高中数学 3.4 基本不等式1教案 新人教A版必修5

合集下载

《基本不等式(第1课时)》教学设计新

《基本不等式(第1课时)》教学设计新

教师学科教案[20-20学年度第一学期]任教学科:______________任教年级:______________任教老师:______________XX市实验学校课题:基本不等式(第1课时)学校:北京市顺义牛栏山第一中学学科:数学姓名:***一、指导思想与理论依据布鲁姆将教育目标划分为认知领域、情感领域和操作领域三个领域,共同构成教育目标体系•认知目标又分类为:记忆、理解、应用、分析、评价、创造,每个层次的要求各不相同,因此教学目标的确定应结合课程内容和学生的实际情况,符合学生的认知规律.学生是课堂中的主体,教学设计一定要从学生的认知水平出发,充分考虑学生的已有经验、学习基础、思维特点,立足于学生的"最近发展区”;用学生的眼光看数学,学生在理解的基础上,由浅入深,由感性到理性地设计问题,才能真正引导和帮助学生思考问题、分析问题和解决问题.同时《高中数学学科德育指导纲要》指出,在高中数学教学中加强德育,对于全面推进素质教育,培养社会主义的建设者和接班人具有重要意义.因此在教学中要关注学生的情感、态度和价值观,渗透德育内容.教学活动是师生积极参与、交流互动、共同发展的过程.有效的数学教学活动是学生学与教师教的统一.《普通高中数学课程标准(实验)》指出:“学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探究、动手实践、合作交流、阅读自学等学习数学的方式……"、“还应注重提高学生的数学思维能力”.本节课从学生的最近发展区出发,通过典型具体例子的分析和学生自主地观察、探索活动,亲身经历、体验发现规律的过程,学会如何去研究问题的方法,体会蕴含在其中的数学思想方法,把数学的学术形态通过适当的方式转化为学生易于接受的教育形态,培养学生交流合作的意识.二、教学背景分析(一)教学内容分析本节课的内容是人教A版《数学(必修5)》第三章3.4基本不等式:J^≤土^的第1课时.“基本不等式”在教学中安排3课时,第1课时的内容是基本不等式的形成、证明及其几何解释,正确把握基本不等式的结构和等号成立的条件;第2课时的内容是能用基本不等式求简单的最值问题,并理解其应用条件“正、定、等”;第3课时的内容是从实际问题中抽象出具体的基本不等式问题,并应用基本不等式处理最值问题,也就是将基本不等式作为处理优化问题的一种模型.基本不等式反映了实数的两种基本运算(即加法和乘法)所引出的大小变化.这一简单朴实、平易近人的本质,恰是这一不等式变化多端、妙用无穷的源头,体现了运算带给数的巨大力量.这一本质不仅可以从不等式的代数结构上得到表现,而且也有几何意义,由此而生发出的问题在训练学生的代数推理能力和几何直观能力上都发挥了良好的作用。

湖南省邵阳市隆回县第二中学高中数学 3.4基本不等式导学案 新人教A版必修5

湖南省邵阳市隆回县第二中学高中数学 3.4基本不等式导学案 新人教A版必修5

湖南省邵阳市隆回县第二中学高中数学 3.4基本不等式导学案 新人教A 版必修5【学习目标】1学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.通过实例探究抽象基本不等式;3.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣【自主学习】阅读教材P97—98,找出疑惑之处。

问题1: 对于任意实数 a 、b ,我们有22b a + ab 2,当且仅当 时,等号成立。

你能给出它的证明吗?问题2:对于任意正实数 a 、b ,我们有b a + ab 2,当且仅当 时,等号成立。

(的算术平均数,为正数称b a b a ,2+ . , 的几何平均数为正数b a ab ) 你能给出它不同的证明方法吗?问题3:0x >时,当x 取何值时,1x x+的值最小?最小值是多少?【合作探究】例1、(1)用篱笆围一个面积为1002m 的矩形菜园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?(2)一段长为36m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。

最大面积是多少?【目标检测】(A 级、全体学生做)1、已知x >0,若xx 81+的值最小,则x 为 2、若实数a 、b 满足,2=+b a 则b a 33+的最小值为3、已知直角三角形的面积等于50,两条直角边各为多少时,两条直角边的和最小,最小是多少?4、用20cm 长的铁丝折成一积个面最大的矩形,应当怎样折?(B 级选做题)当1->x 时,求函数113)(2++-=x x x x f 的值域。

学习反思:本节课我学到了什么?本节课我的学习效率如何?本节课还有哪些没学懂?3.4基本不等式2b a ab +≤(第二课时) 【学习目标】1 、会应用基本不等式求某些函数的最值,能够解决一些简单的实际问题;2 、能综合运用函数关系,不等式知识解决一些实际问题.【自主学习】)0,0(>>b a ,当 时等号成立。

