圆心角、弧、弦、弦心距之间的关系_2
27.2(2)圆心角、弧、弦、弦心距之间的关系

变式2:
若点F为⊙O上一点,过F作⊙O的弦FA、FD 如图(2) 若∠AFO=∠DFO,求证:AF=DF(学生探 A 索发现)
O F
D 图(2)
变式3:
如图(3)若点F为⊙O外一点,过F作两条 射线分别交⊙O于点A、B、C、D,若 ∠AFO=∠DFO,求证:AB=CD(学生探 索发现)
巩固反馈
1、例题精讲 例1 如图(3),在⊙O中,弦 AB、CD相交于E, OM、 ON分别是弦AB、CD的弦心距 AC=BD (1)如果OM=ON,求证: (2)如果 AC=BD , 求证:EO平分∠AED
C E M A O N D B
图(3)
巩固反馈
例2 如图,在⊙O中, 相交于点E 求证(1)∆ABD ≌ ∆CDB ∠AEC ,AD、BC
B O C
A E
D
图(5)
课堂小结
1.会叙述圆心角、弧、弦、弦心距之间的关 系 2.你觉得定理和推论在运用过程中需注意些 什么?
27.2(3)圆心角、弧、弦、弦心 距之间的关系
(一) 温故知新
回顾定理与推论:同圆或等圆中,如果两 个圆心角,两条劣弧(或优弧),两条弦, 两条弦的弦心距得到的四组量中有一组量 相等,那么它们所对应的其余三组量也分 别相等.
27.2(2)圆心角、弧、弦、弦心距 之间的关系
上海市干巷学校
A
E B
探究
O
问题:如图(1),在⊙O中,AB、CD是两 D F 条弦,OE、OF分别是AB、CD的弦心距 C 图(1 ) (1)如果∠AOB=∠COD,可得到哪些结 论? 定理推论:在同圆或等 (2)如果 AB=CD ,能否得到 圆中如果两个圆心角, ∠AOB=∠COD? 两条劣弧(或优弧), (3)如果AB=CD,能否得到 两条弦,两条弦的弦心 ∠AOB=∠COD? 距得到的四组量中有一 (4)如果OE=OF,能否得到 组量相等,那么它们所 对应的其余三组量也分 ∠AOB=∠COD?
圆心角、弧、弦、弦心距之间的关系(二)

圆心角、弧、弦、弦心距之间的关系(二)弦与弧在上一篇文章中,我们介绍了圆心角、弧和弦之间的关系。
本篇文章将继续探讨弦与弧之间的关系,以及弦心距与弦的关系。
弦的定义和性质首先,我们来回顾一下弦的定义。
在圆上任取两点,并用直线连接这两点,这条直线就是圆上的一条弦。
弦的长度可以通过两点之间的距离来计算。
根据弦的定义,我们可以得到一些性质。
1.在同一个圆中,相等弦对应的弧相等。
2.在同一个圆中,相等弧对应的弦相等。
根据这些性质,我们可以得出结论:在同一个圆中,等长的弦对应着等长的弧,而等长的弧对应着等长的弦。
弦和弧的关系既然弦和弧对应,那么它们之间有何关系呢?我们可以通过角度来说明它们之间的关系。
对于一个圆,以圆心为顶点的角叫做圆心角。
当我们在圆上划过一个圆心角时,这个角所对应的弧就是圆心角对应的弧。
在上一篇文章中我们已经讨论过,圆心角的大小等于其所对应的弧度数。
这意味着,当我们知道一个圆心角的度数时,也就知道了对应的弧度数。
同样地,我们也可以知道,等长的圆心角对应着等长的弧。
这是因为圆心角的度数决定了弧的长度,所以度数相同的圆心角对应的弧也是相等的。
弦心距与弦的关系弦心距是指从圆的圆心到弦的距离。
在上一篇文章中,我们已经了解到,弦中垂线的长度等于弦心距。
在本篇文章中,我们将进一步讨论弦心距与弦之间的关系。
在同一个圆中,相等弦对应的圆心距相等。
这是因为弦中垂线的长度等于弦心距,并且等长的弦对应的弦中垂线也是等长的。
我们可以通过一个实际的例子来进一步理解这个关系。
假设在一个圆上,有两条等长的弦AB和CD,并且它们都通过同一个圆心O。
那么根据上述性质,我们可以得知弦AB的中垂线的长度等于弦CD的中垂线的长度。
由于这两条垂线的长度相等,所以它们对应的弦心距也相等。
综上所述,在同一个圆中,等长的弦对应着相等的弦心距,而相等的弦心距对应着等长的弦。
结论根据我们在本篇文章中的讨论,我们可以得到以下结论:•在同一个圆中,等长的弦对应着等长的弧,而等长的弧对应着等长的弦。
27.2 圆心角、弧、弦、弦心距之间的关系(课件)九年级数学下册(沪教版)

证明:连接OA,OB,OC,如图.
