第九章 拉刀(新)

合集下载

23讲§9–1拉刀拉削方式

23讲§9–1拉刀拉削方式
13
图9-9同廓式拉削图形
a)拉削图形 b)切削部分齿形 c)切屑
2)渐成式: 它是指加工表面最终廓形是 由各刀齿拉削后衔接形成的。如图9-10所示, 图中工件最后要求是四方形,拉刀刀齿可制 成简单的直线形或弧形,与被加工表面形状 不同,被加工工件表面形状和尺寸是由各刀 齿的副刃所切成。 它的优点是:复杂形状的工件,拉刀制造 却不太复杂。 缺点是:在工件已加工表面上可能出现副 切削刃的交接痕迹,因此被加工表面较粗 糙。
3
(4)拉削加工应用范围广 拉刀可以加工出各种形状的通孔及没有障碍的外表面有些其他 切削加工方法难于完成的加工表面,可以采用拉削加工完成. (5)拉床结构简单 拉削一般只有主运动,进给运动靠拉刀切削部分的齿升量来完 成,因此拉床结构简单,操作也方便。
4
5

拉刀的类型及用途
1)按加工表面的不同,可分为:内拉刀和外拉刀
图9-3各种内拉刀和外拉刀
6
a)圆拉刀 b)花键拉刀 c)四方拉 刀 d)键槽拉刀e)外平面拉刀
2)按拉刀构造不同,可分为:整体式和组合式
图9-4
装配式拉刀和镶齿平面拉刀 b)镶齿平面拉刀
7
a)装配式拉刀
3)按受力方式,可分为:
拉刀和推刀 在拉伸状态下工作 在受压状态下工作
用于加工余 量较小的内 表面或修整 热处理后的 变形量
图9-7链式传送带连续拉削
1-拉刀
2-工件
3-链式传送带
9
为了提高拉削的生产率,近年来高速拉削已逐渐采用。高速拉削所用机床 应有足够的刚度和运动精度,应有较大的速度范围(v=1~50m/min)。试验表 明,高速拉削不仅提高了拉削生产率,同时也改善了工件的表面质量,提高 了刀具耐用度。采用硬质合金机夹拉刀进行高速拉削,已在汽车工业加工缸 体中得到应用,拉削速度为25~35m/min。

第九章 拉刀

第九章 拉刀
金属切削原理与刀具
JINSHU QIEXIAO YUANLI YU DAOJU
王启仲 主编
第九章 拉刀
本章应知 1.了解拉刀的作用、种类及其 结构。 2.明确拉削的各种方式。 1.掌握圆孔内拉刀的各参数,会 绘制拉刀设计图,设计拉刀。 2.对拉刀强度进行验算,对拉刀 强度的不足能采取有效的措施。
本章应会
第八 章 拉刀
第三 节 组合式圆拉刀设计
2.过渡锥 3.前导部和后导部
第八 章 拉刀
第三 节 组合式圆拉刀设计
三、拉刀强度验算
拉刀材料的许用拉应力[ ],即 = Fc / A min ≤[ ] 式中Fc——作用于拉刀上的切削力(N); ——拉刀上强度最薄弱处的截面积,通常是颈部或 A min 第一刀齿槽底的截面积(mm2);
第一 节 拉刀的种类与用途
1.特点:高效率、高精度、高寿命、高难度。 2.公差等级:IT7~IT9 表面粗糙度值:Ra 0.5~3.2 m 主要用于:大量、成批的零件加工
第八章 拉刀
第一 节 拉刀的种类与用途
图8-1 拉削加工的典型工件截面形状 1-圆孔 2-方孔 3-长方孔 4-鼓形孔 5-三角孔 6-六角孔 7-键槽 8-花键槽 9-相互垂直平面10-齿纹孔 11-多边形孔 12-棘爪孔 13-内齿轮孔 14-外齿轮 15-成形表面
图8-3 装配拉刀和镶齿拉刀 a)组合直角平面拉刀 b)装配式内齿 轮拉刀 c)镶齿硬质合金拉刀
第八章 拉刀
第一 节 拉刀的种类与用途 三、按受力方式分类 拉刀、推刀、旋转拉刀。
图8-4拉刀(推)削工件原理 a)拉削 b)推削
第八章 拉刀
第一 节 拉刀的种类与用途
图8-6 旋转拉刀
第八章 拉刀

拉刀简介课件

拉刀简介课件

2. 拉刀的刃磨
拉刀的磨损主要发生在后刀面上, 龙其是在分屑槽的转角 处更为严重。一般磨损量VB 超过0.3mm 时需重磨。重磨时, 一般在专用磨床上进行, 如M6110型拉刀刃磨机床, 对于较 为短小的拉刀, 也可在万能工具磨床用碟形砂轮沿前刀面进 行刃磨。刃磨时应保持拉刀设计前角不变和达到预定的表面 质量要求。
¨ (2) 挤亮点 是由于刀齿后刀面与已加工表面间产生较剧烈 的挤压摩擦而造成的。常用选择合适的后角 (尤其是粗切 齿的后角不应太小) 和齿升量; 采用性能良好的切削液, 并需浇注充足, 以及采取对硬度高的工件进行适当的热处 理以降低其硬度等方法来消除这种缺陷。拉削后的表面上 还会产生一些其它缺陷。
用弧线球面砂轮刃磨拉刀前刀面, 是广泛采用的刃磨圆孔 拉刀的方法, 如图2.4-16所示。碟形砂轮与拉刀绕各自的轴 线转动, 并使砂轮的周边与前刀面上的m点接触, m 点为前 刀面与槽底圆弧的切点。刃磨拉刀时的具体参数可参考有关 资料。
图2.4-16 用弧线球面磨削法刃磨圆孔拉刀
线运动) , 进给运动由拉刀刀齿的齿升量来完成, 因此拉 床结构简单, 操作方便。
(2)加工精度与表面质量高: 一般拉床采用液压系统, 传动平稳; 拉削速度较低, 一般为0.04~0.2 m/s (约为2.5~ 12 m/min), 不会产生积屑瘤, 切削厚度很小,一般精切齿的 切削厚度为0.005~0.015mm, 因此拉削精度可达IT7、表
面粗糙度值Ra=2.5~0.88μm。
(3)生产率高 由于拉刀是多齿刀具, 同时参加工作的 刀齿多, 切削刀总长度大, 一次行程能完成粗、半精及 精加工, 因此生产率很高。
(4)拉刀耐用度高, 使用寿命长 由于拉削速度较低, 拉刀磨损慢, 因此拉刀耐用度较高, 同时, 拉刀刀齿磨 钝后, 还可磨几次。 因此, 有较长的使用寿命。