人教高中 数学 必修五 3.4 基本不等式教学设计

人教高中 数学 必修五 3.4  基本不等式教学设计

人教高中数学必修五 3.4 基本不等式教学设计《基本不等式》教学设计教材:人教版《普通高中课程标准实验教科书·数学(A版)》必修5课题:3.4 基本不等式(第一课时)一、教材分析《基本不等式》是高中教材人教A版必修五第三章第三节的内容,是《不等式》这一章中继一元二次不等式、简单线性规划之后,从几何背景(赵爽的弦图)中抽离出的基本结论,是证明其他不等式成立的重要依据,也是求解最值问题的有力工具之一。

就本章的编写而言,教材讲究从直观性上学习,注重每个数学模型引领数学思想的教材编排暗线,并且都体现出遵循从几何背景入手,强调数形结合思想。

本节内容在此基本上渗透不等式的证明方法(比较法、综合法、分析法),并且会在后续学习时再次得到加强。

基本不等式的学时安排是3课时,它涉及基本不等式的推导教学和求解最值问题两大部分。

本节课是基本不等式教学的第一课时,其主要学习任务是通过赵爽弦图中面积的直观比较、抽象概括,提炼出不等式222(,)+≥∈。

a b ab a b R在此基础上,通过演绎替换、证明探究、数形结合及实际应用等四种不同的角度引导学生认识基本不等式。

其中基本不等式的证明是从代数、几何多方面展开,既有逻辑推理,又有直观的几何解释,使学生充分运用数形结合的思想方法,进一步培养其抽象概括能力和推理论证能力。

这就使得不等式的证明成为本节课的核心内容。

二、教学重难点教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程。

教学难点:从不同角度探索基本不等式的证明,能利用基本不等式的模型求解函数最值。

三、教学目标《课程标准》对本节课的要求有以下两条:①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最值问题。

根据《课标》要求和本节教学内容,并考虑学生的接受能力,我将本节课的教学目标确定为:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些国际数学家大会被誉为是数学界的奥林匹克盛会,每次大会上都会宣布菲尔兹奖获奖名单。

2020版高中数学第3章不等式3.4基本不等式第1课时基本不等式课件新人教A版必修5

2020版高中数学第3章不等式3.4基本不等式第1课时基本不等式课件新人教A版必修5

『规律总结』 在基本不等式应用过程中要注意“一正、二定、三相 等”.
一正,a,b均为正数; 二定,不等式一边为定值; 三相等,不等式中的等号能取到,即a=b有解.
〔跟踪练习 1〕 下列结论中正确的是( C ) A.若 a>0,则(a+1)(1a+1)≥2 B.若 x>0,则 lnx+ln1x≥2 C.若 a+b=1,则 a2+b2≥12 D.若 a+b=1,则 a2+b2≤12
新课标导学
数学
必修⑤ ·人教A版
第三章
不等式
3.4 基本不等式 ab≤a+2 b
第1课时 基本不等式
1
自主预习学案
2
互动探究学案
3
课时作业学案
自主预习学案
如图是第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的 弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民的热情好 客.那么你能在这个图中找出一些相等关系或不等关系吗?
〔跟踪练习 2〕
(1)已知 a>0,b>0,则1a+1b+2 ab的最小值是( C )
A.2
B.2 2
C.4
D.5
(2)已知 f(x)=x+1x-2(x<0),则 f(x)有( C )
A.最大值为 0
B.最小值为 0
C.最大值为-4
D.最小值为-4
[解析] (1)因为 a>0,b>0,
所以1a+1b+2 ab≥2 a1b+2 ab≥4
[解析] (1)∵m,n>0 且 m+n=16, 所以由基本不等式可得 mn≤(m+2 n)2=(126)2=64, 当且仅当 m=n=8 时,mn 取到最大值 64.∴12mn 的最大值为 32. (2)∵x>2,∴x-2>0, ∴x+x-4 2=x-2+x-4 2+2≥2 x-2·x-4 2+2=6, 当且仅当 x-2=x-4 2,即 x=4 时,等号成立.所以 x+x-4 2的最小值为 6.