A
∵ AB=BC=CA,
∴∠AOB =∠BOC =∠COA
1
= 360 =120 .
3
O
B
C
【变式题】如图,在☉O 中,AB= AC,∠ACB = 60°, A
求证:∠AOB =∠BOC =∠AOC.
证明:∵ AB = AC ,
C.3个
D.4个
5.如图,已知⊙O 的半径为 5,弦 AB、CD 所对的圆心角分别是∠AOB、
∠COD,若∠AOB 与∠COD 互补,弦 CD=6,则弦 AB 的长为( B )
A.6
B.8
C.5 2
D.5 3
6.如图,AB、CE 是⊙O 的直径,∠COD=60°,且
=
,那么∠AOE
的度数是 60° ,与∠AOC 相等的角有 ∠BOD、∠BOE、∠DOE
⌒ ⌒
AB=CD
∠ = ∠
(2)如果 AB=CD,那么 ____________,_____________.
=
AB=CD .
(3)如果∠AOB=∠COD,那么 _____________,
_____________
E
A
B
O·
D
F
C
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?
⌒
所对的弧为AB.
O·
B
判别下列各图中的角是不是圆心角,并说明理由.
①
②
③
④
任意给圆心角,对应出现三个量:
A
圆心角
弧
O·
九年级上册数学圆的定理

九年级上册数学圆的定理
九年级上册数学中有关圆的定理有很多,以下是其中一部分:
1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两
条弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且
平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平
分弦所对的两条弧。
2.圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,相等
的圆心角所对的弧相等,所对的弦的弦心距相等。
推论:在同
圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的'
弦心距中有一组量相等,那么它们所对应的其余各组量都分别
相等。
3.过三点的圆:不在同一条直线上的三点确定一个圆。
三角形的
外接圆圆心(外心)是三边垂直平分线的交点。
以上信息仅供参考,建议查阅九年级上册数学教材或相关辅导资料,获取更全面和准确的信息。
圆心角、弧、弦、弦心距之间的关系 讲义

九年级下册数学——圆心角、弧、弦、弦心距之间的关系讲义【1】圆心角定义在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,∠AOB 的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.【2】圆心角、弧、弦之间的关系定理在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 【定理拓展】○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分别相等 ○2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的弧也分别相等 综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.【经典例题】【例1】下列说法中,正确的是( B )A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等 【例2】如图2,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB 的弦心距等于1,那么两个同心圆的半径之比为( C )图2A.3∶2B.5∶2C.5∶2D.5∶4 【解析】作OE ⊥CD 于E ,则CE=DE=1,AE=BE=2,OE=1.