-1时,=,
当=8,即=3时,=57.
∴∈,57.
21.设=-|--4|,∈-4,4的图像经过点2,4.
(1)求常数的值;(2)写出函数的单调区间;(3)画出函数的图像.
解:(1)∵=4,∴=0.
(2)=-|-4|=⎩⎨⎧-∈-⋃--∈)22(42]42[]24[42,,,, ,
x x x .
∴函数的单调递增区间是:0,2,单调递减区间是:-2,0.
22.设:函数=,计算:+++┅++的值.
解:∵+=1,
∴原式=+×1003++
=1003++=.
23.设=,∈0,+∞.
(1)若=4,求的最小值;
(2)若对任意的∈2,+∞,>0恒成立,求实数的取值范围.
解:(1)若=4,则==++2≥6,
当且仅当=,即=2时,等号成立.
∴当=2时,的最小值=6.
(2)∵=>0对任意的∈2,+∞恒成立,
∴+2+>0对任意的∈2,+∞恒成立.
>--2=-+1,∈2,+∞.
∴≥-8.
24.函数=++1,,∈R ,
(1)若函数的最小值是=0,求的解析式;
(2)在(1)条件下,=-,∈2,5是单调函数,求实数的取值范围;
(3)若>0,为偶函数,实数,满足<0,+>0.定义函数=,试判断+>0能否成立,并说明理由.
解:(1)∵==0, ∴⎪⎪⎩⎪⎪⎨⎧=+--=->0
1120b a a
b a .∴=+2+1.
(2)=-=++1,
≤2或≥5,∴∈-∞,6∪12,+∞.
(3)∵为偶函数,∴=0,=+1.
∵<0,+>0,∴>0>或>0>.
当>0>时,+=+>0;
当>0>时,+=-+=-+
=>0.
综上可得:+>0能成立.。

相关文档
最新文档