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2学案(含解析)新人教A版必修5-新人教A

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2学案(含解析)新人教A版必修5-新人教A

3.4 基本不等式:ab≤a+b 2[目标] 1.了解基本不等式的代数式和几何背景;2.会用基本不等式进行代数式大小的比较及证明不等式;3.会用基本不等式求最值和解决简单的实际问题.[重点] 基本不等式的简单应用.[难点] 基本不等式的理解与应用.知识点一 两个不等式[填一填]1.重要不等式:对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式:如果a ,b ∈R +,那么ab ≤a +b2,当且仅当a =b 时,等号成立.其中a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数.所以两个正数的算术平均数不小于它们的几何平均数.[答一答]1.不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b2成立的条件有什么不同?提示:不等式a 2+b 2≥2ab对任意实数a ,b 都成立;ab ≤a +b2中要求a ,b 都是正实数.知识点二 基本不等式与最值[填一填]已知x ,y 都是正数,(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值.[答一答]2.利用基本不等式求最值时,我们应注意哪些问题?提示:(1)在利用基本不等式具体求最值时,必须满足三个条件:①各项均为正数;②含变数的各项的和(或积)必须是常数;③当含变数的各项均相等时取得最值.三个条件可简记为:一正、二定、三相等.这三个条件极易遗漏而导致解题失误,应引起足够的重视.(2)记忆口诀:和定积最大,积定和最小.3.在多次使用基本不等式求最值时,我们应注意什么问题?提示:在连续多次应用基本不等式时,我们要注意各次应用时不等式取等号的条件是否一致,若不能同时取等号,则需换用其他方法求出最值.4.两个正数的积为定值,它们的和一定有最小值吗?提示:不一定.应用基本不等式求最值时还要求等号能取到.如sin x 与4sin x ,x ∈(0,π2),两个都是正数,乘积为定值.但是由0<sin x <1,且sin x +4sin x 在(0,1)上为减函数,所以sin x +4sin x >1+41=5,等号不成立,取不到最小值.类型一 利用基本不等式证明不等式[例1] (1)已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca . (2)已知a ,b ,c 为正实数,且a +b +c =1, 求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.[分析] (1)左边是和式,右边是带根号的积式之和,所以用基本不等式,将和变积,并证得不等式.(2)不等式右边数字为8,使我们联想到左边因式分别使用基本不等式,可得三个“2”连乘,又1a -1=1-a a =b +c a ≥2bc a,可由此变形入手.[证明] (1)∵a >0,b >0,c >0,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0. ∴2(a +b +c )≥2(ab +bc +ca ),即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca .(2)∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=1-a a =b +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c.由上述三个不等式两边均为正,分别相乘,得⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 ≥2bc a ·2ac b ·2ab c=8.当且仅当a =b =c =13时,等号成立.1.利用基本不等式证明不等式,关键是所证不等式中必须有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果.2.注意多次运用基本不等式时等号能否取到.3.解题时要注意技巧,当不能直接利用不等式时,可将原不等式进行组合、构造,以满足能使用基本不等式的形式.[变式训练1] 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c≥9.证明:因为a >0,b >0,c >0,且a +b +c =1, 所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号. 类型二 利用基本不等式求最值[例2] (1)若x >0,求f (x )=4x +9x 的最小值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值;(4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[分析] 利用基本不等式求最值,当积或和不是定值时,通过变形使其和或积为定值,再利用基本不等式求解.[解] (1)∵x >0,∴由基本不等式得 f (x )=4x +9x≥24x ·9x=236=12, 当且仅当4x =9x,即x =32时,f (x )=4x +9x 取最小值12.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92. 当且仅当2x =3-2x ,即x =34时取“=”.∴y 的最大值为92.(3)∵x >2,∴x -2>0,∴x +4x -2=(x -2)+4x -2+2≥2(x -2)·4x -2+2=6.当且仅当x -2=4x -2,即x =4时,x +4x -2取最小值6.(4)∵x >0,y >0,1x +9y =1,∴x +y =(x +y )⎝⎛⎭⎫1x +9y =10+y x +9x y ≥10+29=16.当且仅当y x =9x y 且1x +9y =1时等号成立.即x =4,y =12时等号成立.∴当x =4,y =12时,x +y 有最小值16.求最值问题第一步就是“找”定值,观察、分析、构造定值是问题的突破口.找到定值后还要看“=”是否成立,不管题目是否要求写出符号成立的条件,都要验证“=”是否成立.[变式训练2] (1)已知lg a +lg b =2,求a +b 的最小值; (2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. 解:(1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100=20, 当且仅当a =b =10时,a +b 取到最小值20.(2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝⎛⎭⎫622=32, 当且仅当2x =3y ,且2x +3y =6时等号成立, 即x =32,y =1时,xy 取到最大值32.类型三 基本不等式的实际应用[例3] 特殊运货卡车以每小时x 千米的速度匀速行驶130千米,按规定限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升6元,而送货卡车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时140元.(1)求这次行车总费用y 关于x 的表达式.(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. [解] (1)设所用时间为t =130x(小时),y =130x ×6×⎝⎛⎭⎫2+x 2360+140×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×152x +13x 6,x ∈[50,100].(2)y =130×152x +13x 6≥525703,当且仅当130×152x =13x6,即x =4570∈[50,100]时,等号成立.故当x =4570千米/时,这次行车的总费用最低,最低费用的值为525703元.解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出答案.[变式训练3] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是160(单位:元).解析:设该长方体容器的长为x m ,则宽为4x m .又设该容器的总造价为y 元,则y =20×4+2⎝⎛⎭⎫x +4x ×10,即y =80+20⎝⎛⎭⎫x +4x (x >0).因为x +4x≥2x ·4x=4⎝⎛⎭⎫当且仅当x =4x ,即x =2时取“=”,所以y min =80+20×4=160(元).1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +ab ≥2成立的条件有( C )A .1个B .2个C .3个D .4个解析:当b a ,a b 均为正数时,b a +ab ≥2,故只须a 、b 同号即可.所以①、③、④均可以.2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( D ) A .a 2+b 2>2ab B .a +b ≥2ab C .1a +1b >2abD .b a +ab≥2解析:∵a ,b ∈R ,且ab >0, ∴b a >0,ab>0,∴b a +a b ≥2b a ×a b=2. 当且仅当b a =ab,即a =b 时取等号.3.设a ,b 为实数,且a +b =3,则2a +2b 的最小值为( B ) A .6 B .4 2 C .2 2 D .8解析:2a +2b ≥22a +b =223=4 2.4.已知0<x <1,则当x =12时,x (3-3x )取最大值为34.解析:3x (1-x )≤3(x +1-x 2)2=34,当且仅当x =1-x 即x =12时等号成立.5.已知a >0,b >0,c >0,求证: (1)b +c a +c +a b +a +b c ≥6;(2)b +c a ·c +a b ·a +b c≥8.证明:(1)b +c a +a +c b +a +b c =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c )≥2+2+2=6(当且仅当a =b =c 时取“=”).(2)b +c a ·c +a b ·a +b c ≥2bc a ·2ac b ·2abc=8abc abc=8(当且仅当a =b =c 时取“=”).——本课须掌握的两大问题1.基本不等式成立的条件:a >0且b >0;其中等号成立的条件:当且仅当a =b 时取等号,即若a ≠b 时,则ab ≠a +b 2,即只能有ab <a +b2. 2.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,即(1)一正:符合基本不等式a +b2≥ab 成立的前提条件,a >0,b >0;(2)二定:化不等式的一边为定值;(3)三相等:必须存在取“=”号的条件,即“=”号成立. 以上三点缺一不可.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分项或配凑因式.。