在Rt △ODE 中,OD=2211+=2.在Rt △OEB 中,OB=22OE BE +=14+=5.∴OB ∶OD=5∶2.【例3】半径为R 的⊙O 中,弦AB=2R ,弦CD=R ,若两弦的弦心距分别为OE 、OF ,则OE ∶OF等于( D )A.2∶1B.3∶2C.2∶3D.0 【解析】∵AB 为直径,∴OE=0. ∴OE ∶OF=0.【例4】一条弦把圆分成1∶3两部分,则弦所对的圆心角为_____________. 【解析】41×360°=90°,∴弦所对的圆心角为90°. 【答案】90°【例5】弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是____________.【解析】OD ⊥AB ,OD=DB=AD.设OD=x ,则AD=DB=x.在Rt △ODB 中,∵OD=DB ,OD ⊥AB, ∴∠DOB=45°.∴∠AOB=2∠DOB=90°, OB=22222=+++x x DB OD x. ∴AB ∶BC=1∶2=2∶2.∴弦与直径的比为2∶2,弦所对的圆心角为90°. 【答案】2∶2 90°【例6】如图6,已知以点O 为公共圆心的两个同心圆,大圆的弦AB 交小圆于C 、D.图6(1)求证:AC=DB ;(2)如果AB=6 cm ,CD=4 cm ,求圆环的面积.【分析】求圆环的面积不用求出OA 、OC ,应用等量代换的方法.事实上,OA 、OC 的长也求不出来.(1)证明:作OE ⊥AB 于E ,∴EA=EB ,EC=ED.∴EA -EC=EB -ED ,即AC=BD. (2)解:连结OA 、OC.∵AB=6 cm ,CD=4 cm ,∴AE=21AB=3 cm.CE=21CD=2 cm. ∴S 环=π·OA 2-π·OC 2=π(OA 2-OC 2)=π[(AE 2+OE 2)-(CE 2+OE 2)]=π(AE 2-CE 2)=π(32-22)=5π( cm 2).【例7】如图7所示,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD.求证:OC=OD.图7【分析】根据弧、弦、圆心角的关系得出.证法一:如图(1),分别连结OA 、OB.∵OA=OB ,∴∠A=∠B. 又∵AC=BD ,∴△AOC ≌△B OD.∴OC=OD.(1) (2) 证法二:如图(2),过点O 作OE ⊥AB 于E , ∴AE=BE.∵AC=BD ,∴CE=DE.∴OC=OD.【例8】如图8,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6 cm ,EB=2 cm ,∠CEA=30°,求CD 的长.图8【分析】如何利用∠CEA=30°是解题的关键,若作弦心距OF ,构造直角三角形,问题就容易解决.【解】过O 作OF ⊥CD 于F ,连结CO. ∵AE=6 cm ,EB=2 cm ,∴AB=8 cm.∴OA=21AB=4(cm ),OE=AE -AO=2(cm ). 在Rt △OEF 中, ∵∠CEA=30°,∴OF=21OE=1(cm ). 在Rt △CFO 中,OF=1 cm ,OC=OA=4(cm),∴CF=22OF OC =15(cm). 又∵OF ⊥CD ,∴CD=2CF=215( cm).【例10】如图10所示,AB、CD是⊙O的两条直径,弦BE=BD,则弧AC与弧BE是否相等?为什么?图10【分析】欲求两弧相等,结合图形,可考虑运用“圆心角、弧、弦、弦心距”四量之间的“等对等”关系,可先求弧AC与弧BE所对的弦相等,也可利用“等量代换”的思想,先找一条弧都与弧AC以及弧BE相等.【解】弧A C=弧BE.原因如下:法一:连结AC,∵AB、CD是直径,∴∠AOC=∠BOD.