青年学术论坛邀请报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青年学术论坛邀请报告
讲座题目:Monomial Braidings
主讲人:李建荣副教授
主持人:胡乃红教授
开始时间:2018-4-11(周三)13:30--15:00
讲座地址:闵行校区数学楼401报告厅
主办单位:数学学院
报告人简介:Research Fellow of Department of Mathematics, Weizmann Institute of Science
Ziskind building, 234 Herzl St. Rehovot, 7610001, Israel, since July 2016 to July 2019. He was a postdoc researcher, from Sep 2013 to July 2014, Einstein Institute of Mathematics, the Hebrew University of Jerusalem, his mentor is the famous mathematician: Professor David Kazhdan. He got his Ph.D. in Dec. 2012 from Lanzhou University, after spending his two years' studies (from Sep 2010 to Aug 2012) as a visiting student at Indiana University - Purdue University at Indianapolis under the joint guidance of Profs. Eugene Mukhin, and Vitaly Tarasov as well as Yanfeng Luo.
报告内容简介:
Monomial Braidings
Abstract: I will talk about a new method to construct braidings. A braided vector space is a pair (V, Psi), where V is a vector space and Psi: V \otimes V \to V \otimes V is a linear map
which satisfies the braid equation Psi_1 Psi_2 Psi_1 = Psi_2 Psi_1 Psi_2. Given a braided vector space (V, Psi). We constructed a family of braided vector spaces (V^{\otimes n}, Psi^{\epsilon}), where \epsilon: [n] \times [n] \to \{1, -1\} is a bitransitive map.
We generalized this construction to the case of multicolors. We introduced C-braid monoids, where C is a finite set. Given a braided vector space (V, Psi), we can use C-transitive functions to parametrize the braidings on V^{\otimes n} which come from Psi_1, ..., Psi_{n-1}. These braidings are monomials in Psi_1, ..., Psi_{n-1}. Therefore we call them monomial braidings.
Since [n] \times [n] can be viewed as a bidirected complete graph, a C-transitive function \epsilon: [n] \times [n] \to C can be view as a C-transitive function on a bidirected complete graph. We generalized the concept of C-transitive functions to C-transitive functions on any directed graphs. We showed that the number | G(C) | of all C-transitive functions on a directed graph G is a polynomial in |C|. This is a new invariant in graph theory. It is analogue to the chromatic polynomials for undirected graphs in graph theory.
This is joint work with A.Berenstein and J.Greenstein.