【数学】3.4《基本不等式》教案(新人教A版必修5)(3课时)

【数学】3.4《基本不等式》教案(新人教A版必修5)(3课时)

课题: §3.4基本不等式2a b ab +≤第1课时授课类型:新授课 【教学目标】1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.过程与方法:通过实例探究抽象基本不等式;3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a b ab +≤的证明过程;【教学难点】 基本不等式2a b ab +≤等号成立条件【教学过程】1.课题导入基本不等式2a b ab +≤的几何背景:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系2.讲授新课1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。

设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。

这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。

当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+当22,()0,,()0,a b a b a b a b ≠->=-=时当时所以,0)(2≥-b a ,即.2)(22ab b a ≥+4.1)从几何图形的面积关系认识基本不等式2a b ab +≤特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥, 通常我们把上式写作:(a>0,b>0)2a b ab +≤2)从不等式的性质推导基本不等式2a b ab +≤用分析法证明:要证2a b ab +≥ (1)只要证 a+b ≥ (2) 要证(2),只要证 a+b- ≥0 (3) 要证(3),只要证 ( - )2 (4) 显然,(4)是成立的。

高中数学必修五课件:3.4-1《基本不等式》(人教A版必修5)

高中数学必修五课件:3.4-1《基本不等式》(人教A版必修5)

D
y
x
C
当且仅当 x=2y 时,等号成立 即x=12,y=6
因花此园解,面x这积x个最2y矩大2y2形,4,的最可长大得为面积1xy2是m162、72宽m为2 6m时,
18
变式:如图,用一段长为24m 的篱笆围一个一边 靠墙的矩形花园,问这个矩形的长、宽各为多少时, 花园的面积最大,最大面积是多少?
-1
=1,
当且仅当 x+1= x1+1, 即 x=0 时, 取“=”号.
∴当 x=0 时, 函数 f(x) 的最小值是 1.
26
2.

0<x<
1 2
,
求函数
y=x(1-2x)
的最大值.
分析:2 x+(1-2x) 不=1是为 常数.
配凑系数
解:
∵0<x<
1 2
,
∴1-2x>0.
∴y=x(1-2x)=
a2 b2≥2ab
当且仅当a=b时,等号成立 适用范围: a,b∈R 文字叙述为: 两数的平方和不小于它们积的2倍.
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
8
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
替换后得到: ( a )2 ( b )2≥2 a b 即: a b≥2 ab 即: a b≥ ab (a 0,b 0) 2
适用范围: a>0,b>0
在数学中,我们把
a
b 2
叫做正数a,b的算术平均数,
ab 叫做正数a,b的几何平均数;
文字叙述为: 两个正数的算术平均数不小于它们的几何平均数.

全国优质课——基本不等式教学设计

全国优质课——基本不等式教学设计

全国优质课——基本不等式教学设计(总7页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March《3.4基本不等式》教学设计一、教学内容解析:1、本节内容选自《普通高中课程标准实验教科书》(人教A版教材)高中数学必修5第三章第4节基本不等式,是在学习了不等式的性质、一元二次不等式的解法、线性规划的基础上对不等式的进一步的研究,本节是教学的重点,学生学习的难点,内容具有条件约束性、变通灵活性、应用广泛性等的特点;2、本节主要学习基本不等式的代数、几何背景及基本不等式的证明和应用,为选修4-5进一步学习基本不等式和证明不等式的基本方法打下基础,也是体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养的良好素材;3、在学习了导数之后,可用导数解决函数的最值问题,但是,借助基本不等式解决某些特殊类型的最值问题简明易懂,仍有其独到之处;4、在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学很多章节都有联系,尤其与函数、方程联系紧密,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点.二、学情分析:1、学生已经掌握的不等式的性质和作差比较法证明不等式对本节课的学习有很大帮助;2、学生逻辑推理能力有待提高,没有系统学习过证明不等式的基本方法,尤其对于分析法证明不等式的思路以前接触较少;3、对于最值问题,学生习惯转化为一元函数,根据函数的图像和性质求解,对于根据已知不等式求最值接触较少,尤其会忽略取等号的条件。