拉刀设计(原创)

拉刀设计(原创)

一、设计题目1.1、要加工的工件零件图如图所示。

1.2、工件材料:45钢。

σ=0.65GPa1.3、使用拉床:卧式内拉床L6110。

零件尺寸参数表二、设计步骤2.1、拉削方式选择拉刀从工件上把拉削余量切下来的顺序和方式,通常都用图形表达,称这种图形为“拉削图形”。

拉削图形分为分层式、分块式和综合式三大类。

综合式拉削集中了成形式拉削与轮切式拉削的特点,即粗切齿制成轮切式结构,精切齿则采用成形式结构。

这样,既缩短了拉刀长度,保证较高的生产率,又能获得较好的工件表面质量。

这里也使用综合式设计。

2.2拉刀工作部分设计2.2.1 刀具材料选取由于工件材料为45钢,且σb=0.65GPa,那么刀具材料选择40Cr2.2.2 确定拉削余量δ由经验公式δ=0.005mm L D m )2.0~1.0(+式中L 为拉削长度(mm ),m D 为拉削后孔的直径(mm )代入数据δ=0.005×50﹢(0.1~0.2)100 =1.250~2.25mm,这里取δ为1.5mm2.2.3 齿升量的选取f a由《金属切削刀具》表5-1 采用综合式圆孔拉刀f a =0.05 mm2.2.4 选择几何角度由《金属切削刀具》表5-2切削齿前角选为︒±︒=2150γ 切削齿后角:0α=03032'±'︒,刃带宽10.01=αb 校准齿后角:0310'+︒=α, 刃带宽5.0~3.01=αb2.2.5 齿距与同时工作的齿数齿距p 是相邻两刀齿间的轴向距离,确定齿距的大小时,应考虑拉削的平稳性及足够的容屑空间,一般应有3~8个刀齿同时工作为好。

粗切齿的齿距按经验公式计算 P=(1.25~1.5)l 式中 l 拉削长度P齿距,根据计算值,p 值取接近的标准值(mm )。

P=(1.25~1.5)100=(12.5~15)mm 最大同时工作齿数e z 可按下式计算e z =pl+1由《刀具设计手册》6-22得e z 取7e z 值仅取整数部分。

拉 刀-机械制造

拉     刀-机械制造
起着退回拉刀时的夹持作用;若在非自动拉床上拉削,则起着支持拉刀 尾部不致下垂的作用。
3 . 拉削特点
拉削加工与其他金属切削加工方法相比较,具有以下主要特点: 1 生产率高。虽然拉削速度较低,一般为0.04~0.13 m/s(约2~8
m/min),但拉刀同时工作的齿数多,切削刃长,且一次行程就能够完 成粗、半精及精加工,所以生产率高。
切齿、过渡齿和精切齿组成。
6 校准齿 校准齿是几个尺寸、形状相同,起校准及储备作用的刀齿。它可以
提高工件的加工精度和降低表面粗糙度,还可作为精切齿的后备齿。
7 后导部 后导部是保证拉刀的最后刀齿正确切离工件的导向部分,可防止拉
刀因工件下垂而损坏已加工表面或刀齿。
8 后柄 后柄是拉刀后端用于夹持或支承的柄部。若在自动拉床上拉削,则
2)颈部 颈部是前柄与过渡锥之间的连接部分,也是打烙拉刀标记(拉刀材
料、尺寸、规格等)的部位。
3)过渡锥 过渡锥是引导拉刀前导部进入工件预加工孔的过渡部分。
4)前导部 前导部是引导拉刀切削齿正确地进入工件待加工表面的部分,并检
查工件预加工的孔径是否过小,以免拉刀第一个刀齿因负荷太大而损坏。
5 切削齿 切削齿担负全部切削工作,可切除工件上全部的加工余量。它由粗
1.3

0.5 0.6 0.7
1.5

0.6 0.6 0.7
1.6


0.7 0.8
>80 ~120
— — — 0.7 0.7 0.8 0.8
2)齿升量 拉刀的齿升量是前后相邻两刀齿(或齿组)的高度差或半径差,
它等于切削厚度,常用符号 表示,单位为mm。 粗切齿的齿升量 是根据工件材料、拉刀类型来选取的,具体