∴AC=BD.又∵BE=BD,∴AC=BE.∴弧AC=弧BE.法二:∵AB、CD是直径,∴∠AOC=∠BOD.∴弧AC=弧BD.∵BE=BD,∴弧BE=弧BD.∴弧AC=弧BE.【例11】如图11所示,AB是⊙O的弦,C、D为弦AB上两点,且OC=OD,延长OC、OD,分别交⊙O于点E、F.试证:弧AE=弧BF.图11【分析】欲求弧相等,结合图形,可先求弧所对的圆心角相等,即求∠AOE=∠BOF.【证明】∴∠OCD=∠ODC.∵AO=OB,∴∠A=∠B.∴∠OCD-∠A=∠ODC-∠B,即∠AOC=∠BOD,即∠AOE=∠BOF.∴弧AE=弧BF.【例12】如图12,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?图12【分析】应用圆心角、弧、弦的关系解决.证明弦相等往往转化成圆心角相等.【解】在⊙O中,∵∠1=∠2=∠3,又∵AB、CD、EF都是⊙O的直径,∴∠FOD=∠AOC=∠BOE.∴弧DF=弧AC=弧BE.∴AC=EB=DF.【例15】如图15,AB为⊙O的弦,P是AB上一点,AB=10 cm,OP=5 cm,PA=4 cm,求⊙O 的半径.图15【分析】圆中的有关计算,大多都是通过构造由半径、弦心距、弦的一半组成的直角三角形,再利用勾股定理来解决.【解】过O作OC⊥AB于C,连结OA,则AB=2AC=2BC.在Rt△OC A和△OCP中,OC2=OA2-AC2,OC2=OP2-CP2,∴OA2-AC2=OP2-CP2.∵AB=10,PA=4,AB=2AC=2BC ,∴CP=AB -PA -BC=1,AC=5. ∴OA 2-52=52-1.∴OA=7, 即⊙O 的半径为7 cm.【例16】⊙O 的直径为50 cm ,弦AB ∥CD ,且AB=40 cm ,CD=48 cm ,求弦AB 和CD 之间的距离.【分析】(1)图形的位置关系是几何的一个重要方面,应逐步加强位置感的培养.(2)本题往往会遗忘或疏漏其中的一种情况.(1)【解】(1)当弦AB 和CD 在圆心同侧时,如图(1),作OG ⊥AB 于G ,交CD 于E ,连结OB 、OD.∵AB ∥CD ,OG ⊥AB ,∴OE ⊥CD.∴EG 即为AB 、CD 之间的距离. ∵OE ⊥CD ,OG ⊥AB ,∴BG=21AB=21×40=20(cm ), DE=21CD=21×48=24(cm ).在Rt △DEO 中,OE=22DE OD -=222425-=7(cm ). 在Rt △BGO 中,OG=22BG OB -=222025-=15(cm ). ∴EG=OG -OE=15-7=8(cm ).(2)(2)当AB 、CD 在圆心两侧时,如图(2),同理可以求出OG=15 cm ,OE=7 c m ,∴GE=OG +OE=15+7=22(cm ).综上所述,弦AB 和CD 间的距离为22 cm 或7 cm.1. 过点O 作OE CD ⊥于E ∴=CE ED∴=∴≅∴=AD DB AOE BOE AO OB ∆∆2. 175mm3.略4. 85. 26. 427. 3.68. 1209. B10. D11. A 12. D13. 内部、外部14. 13cm cm 或15. BC=4cm。
24.2.3圆心角、弧、弦、弦心距之间的关系

(2)AE= BF B
1.如图,已知AD=BC,
︵
︵
A
C
D O
B
试说明AB=CD
2.如图,点O在∠CAE的平分线上,以O为 圆心的圆分别交∠CAE的两边于点B、C和 D、E。则AB与AD有怎样的大小关系?试 证明。
B A D
F
C O
G
E
4、已知:如图, ⊙O的两条半径 OA⊥OB,C、D是弧AB的三等分点。 求证:CD=AE=BF。
24.2 圆心角、弧、弦、弦 心距之间的关系
想一想
圆心角
圆心角 顶点在圆心的角(如∠AOB).
弦心距 过圆心作弦的垂线,圆心与垂足之间 的距离(如线段OD).
