数论综合(四)
济南六年级奥数题及答案
济南六年级奥数题及答案:面积1.一半模型如下图,长方形AFEB和长方形FDCE拼成了长方形ABCD ,长方形 ABCD的长是20,宽是12,则它内部阴影部分的面积是.2.直线型面积如图,边长为10的正方形中有一等宽的十字,其面积(阴影部分)为36,则十字中央的小正方形面积为________.1.分百应用题小明到商店买红、黑两种笔共66支.红笔每支定价5元,黑笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支?2.列方程解应用题有一个敞口的立方体水箱,在其侧面一条高线的三等分处开两个排水孔A和B ,已知两孔的排水速度相同且保持不变,现在从水箱上面匀速注水,如果打开A孔,关闭B孔,那么经过20分钟可将水箱注满,如果关闭A孔,打开B孔,则需要 22分钟才能将水箱注满,那么两孔都打开,经过分钟才能将水箱注满.济南六年级奥数题及答案:质数和合数1.质数和合数一个三角形的三条边的边长都是质数,三条边长之和是16。
那么最长边与最短边的差是____。
2.数阵、数表下列数表的最后一个数的个位数是_____。
1 2 3 4 5……97 98 99 1003 5 7 9 …… 195 197 1998 12 16 …… 392 39620 28 (788)…… ……1.行程问题四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长米.2.行程问题已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲、乙两车分别从A ,B 两地同时出发相向而行,在途经C地时乙车比甲车早到10分钟;第二天甲、乙分别从B ,A 两地出发同时返回原来出发地,在途经C地时甲车比乙车早到1个半小时,那么A ,B 两地的距离是多少?济南六年级奥数题及答案:数论综合1.数论综合已知四位数的个位数与千位数之和为10,个位数既是偶数又是质数,百位数与十位数组成两位数是个质数,又知这个四位数能被36整除,则所有满足条件的四位数中最大的是.2.数论综合有一个小于2000的四位数,它恰有14个正约数(包括1和本身),其中有一个质因数的末位数字是1,求这个四位数.1.计算与巧算11×19+12×18+13×17+14×16=2.计算与巧算济南六年级奥数题及答案:乘法原理1.乘法原理,分类讨论现有1角币1张,2角币1张,5角币1张,1元币4张,5元币2张。
数论综合
数论综合
数论是专门研究整数的数学分支。
小学里面讲的数论主要包括以下方面的内容:数的整除性、奇数与偶数、质数与合数、分解质因数、约数与倍数、带余数的除法、数的十进制和完全平方数等。
【1】一个六位数2003□□能被99整除,它的最后两位数是____
【2】一个数的20倍减去1能被153整除,这样的自然数中最小的是_____
【3】在算式A×(B+C)=110+C 中,A、B、C 是三个互不相等的质数,那么三个数分别是____ ,____ ,____
【4】是否存在自然数a 和b,使得ab(a+5b)=15015
【5】两个质数的和是2001,这两个质数的乘积是_________
【6】如果一个质数分别加上2、8、14、26 后,得到的和都是质数。
那么原来的质数是 ________
【7】一个长方体的长宽高是三个两两互质且均大于1 的自然数,长方体的体积是8721,那么它的表面积是__________
【8】四个连续自然数,它们从小到大依次是3 的倍数、5 的倍数、7 的倍数、9 的倍数,这四个连续自然数的和最小是__________
【9】一个大于1 的自然数去除300、243,205 时,得到相同的余数,则这个自然数是__________
【10】一个两位数十位数字是7,将这个两位数的两个数字交换,相差的数是一个完全平方数,这个两位数是__________。
数论综合
数论提高班综合题目第一节. 基础知识例1.1.设(,)1,a m =则存在整数,1,k k m ≤<使得1(mod )k a m ≡例1.2,求不定方程223m n x +=的全部正整数解。
例1.3.求出方程22567130x xy y -+=的全部整数解。
解答:判别式=22(6)457465005y y y --⨯⨯+⨯≥⇒≤,将0,1,2,3,4,5y =±±±±±逐例11a +例记S =例5(y 例例(2例(2(3)设p 是异于2和5的任何一个质数。
证明:(1)99...9p k p -个,这里k 是任意正整数。
例1.10..设31000!k ,但是13|1000!k +/。
求k 。
例 1.11.设11(mod ),m a m -≡对于1m -的任一约数n ,当01n m <<-时都有1(m o d )n a m≡/。
证明:m 是质数。
例1.12.证明:2124nk k n =⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦∑。
例1.13.证明:当n 通过一切自然数时,形如41n -的数中一定有无穷多个质数。
例14.设二元一次不定方程ax by c +=(,,a b c 都是正在整数而(,)1a b =)有一组解00(,)x y ,那么它的任何一组解可以表为,x x bt t Z y =-⎧∈⎨=⎩ 例例49x -例1a a -1b b -例例例1.20.设整数,,x y z 满足()()()x y y z z x x y z ---=++。
证明:27x y z ++例1.21.设 1.n >证明:11...1n不是完全平方数。
例 1.22.设有两个数列{}n x 为1,3,5,11,。
满足112,2n n n x x x n +-=+≥;{}n y 为7,17,55,161,。
满足1123n n n y y y +-=+。
证明:这两个数列没有相同的项。
六年级奥数优胜教育第21讲:数论综合含答案
第二十一讲第二十一讲 数论综合数论综合例1:将4个不同的数字排在一起,可以组成24个不同的四位数(4×3×2×1=24)。
将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。
请求出这24个四位数中最大的一个。
例2:一个5位数,它的各个位数字和为43,且能被11整除,求所有满足条件的5位数?例3:由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?例4:从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。
按照上面的过程不断的重复,最后剪得的正方形的边长是多少毫米?例5:一根木棍长100米,现从左往右每6米画一根标记线,从右往左每5米作一根标记线,请问所有的标记线中有多少根距离相差4米?例6:某住宅区有12家住户,他们的门牌号分别是1,2,…,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号整除,已知这些电话号码的首位数字都小于6,并且门牌号是9的这一家的电话号码也能被13整除,问:这一家的电话号码是什么数?A1.一个六位数2323□□5656□是□是88的倍数的倍数,,这个数除以88所得的商是所得的商是_______________或或_____.2.下面一个1983位数3333……3□4444……4中间漏写了一个数字中间漏写了一个数字((方框方框),),),已知这已知这已知这991个 991个个多位数被7整除,那么中间方框内的数字是整除,那么中间方框内的数字是_____. _____.3.只修改21475的某一位数字的某一位数字,,就可知使修改后的数能被225整除整除,,怎样修改?怎样修改?4.2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数和它本身为约数..已知一个长方形的长和宽都是质数个单位的长和宽都是质数个单位,,并且周长是36个单位个单位..问这个长方形的面积至多是多少个平方单位?5. 把7、1414、、2020、、2121、、2828、、30分成两组,每三个数相乘,使两组数的乘积相等分成两组,每三个数相乘,使两组数的乘积相等. .B6.有这样的两位数有这样的两位数,,它的两个数字之和能被4整除整除,,而且比这个两位数大1的数的数,,它的两个数字之和也能被4整除整除..所有这样的两位数的和是所有这样的两位数的和是____. ____.7. 学生1430人参加团体操人参加团体操,,分成人数相等的若干队分成人数相等的若干队,,每队人数在100至200之间之间,,问哪几种分法分法? ?8. 四只同样的瓶子内分别装有一定数量的油四只同样的瓶子内分别装有一定数量的油,,每瓶和其他各瓶分别合称一次每瓶和其他各瓶分别合称一次,,记录千克数如下:8:8、、9、1010、、1111、、1212、、13.13.已知四只空瓶的重量之和以及油的重量之和均为质数已知四只空瓶的重量之和以及油的重量之和均为质数已知四只空瓶的重量之和以及油的重量之和均为质数,,求最重的两瓶内有多少油两瓶内有多少油? ?9.一个小于200的自然数的自然数,,它的每位数字都是奇数它的每位数字都是奇数,,并且它是两个两位数的乘积并且它是两个两位数的乘积,,那么这个自然数是然数是_____. _____.1010.试问.试问.试问,,能否将由1至100这100个自然数排列在圆周上个自然数排列在圆周上,,使得在任何5个相连的数中个相连的数中,,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明则需给出说明. .C11.11.一个学校参加兴趣活动的学生不到一个学校参加兴趣活动的学生不到100人,其中男同学人数超过总数的4/7,女同学的人数超过总数的2/5 。
六年级奥数(精品)数论综合(最新整理)
第19讲数论综合知识点精讲一、特殊数的整除特征1.尾数判断法1)能被2整除的数的特征:2)能被5整除的数的特征:3)能被4(或25)整除的数的特征:4)能被8(或125)整除的数的特征:2.数字求和法:3.99的整除特性:4.奇偶位求差法:5.三位截断法:特别地:7×11×13=1001,abcabc=abc×1001二、多位数整除问题技巧:1>目的是使多位数“变短”,途径是结合数的整除特征和整除性质2>对于没有整除特性的数,利用竖式解决。