第九章 拉刀

第九章 拉刀

每个刀齿的前角、后角以及后角上的刃带宽度。 拉削长度L、切削厚度hD和切削宽度bD。
6、校准部
校准齿没有齿升量和分屑槽。为了方便制造,校准齿的 前角、齿距与齿形均可以做成精切齿相同。 刃磨:第一个切削齿到最后一个精切齿。最后一个精切 齿重磨后直径减小,第一个校准齿自动变成最后一个精 切齿。
理论上校准齿直径等于被拉削后孔的最大直径dmmax。 拉削后孔径发生扩张或收缩,实际校准齿直径
足够的卷屑空间,使切屑自由卷曲; 刀齿具有足够的强度; 便于制造。
容屑槽形式:
一般根据槽深h和齿距P选择容屑槽。 直线齿背型,槽底有圆弧:槽 形简单,容易制造。拉削脆性 材料和分层式拉削拉刀上。 圆弧齿背型,曲线槽形,两个 圆弧:容屑空间比较大。拉削塑 性材料和综合拉削的拉刀上。 直线加长齿背型,槽底为直线: 容屑空间增大,容易制造,用 于分块拉削拉刀上。
5、拉刀强度与拉床拉力的校验
(3) 拉削力的计算 普通拉削式圆孔拉刀的最大拉削力 综合拉削式圆孔拉刀的最大拉削力
Fmax Fz ' π d m Ze
圆孔拉刀的最大拉削力
π dm Fmax Fz ' Ze 2 Fmax Fc ' bD max Ze K
Fz’---拉刀切削刃单位长度上的拉削力, dm---拉削后孔的公称直径,
2 分块式
拉刀的切削部分是由若干组刀齿组成。齿组间有较 大的齿升量。 每个齿组中有3个刀齿,前两个刀齿交错分布,分别 切除1、2位置处的余量,最后一圆形齿起修光作用。
分块拉削方式的特点
每个切削刃刀齿上参加工作的切削刃宽度较小,单 位切削力小,切削厚度可以是普通拉削方式两倍以上。 在相同的拉削余量时,
4、齿距、容屑槽和分屑槽

拉刀设计

拉刀设计

4.17.4 拉刀刀齿外圆直径的极限偏差
0.007
4.17.5拉刀全长尺寸的极限偏差为: 拉刀全长于等于1000mm 时为±3mm, 拉刀全长大于1000mm 时为±5mm。
5. 拉刀设计算例
圆孔拉刀设计举例 5.1 [原始条件] 工件直径φ50+0.025mm,工件长度30~50 mm,材料45号钢,硬度220-250HBS, σb=0.75GPa, 工件如图。
3.2 对设计说明书的要求
应有统一规定的封面和设计任务书,说明书 的内容应包括设计刀具时所遇到的主要问题 以及设计计算的全部程序。 应根据任务书中给定的原始条件,独立地提 出自己的设计方案,以培养独立分析和解决 实际问题的能力。
设计说明书应用钢笔写在16开纸上,字迹与插 图应工整、清晰,语言要简练,文句要通顺, 说明书的每一页都应留有装订线和边框,编写 页码,最后应将说明书装订成册。
Zç =(A-(Ag+Aj))/2÷af+1=(1.035-0.28)/2÷0.04+1=10
粗切齿与过渡齿,精切齿共切除 余量为(10-1) x 2 x 0.04+0.28 = 1. 0 mm ,剩余0.035mm的余量,需 增加一个精切齿,调整各精切齿 齿升量。各齿直径列于图中。
0.042 0.036 0.032 0.08 0.018 0.011
1.13×(K×2afl)1/2= 1. 13 ×(2.7 ×0.08 × 50)1/2 = 3.71
而容屑槽深h =4 mm, 所以校验合格。 4)校验同时工作齿数。表4 .8 计算。 Zemin=lmin/p=30/10=3 Zemax=lmax/p+1=50/10+1=6
满足 3≤ Ze ≤ 8 条件。

拉刀ppt

拉刀ppt

a
b
切削齿数z 8、切削齿数z
(1)、粗切齿齿数zI : 、粗切齿齿数
(2)、过渡齿齿数zⅡ : zⅡ一般取 ~5个。 、过渡齿齿数 一般取3~ 个 一般取3~ 个 (3)、精切齿齿数zⅢ : zⅢ一般取 ~7个。 、精切齿齿数
9、直径
补充习题: 补充习题:
叙述圆孔拉刀切削部分的主要 叙述圆孔拉刀切削部分的主要 设计过程。 设计过程。
主讲 :贾文友
安徽工程科技学院机械工程系
第五章
本章目录: 本章目录:
拉 刀
§5-1 拉刀的种类和用途 §5-2 拉刀的结构 §5-3 圆孔拉刀设计 §5-4 花键拉刀的结构特点 根据教学大纲要求, 根据教学大纲要求,这章总共要 个学时。 求4个学时。 个学时
§5-1 拉刀的种类和用途
一、拉刀的用途及拉削特点 二、拉刀的种类
三、成形铣刀: 成形铣刀:
1、种类和用途; 种类和用途; 铲齿成形铣刀:要求、实现、铲齿原理、铲削量; 2、铲齿成形铣刀:要求、实现、铲齿原理、铲削量; 要求α 改进措施; 3、法后角 要求αnx≮ 2°-3°,改进措施; 结构要素:角度、直径、齿数、 4、结构要素:角度、直径、齿数、廓形等
拉削特点、拉刀的种类、组成、 四、拉削特点、拉刀的种类、组成、切削部分几何参 数
一、拉刀的用途及拉削特点
拉刀拉孔过程
拉削特点
拉削自动化
二、拉刀的种类
§5-2 拉刀的结构
一、拉刀的组成 二、拉刀切削部分几何参数 三、拉刀的合理使用
一、拉刀的组成
①—柄部 ②—颈部 ③—过渡锥 ④—前导锥 柄部 颈部 过渡锥 前导锥 ⑤—切削部 ⑥—校准部 ⑦—后导部 ⑧—后柄部 切削部 校准部 后导部 后柄部