三、教学目标:1、知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题;2、过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养;3、情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过程中,体会数学的严谨性,发现数学的实用性.四、教学重点与难点:1、教学重点:基本不等式的推导及其简单应用2、教学难点:分析法证明基本不等式思路的获得和应用基本不等式求最值.五、教学策略分析:1、由情景1和情景2引入课题,可明确本堂的主要内容,使学生学习目标明确,进而激发学生的学习兴趣;2、精心设置“问题串”,由简到难,由感性到理性,一步步引导学生自主探究,小组讨论推导基本不等式,让学生感受知识发生发展深化的过程,也体现学生为主体,老师为主导的教学理念;3、为突破分析法证明基本不等式思路的获得这一教学难点,采用先学生小组讨论,再师生共同完成的策略;4、为突破应用基本不等式求最值这一难点,先由例题归纳应用基本不等式求最值的要点,然后趁热打铁设置两个练习,由简到难,由浅入深,采用学生板演,抢答和小组讨论等方式,及时发现问题,及时纠错,让“一正二定三相等”深入人心;5、对于转化为函数进而用函数的图像和性质求最值的问题,教师只作适当提示,不作为重点;6、课堂小结重视知识间的联系和研究问题的方法,并强调了数学思想方法和数学核心素养在数学学习中的作用。

人教A版高中数学必修5第三章 不等式3.4 基本不等式教案(3)

人教A版高中数学必修5第三章 不等式3.4 基本不等式教案(3)

基本不等式目的要求: 复习与掌握基本不等式及其运用。

重点难点: 利用基本不等式的运用技巧。

教学设计: 一、引入:我们已经学习过重要不等式 a²+b²≥2ab ,下面将它以定理的形式给出. 二、定理1 如果a, b ∈R, 那么a²+b²≥2ab.当且仅当a=b 时等号成立。

让学生自己给出证明.探究: 你能从几何的角度解释定理1吗?分析:a²与b²的几何意义是正方形面积,ab 的几何意义是矩形面积,可考虑从图形的面积角度解释定理。

几何意义:如图把实数a ,b 作为线段长度,以a ≥b 为例,在正方形ABCD 中,AB=a ;在正方形CEFG 中,EF=b.则 S 正方形ABCD+S 正方形CEFG=a ²+b ².2ab S S CEFG BCGH =+矩形矩形,其值等于图中有阴影部分的面积,它不大于正方形ABCD 与正方形CEFG 的面积和。

即a ²+b ²≥2ab.当且仅当a=b 时,两个矩形成为正方形,此时有 a ²+b ²=2ab 。

三、定理2:将定理1做简单变形即可得到定理2,如下:如果a,b>0,那么ab ba ≥+2,当且仅当a=b 时,等号成立.证明:因为 ()()ab b a b a b a 2222=≥+=+所以ab ba ≥+2, 上式当且仅当b a =,即a=b 时,等号成立。

其中2ba +为a,b 的算术平均,ab a,b 的几何平均,于是基本不等式可以表述为:两个正数的算术平均不小于它们的几何平均。

几何意义为:如图在直角三角形中,CO 、CD 分C别是斜边上的中线和高,设AD=a ,DB=b ,则由图形可得到基本不等式的几何解释。

四、.教学例题例3 求证:(1)在所有周长相同的矩形中,正方形的面积最大;(2)在所有面积相同的矩形中,正方形的周长最短。

高中数学第三章不等式3.4.1基本不等式课件新人教A版必修5

高中数学第三章不等式3.4.1基本不等式课件新人教A版必修5

一二三
二、基本不等式
【问题思考】 1.填空: (1)基本不等式
①当 a>0,b>0 时,有������+2������ ≥ ������������,当且仅当 a=b 时,等号成立;
②对于正数 a,b,常把������+2������叫做 a,b 的算术平均数,把 ������������叫做 a,b 的几
解(1)由题意知 x>0,由基本不等式得 f(x)=3x+1������2≥2 3������·1������2=2 36=12. 当且仅当 3x=1������2,即 x=2 时,f(x)取得最小值 12.故 f(x)的最小值是 12. (2)由 lg a+lg b=2,得 lg ab=2,即 ab=100,且 a>0,b>0, 因此由基本不等式可得 a+b≥2 ������������=2 100=20, 当且仅当 a=b=10 时,a+b 取到最小值 20.故 a+b 的最小值是 20. (3)由于 x,y 是实数,所以 2x>0,2y>0,于是
提示填表略,(1)当 x+y 是定值时,xy 有最大值,且最大值等于
������+������ 2
2
;(2)当 xy 是定值时,x+y 有最小值,且最小值等于 2
������������.
2.填空: 基本不等式与最值 已知x,y都是正数. (1)若x+y=s(和为定值),则当x=y时,积xy取得最大值. (2)若xy=p(积为定值),则当x=y时,和x+y取得最小值.
变式训练 2(1)已知 a,b,c,d 都是正数,求证:(ab+cd)(ac+bd)≥4abcd.