三、质数合数1.基本定义【质数】——【合数】——注:自然数包括0、1、质数、合数.【质因数】——【分解质因数】——用短除法和分拆相乘法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N=a1×a2×a3×……×a n,其中a1、a2、a3……a n都是合数N的质因数,且a1<a2<a3<……<a n。
【互质数】——【偶数】——【奇数】——2.质数重要性质1)100以内有25个质数:2)除了2和5,其余的质数个位数字只能是:3)1既不是质数,也不是合数4)在质数中只有2是偶数,其他质数都是奇数5)最小的质数是2.最小的奇质数是36)有无限多个3.质数的判断:1)定义法:判断整除性2)熟记100以内的质数3)平方判断法:例如:对2011,首先442<2011<452,然后用1至44中的全部质数去除2011,即可叛断出2011为质数. 4.合数1)无限多个2)最小的合数是43)每个合数至少有三个约数5.互质数1)什么样的两个数一定是互质数?注意:分解质因数是指一个合数写成质因数相乘的形式.因此,要分解的合数应写在等号左边,如:21=3⨯7,不能写成:3⨯7=21.6.偶数和奇数1)0属于偶数2)十进制中,个位数字是0,2,4,6,8的数是偶数;个位数字是1,3,5,7,9的数是奇数3)除2外所有的正偶数均为合数4)相邻偶数的最大公约数为2,最小公倍数是他们乘积的一半5)奇±奇=偶偶±偶=偶偶±奇=奇奇×奇=奇偶×奇=偶偶×偶=偶四、约数与倍数1.约数与倍数概念:2.一个数约数的个数:3.平方数与约数个数的关系:4.最大公约数与最小公倍数求法:分解质因数:辗转相除法:5.两数的最大公约数乘以最小公倍数等于这两个数的乘积。
2011-10-21 第2讲-约数、倍数、完全平方数、质数、合数、分解质因数(数论综合)
专题五 质数 合数 分解质因数
一 、专题知识点概述
质数与合数的基本概念 1.质数:一个数除了1和它本身没有其他的约数,这个数就称为一个质数, 也叫做素数 2.合数:一个数除了1和它本身还有其他的约数,这个数就称为一个合数 3.质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数 任意数字形如 △ △ ... △ 的分解结构, 可以加深对质因数的理解,即结构中的△均为质因数。
2 2 2 2四 、习题讲解
【例5】(难度等级 ※※※) 动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得 12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每 只猴子可得20粒.那么平均给三群猴子,每只可得多少粒? 【分析与解】 依题意得: 花生总粒数=12×第一群猴子只数=15×第二群猴子只数 =20×第三群猴子只数, 由此可知,花生总粒数是12,15,20的公倍数,其最小公倍数是60. 花生总粒数是60,120,180,…,那么:第一群猴子只数是5,10,15,… ; 第二群猴子只数是4,8,12,… ;第三群猴子只数是3,6,9,… ; 所以,三群猴子的总只数是12,24,36,…因此,平均分给三群猴子, 每只猴子所得花生粒数总是5粒.
专题四 约数 倍数 完全平方数
一 、专题知识点概述
完全平方数常用性质 2.一些推论: 任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1. 即被4除余2或3的数一定不是完全平方数。 一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。 自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64, 84,25,09,29,49,69,89,16,36,56,76,96。 完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。 完全平方数的个位数字为6时,其十位数字必为奇数。 凡个位数字是5但末两位数字不是25的自然数不是完全平方数; 末尾只有奇数个“0”的自然数不是完全平方数; 个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。 3.重点公式回顾 平方差公式
计数综合知识点总结
计数综合知识点总结一、基本概念1.1 整数的计数整数的计数是计数综合的基础,它涉及到了对一定范围内的整数进行统计和计数。
在整数的计数中,通常需要掌握一些计数的基本规则和方法,如加法原理、乘法原理、排列、组合等。
这些基本规则和方法在解决实际问题时发挥着重要作用,可以帮助我们快速有效地进行计数和统计。
1.2 排列和组合排列和组合是计数综合中常用的概念和方法。
排列是指从若干个不同元素中取出一定数量的元素进行排列,每个元素只能用一次,且考虑元素的先后顺序。
组合是指从若干个不同元素中取出一定数量的元素进行组合,不考虑元素的先后顺序。
在实际问题中,排列和组合经常被用来求解具体的计数问题,例如排队、选组、抽样等。
1.3 概率与计数概率与计数是紧密相关的,概率可以看作是一种特殊的计数问题。
在概率计算中,我们通常需要对一个事件发生的可能性进行估计和计算,而这种估计和计算通常涉及到了对事件的计数和统计。
因此,在概率计算中,我们经常需要运用排列、组合等计数方法来进行计算和推理。
1.4 数论与计数数论是数学中的一个重要分支,它研究整数的性质和规律。
在数论中,我们通常需要对整数的计数和排列进行研究和分析,例如素数分布、约数个数等。
因此,数论和计数综合有着密切的关系,通过对整数性质的研究,我们可以进一步深化对计数综合的理解和应用。
二、常用方法2.1 加法原理加法原理是计数综合中常用的基本规则之一,它用于求解特定情况下的计数问题。
加法原理的核心思想是将一个复杂的计数问题分解为若干个简单的计数问题,然后将它们的计数结果相加得到最终的计数结果。
例如,如果一个事件可以分解为两个相互独立的子事件,那么这两个子事件的计数结果之和就是该事件的计数结果。
加法原理在解决复杂的计数问题时发挥着重要作用,它能够帮助我们简化问题、降低求解难度。
2.2 乘法原理乘法原理是计数综合中另一个常用的基本规则,它也用于求解特定情况下的计数问题。
乘法原理的核心思想是将一个复杂的计数问题分解为若干个简单的计数问题,然后将它们的计数结果相乘得到最终的计数结果。
六年级奥数讲义-数论综合(含答案)
学科培优数学“数论综合”学生姓名授课日期教师姓名授课时长数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。
请问最后这个数从个位起向左数、可以连续地数到几个0?【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。
【题目】一个自然数与自身相乘的结果称为完全平方数。
已知一个完全平方数是四位数,且各位数字均小于7。
如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数。
【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【题目】有一电话号码是 ABC-DEF-GHIJ ,其中每个字母代表一个不同的数字。
数论综合复习
第三部分数论知识一、奇偶性判断奇±奇=偶奇×奇=奇奇±偶=奇奇×偶=偶偶±偶=偶偶×偶=偶奇数的连乘永远是奇数,若干个整数连乘,如果其中有一个是偶数,那么乘积一定为偶数。
相邻两个自然数的和必为奇数,相邻两个自然数的乘积必为偶数。
奇数用2K+1 或2K-1(K 是整数)表示;偶数用2K 表示。
典型题1:用0,1,2,…9十个数字组成五个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能的小,那么这五个两位数的和是多少?典型题2:用1,2,3,4,5这五个数两两相乘,可以得到10个不同的乘积,问:乘积中是偶数多还是奇数多?典型题3:3—9这七个数,两两相乘后得到乘积的和,是奇数还是偶数?为什么?重点1:两个整数之和与这两个整数之差有着相同的奇偶性典型题4:能否用1,2,3…101这101个数各一次及“+”,“-”运算符合,列出一个结果为0的算式?若能,请列出一个,若不能,说明理由。
典型题5:在下图的每个○中填入5个自然数(可重复),使得任意两个相邻的○中的数字之差(大数减小数)都等于图中两个○之间的那个数,能否办到?为什么?重点2:利用“奇数不等于偶数”证明一些较复杂的奇偶性问题典型题6:小明与小光参加数学竞赛,比赛试题共50道,评分标准是:(1)每对一题给3分;(2)不答给1分;(3)答错倒扣1分小明说:“我得了107分”,小光说:“我得了98”,他们两人中只有一人说对了,你能判断出是非吗?请说明理由典型题7:图中每条直线上都有四个圆圈,将这些圆圈任意涂上红色或蓝色,是否可以使得恰好有三条直线上的红圈数是奇数?典型题8:在一个联欢会上,有5位同学,他们中的每一位同学与三位同学各握一次手,这可能吗?二、位值原则形如:abc=100a+10b+c,这是解决数论问题时我们经常用到的。
典型题1:三位数abc与它反序数cba的差能被99整除吗?若能,这个商是多少?典型题2:已知abcd+abc+ab+a=1370,求abcd。
六下奥数第9讲~数论综合
六年级下册奥数第9讲~数论综合【知识精讲】本讲属于数论专题,数论专题在近几年的升学中占比大约在5% ——10%,在各类竞赛中的占比约为15%,虽然分值不是很高,但是题型多变,考察方式也呈现多样化。
在2015年辅仁,2008年大桥以及各类竞赛中都有出现。
这部分的内容主要以填空和选择的形式考察,偶尔会有创新题的形式出现,对学生提取信息以及综合运用的能力要求比较高,但是有不少知识点需要同学们在理解的基础上加以记忆。
本讲需要掌握以下三点内容:1、位值原理2、进位制3、整除的性质和判定。
知识点一:位值原理例1、【大桥期初题】一个两位数的中间加上一个 0,得到的三位数比原两位数的8倍小1。
原来的两位数是多少?练1、在一个两位数的两个数字中间加一个 0,所得的三位数比原来大8倍,求这个两位数例2、一个三位数,把它的个位和百位调换位置之后,得到一个新的三位数,这个新三位数和原三位数的差的个位数字是7,试求两个数的差。