A D B
O
二、
探究
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你 能发现哪些等量关系?为什么? A′ A′ B B B′ B′
五、例题
例1 如图,在⊙O中, AB = 求证∠AOB=∠BOC=∠AOC
AC
,∠ACB=60°,
A
证明:
∵
AB =
AC
B
O
∴ AB=AC. 又∠ACB=60°, ∴ AB=BC=CA.
·
C
∴ ∠AOB=∠BOC=∠AOC.
你会做吗?
三, 如图,在⊙O中,AC=BD, 1 45 ,求∠2的度数。 解: ∵ AC=BD
B
AOE 180 3 35
75
︵ ︵ 1. 如图,在⊙ O 中, AB=AC,∠B=70°. 求 ∠C度数. ︵ ︵ ︵ 2.如图,AB是直径,BC=CD=DE, ∠BOC=40°,求∠AOE的度数
第 1题
第 2题
27.2 圆心角、弧、弦、弦心距之间的关系

第27章圆与正多边形第一节圆的基本性质§27.2圆心角、弧、弦、弦心距之间的关系教学目标(1)理解圆心角、弧、弦、弦心距等概念,知道圆是一个旋转对称图形,理解圆的旋转不变性.(2)经历利用圆的旋转不变性探索同圆中圆心角、弧、弦、弦心距之间关系的过程,掌握同圆或等圆中圆心角、弧、弦、弦心距之间关系的定理及其推论,能运用这一定理及其推论解决有关数学问题.教学重点引进圆心角、弧、弦、弦心距等概念,导出同圆或等圆中圆心角、弧、弦、弦心距之间关系的定理及其推论,并能进行简单的运用,解决有关数学问题.知识点梳理1.圆上任意两点之间的部分叫做圆弧,简称弧;联结圆上任意两点的线段叫做弦,过圆心的弦就是直径.以圆心为顶点的角叫做圆心角.(没有特别说明时,本章中的圆心角通常是指大于00且小于0180的角)2.圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.3.圆心到弦的距离叫做弦心距.4.在平面上,一个圆绕着它的圆心旋转任何一个角度(大于00且小于0360),都能与原来图形重合.所以,圆是以圆心为旋转对称中心的旋转对称图形,旋转角可为大于00且小于0360的任何一个角.5.能够重合的两条弧称为等弧.半径长相等的两个圆一定能够重合,我们把半径长相等的两个圆称为等圆.(等圆可看作同一个圆移动到不同的位置时的图形)6.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.7.推论在同圆或等圆中,如果两个圆心角、两条劣弧或优弧、两条弦、两条弦的弦心距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等.8.圆被等分成360份,得到的每一份弧叫做01的弧.圆心角的度数和它们对的弧的度数相等.经典题型解析(一)圆的基本概念例1.车轮要做成圆形,实际上就是根据圆的特征( )A.同弧所对的圆心角相等B.直径是圆中最大的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形随堂练习:下列说法中,正确的是( )A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径例2.下列说法中,错误的是( )A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧随堂练习:下列语句中,正确的有( )A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴例3.如图,在O中,如果AB CD、是直径,那么图中相等的弧有哪些?为什么?随堂练习:如图,已知在O中,AB CD、.⊥,垂足分别是点E F、分别是弦,OE AB⊥,OF CD请添加一个条件,使得OE OF=.(二)定理与推论例4.已知:如图,O的弦AB与CD相交于点P,OM AB、,⊥,ON DC⊥,垂足分别是点M N 且AD BC=.求证:OM ON=.随堂练习:如图,AB CECD AB.、是O的直径,CD是圆O的弦,//求证:EB AC BD==.例5.已知:如图,AB CD、.、是O的直径,弦//AE CD,联结CE BC求证:BC CE=.随堂练习:已知:如图,AD BC=分别表示弦AB和CD的弦心、是O的弦,AD BC=,OM ON距.求证:OM ON=.例6.已知:如图,AB CD=.、是O的弦,且AB CD求证:ACB DBC∆≅∆.随堂练习:已知:如图,AB是O的直径,AC和AD是分别位于AB两侧的两条相等的弦.求证:AB平分CAD∠.例7.如图,O是ABC∆的形状,并说明∠=∠,探索ABC∠,AOB BOC∆的外接圆,AO平分BAC理由. 等边三角形例8.已知:如图,AB是O的直径,M N⊥.