高中数学 3.4.1 基本不等式 的证明优秀教案 新人教A版必修5

高中数学 3.4.1 基本不等式 的证明优秀教案 新人教A版必修5

用心 爱心 专心 1 备课资料 一、课外阅读算术平均数不小于几何平均数的一种证明方法(局部调整法(1)设a 1,a 2,a 3,…,a n 为正实数,这n 个数的算术平均值记为A ,几何平均值记为G ,即na a a A n +++...21=,,...21n n a a a G =即A ≥G,当且仅当a 1=a 2=…=a n 时,A =G.特别地当n =2时,ab b a ≥+2,当n =3时,33abc c b a ≥++. (2)用局部调整法证明均值不等式A ≥G.设这n 个正数不全相等.不失一般性,设0<a 1≤a 2≤…≤a n ,易证a 1<A <a n ,且a 1<G <a n .在这n 个数中去掉一个最小数a 1,将a 1换成A ,再去掉一个最大数a n ,将a n 换成a 1+a n -A ,其余各数不变,于是得到第二组正数:A ,a 2,a 3,…,a n -1,a 1+a n -A .这一代换具有下列性质:①两组数的算术平均值不变,设第二组数的算术平均值为A 1,那么A 1=nA a a a a a A n n -+++++-1132...+=A ,②两组数的几何平均值最大.设第二组数的几何平均值为G 1,则G 1=),(...1132A a a a a Aa n n -+-∵A (a 1+a n -A )-a 1a n =(A -a 1)(a n -A ),由a 1<A <a n ,得(A -a 1)(a n -A )>0,则A (a 1+a n -A )>a 1a n .∴Aa 2a 3…a n -1(a 1+a n -A )>a 1a 2…a n -1+a n .G 1>G.若第二组数全相等,则A 1=G 1,于是A =A 1=G 1>G 证明完毕.若第二组数不全相等,再作第二次替换.仍然是去掉第二组数中的最小数b 1和最大数b n ,分别用A 1(即A )和b 1+b n -A 代替,因为有b 1<A 1<b n 且A 1=A .因而第二组数中的A 不是最小数b 1,也不是最大数b n ,不在去掉之列,在替换中不会被换掉,而只会再增加,如此替换下去,每替换一次,新数中至少增加一个A ,经过n -2次替换,新数中至少出现n -2个A ,最多经过n -1次替换,得到一个全部是A 的新数组.此时新数组的算术平均值等于几何平均值.在每次替换中,数组的算术平均值不变,始终等于A ,而几何平均值不断增大,即G <G 1<G 2<…<G k ,而G k =A k =A ,因而G≤A 成立 二、课外拓展平均值不等式:平均不等式是最重要而基本的不等式之一,应用极其广泛,如能灵活运用,将产生意想不到的效果,这类试题在数学竞赛中经常出现.请同学们课后查找资料,阅读此四个不等式的证明过程平均值定理:设n 个正数a 1,a 2,…,a n,记 调和平均n n a a a nH 1...1121+++= 几何平均n n n a a a G ∙∙∙=...21, 算术平均na a a A n n +++= (21), 平方平均n a a a Q n n 22221...+++=这4个平均有如下关系:H n ≤G n ≤A n ≤Q n ,等号成立的充要条件都是a 1=a 2=…=a n .。