练2、把一个三位数颠倒顺序后得到一个新数,这个数比原来数大792,那么原来的三位数最大可以是多少?知识点二:进位制例 3、(2012) 5=( )io 2015=( )8=( )12 练 3、( 3A2) 12= ( ) 10 2014=( )5= ( ) 16知识点三:整除的性质和判断例4、某个七位数2013□□口能够同时被2,3,4,5,6,7次是多少?练4、已知13ab45c能被792整除,求a,b,c的值自我挑战:1、【希望杯】在算式“希望杯就是好 8就是好希望杯 5希望杯就是好”所代表的的六位偶数是多少?,8, 9中,不同的汉字代表不同的数字,则2、在六进制中有三位数abc,化为九进制为cba,求这个三位数在十进制中为多少?3、1111 111仁22222 22222是一个4023位数,它能被13整除,□内应填数字是多少?2011个1 2011个24、【大桥】由0— 6组成,百位比十位大,十位比各位大的三位数,能被3整除的数有多少个?温故而知新!1、进制互化1CA16= 101248 10 = 3120 10= 1611202 4=2、六位数口2004□能被99整除,这个六位数是多少?3、一个两位数,将个位与十位交换位置后,得到一个新的两位数,已知新数比原数大54,求原数是多少?4、已知个五位数1a75b能被72整除,则这个五位数是多少?5、依次写上1,2,3,4……,2008,则123456789101112…20072008除以9的余数是多少?6、由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?。
小学奥数——数论专题
名校真题测试卷10 (数论篇一)1、(05年人大附中考题)有_____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。
2、(05年101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是_____。
3 (05年首师附中考题)1 21+2022121+5051313131321212121212121=________。
4 (04年人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
(02年人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128【附答案】1 【解】:62 【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。
3 【解】:周期性数字,每个数约分后为121+221+521+1321=14 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。
5 【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。
第十讲小升初专项训练数论篇(一)一、小升初考试热点及命题方向数论是历年小升初的考试难点,各学校都把数论当压轴题处理。
由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。
数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。
作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。
六年级下册数学试题-小升初能力训练:数论综合——余数问题(解析版)全国通用
第05讲 数论综合——余数问题【一】了解“除法算式——a b qr b r ÷=> ()” 及应用1:一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是 .1010989108=910898÷=⇒∴÷=∴⨯+=最小的两位数是两位数一位数余数 求最大值一位数最大是,余数最大是 两位数 两位数2:用某自然数a 去除1707,得到商是37,余数是r ,求a 和r.17073717073717073746546461707463755375424545451707453742424645542a r a r a ra a r a a r a a r r =+⎧÷=⇒⎨>⎩÷==⎧∴=⇒÷=⇒⎨=⎩+=<=⎧∴=⇒÷=⇒⎨=⎩==⎧⎧⎨⎨==⎩⎩综上:或3:523除以一个数得到的商是10,并且除数与余数的差是5,求除数与余数.带 余 除 法52310523105555523(5)105231152310(5)x x x x x x ÷=÷=+∴÷+=∴÷=∴=++法一: 法二:除数余数 除数余数余数与除数的差是 余数与除数的差是 若设余数为,则除数为 若给余数加上 除数 =52311=48=43434348x ∴÷=∴ 除数,余数 余数是,除数是4:两数相除,商4余8,被除数、除数、商、余数四数之和等于415,则被除数是 .484848484841532448794848415794798324A B A B A B A B A B A B x A x B x x x A =+⎧÷=⇒=+÷=⇒⎨+++=⎩=⎧+∴⎨=⎩++++===⨯+=法一: 法二: 若设为,则为 则5:某个除法算式的被除数、除数、商与余数之和为115,如果被除数和除数都扩大为原来的2倍,得到的除法算式中被除数、除数、商与余数之和为223,那么原来的算式中商是 .11522222222311522237A B CD A B C D A B C D A B C D C ÷=⇒+++=÷=⇒+++=∴=⨯-=22222(22)22222a b q r a bq r a bq ra b bq r b q r a b q r a b q r÷=⇒=+⇒=+÷=+÷=∴÷=⇒÷=证明:6:某个整数除36,商和余数相等,那么这个整数可能是 .3636(1)136=8111735b c c bc c c b b b cb ÷=⇒=+=++>是的因数,但是枚举:、、、7:在大于2015的自然数中,被57除后,商与余数相等的数共有多少个?5758575756201558=3443355635122a c c c a c c c c c =+=⎧÷=⇒⎨<⎩÷⇒∴=-+= 的最大值是 的最小值是 个数(个)【二】余数性质(余数特征+余数可加可减可乘性+余数周期性)251425281253393999100001000100109999(91)99999a b c d e abcde a b c d ea b c d abcde a ⎧⎪⎨⎪⎩⎧⎨⎩=⨯+⨯+⨯+⨯+++++=⨯+⨯+⨯+⨯+=⨯被和整除:末位尾系被和整除:末位被和整除:末位被、整除:各位数字和是、的倍数和系被整除:两位一段,求和 证明: [弃9法 整特征]除0000100999999711131110001001()10000100010010()bc dea bc abcde ab cde ab cde ab abc a bc de a bd c de e +⨯+=⨯+⨯+⎧⎨⎩=⨯+=⨯+-=⨯+⨯+++⨯+⨯+ 被、和整除:三位一段,奇数段偶段和差系被整除:奇位和偶位和 证明: [()(999)910019911999910019911(]a a b b c c d e c a d e a b c d a c m e a mc e b c nf b nc f a b mc e nc f m n d b ++-+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪=⨯++⨯-+⨯++⨯-+⎪=⨯+⨯+⨯+⨯+⎩÷==+⎧⎧⇒⎨⎨÷==+⎩⎩+=+++=+ 对于(1) 余数可加可减可乘2)()()()()()()()()()()()1192329c e f a b ce f a b mc e nc f m n c e f a b ce f a b mc e nc f mnc mcf nec ef a b ce f ++⇒+÷+⇒-=+-+=-+-⇒-÷-⇒⨯=+⨯+=+++⇒⨯÷⨯⇒÷÷ (2) (3) 余数可加 举性余数可减性余数可乘性例259753295⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪÷⎧⎧⎪⎨⎨⎪÷⎩⎩⎩或者(一)余数特征+余数可加可减可乘性的“基础练习”1:将假分数5051525354557⨯⨯⨯⨯⨯化成带分数后,真分数部分是多少?5051525354557505152535455123456(24)(35)681561166(mod 7)⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯≡⨯⨯⨯⨯⨯≡⨯⨯⨯⨯=⨯⨯≡⨯⨯≡只要计算除以的余数即可(二)余数特征+余数可加可减可乘性的“拓展练习”71310010100101010110101100101001010110101101010110ABCDABCDABCD BCD DAB B C D D A B A B C D ABC DAB CDA BCD CDA ABC C D A A B C A B C D A B ⎧=+=+++++⎪=+++⎪⎨=+=+++++⎪⎪=+++⎩-=++证明:判断能被和整除奇段和 偶段和 奇偶10110110101109191919191()91713713C D A B C D B A D C B A D C ABCDABCDABCD +----=-+-=-+-=⨯∴ 能被和整除1:(1)求20172017201720172017个除以9的余数. (2)求20146666个除以7的余数.201712017201720172017201711120171(mod 9)≡≡≡个个 20146666666666100120146335466666666666660302(mod 7)=⨯÷=∴≡≡-≡≡≡个2:求1020162017201620162016个除以7的余数.9201620163603603602016201620167020162016201670201720162016201620172016000(mod 7)1428577110000001000000711000712017201600020172016(mod 7)20÷∴÷⇒≡⨯+=∴÷∴÷⇒≡个10个个个个172016201710000201620177110000742016701404=⨯+÷÷÷∴=⨯+=余数可乘,余数3:求15!