⊥,DN AB、的中点,CM AB、分别是AO BO求证:AC BD=.例9.已知:如图,在O中,弦AB的长是半径OA的3倍,C为AB的中点,AB OC、相交于P.求证:四边形OACB为菱形.例10.已知:如图,AD的度数是090,B C、将AD三等分,弦AD与半径OB OC、.、相交于E F 求证:AE BC FD==.巩固提升一、填空题1.下列说法正确的是_________(填序号)①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.2.圆是中心对称图形,它的对称中心有_________个.3.如图,AB CD =,OE AB ⊥,OF CD ⊥,025OEF ∠=,则EOF ∠=__________.(第3题) (第4题) (第5题)4.如图,在ABC ∆中,070A ∠=,圆O 截ABC ∆的三边所得的弦长都相等,则BOC ∠=_________.5.如图,半圆O 中,直径2AB =,作弦//DC AB ,设AD x =,四边形ABCD 的周长为y ,则y 与x 的函数关系式为_________,自变量x 的取值范围是_________.6.已知等边ABC ∆的三个顶点在半径为r 的圆上,则ABC ∆的周长为_________.7.已知点(1,0)(4,0)A B 、,P 是经过A B 、两点的一个动圆,当P 与y 轴相交,且在y 轴上两交点的距离为3时,则圆心P 的坐标是_________.二、选择题8.下列命题中正确的是( )A .三点确定一个圆B .在同圆中,同弧所对的圆周角相等C .平分弦的直线垂直于弦D .相等的圆心角所对的弧相等9.下列命题,①直径是弦,但弦不一定是直径;②半圆是弧,但弧不一定是半圆;③半径相等的两个圆是等圆;④一条弦把圆分成的两条弧中,至少有一条是优弧。
圆心角、弧、弦、弦心距之间的关系

圆心 弧 弦 弦心距之间的关系1. 圆不但是轴对称图形,而且也是中心对称图形,实际上圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
2. 圆心角:顶点在圆心的角叫做圆心角。
从圆心到弦的距离叫做弦心距。
3. 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
4. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
注意:要正确理解和使用圆心角定理及推论。
一般地,n °的圆心角对着n °的弧,n °的弧对着n °的圆心角,也就是说,圆心角的度数和它所对的弧的度数相等。
注意:这里说的相等是指角的度数与弧的度数相等。
而不是角与弧相等,在书写时要防止出现“∠=⋂AOB AB ”之类的错误。
因为角与弧是两个不能比较变量的概念。
相等的弧一定是相同度数的弧,但相同度数的弧却不一定是相等的弧。
6. 圆中弧、圆心角、弦、弦心距的不等关系(1)在同圆或等圆中,如果弦不等,那么弦心距也就不等,大弦的弦心距较小,小弦的弦心距反而大,反之弦心距较小时,则弦较大。
当弦为圆中的最大弦(直径)时,弦心距缩小为零;当弦逐步缩小时,趋近于零时,弦心距逐步增大,趋近于半径。
(2)在同圆或等圆中,如果弧不等,那么弧所对的弦、圆心角也不等,且大弧所对的圆心角较大,反之也成立。
注意:不能认为大弧所对的弦也较大,只有当弧是劣弧时,这一命题才能成立,半圆对的弦最大,当弧为优弧时,弧越大,对的弦越短。
7. 辅助线方法小结:(1)有弦的中点时,常连弦心距,进而可利用垂径定理或圆心角、弦、弧、弦心距关系定理;另外,证明两弦相等也常作弦心距。
(2)在计算弧的度数时,或有等弧的条件时,或证等弧时,常作弧所对的圆心角。
(3)有弧的中点或证弧的中点时,常有以下几种引辅助线的方法:∴AB=CD弦AB、DC若PO平分∠APC弦AB、CD交于P点(PO平分∠APC=⎩OP OP ∴≅∆∆P O M P O N AAS ()∴=PM PN AM AB CN CD AB CD ===1212,, ∴=AM CN()把作出来,变成一段弧,然后比较与的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆心角、弧、弦、弦心距之间的关系
第一课时(一)教学目标:(1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.教学重点、难点:重点:圆心角、弧、弦、弦心距之间关系定理的推论.难点:从感性到理性的认识,发现、归纳能力的培养.教学活动设计教学内容设计(一)圆的对称性和旋转不变性学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性. 引出圆心角和弦心距的概念:圆心角定义:顶点在圆心的角叫圆心角.弦心距定义:从圆心到弦的距离叫做弦心距.(二)应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性. 定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.(三)剖析定理得出推论问题1:定理中去掉“在