23讲91拉刀拉削方式

23讲91拉刀拉削方式
第九章 拉刀
第一节 拉削特点及拉刀类型
一、拉削特点
拉刀是一种多齿刀
具,拉削时由于拉刀
的后一个(或一组)刀
齿高出前一个(或一组)
刀齿,从而能够一层
层地从工件上切下金
属(图9-1),以获得较
高精度和较好的表面
质量。
9-1拉削过程
1
拉削加工与其他切削加工方法相比较,具有以下特点:
(1)生产率高
由于拉刀是多齿刀具,同时参加工作的刀齿多(如图9-1所示为三 个),切削刃总长度大,一次行程能够完成粗—半精—精加工,因 此生产率很高,尤其是加工形状特殊的内、外表面工件时,效果 尤为显著。
拉削层尺寸有:拉削长L,切削厚度和切削宽度
9
图9-8 拉刀组成及拉削示意图
前柄——用于将拉刀装夹在拉床的夹头中以传送运动和拉力。 颈部——用于连接头部与刀体,一般在颈部上刻印拉刀的标记。 过渡锥——使前导部能顺利进入初孔(工件上予先加工的孔),起对准中 10 心的作用。
前导部——起引导作用,防止拉刀进入工件孔后发生歪斜,并可检查 拉削孔径是否符合要求。
拉削方式可分为分层式、分块式及综合式三大类。
1、分层式
分层式拉削又可分为同廓式和渐成式两种。
1)同廓式:它的特点是,刀齿的刃形与被加工表面形状相同,仅尺寸 不同,即刀齿直径(或高度)向后递增,加工余量被一层一层地切去。如 图9-9
这种拉削方式切削厚度小而切削宽度大,因此可获得较好的工件表面 质量。拉削力及功率较大,分屑槽转角处容易磨损而影响拉刀耐用度。 这种方式的拉刀除圆孔拉刀外,其他制造比较困难
采用综合式圆拉刀
14
图9-13 拉削方式
a)分层式 b)分块式 c)综合式
15
第三节 拉刀的合理使用

第九章 切削加工基础知识

第九章  切削加工基础知识

第九章切削加工基础知识●切削加工是指在机床上利用切削工具与工件(铸件、锻件等)的相对运动,从工件上切除多余材料,获得符合预定技术要求的零件或半成品零件的加工方法。

切削加工是在常温状态下进行的,它包括机械加工和钳工加工两种。

机械加工方法主要有:车削、钻削、刨削、铣削、磨削、齿轮加工等。

第一节切削加工运动及切削要素一、切削运动●切削过程中,切削刀具与工件间的相对运动,就是切削运动。

切削运动包括主运动和进给运动两个基本运动。

1.主运动●主运动是由机床或人力提供的主要运动,它促使切削刀具和工件之间产生相对运动,从而使切削刀具前面接近工件。

主运动是直接切除切屑所需要的基本运动。

它在切削运动中形成机床的切削速度,也是消耗机床功率最大的运动。

一般主运动只有一个。

2.进给运动●进给运动是由机床或人力提供的运动,它使刀具与工件之间产生附加的相对运动,加上主运动,即可不断地或连续地切屑,并获得具有所需几何特性的已加工表面。

进给运动的速度一般远小于主运动速度,而且消耗机床的功率也较少。

切削过程中进给运动可能有一个,也可能有若干个。

二、切削用量●切削用量是指在切削加工过程中的切削速度、进给量和背吃刀量的总称。

在每次切削中,工件上形成三个表面。

(1)待加工表面:工件上有待切除的表面;(2)已加工表面:工件上经刀具切削后产生的表面;(3)过渡表面:工件上由切削刃正在切削的表面,它是待加工表面和已加工表面之间的过渡表面。

图9-2 切削要素1.切削速度υc●在进行切削加工时,刀具切削刃上的某一点相对于待加工表面在主运动方向上的瞬时速度,称为切削速度,其单位为m/s。

当主运动是旋转运动时,切削速度是指圆周运动的线速度。

2.进给量f●进给量是指主运动的一个循环内(一转或一次往复行程)刀具在进给方向上相对工件的位移量。

例如,车削时,进给量f是工件旋转一周,车刀沿进给方向移动的距离(mm/r)。

3.背吃刀量a p●背吃刀量一般是指工件已加工表面与待加工表面间的垂直距离,也称切削深度,单位为mm。

第九章拉削与拉刀

第九章拉削与拉刀
• 拉削方式:加工余量在刀齿上的分配方式。 • 1.分层式拉削
• 拉刀将工件加工余量一层一层顺序地切除。
• (1)成形式(同廓拉削):各刀齿形状与加工表面形状相同。 • 优点:表面质量↑ 。缺点:拉刀长度↑ 、刀具成本↑ 、效率↓
• 用途:精度高的中小型零件。
• (2)渐成拉削 • 刀齿切去的表面连接而成。刀具简单。表面质量差。 • 2.分块式(轮切式)拉削 • 加工表面的每一层金属是由一组尺寸基本相同但刀齿切削位置相 互交错的刀齿(通常每组由2-3个刀齿组成)切除的。 • 优点:工作刃宽度↓,切削厚度↑,效率↑ 。
• 一、工作部分设计
• 确定拉削方式
• 确定拉削余量A • 1.确定齿升量fz、齿数和刀齿直径
拉刀的齿升量fZ是指相邻两个刀齿(或者是两组刀齿)的半径差。
拉刀齿升量 fZ越大,切削齿数就越少,拉刀长度越短,拉削生产 率越高,刀齿成本相对较低。但齿升量af过大,则拉削力越大。齿
升量af也不能太小,造成滑行和挤压现象,加剧刀齿的磨损。
• 2.拉刀切削部分要素
• • • • • • 1.几何角度 2.结构参数 齿升量fz、齿距P、容屑槽深度h、齿厚g、齿背角θ、刃带宽度bα1 齿升量:齿升量↑齿数↓拉刀长度↓,最小量≥0.005mm; 齿距:齿距↓工作齿数↑工作平稳。 刃带宽度:起支承作用,保持重磨后齿高不变,便于测量。
• 二、拉削方式
齿升量af应根据工件材质和拉刀的类型确定。 粗切齿:齿升量fzⅠ最大,一般不可超过0.15mm,( 0.03~ 0.06mm)切去整个拉削余量的80%左右。 过渡齿:齿升量fzⅡ粗切齿逐渐递减至精切齿 精切齿:齿升量fzⅢ最小,一般取0.01~0.02mm 校准齿:齿升量fzⅣ为0.
过渡齿齿数: Z Ⅱ =4 ~ 8 ; 精切齿齿数: Z Ⅲ =3 ~ 7 校准齿齿数: Z V Ⅰ =5 ~ 1 0 粗切齿齿数: 计算