除以17的余数.15!4!(56)(71113)(89)(10121415)243010017225210015!7131541415916021069654636181(mod 7)15!(29)(36)(413)(57)(815)(1012)(1114)171=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⇒≡⨯⨯⨯⨯⨯≡⨯⨯≡⨯⨯≡⨯≡⨯≡≡=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯法一:法二:每个括号内两数之积都是除以 余 15!171∴÷ 的(2)!1(mod )p p p ⇔-≡延伸说明:上一题的(2)是威尔逊原理内容: 是质数(三)余数周期性的“基础练习”1:兔子数列:1、1、2、3、5、8、13、……,第2017项除以5的余数.5112303314044320224101123033020201720100172÷=兔子数列每一项除以的余数如下:周期是, ,即余2:分别求出23456789103333333333、 、 、 、 、 、 、 、 、 除以7的余数.发现规律,并求出1003除以7的余数. 并试求231001+3+3+3++3除以7的余数.234567891010043333333333326451326461006164334(mod 7)⇒÷=⇒≡≡、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 周期是若为01231002+2+2+2++2除以7呢?61016165(132645)1613262116162(mod 7)⇒÷=⇒≡+++++⨯++++≡⨯+≡周期是 原式3:今天是周四,100010天之后将是周几?234567891010004101010101010101010103264513264610006166410104(mod 7)⇒÷=⇒≡≡⇒、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 周期是周一(四)余数周期性的“拓展练习” 1:求3332除以31的余数.33133333231535334812228(mod 31)n ∴÷=⇒≡≡≡研究除以的余数容易发现周期是只要考虑除以的余数,容易发现周期是42:求332的末位数字.33133481333(mod10)÷=⇒≡≡寻找末位就是相当于除以10的余数周期现象:1、3、9、7、1、3、9、7、……,周期是4(1)(2)(3)x Nx N x N x x 以下是固定值,是变量对于,其个位数字是4个一循环 对于,其个位数字是10个一循环 对于,其个位数字是20个一循环3:求123420132014123420132014+++++除以10所得的余数是多少?12341920201234192014765636901636567490944,201420100141001004(14765636901636)=463463++++++++++++++++++++++++=÷=⨯++++++++++++++除以10的余数就是相当于寻找其个位数字,底数指数都是变化的,即周期为先计算的个位数字:为“”其个位数字是即个整周期还多出14个个位数字即为“”的个3位数字是 ,即答案就是34:求2007200720072007200712342006++++计算结果的个位数字是多少?200732007320073200720072007200720073333311(mod10)22(mod10)20072007(mod10)1234200612342006(mod10)≡≡≡+++++≡+++++首先,按规律,底数不变指数变化,其个位数字的周期是每4个一循环 即 、 、 得到: 然后,按规律,底数变化指数不变,其个位数字的周期是每10个一循环 33333333333333331234105(mod10)1234200652001234561(mod10)+++++≡+++++≡⨯++++++≡ 又因为, 所以,【一】化余数为整除(余数相同) (一)余数已知1:某个整数除41,余数是5,那么这个整数可能是几? 415(415)03603636181296b bbb b ÷⇒-÷⇒÷⇒=是的因数,、、、、2:某个整数除31,余数是7,那么这个整数可能是几? 317(317)024********b bbb b ÷⇒-÷⇒÷⇒=是的因数,、、同 余 问 题3:某个整数除67、151得到的余数都是11,那么这个整数可能是几?(6711)05606711(15111)01400561408415111(15167)0840(56,140,84)28112814b b b b b b b b b b b b -÷÷⎧⎧÷⎧⎪⎪⇒-÷⇒÷⇒⇒⎨⎨⎨÷⎩⎪⎪-÷÷⎩⎩=>∴=是、、的公因数是最大公因数的因数,且、4:某个额整数除229、337得到的余数都是13,这个整数最大是几?最小是几? (22913)021*******(33713)0324033713(337229)01080216324108(216,324,108)1081310818b b b b b b b b b b b b -÷÷⎧⎧÷⎧⎪⎪⇒-÷⇒÷⎨⎨⎨÷⎩⎪⎪-÷÷⎩⎩⇒⇒=>∴是、、的公因数是最大公因数的因数,且最大为,最小为(二)余数未知1:某个大于1的整数除41、11得到的余数相等,那么这个整数可能是几? 41(4111)030030302153105611b rb bb b br÷⎧⇒-÷⇒÷⇒=⎨÷⎩是的因数,、、、、、2:某个大于1的整数除89、71得到的余数相同,那么这个整数可能是几?89(8971)01801818293671b rb bb b br÷⎧⇒-÷⇒÷⇒=⎨÷⎩是的因数,、、、、3:某个大于1的整数除17、53、113得到的余数相同,那么这个整数可能是几? 17(5317)036053(11317)0960369660113(11353)0600(36,96,60)12122634b r b bb r b b b b b r b b b ÷-÷÷⎧⎧⎧⎪⎪⎪÷⇒-÷⇒÷⇒⇒⎨⎨⎨⎪⎪⎪÷-÷÷⎩⎩⎩=∴=是、、的公因数是最大公因数的因数、、、、【二】化余数为整除(余数不同) (一)余数已知1:某个整数除47余5,除65余2,那么这个整数可能是几? 475(475)04204263652(652)0630(42,63)215217b bbb b b bbb b ÷-÷÷⎧⎧⎧⇒⇒⇒⇒⎨⎨⎨÷-÷÷⎩⎩⎩=>∴=是、的公因数是最大公因数的因数,且、2:(拓展)用一个数除200余5,除300余1,除400余10,这个数是多少? 13(二)余数未知1:某个整数除29、56的余数分别是a 、3a +,这个数可能是几? 2929(5329)0240245635333324128462924529125298524,12,8()56248561285680294129654(),6()56405662b aba bbb ba baa b b b b b b b ÷÷⎧⎧⇒⇒-÷⇒÷⇒⎨⎨÷+÷⎩⎩+≥⇒>∴=÷÷÷⎧⎧⎧===⎨⎨⎨÷÷÷⎩⎩⎩÷÷⎧⎧==⎨⎨÷÷⎩⎩是的因数、、、、验证:舍去舍去舍去综上2412b =,、2:某个整数除47、121、232的余数分别是a 、2a +、5a +,这个数可能是几?4747(11947)07201212119(22747)018002325227(227119)0108072180108(72,180,108)36536181296473636b a b a b b b a b a b b b a b a b b b b b b b ÷÷-÷÷⎧⎧⎧⎧⎪⎪⎪⎪÷+⇒÷⇒-÷⇒÷⎨⎨⎨⎨⎪⎪⎪⎪÷+÷-÷÷⎩⎩⎩⎩⇒⇒=>∴=÷=是、、的公因数是最大公因数的因数,且、、、、验证:114718114712111213613,181211813,12121121(),2323616232181623212447924765912194(),612161()23297232643618b b b b b ÷÷⎧⎧⎧⎪⎪⎪÷=÷=÷⎨⎨⎨⎪⎪⎪÷÷÷⎩⎩⎩÷÷⎧⎧⎪⎪=÷=÷⎨⎨⎪⎪÷÷⎩⎩=舍去舍去舍去综上,、3:一个自然数除429、791、500所得的余数分别是5a +、2a 、a ,求这个自然数的和a 的值.429+54248482(848791)0570791279127912(1000791)0209050050010002(1000848)0152057209152(57,209,15b a ba b a b b b a ba b a b b b a b a b a b b b b ÷÷÷-÷÷⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪÷⇒÷⇒÷⇒-÷⇒÷⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪÷÷÷-÷÷⎩⎩⎩⎩⎩⇒⇒是、、的公因数是最大公因数的因数2)19519571911192091912152196196b b b b a =>∴=÷⎧⎪=÷⎨⎪÷⎩==,且验证:综上,,4:已知60、154、200被某数除所得的余数分别是1a -、2a 、31a -,求这个自然数的值. 22222333361(3721154)03567060161154154154(61154)2001201(9394201)09193020135679193(3567,9193)b a b b b a b a b a b a b a b ab a b a b b b a b b ⎧⎛÷⇒-÷⇒÷÷-÷⎪ ⎧⎧ ÷⎪⎪⎪⎝÷⇒÷⇒⎨⎨⎨⎛⨯÷⎪⎪⎪÷-÷⇒-÷⇒÷ ⎩⎩⎪ ÷⎝⎩⇒⇒=是、的公因数是最大公因数的因数29296029229154299200292629b b b ∴=÷⎧⎪=÷⎨⎪÷⎩=验证:综上,5:(拓展)糖果254粒,饼干210块,水果186个. 某幼儿园人数超过40人,平均分给学生,余下糖果、饼干、水果比是1:3:2,求共有多少人?