2020版数学人教A版必修5学案:第三章 3.4 第1课时 基本不等式 Word版含解析

2020版数学人教A版必修5学案:第三章 3.4 第1课时 基本不等式 Word版含解析

§3.4 基本不等式:ab ≤a +b2第1课时 基本不等式学习目标 1.理解基本不等式的内容及证明.2.能熟练运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式证明简单的不等式.知识点一 算术平均数与几何平均数一般地,对于正数a ,b ,a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数.两个正数的算术平均数不小于它们的几何平均数,即ab ≤a +b2. 几何解释 如图,AB 是圆O 的直径,点Q 是AB 上任一点,AQ =a ,BQ =b ,过点Q 作PQ 垂直于AB 且交圆O 于点P ,连接AP ,PB .则PO =AB 2=a +b2.易证Rt △APQ ∽Rt △PBQ ,那么PQ 2=AQ ·QB ,即PQ =ab .知识点二 基本不等式常见推论由公式a 2+b 2≥2ab (a ,b ∈R )和a +b2≥ab (a >0,b >0)可得以下结论:①a b +ba ≥2(a ,b 同号); ②21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0).1.对于任意a ,b ∈R ,a 2+b 2≥2ab .( √ ) 2.n ∈N *时,n +2n ≥2 2.( √ )3.x ≠0时,x +1x≥2.( × )4.a >0,b >0时,1a +1b ≥4a +b.( √ )题型一 常见推论的证明例1 证明不等式a 2+b 2≥2ab (a ,b ∈R ). 证明 ∵a 2+b 2-2ab =(a -b )2≥0, ∴a 2+b 2≥2ab . 引申探究1求证a +b 2≥ab (a >0,b >0).证明 方法一a +b 2-ab =12[(a )2+(b )2-2a ·b ]=12·(a -b )2≥0,当且仅当a =b ,即a =b 时,等号成立. 方法二 由例1知,a 2+b 2≥2ab .∴当a >0,b >0时有(a )2+(b )2≥2a b , 即a +b ≥2ab , a +b2≥ab . 引申探究2证明不等式⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R ). 证明 由例1,得a 2+b 2≥2ab , ∴2(a 2+b 2)≥a 2+b 2+2ab ,两边同除以4,即得⎝⎛⎭⎫a +b 22≤a 2+b 22,当且仅当a =b 时,取等号. 反思感悟 (1)作差法与不等式性质在证明中常用,注意培养应用意识.(2)不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b 2成立的条件是不同的,前者要求a ,b 都是实数,后者要求a ,b 都是正数.跟踪训练1 当a >0,b >0时,求证:21a +1b ≤ab .证明 ∵a >0,b >0, ∴a +b ≥2ab >0, ∴1a +b ≤12ab,∴2ab a +b ≤2ab2ab=ab . 又∵2ab a +b =21a +1b ,∴21a +1b ≤ab (当且仅当a =b 时取等号). 题型二 用基本不等式证明不等式 例2 已知x ,y 都是正数. 求证:(1)y x +xy≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 证明 (1)∵x ,y 都是正数, ∴x y >0,yx >0, ∴y x +x y≥2 y x ·x y =2,即y x +xy≥2, 当且仅当x =y 时,等号成立. (2)∵x ,y 都是正数, ∴x +y ≥2xy >0,x 2+y 2≥2x 2y 2>0,x 3+y 3≥2x 3y 3>0, ∴(x +y )(x 2+y 2)(x 3+y 3) ≥2xy ·2x 2y 2·2x 3y 3=8x 3y 3, 即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3, 当且仅当x =y 时,等号成立.反思感悟 利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”. (2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②同向不等式相加是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式证明的可重新组合,形成基本不等式模型,再使用.跟踪训练2 已知a ,b ,c 都是正实数,求证:(a +b )(b +c )·(c +a )≥8abc . 证明 ∵a ,b ,c 都是正实数,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0, ∴(a +b )(b +c )(c +a )≥2ab ·2bc ·2ca =8abc ,即(a +b )(b +c )(c +a )≥8abc , 当且仅当a =b =c 时,等号成立. 题型三 用基本不等式比较大小例3 某工厂生产某种产品,第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x (a ,b ,x 均大于零),则( ) A .x =a +b2B .x ≤a +b2C .x >a +b2D .x ≥a +b2答案 B解析 第二年产量为A +A ·a =A (1+a ),第三年产量为A (1+a )+A (1+a )·b =A (1+a )(1+b ). 若平均增长率为x ,则第三年产量为A (1+x )2. 依题意有A (1+x )2=A (1+a )(1+b ), ∵a >0,b >0,x >0, ∴(1+x )2=(1+a )(1+b )≤⎣⎡⎦⎤(1+a )+(1+b )22,∴1+x ≤2+a +b 2=1+a +b 2,∴x ≤a +b2(当且仅当a =b 时,等号成立).反思感悟 基本不等式a +b2≥ab 一端为和,一端为积,使用基本不等式比较大小要擅于利用这个桥梁化和为积或者化积为和.跟踪训练3 设a >b >1,P =lg a ·lg b ,Q =lg a +lg b 2,R =lg a +b2,则P ,Q ,R 的大小关系是( ) A .R <P <Q B .P <Q <R C .Q <P <R D .P <R <Q答案 B解析 ∵a >b >1,∴lg a >lg b >0, ∴lg a +lg b2>lg a ·lg b ,即Q >P .① 又a +b2>ab >0, ∴lga +b 2>lg ab =12(lg a +lg b ),即R >Q .② 综合①②,有P <Q <R .演绎:条件不等式的证明典例 (1)当x >0,a >0时,证明x +ax ≥2a ;(2)当x >-1时,证明x 2+7x +10x +1≥9.证明 (1)∵x >0,a >0,∴ax >0.由基本不等式可知,x +ax≥2x ·ax=2a . 