(金属切削原理与刀具)第九章__拉刀研究报告

(金属切削原理与刀具)第九章__拉刀研究报告
分层式拉削又可分为两小类。
(1)采用同廓式拉削时,为了使切屑容易卷曲和 切削力,在每个切削齿上都开有如图9-5所示的交错 分布的窄的分屑槽。采用这种拉削方式能达到较小 的表面祖糙度值。但单位切削力大,且需要较多的 刀齿才能把余量全都切除,拉刀较长,刀具成本高, 生产率低,并且不适于加工带硬皮的工件。
L─拉削长度,mm;
拉削余量A
图9-10 圆孔拉削余 量
2)已知拉前孔直径和拉后孔直径时 可用拉前孔的最小值与拉后孔的最大值来
计算拉削余量。
Dm max─拉后孔的最大直径,mm Dw min─拉前孔的最小直径,mm
3)拉削余量也可以查表确定
3. 确定齿升量fz、齿数和刀齿直径
齿升量的确定原则:
1、切削角度
1)前角γo。根据工件材料选择。 2 后角αo。为使刀齿前刀面重磨之后,直径变小较慢,以及延
长拉刀的使用寿命,拉刀的后角应取较小值。 3 主偏角主切削刃在基面的投影与进给(齿升)方向之间的夹 角在基面内测量。除成形拉刀外,各种拉刀的主偏角多为90°。 4)副偏角副切削刃在基面的投影与进给(齿升)方向之间的夹 角,在基面内测量。 2、拉刀切削部分几何参数 1 齿升量——即切削部前、后刀齿(或组)高度之差。 2 齿距——即两相邻刀齿之间的轴向距离。 3 容屑槽深度——从齿顶到容屑槽槽底的距离。 4 齿厚——从切削刃到齿背棱的轴向距离。 5 齿背角——齿背与切削平面的夹角。 6)刃带宽度——沿轴向测量的刀齿 =0°部分的宽度。
工件内有空刀槽时用下式(右图):
(略去小数)
Ze确定后,过渡齿数、精切齿数和校准齿齿数 参考下表:
表9-1 拉刀前角
后角α0:拉削时切削厚度很小,按照切削
原理后角的选择原则,应取较大后角。但由 于内拉刀重磨前刀面,如后角取得大,刀齿 直径就会减小的很快,拉刀使用寿命会显著 缩短。因此,内拉刀切削齿后角都选得很小, 校准齿后角比切削齿的更小,见表16.3

拉刀课程设计说明书

拉刀课程设计说明书

前言机械制造工艺学课程设计使我们学完了大学的全部基础课、技术基础课以及大部分专业课之后进行的.这是我们在进行毕业设计之前对所学各课程的一次深入的综合性的总复习,也是一次理论联系实际的训练,因此,它在我们四年的大学生活中占有重要的地位。

就我个人而言,我希望能通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己分析问题、解决问题的能力,为今后参加祖国的“四化”建设打下一个良好的基础。

随着科学技术的发展,各种新材料、新工艺和新技术不断涌现,机械制造工艺正向着高质量、高生产率和低成本方向发展。

各种新工艺的出现,已突破传统的依靠机械能、切削力进行切削加工的范畴,可以加工各种难加工材料、复杂的型面和某些具有特殊要求的零件。

数控机床的问世,提高了更新频率的小批量零件和形状工具是人类文明进步的标志。

自20世纪末期以来,现代制造技术与机械制造工艺自动化都有了长足的发展。

但工具(含夹具、刀具、量具与辅具等)在不断的革新中,其功能仍然十分显著。

机床夹具对零件加工的质量、生产率和产品成本都有着直接的影响。

复杂的零件加工的生产率及加工精度。

特别是计算方法和计算机技术的迅速发展,极大地推动了机械加工工艺的进步,使工艺过程的自动化达到了一个新的阶段目录1.已知条件 (5)2.车刀具材料的选择 (6)3.车刀几何参数的确定 (6)4.车刀具体设计 (8)5.拉刀已知条件 (10)6.拉刀几何参数的确定 (13)7拉刀的具体设计 (14)8.小结 (15)9.参考文献 (16)1.C刀片95°偏头外圆车刀设计已知: 工件材料HT200,使用机床CA6140,加工后dm=95,Ra=3.2,需粗、半精车完成,加工余量自定,设计装C刀片95°偏头外圆车刀。

设计步骤:1.1选择刀片夹固结构考虑到加工是在CA6140普通机床上进行,属于连续切削,参照表2-1典型刀片夹固结构简图和特点,采用偏心式刀片夹固结构。

金属切削原理知识与刀具含习题答案

金属切削原理知识与刀具含习题答案

第九章金属切削原理知识与刀具本章重点1.切削用量的概念及选择;2.车刀主要几何角度的作用及选择;3.常用刀具材料的性能及用途;4.切削液的作用及选择;5.切削力的概念及其影响因素;6.切削热、切削温度的概念及影响切削热的因素;7.刀具磨损的基本形式、过程及刀具寿命的概念;8.砂轮的选择及刃磨900外圆车刀的基本方法;9.切屑的类型、积屑瘤的成因及其对切削加工的影响;10.断屑的概念及其影响因素;11.减小表面粗糙度值的工艺措施。