没人每种各分多少个?5082(508186)032202541862210321031862(440210)02300(254186)3322230(322,230)4640223254202210201862b ab b b a b a b a b a b a b b b a b b b b b ⎧÷⎧⇒-÷⇒÷÷⎧⎨⎪÷⎪⎪⎩÷⇒⎨⎨÷⎧⎪⎪÷⇒-÷⇒÷⎨⎩⎪+÷⎩⎩⇒⇒=<∴=÷=÷÷是、的公因数是最大公因数的因数,且、验证:254231()23210233018623223b b ÷⎧⎧⎪⎪=÷⎨⎨⎪⎪÷⎩⎩=舍去,综上,6:有一个整数,用它除70、110、160所得到的3个余数之和是50,那么这个整数是多少?121233111221233370110(70110160)()340502900290160707070121101333531718316011b r b r b r r r bb b b rbr b b r b r b r b r b r r r b b b b r b r b ÷⎧⎪÷⇒++÷++⇒÷⇒÷⇒⎨⎪÷⎩÷≤÷≥+⎧⎧⎪⎪÷⇒≥+⇒≥+++⇒≥⇒≥⇒≥⎨⎨⎪⎪÷≥+⎩⎩∴=是的因数现在讨论的就是范围对来说,其中,290,2,145,5,58,10,29581105815229b b =÷==对于, ,不成立综上,【三】同余方程 1:(铺垫)(1)解同余方程:45(mod11)x ≡45(mod11)41151(45)110451144(mod11)5115245(mod11)4511(mod11)416(mod11)(4,7)14(mod 7)x x x x x x x x x x ≡÷⎧⇒-÷⇒-=⇒=⇒≡⎨÷⎩≡≡+≡=∴≡ 转化: 试除:(mod )(,)1(mod )(mod )()()0()()()()(,)1(mod )ac bc m c m a b m ac m x pac bc m ac bc m x y c a b m x y bc m y p c a b m x y c m m a b a b m a m b m a b a b m m m ≡=≡÷=⎧≡⇒-÷=-⇒-=-⎨÷=⎩-=-=-≡÷÷--=证明:若,当 时,有开始:对“”,有对“”,若,为的因数若想让“”,即让“的余数等于的余数”,即“化为分数相减为整数”同时,确实为整数,得证.(2)解同余方程:729(mod13)x x ≡+729(mod13)7131(729)130(29)135913()(59)130592677(mod13)2729(mod13)59(mod13)59132(mod13)5x x x r x x x rx x x x xx x x x x ≡+÷⎧⇒--÷⎨+÷⎩-=⨯⎧⇒-÷⇒⎨-=⇒=⇒≡⎩-≡≡≡+⨯ 转化: 试除: 35(mod13)(5,13)17(mod13)x ≡=∴≡2:用枚举法检验的方法,找出有那些整数x 满足:35(mod 7)x ≡,用一个同余式来表示结果.135(mod 7)411184(mod 7)235(mod 7)357(mod 7)312(mod 7)(4,7)14(mod 7)x x x x x x x ≡=≡≡≡+≡=∴≡ ,枚举得到、、、,表示为3:求解同余方程:3843(1)(mod13)x x +≡+. 8343(1)(mod13)83433(mod13)83334(mod13)5334313(mod13)58(mod13)58x x x x x x x x x +≡++≡+-≡-≡-+⨯≡≡+第一步:化简 第二步:(试除法) 134(mod13)XX 5383(mod13)560(mod13)1524(mod13)(5,13)112(mod13)211(mod13)(XX ) 5x x x x x x ⨯⨯≡⨯≡≡=∴≡≡⨯ (法) 法888(mod13)21113(mod13)4064(mod13)224(mod13)12(mod13)12(mod13)x x x x x ≡⨯≡+≡≡≡≡5:(拓展)老师选了一个两位数,然后讲这个数乘23,并且加上79,发现正好是111的倍数,你能猜出老师选的是什么数吗?23790(mod111)2311179(mod111)2332(mod111)235325(mod111)115160(mod111)x x x x x x +≡≡-≡⨯≡⨯≡设这个两位数为,得到 4160(mod111)40(mod111)40.x x ≡≡ 即这个两位数是一:余同加余,差同减差,和同加和 1:小强家有很多巧克力:。
六年级奥数-数论专题
数论(一)奇数与偶数【知识点概述】1.奇数和偶数的定义:整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
2.奇数与偶数的运算性质:性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数性质6:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性性质7:对于任意2个整数a,b ,有a+b与a-b同奇或同偶性质8:奇数的平方可以写作4k+1 ,偶数的平方可以写作4k【习题精讲】【例1】下列算式的得数是奇数还是偶数?(1) 29+30+31+……+87+88(2) (200+201+202+......+288)-(151+152+153+ (233)(3) 35+37+39+41+……+97+99【例2】能否在下式的“□”内填入加号或减号,使等式成立,若能请填入符号,不能请说明理由。
(1) 1□ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=10(2) 1□ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=27【例3】能否从四个3,三个5,两个7中选出5个数,使这5个数的和等于22 【例4】是否存在自然数a和b,使得ab(a+b)=115?【例5】是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=45327?【例6】你能不能将自然数1到9分别填入3×3的方格表中,使得每一行中的三个数之和都是偶数?【例7】任意交换某个三位数的数字顺序,得到一个新的三位数,原三位数与新三位数之和能否等于999?【例8】两个四位数相加,第一个四位数每个数码都小于5,第二个四位数仅仅是第一个四位数的四个数码调换了位置,两个数的和可能是7356吗?为什么?【例9】元旦前夕,同学们相互送贺年卡.每人只要接到对方贺年卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数,还是偶数?为什么?【例10】a、b、c三个数的和与它们的积的和为奇数,问这三个数中有几个奇数?【例11】沿着河岸长着8丛植物,相邻两丛植物上所结的浆果数目相差1个.问:8丛植物上能否一共结有225个浆果?说明理由.【例12】在ll张卡片上各写有一个不超过4的数字.将这些卡片排成一行,得到一个1l位数;再将它们按另一种顺序排成一行,又得到一个1l位数.证明:这两个11位数的和至少有一位数字是偶数.【例13】圆桌旁坐着2k个人,其中有k个物理学家和k个化学家,并且其中有些人总说真话,有些人则总说假话.今知物理学家中说假话的人同化学家中说假话的人一样多.又当问及:“你的右邻是什么人”时,大家全部回答:“是化学家.”证明:k为偶数.【作业】1、是否可在下列各数之间添加加号或者减号,使得等式成立?1 2 3 4 5 6 7 8 9 10=36若可以,请写出符合条件的等式;若不可以,请说明理由。
数论综合(小升初)
小升初数论综合知识概要一、奇数与偶数:1、判断一个多位数奇数还是偶数,只要看这个数的个位,个位是奇数,这个数就是奇数,个位是偶数,这个数就是偶数。
2、加减法结果的奇偶性判断方法:只看算式中奇数的个数,个数是奇数,结果就是奇数;个数是偶数,结果就是偶数。
(奇数个奇数的和或差还是奇数)3、乘法结果的奇偶性判断方法:只看有没有偶数,有偶数,结果就是偶数;无偶数,结果就是奇数。
(有偶则偶,无偶为奇)4、数列与奇偶数个数结合时,利用周期问题的知识解决。
二、因数与倍数:(一)最大公约数与最小公倍数如果一个自然数a 能被自然数b (不为零)整除,则称a 是b 的倍数,b 是a 的约数。
1、 几个自然数公有的约数,叫做这几个自然数的公约数。
公约数中最大的一个公约数,称为这几个自然数的最大公约数。
一般用符号()a b ,表示a 、b 的最大公约数。
公约数只有1的两个数,这两个数互质。
2、 几个自然数公有的倍数,叫做这几个自然数的公倍数。
公倍数中最小的一个大于零的公倍数,叫做这几个数的最小公倍数。
一般用符号[]a b ,表示a 、b 的最小公倍数。
3、最大公约数和最小公倍数之间的关系设a 、b 为两个正整数,则()a b ,和[]a b ,有如下关系(,)[,][,]=(,)ab ab a b a b a b a b =⨯或 4、求最大公约数和最小公倍数常用的方法:(1)分解质因数法;(2)短除法;(3)辗转相除法。
(二)最大公约数与最小公倍数的常用性质两个自然数分别除以它们的最大公约数,所得的商互质。
如果m 为A 、B 的最大公约数,且A ma =,B mb =,那么a b 、互质,所以A 、B 的最小公倍数为mab ,所以最大公约数与最小公倍数有如下一些基本关系:①A B ma mb m mab ⨯=⨯=⨯,这两个数的积等于两个数的最大公约数与最小公倍数之积;②两个数的和等于最大公约数乘这两个数独有因数的和③两个数的差等于最大公约数乘这两个数独有因数的差;④两个数的最小公倍数除以最大公约数等于两个数独有因数的乘积;⑤两个数的最小公倍数等于两个数的最大公约数乘两个数的独有因数。
奥数杯赛-第3讲-专题3-数论综合-学生版
奥数杯赛-第3讲-专题3-数论综合同学须知:本讲内容比较多,倍数、余数、质数、合数,都要涉及到,题量不能太大,所以,基本上就是讲基础。
内容设计25道题,尽量涵盖数论的基本问题。
课后练习5道题。
【基本特点汇总】整除的一些基本性质:1、尾数判断法:(1)能被2、5整除的数的特征:个位数字能被2或5整除。
【尾数系】(2)能被4、25整除的数的特征:末两位能被4和25整除。
【双尾数】(3)能被8、125整除的数的特征:末三位能被8和125整除。
【三尾数】2、数字求和法:能被3、9整除的数的特征:各个数位的数字之和能被3或9整除;弃3法,弃9法。
3、奇偶位求差法:能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。
(大减小)4、和的整除性与差整除性:两个数如果都能被自然数a整除,那么他们的和与差也能被a整除。