同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)举出反例:如图,∠AOB=∠COD,但AB CD,.(强化对定理的理解,培养学生的思维批判性.)问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)(四)应用、巩固和反思例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD. 解(略,教材87页)例题拓展:当P点在圆上或圆内是否还有AB=CD呢?(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)练习:(教材88页练习)1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:.(1)如果AB=CD,那么______,______,______;(2)如果OE=OG,那么______,______,______;(3)如果=,那么______,______,______;(4)如果∠AOB=∠COD,那么______,______,______.(目的:巩固基础知识)2、(教材88页练习3题,略.定理的简单应用)
(五)小结:学生自己归纳,老师指导.知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.(六)作业:教材P99中1(1)、2、3.
第二课时(二)教学目标:(1)理解1°弧的概念,能熟练地应用本节知识进行有关计算;(2)进一步培养学生自学能力,应用能力和计算能力;(3)通过例题向学生渗透数形结合能力.教学重点、难点:重点:圆心角、弧、弦、弦心距之间的相等关系的应用.难点:理解1°弧的概念.教学活动设计:(一)阅读理解学生独立阅读P89中,1°的弧的概念,使学生从感性的认识到理性的认识.理解:(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(3)圆心角的度数和它们对的弧的度数相等.(二)概念巩固1、判断题:(1)等弧的度数相等();(2)圆心角相等所对应的弧相等();(3)两条弧的长度相等,则这两条弧所对
应的圆心角相等()2、解得题:(1)度数是5°的圆心角所对的弧的度数是多少?为什么? (2)5°的圆心角对着多少度的弧?5°的弧对着多少度的圆心角? (3)n°的圆心角对着多少度的弧? n°的弧对着多少度的圆心角? (三)疑难解得对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.特别是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.(四)应用、归纳、反思例1、如图,在⊙O中,弦AB所对的劣弧为圆的,圆的半径为2cm,求AB的长.学生自主分析,写出解题过程,交流指导.解:(参看教材P89)注意:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要特别关注和指导.反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.例2、如图,已知AB和CD是⊙O的两条直径,弦CE∥AB,=40°,求∠BOD的度数.题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.(解答参考教材
P90)题目拓展:1、已知:如上图,已知AB和CD是⊙O的两条直径,弦CE∥AB,求证:=.2、已知:如上图,已知AB和CD 是⊙O的两条直径,弦=,求证:CE∥AB.
目的:是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.(五)小节(略)(六)作业:教材P100中4、5题.探究活动我们已经研究过:已知点O是∠BPD的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,则AB=CD ;现在,若⊙O与∠EPF的两边所在的直线分别交于点A、B和C、D,请你结合图形,添加一个适当的条件,使OP为∠BPD的平分线. 解(略)①AB=CD;②=.(等等)。