内容提要一、切削用量1.切削用量的概念切削用量(又称切削三要素)是衡量切削运动大小的参量。

它包括切削深度(背吃刀量)、进给量和切削速度。

(1)切削深度(背吃刀量)ap:切削时工件上待加工表面与已加工表面之间的距离。

单位:mm。

①车外圆时:ap =(dw-dm)/2式中dw ——待加工表面的直径(mm);dm——已加工表面的直径(mm);②切断和车槽时的切削深度(背吃刀量)等于车刀主切削刃的宽度。

(2)进给量f:工件每转一圈,刀具沿进给方向移动的距离。

单位: mm/r。

(3)切削速度v:主运动的线速度。

单位:m/min。

v=nπdw/1000式中:v——切削速度(m/min);n——主轴转速(r/min);dw——待加工表面直径(mm)。

2.切削用量的选择(1)粗加工时切削用量的选择①选择原则:以提高劳动生产率为主。

②选择方法:首先选用一个大的切削深度(背吃刀量),其次为缩短进给时间再选一个较大的进给量,最后在保证刀具寿命的前提下,再选择一个相对大而合理的切削速度。

(2)半精加工、精加工时切削用量的选择①选择原则:以保证加工精度为主。

②选择方法:切削余量原则一次进给完成,也可分多次,但最后一次进给的余量不得小于0.1mm;进给量应选小一些;切削速度应根据刀具材料选择,高速钢刀具一般小于5m/min,硬质合金可大于80 m/min。

二、刀具的几何角度1.切削运动——切削时刀具与工件之间的相对运动,包括主运动和进给运动。

第九章 拉刀

第九章 拉刀

相邻刀齿半径差, 齿升量fz: 相邻刀齿半径差,用以达到每齿切除金属层
前角γ0、后角α0、刃带宽度bα1 拉削长度L、切削厚度hD和切削宽度bD
二、拉削方式 分层式、 分层式、分块式和综合式 分层式是每层加工余量各由一个刀齿切除 是每层加工余量各由一个刀齿切除, 分层式 是每层加工余量各由一个刀齿切除 , 但根据 工件表面最终轮廓的形成过程不.直径 Dx • ⑴ 粗切齿Dx1=dmin =19.00 Dx2 =Dx1+ 2fzⅠ …………………… • Dx2 -Dx14=19.06、19.12、19.18、19.24、 19.30、19.36、19.42、19.48、19.54、 • 19.60、19.66、19.72、19.78 • ⑵ 过渡齿Dx15 -Dx19 =19.83、19.87、 19.90、19.92、19.94 • ⑶ 精切齿Dx20 -Dx24 =19.96、19.98、 20.00、20.02、20.021 • ⑷ 校准齿Dx25 -Dx30 =20.021
二、拉削表面形状 几种典型的表面形状
三、拉床
拉床按加工表面分为内拉床和外拉床; 拉床按加工表面分为内拉床和外拉床; 内拉床 按布局分为卧式和立式两类。 按布局分为卧式和立式两类。 卧式 两类
组成与拉削方式
一、组成
普通圆孔拉刀结构如下: 普通圆孔拉刀结构如下:
普通圆孔拉刀结构参数如下: 普通圆孔拉刀结构参数如下:
分块式: 分块式:各组刀齿分别切削加工表面不同位置的加 工余量,最后由一圆形齿修光。
综合式:前部刀齿制作成单齿分块式,后面部分刀 齿作成同廓分层式。
圆孔拉刀设计
拉刀设计主要内容: 拉刀设计主要内容:
工作部分和非工作部分结构参数设计; 工作部分和非工作部分结构参数设计;拉刀强度和拉床拉 力校验; 力校验;绘制拉刀工作图

拉刀基本知识ppt课件

拉刀基本知识ppt课件

后角αo
3°~ 4°
刃带bα1 后角αo
2°~ ≤0.1 2.5°
0.05~
1.5°~ 2°
0.15
刃带bα1 后角αo
0.05~ 0.2
0.05~ 0.2
1°~ 1.5°
刃带bα1 0.3~ 0.5
0.5
键槽拉刀
0.2
2°~ 3°
2°~ 0.2~0.4 2.5°
0.6
25
7.分屑槽
图2.4-12 分层式拉刀常用的分屑槽
d0 j dmmax
对拉削后孔缩小时取“+”号;扩大时取“-”号。一般被加工孔 径问题大于校准齿直径,扩大量与收缩量都应通过试验确定,一 般在3~10μm 范围内。收缩现象常发生在拉削韧性金属或薄壁工 件时。
32
2.4.3.3其他部分 1.头部
图2.4-14 拉刀的头部
33
2.拉刀的颈部与过渡锥
l1 l l2 lw (l4 l5 )
35
3.拉刀的后导部与尾部
后导部的长度可取为工件长度的1/2~2/3,但不得20mm。 当拉削有空刀槽的内表面时,后导部的长度应大于工件空刀 槽一端拉削长度与空刀槽长度的和。其直径等于或略小于拉 削后工件孔的最小直径,公差按f7取。
26
图2.4-13 轮切式拉刀的分屑槽
27
8.切削齿的齿数与直径 切削齿的齿数包括粗切齿、过渡齿和精切齿。根据已选
定的拉削余量A和齿升量 af ,可按下式计算:
z A ( 3~ 5 )
2a f
求出的齿数要按四舍五入的原则进行圆整,一般过渡齿取3~ 5个,精切齿取3~7个。其余为粗切齿。拉刀的第一个切削齿通 常没有齿升量,这是为了避免因拉削余量不均匀或金属内含有 杂质而承受过大的偶然负荷,而损坏刀齿。