5、能被7、11、13整除的数的特征:求末三位数与之前的数之差(大减小)6、能被99整除的数的特征:两位截断求和(从右向左截断)。
【1】能同时被2,3,5整除的最大的三位数是()。
【2】能同时被2,5,7整除的最大的五位数是()。
【3】1到100之内所有不能被3整除的数的和是()。
【4】小猪写了一个两位数59,小牛写了一个两位数89,他们让小羊写一个一位数放在59和89之间拼成一个五位数8959□,使得这个五位数能被7整除,那么小羊写的数应该是()。
【提示】后三位截断法+尝试法。
【5】如果九位数789AB 1234能被99整除,那么AB 代表的两位数是()。
【6】(试除法)在1992后面补上三个数字,组成7位数,使他能被2,3,5,11整除,这个七位数最小值是()。
【提示】首先求出2,3,5,11的最小公倍数,用1992000除以最小公倍数(试除法),然后采用“补余”法,求出最小值。
【7】特点:余数的和等于(被除数)和的余数;原则上余数小于除数,特殊情况下除外。
有一个自然数,用它去除63、91、129得到3个余数的和是25,这个自然数是()。
数论综合
被世人誉为数学王子的德国数学家高斯曾经说过“如果说数学是科学的皇后,那么数论是数学皇后的皇冠。
” 大家熟知的“费马大定理”,“哥德巴赫猜想”就是这个皇冠上璀璨的明珠。
有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
1. 回顾数论知识体系;2. 精讲数论经典范例。
【例1】 加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?【分析】为了使生产均衡,则每道工序每小时生产的零件个数应相等,设第一、二、三道工序上分别有A 、B 、C 个工人,有61015A B C k ===,那么k 的最小值为6,10,15的最小公倍数,即[]6,10,1530=。
所以5A =,3B =,2C =,则三道工序最少共需要53210++=名工人.【例2】 甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?【分析】对90分解质因数:902335=⨯⨯⨯。
因为5|126,所以5|甲,即甲中不含因数5,于是乙必含因数5。
因为2|105,所以2|乙,即乙中不含因数2,于是甲必含2。
因为9|105,所以9|乙,即乙最多含有一个因数3,甲必含9。
综上所述,甲为18的倍数,所以只能是18。
注:两个数的最小公倍数含有两数的所有质因子,并且这些质因数的个数为两数中此质因数的最大值.如322357a =⨯⨯⨯,32235711b =⨯⨯⨯⨯,则A 、B 的最小公倍数含有质因子2,3,5,7,11,并且它们的个数为a 、b 中含有此质因子较多的那个数的个数.即依次含有3个,3个,2个,1个,1个,即332[,]235711a b =⨯⨯⨯⨯。
最新小学奥数 数论综合问题(绝对经典)
最新小学奥数 数论综合问题板块一 质数合数【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31.【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=⨯=⨯=⨯,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11.【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多可以组成6个质数.【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数分别是多少?【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=⨯,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了.把九个三位数分解:111373=⨯、222376743=⨯=⨯、333379=⨯、4443712746=⨯=⨯、5553715=⨯、6663718749=⨯=⨯、7773721=⨯、88837247412=⨯=⨯、9993727=⨯. 把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18.板块二 余数问题【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=⨯⨯,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个.【例 7】 有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】 (法1) 39336-=,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【例 8】 (2005年全国小学数学奥林匹克试题)有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【解析】 (70110160)50290++-=,50316......2÷=,除数应当是290的大于17小于70的约数,只可能是29和58,11058 1......52÷=,5052>,所以除数不是58.7029 2......12÷=,11029 3......23÷=,16029 5......15÷=,50152312=++,所以除数是29【巩固】 (2002年全国小学数学奥林匹克试题)用自然数n 去除63,91,129得到的三个余数之和为25,那么n=________.【解析】 n 能整除258251299163=-++.因为2538...1÷=,所以n 是258大于8的约数.显然,n 不能大于63.符合条件的只有43.【例 9】 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【解析】 这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90164254+=后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是25422034-=的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是17,那么他去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.【例 10】 甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?【解析】 根据题意,这三个数除以A 都有余数,则可以用带余除法的形式将它们表示出来:11603A K r ÷= 22939A K r ÷= 33393A K r ÷=由于122r r =,232r r =,要消去余数1r , 2r , 3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:11603A K r ÷= ()22939222A K r ⨯÷= ()33393424A K r ⨯÷= 这样余数就处理成相同的.最后两两相减消去余数,意味着能被A 整除.93926031275⨯-=,3934603969⨯-=,()1275,96951317==⨯.51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以A 等于17.【例 11】 (2003年南京市少年数学智力冬令营试题) 20032与22003的和除以7的余数是________.【解析】 找规律.用7除2,22,32,42,52,62,…的余数分别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为20033667222⨯+=,所以20032除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以22003除以7余1.故20032与22003的和除以7的余数是415+=.【巩固】2008222008+除以7的余数是多少? 【解析】 328=除以7的余数为1,200836691=⨯+,所以200836691366922(2)2⨯==⨯+,其除以7的余数为:669122⨯=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=.【例 12】 (2009年走美初赛六年级)有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?【解析】 由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数.所以这串数除以5的余数分别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以发现这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5的倍数. 由于200954014÷=,所以前2009个数中,有401个是5的倍数.【巩固】著名的裴波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【解析】 斐波那契数列的构成规则是从第三个数起每一个数都等于它前面两个数的和,由此可以根据余数定理将裴波那契数列转换为被3除所得余数的数列:1、1、2、0、2、2、1、0、1、1、2、0……第九项和第十项连续两个是1,与第一项和第二项的值相同且位置连续,所以裴波那契数列被3除的余数每8个一个周期循环出现,由于2008除以8的余数为0,所以第2008项被3除所得的余数为第8项被3除所得的余数,为0.【例 13】 (1997年全国小学数学奥林匹克试题)将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是 ________.【解析】 本题第一步是要求出第1997个数字是什么,再对数字求和.19~共有9个数字,1099~共有90个两位数,共有数字:902180⨯= (个), 100999~共900个三位数,共有数字:90032700⨯= (个),所以数连续写,不会写到999,从100开始是3位数,每三个数字表示一个数,(19979180)3602......2--÷=,即有602个三位数,第603个三位数只写了它的百位和十位.