第九章拉刀技术报告

第九章拉刀技术报告

3.校准齿的几何参数
校准齿的几何参数包括前角、后角和刃带宽度。由于校准 齿不起切削作用,只起修光作用,前角一般取0°~5°,有 时为了制造方便,常取的与切削齿相同。
校准齿的后角一般比切削齿的后角要小。目的是使拉刀重 磨后直径变化小,以延长拉刀的使用寿命。如表9-2所示。
为了使拉刀重磨后校准部的直径变化小,拉削过程平稳, 校准齿上的刃带宽度比切削齿宽得多,其宽度比精切齿还要 大,如表9-2所示。
花键槽及多边孔常采用这种拉削方式加工。
图9-4 成形式拉削图形
图9-5 同廓拉削拉刀的分屑 槽
图9-6 渐成式拉削图形
9.2.2分块式拉削
图9-7 分快式拉刀外 形
图9-8 轮切式拉刀截形及拉削图 形
9.2.3综合式拉削
图9-9 综合拉削图形 1-第一刀齿;2-第二刀齿;3-第三刀齿;4-第四刀齿;
工件时。
9.3.3其他部分 1.头部
图9-14 拉刀的头部
2.拉刀的颈部与过渡锥
图9-15 拉刀颈部长度的计算 1-拉刀;2-工件;3-法兰盘;4-挡壁;5-卡头
拉刀颈部的直径D2通常比头部直径Dl小0.5~1 mm,也可 以将头部和颈部一次磨出,则D2 =Dl。
拉刀颈部的长度l1 应保证拉刀第一个刀齿尚未进入工件以前 ,拉刀的头部能被拉床夹头夹住;所以,要考虑拉床挡 壁 厚度,法兰盘突出部分厚度l3 及间隙l 等有关数值。颈部长度 l1应满足下列条件:
4.校准齿的直径 为了使拉刀重磨次数增多,使用寿命延长,拉刀校准齿的直 径doj应取工件孔的最大尺寸dmmax。还应考虑到拉孔后孔径可
能产生的扩大或缩小ε,因此校准齿的直径应取为:
对拉削后孔缩小时取“+”号;扩大时取“-”号。一般被加工 孔径问题大于校准齿直径,扩大量与收缩量都应通过试验确定,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章拉刀
第一节拉刀的种类与用途
第二节拉刀的组成与拉削方式
第三节圆拉刀设计
第四节矩形花键拉刀的结构特点
第五节拉刀的合理使用
1.特点:高效率、高精度、高寿命、高难度。

2.公差等级:IT7~IT9 表面粗糙度值:
0.5~3.23.主要用于:大量、成批的零件加工
a R m
第一节拉刀的种类与用途
一、按被加工表面部位不同分类
二、按拉刀结构不同分类
三、按使用方法不同分类
一、按被加工表面部位不同分类
图9-1各种内拉刀和外拉刀
a) 圆拉刀b)
花键拉刀
内拉刀、外拉刀:圆拉刀、花键拉刀、四方拉刀、键槽拉刀、平面拉刀。

图9-1(续)
c) 四方拉刀d) 键槽拉刀e) 外平面拉刀
二、按拉刀结构不同分类
图9-2装配式拉刀和镶齿平面拉刀
a) 装配式内齿轮拉刀b)
硬质合金镶齿平面拉刀刀齿装夹结构
整体拉刀、焊接拉刀、装配拉刀、镶齿拉刀。

三、按使用方法不同分类
图9-3推刀
a) 圆推刀b)
花键推刀
拉刀、推刀、旋转拉刀
第二节拉刀的组成与拉削方式
一、拉刀的组成
二、拉削方式
一、拉刀的组成
图9-4
拉刀组成及拉削示意图
以圆拉刀为例
普通圆孔拉刀结构参数如下:
齿升量f
z
:相邻刀齿半径差,用以达到每齿切除金属层
前角γ
0、后角α
、刃带宽度b
α1
拉削长度L、切削厚度h
D 和切削宽度b
D
2020/6/28
二、拉削方式
拉削方式是指拉刀逐齿从工件表面上切除加工余量的方式。

分层式、分块式和综合式
1.分层式(图9-5a)
2.分块式(轮切式)(图9-5b)
3.综合式(图9-5c)
图9-5拉削方式
a) 分层式b) 分块式c) 综合式
⏹分层式是每层加工余量各由一个刀齿切除,但根据工件表面最终轮廓的形成过程不同又可以分为同廓式与渐成式两种(1) 同廓式它是指各刀齿的廓形与加工表面的最终廓形相似,最终廓形是由最后一个切削齿拉削后形成的。

(2) 渐成式它是指加工表面最终廓形是由各刀齿拉削后衔接形成的。

⏹分块式:各组刀齿分别切削加工表面不同位置的加
工余量,最后由一圆形齿修光。

⏹综合式:前部刀齿制作成单齿分块式,后面部分刀
齿作成同廓分层式。

第三节圆拉刀设计
一、综合式圆拉刀设计简介
(一) 拉刀工作部分设计
(二) 非工作部分组成
(三) 拉刀检验
一、综合式圆拉刀设计简介
图9-6综合式圆拉刀设计图
(一) 拉刀工作部分设计
1.确定齿升量、齿数和刀齿直径
2.选择几何参数
3.确定齿距、容屑槽和分屑槽
1.确定齿升量、齿数和刀齿直径
(1) 粗切齿齿升量为了缩短拉刀长度,应尽量加大,使各刀齿切除总余量60%~80%左右。

(2) 精切齿齿升量按拉削表面质量要求选取,一般=0.01~0.02mm 。

(3) 过渡齿齿升量在各齿上是变化的,变化规律在与之间逐齿递减,以使拉削力平稳过渡。

(4) 校准齿齿升量=0是起最后修光、校准拉削表面作用。

I Z f I I I Z f ∏Z f 齿升量的确定原则:
2020/6/28
I
III II f A A A Z 2)(1+-=拉刀上各齿齿数的确定
.过渡齿一般取4-8;精切齿齿数3-7,校准齿齿数
为5-10;粗切齿的确定采用公式计算各齿直径确定的方法
X
Z X X f D D 21+=-
图9-7拉刀齿升量的分布
2.选择几何参数
(1) 前角γo按被加工材料不同,γo在10°~15°之间选取。

(2) 后角αo拉削普通钢和铸铁切削齿αo=2.5°~4°;校准齿αo=0.5°~1°。

(3) 刃带后角αb1和刀齿上刃带是起支承拉刀平稳工作,保持重磨后直径不变和便于检测直径尺寸。

3.确定齿距、容屑槽和分屑槽
(1) 拉刀齿距齿距P为相邻刀齿间的轴向距离。

(2) 拉刀容屑槽它的形状和尺寸要求:能宽畅地容屑,有利于切屑卷曲,不削弱刀齿强度和便于制造。

(3) 分屑槽一般拉削宽度超过5mm时,在拉刀切削刃宽度上磨制分屑槽,以利于切屑变形和卷曲,便于容屑。

(2) 拉刀容屑槽
1)直线齿背型(图9-8a):制造简单,适用于拉削脆性材料和分层拉削拉刀上。

2)圆弧齿背型(图9-8b):容屑空间较大,适用于拉削塑性材料和综合拉削拉刀上。

3) 直线加长齿背型(图9-8c):容屑空间大,制造较易,适用于分块拉削拉刀上。

图9-8容屑槽形式
a) 直线齿背型b) 圆弧齿背型c)
直线加长齿背型
(3) 分屑槽
1)弧形槽(图9-9a):拉削宽度小,槽转角处强度高,散热快,适用于分块拉
削刀齿上。

2)角度槽和直形槽(图9-9b、c):槽数多,制造容易,适用于分层拉削刀齿上。

图9-9分屑槽的形式
a) 弧形槽b) 角度槽c) 直形槽
(二) 非工作部分组成
图9-10拉刀非工作部分组成及作用
a) 拉削起始位置b) 拉削终了位置1—柄部2—拉床夹头3—颈部4—床壁5—衬套6—过渡锥7—前导部8—工件9—后导部10—后柄11—
承托柄
1 柄部、颈部与过渡锥
(三) 拉刀检验
1.同时工作齿数检验如若ze <3,则将若干零件叠夹拉削,或适当减小齿距p 。

2.容屑空间检验
容屑空间的设计检验是指,在拉刀的假定进给平面中,一个刀齿容屑槽的有效面积A 应大于该刀齿下的金属层面积A D ,即A >A D 或A=KA D 如图9-11所示,,A D =Lh D 或A D =Lf z ,因此,容屑槽深度h 为确定容屑槽深度h 后检验容屑空间所容许的齿升量f z (h D )
为使拉刀能顺利工作,在设计拉刀时,甚至在使用外购拉刀前,应对拉刀的同时工作齿数、容屑空间、拉刀强度等项目进行检验。

31≥+=P
L z e 42h A π=D D KL h KLh h h 13.14,2==πKL
h h f D z 2781.0==
图9-11容屑槽有效面积与金属层面积
3.拉刀强度检验
拉削时产生的拉应力σ要小于拉刀材料的许用应力[σ],即:][m in
σσ≤=A F mzx 式中Amin 一拉刀的危险断面面积
(m2),危险断面一般在第一个切削齿的容
屑槽处或在头部;
[σ] 一拉刀材料的许用应力(Mpa),
对高速钢[σ]=343~392Mpa ;对于合金钢
[σ]= 245Mpa 。

第四节矩形花键拉刀的结构特点
一、刀齿结构
二、前、后导部
矩形花键拉刀主要用于拉削大径定心和小键定心的矩形花键孔。

图9-12矩形花键拉刀
a) 内孔—花键组合拉刀b) 倒角—花键组合拉刀c) 倒角—内孔—花键组合拉刀
一、刀齿结构
倒角齿、圆孔齿、花键齿。

图9-13小径定心花键拉刀结构示意图
二、前、后导部
前导部:常选圆柱形
后导部:花键形
2020/6/28
第五节拉刀的合理使用
一、防止拉刀的断裂及刀齿损坏
二、消除拉削表面缺陷
一、防止拉刀的断裂及刀齿损坏
1) 要求预制孔精度IT10~IT8、表面粗糙度Ra≤5μm,预制孔与定位端面垂直度偏差不超过0.05mm。

2) 严格检查拉刀的制造精度。

3) 拉削高性能和难加工材料,可选取适当热处理改善材料的加工性,也常使用高性能材料的拉刀或涂层拉刀。

4) 保管、运输拉刀时,防止拉刀弯曲变形和碰坏刀齿。

二、消除拉削表面缺陷
1) 提高刀齿刃磨质量,防止刃口微崩产生并保持刃口锋利。

2) 保持拉削过程稳定性,增加同时工作齿数,减小精切齿和校准齿的齿距,提高拉削工艺系统刚性。

3) 合理选用拉削速度。

4) 使用硬质合金拉刀、涂层拉刀、激光强化高速钢拉刀等,对于提高拉削速度、减少拉刀磨损、延长拉刀寿命和改善拉削表面质量均有良好作用。

5) 合理选用与充分浇注切削液。

图9-14Rz关系1、2、3、5—耐热钢4—碳钢6—轴承钢。

相关文档
最新文档