从100开始的第602个三位数是701,第603个三位数是9,其中2未写出来.因为连续9个自然数之和能被9整除,所以排列起来的9个自然数也能被9整除,702个数能分成的组数是:702978÷= (组),依次排列后,它仍然能被9整除,但702中2未写出来,所以余数为9-27 =.【例 14】 有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和.【解析】 本题条件仅给出了两个乘数的数字之和,同时发现乘积的一部分已经给出,即乘积的一部分数字之和已经给出,我们可以采用弃九法原理的倒推来构造出原三位数.因为这是一个一定正确的算式,所以一定可以满足弃九法的条件,两个三位数除以9的余数分别为1和8,所以等式一边除以9的余数为8,那么□1031除以9的余数也必须为8,□只能是3.将31031分解质因数发现仅有一种情况可以满足是两个三位数的乘积,即31031311001143217=⨯=⨯所以两个三位数是143和217,那么两个三位数的和是360【例 15】 设20092009的各位数字之和为A ,A 的各位数字之和为B ,B 的各位数字之和为C ,C 的各位数字之和为D ,那么D =?【解析】 由于一个数除以9的余数与它的各位数字之和除以9的余数相同,所以20092009与A 、B 、C 、D 除以9都同余,而2009除以9的余数为2,则20092009除以9的余数与20092除以9的余数相同,而6264=除以9的余数为1,所以()334200963345652222⨯+==⨯除以9的余数为52除以9的余数,即为5.另一方面,由于20092009803620091000010<=,所以20092009的位数不超过8036位,那么它的各位数字之和不超过9803672324⨯=,即72324A ≤;那么A 的各位数字之和9545B <⨯=,B 的各位数字之和9218C <⨯=,C 小于18且除以9的余数为5,那么C 为5或14,C 的各位数字之和为5,即5D =.板块三 完全平方数【例 16】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】 完全平方数,其所有质因数必定成对出现.而327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048⨯⨯=<<⨯⨯=,所以221⨯、222⨯、……、2231⨯都满足题意,即所求的满足条件的数共有31个.【例 17】 一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?【解析】 设这个数减去63为2A ,减去100为2B ,则()()221006337371A B A B A B -=+-=-==⨯,可知37A B +=,且1A B -=,所以19A =,18B =,这样这个数为218100424+=.【巩固】 能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?【解析】 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以54不可能等于两个平方数的差,那么题中所说的数是找不到的.【例 18】 有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为 .【解析】 考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的.设中间数是x ,则它们的和为5x , 中间三数的和为3x .5x 是平方数,设2255x a =⨯,则25x a =,2231535x a a ==⨯⨯是立方数,所以2a 至少含有3和5的质因数各2个, 即2a 至少是225,中间的数至少是1125,那么这五个数中最小数的最小值为1123.板块四 位值原理【例 19】 (美国小学数学奥林匹克)把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【解析】 设原来的两位数为ab ,交换后的新的两位数为ba ,根据题意,(10)(10)9()45ab ba a b b a a b -=+--=-=,5a b -=,原两位数最大时,十位数字至多为9,即9a =,4b =,原来的两位数中最大的是94.【巩固】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.【解析】 设原数为abcd ,则新数为dcba ,(100010010)(100010010)999()90()dcba abcd d c b a a b c d d a c b -=+++-+++=-+-.根据题意,有999()90()8802d a c b -+-=,111()10()97888890d a c b ⨯-+⨯-==+.推知8d a -=,9c b -=,得到9d =,1a =,9c =,0b =,原数为1099.【例 20】 (第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【巩固】 (迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数.【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++ 所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【巩固】 a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>.若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.板块五 进制问题【例 21】 在几进制中有413100⨯=?【解析】 利用尾数分析来解决这个问题:由于101010(4)(3)(12)⨯=,由于式中为100,尾数为0,也就是说已经将12全部进到上一位.所以说进位制n 为12的约数,也就是12,6,4,3,2中的一个.但是式子中出现了4,所以n 要比4大,不可能是4,3,2进制.另外,由于101010(4)(13)(52)⨯=,因为52100<,也就是说不到10就已经进位,才能是100,于是知道10n <,那么n 不能是12.所以,n 只能是6.【巩固】 算式153********⨯=是几进制数的乘法?【解析】 注意到尾数,在足够大的进位制中有乘积的个位数字为4520⨯=,但是现在为4,说明进走20416-=,所以进位制为16的约数,可能为16、8、4或2.因为原式中有数字5,所以不可能为4、2进位,而在十进制中有1534253835043214⨯=<,所以在原式中不到10就有进位,即进位制小于10,于是原式为8进制.【例 22】 在6进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 (abc )6 =a ×62+b ×6+c=36a+6b+c ;(cba )9=c ×92+b ×9+a=81c+9b+a ;所以36a+6b+c=81c+9b+a ;于是35a=3b+80c ;因为35a 是5的倍数,80c 也是5的倍数.所以3b 也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c ;则7a=16c ;(7,16)=1,并且a 、c ≠0,所以a=16,c=7.但是在6,9进制,不可以有一个数字为16.②当b=5,则35a=3×5+80c ;则7a=3+16c ;mod 7后,3+2c ≡0.所以c=2或者2+7k (k 为整数).因为有6进制,所以不可能有9或者9以上的数,于是c=2;35a=15+80×2,a=5.所以(abc )6 =(552)6 =5×62+5×6+2=212.这个三位数在十进制中为212.课后练习:练习 1. 三个质数的乘积恰好等于它们的和的7倍,求这三个质数.【解析】 设这三个质数分别是a 、b 、c ,满足7()abc a b c =++,则可知a 、b 、c 中必有一个为7,不妨记为a ,那么7bc b c =++,整理得(1)(1)8b c --=,又81824=⨯=⨯,对应的b =2、c =9(舍去)或b =3、c =5,所以这三个质数可能是3,5,7练习 2. 有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14.练习 3. 将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:1234567891011121320072008,试求这个多位数除以9的余数.【解析】 以19992000这个八位数为例,它被9除的余数等于()19992000+++++++被9除的余数,但是由于1999与()1999+++被9除的余数相同,2000与()2000+++被9除的余数相同,所以19992000就与()19992000+被9除的余数相同.由此可得,从1开始的自然数1234567891011121320072008被9除的余数与前2008个自然数之和除以9的余数相同.根据等差数列求和公式,这个和为:()12008200820170362+⨯=,它被9除的余数为1. 另外还可以利用连续9个自然数之和必能被9整除这个性质,将原多位数分成123456789,101112131415161718,……,199920002001200220032004200520062007,2008等数,可见它被9除的余数与2008被9除的余数相同.因此,此数被9除的余数为1.练习 4. 在7进制中有三位数abc ,化为9进制为cba ,求这个三位数在十进制中为多少?【解析】 首先还原为十进制:27()77497abc a b c a b c =⨯+⨯+=++;29()99819cba c b a c b a =⨯+⨯+=++.于是497819a b c c b a ++=++;得到48802a c b =+,即2440a c b =+.因为24a 是8的倍数,40c 也是8的倍数,所以b 也应该是8的倍数,于是0b =或8.但是在7进制下,不可能有8这个数字.于是0b =,2440a c =,则35a c =.所以a 为5的倍数,c 为3的倍数.所以,0a =或5,但是,首位不可以是0,于是5a =,3c =;所以77()(503)5493248abc ==⨯+=.于是,这个三位数在十进制中为248.月测备选:【备选1】某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?把它们写出来.【解析】 有六个这样的数,分别是11,13,17,23,37,47.【备选2】(2002年全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.【解析】 因为被除数减去8后是除数的4倍,所以根据和倍问题可知,除数为7914884415=+÷---)()(,所以,被除数为3248479=+⨯.【备选3】1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.【解析】 先将1016分解质因数:310162127=⨯,由于1016a ⨯是一个完全平方数,所以至少为422127⨯,故a 最小为2127254⨯=.【备选4】在几进制中有12512516324⨯=?【解析】 注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10n <.再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3.因为出现了6,所以n 只能是7.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整数可以分成奇数和偶数两大类。
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
偶数通常可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。
任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a kn p p p p =⨯⨯⨯⨯L ,其中k p p p ,⋯,,21为质数,k a a a ,⋯,,21为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式。
奇数与偶数有如下的运算性质:(1)偶数±偶数=偶数,奇数±奇数=偶数;(2)偶数±奇数=奇数;(3)偶数个奇数相加得偶数;(4)奇数个奇数相加得奇数;(5)偶数×奇数=偶数, 奇数×奇数=奇数。
质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数及约数的和的时候都要用到这个标准式.分解质因数往往是解数论类题目的突破口,它可以帮助我们分析数字的特征。
例1 有苹果、橘子各一筐,苹果有240个,橘子有313个,把这两筐水果平均分给小朋友,已知苹果分到最后还剩2个,橘子分到最后还剩7个,那么最多有多少个小朋友?分析与解:从240个苹果中去掉2个,即将238个苹果平均分给这些小朋友,没有剩余;从313个橘子中去掉7个,即将306个橘子平均分给这些小朋友,也没有剩余。
那么238和306都是这些小朋友人数的倍数,这些小朋友的人数是238和306的公约数。
求最多有多少个小朋友,实际上就是在求238与306的最大公约数。
(238,306)=34,所以最多有34个小朋友。
答:最多有34个小朋友。
例2 甲、乙、丙3个自然数之和是100,甲数除以乙数或丙数除以甲数,商都是5,余数都是1。
问:乙数是多少?分析与解:设乙数为x ,则甲数是5x +1,丙数是5(5x +1)+1。
根据题意,得x +5x +1+5(5x +1)+1=100x +5x +1+25x +5+1=10031x =93x =3例3 某数除以3余1、除以4余2、除以5余3,除以6余4,这个数最小是多少? 分析与解:观察后发现:除数和余数均相差2。
所以将这个数添上2后,它分别能被3、4、5、6整除。
要求这个数最小是多少,就要先求出3、4、5、6的最小公倍数,再减去2即可。
[3,4,5,6]-2=60-2=58。
答:这个数最小是58。
例4 如果某个整数除482、992、1094都余74,那么,这个整数是几?分析与解:分别从482、992、1094中减去余数74,新得到的3个数都是这个整数的倍数。
482-74=408,992-74=918,1094-74=1020,即这个整数是408、918、1020的公约数。
(408,918,1020)=102,这个整数只要是102的因数即可,又根据已知余数是74(余数要比除数小),所以这个整数只能是102。
答:这个整数是102。
例5 已知4434421Λ19911991199119911991个=a 。
问:a 除以13所得的余数是几?分析与解:观察数字a 的特点我们可以发现,1991=9999-8008=9999-1001×8,其中1001=7×13×11,即1001是13的倍数,所以8008也是13的倍数,而9999=1991+8008,所以9999与1991除以13所得的余数相同,问题可转化为研究444344421Λ94199199991991999999999999)个(个⨯==b 除以13的余数。
由分析可知,a 与b 同余。
整理4434421Λ1)41991(1111111111119个⨯⨯=b ,注意到111111=1001×111能被13整除,而1991×4=6×1327+2,所以119110011111111911111111111191)132761]213276[⨯+⨯=⨯=⨯+⨯4434421Λ4434421Λ个(个)(b ,数字b 与99同余。
又因为99=7×13+8,所以b除以13余8,也就是说a除以13也余8。
例6 从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。
按照上面的过程不断地重复,最后剪得的正方形的边长是多少毫米?分析与解:从长2002毫米、宽847毫米的长方形纸片上首先可剪下边长为847毫米的正方形,这样的正方形的个数恰好是2002除以847所得的商。
而余数恰好是剩下的长方形的宽,于是有:2002÷847=2……308,847÷308=2……231,308÷231=1……77。
231÷77=3。
不难得知,最后剪得的正方形的边长为77毫米。
例7已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质。
请写出所有可能的答案。
分析与解:设这三个自然数为a、b、c,且a<b<c,因为两两均不互质,所以它们均是合数。
小于20的合数有4,6,8,9,10,12,14,15,16,18。
其中只含1种因数的合数不满足题意,所以只剩下6,10,12,14,15,18这6个数,但是14=2×7,其中只有14含有质因数7,无法找到两个不与14互质的数。
所以只剩下6,10,12,15,18这5个数存在可能的排列。
所以,所有可能的答案为(6,10,15);(10,12,15);(10,15,18)。
例8图中两个圆只有一个公共点A,大圆直径为48厘米,小圆直径为30厘米。
两只甲虫同时从点A出发,按箭头所指的方向以相同的速度分别爬了几圈时,两只甲虫首次相距最远?分析与解:圆内的任意两点,以直径两端点的距离最远。
如果沿小圆爬行的甲虫爬到A 点,沿大圆爬行的甲虫恰好爬到B点,则两只甲虫的距离最远。
小圆周长为π×30=30π,大圆周长为48π,(一半便是24π),30与24的最小公倍数为120。
120÷30=4 120÷24=5所以小圆上的甲虫爬了4圈,大圆上的甲虫爬了5个12圆周长,即爬到过A的直径的另一点B时,两只甲虫首次相距最远。
(答题时间:30分钟)一、有一个整数,用它去除70、110、160得到的3个余数的和是50,求这个整数。
二、从1~5这5个自然数中任意选出4个数组成一个能被11整除的四位数。
问:这样的四位数共有多少个?三、甲、乙两个自然数,它们的和被3除余1,它们的差能被3整除,求甲数被3除的余数。
四、有苹果、橘子各一筐,苹果有240个,橘子有313个,把这两筐水果平均分给小朋友,已知苹果分到最后还剩2个,橘子分到最后还剩7个,那么最多有多少个小朋友?五、已知被除数比除数多78,被除数除以除数所得的商为6,余数为3,求被除数和除数各是多少?一、解:分别从70、110、160中去掉对应得到的余数,新得到的3个数都是所求整数的倍数,因此,它们的和也应是这个整数的倍数。
70+110+160-50=290,根据整除的性质,即290也是这个整数的倍数。
将290分解质因数,得到290=2×5×29,要满足3个余数之和是50,只有除数为29时,才符合条件,因此这个整数是29。
二、解:能被11整除的四位数,必须满足千位、十位上的数字之和等于百位、个位上的数字之和这个条件,因此要选出两对“和相等”的数,如:(1,4)和(2,3),可以组成8个满足条件的四位数:1243、1342、4213、4312、2134、2431、3124、3421。
同理,还可以选出(1,5)和(2,4)、(2,5)和(3,4)这两组数,每一组都能分别组成8个满足条件的四位数。
所以,这样的四位数共有8×3=24(个)。
三、解:甲、乙两数的差能被3整除,即甲、乙两数被3除的余数相同。
一个自然数被3除的余数只有3种情况,即0、1、2。
下面分3种情况讨论:(1)如果甲、乙两数都能被3整除,那么它们的和也能被3整除,不符合题意;(2)如果甲、乙两数被3除都余1,那么它们的和被3除余2,也不符合题意;(3)如果甲、乙两数被3除都余2,那么它们的和被3除正好余1。
答:甲数被3除的余数是2。
四、解:从240个苹果中去掉2个,即将238个苹果平均分给这些小朋友,没有剩余;从313个橘子中去掉7个,即将306个橘子平均分给这些小朋友,也没有剩余。
那么238和306都是这些小朋友人数的倍数,这些小朋友的人数是238和306的公约数。
求最多有多少个小朋友,实际上就是在求238与306的最大公约数。
(238,306)=34,所以最多有34个小朋友。
答:最多有34个小朋友。
五、解:如果将被除数减去3,那么它正好是除数的6倍,此时,被除数比除数多78-3=75,75就是除数的(6-1)倍。
所以,除数是75÷(6-1)=15,被除数是15+78=93。