当且仅当x =a 时,等号成立. (2)x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5.∵x >-1,∴x +1>0. ∴(x +1)+4x +1≥24=4,∴(x +1)+4x +1+5≥9,即x 2+7x +10x +1≥9.当且仅当x =1时,等号成立.[素养评析] 逻辑推理主要有两类:从特殊到一般,从一般到特殊,演绎就是从一般到特殊的一种推理形式.在本例中,“一般”指基本不等式a +b 2≥ab .当我们对a ,b 赋予特殊值.如令a =x ,b =ax ,就有x +ax≥2a ;①再令①中的x =x +1,a =4,就有x +1+4x +1≥2 4.基本不等式的应用关键就是给a ,b 赋予什么样的值.1.若0<a <b ,则下列不等式一定成立的是( ) A .a >a +b 2>ab >bB .b >ab >a +b2>aC .b >a +b 2>ab >aD .b >a >a +b2>ab答案 C解析 ∵0<a <b ,∴2b >a +b ,∴b >a +b2>ab .∵b >a >0,∴ab >a 2,∴ab >a .故b >a +b2>ab >a .2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.2xx 2+1≤1 D .x +1x≥2答案 C解析 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立;对于C ,x 2+1≥2x ,∴2xx 2+1≤1恒成立.故选C. 3.若四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d 2>bcB.a +d2<bcC.a +d 2=bcD.a +d 2≤bc答案 A解析 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d 2=b +c2>bc .4.lg 9×lg 11与1的大小关系是( ) A .lg 9×lg 11>1 B .lg 9×lg 11=1 C .lg 9×lg 11<1 D .不能确定 答案 C解析 ∵lg 9>0,lg 11>0, ∴lg 9×lg 11<⎝⎛⎭⎫lg 9+lg 1122=⎣⎡⎦⎤lg (9×11)22=⎝⎛⎭⎫lg 9922<⎝⎛⎭⎫lg 10022=1, 即lg 9×lg 11<1.5.设a >0,b >0,给出下列不等式: ①a 2+1>a ;②⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4; ③(a +b )⎝⎛⎭⎫1a +1b ≥4;④a 2+9>6a . 其中恒成立的是 .(填序号)答案 ①②③解析 由于a 2+1-a =⎝⎛⎭⎫a -122+34>0,故①恒成立; 由于a +1a ≥2,b +1b≥2,∴⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4,当且仅当a =b =1时,等号成立,故②恒成立; 由于a +b ≥2ab ,1a +1b≥21ab, 故(a +b )⎝⎛⎭⎫1a +1b ≥4,当且仅当a =b 时,等号成立,故③恒成立; 当a =3时,a 2+9=6a ,故④不恒成立. 综上,恒成立的是①②③.1.两个不等式a 2+b 2≥2ab 与a +b 2≥ab 都是带有等号的不等式,对于“当且仅当…时,取等号”这句话的含义要有正确的理解.一方面:当a =b 时,a +b 2=ab ;另一方面:当a +b2=ab 时,也有a =b .2. 在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.一、选择题1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab | D .a 2+b 2>2|ab |答案 A解析 ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立). 2.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab D.b a +a b≥2 答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误; 对于B ,C ,当a <0,b <0时,显然错误;对于D ,∵ab >0,∴b a +ab ≥2b a ·ab=2, 当且仅当a =b 时,等号成立.3.已知m =a +1a -2(a >2),n =⎝⎛⎭⎫1222x - (x <0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =n D .m ≤n 答案 A解析 ∵m =(a -2)+1a -2+2≥2(a -2)·1a -2+2=4,n =222x -<22=4,∴m >n ,故选A.4.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A .q =r <p B .p =r <q C .q =r >p D .p =r >q答案 B解析 因为0<a <b ,所以a +b2>ab .又因为f (x )=ln x 在(0,+∞)上单调递增, 所以f ⎝⎛⎭⎫a +b 2>f (ab ),即p <q .而r =12(f (a )+f (b ))=12(ln a +ln b )=12ln(ab )=ln ab , 所以r =p ,故p =r <q ,故选B.5.已知a ,b ∈(0,+∞),则下列不等式中不成立的是( ) A .a +b +1ab≥2 2 B .(a +b )⎝⎛⎭⎫1a +1b ≥4 C.a 2+b 2ab ≥2abD.2ab a +b>ab 答案 D 解析 a +b +1ab ≥2ab +1ab ≥ 22, 当且仅当a =b =22时,等号成立,A 成立; (a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab=4, 当且仅当a =b 时,等号成立,B 成立; ∵a 2+b 2≥2ab >0,∴a 2+b 2ab ≥2ab ,当且仅当a =b 时,等号成立,C 成立;∵a +b ≥2ab ,且a ,b ∈(0,+∞), ∴2ab a +b ≤1,2aba +b≤ab , 当且仅当a =b 时,等号成立,D 不成立. 6.下列说法正确的是( )A .若x ≠k π,k ∈Z ,则⎝⎛⎭⎫sin 2x +4sin 2x min =4 B .若a <0,则a +4a≥-4C .若a >0,b >0,则lg a +lg b ≥2lg a ·lg bD .若a <0,b <0,则b a +a b ≥2答案 D解析 对于A ,x ≠k π,k ∈Z ,则sin 2x ∈(0,1].令t =sin 2x ,则y =t +4t ,函数y 在(0,1]上单调递减,所以y ≥5,即sin 2x +4sin 2x ≥5,当sin 2x =1时,等号成立.对于B ,若a <0,则-a >0,-4a >0.∴a +4a =-⎣⎡⎦⎤(-a )+⎝⎛⎭⎫-4a ≤-4, 当且仅当a =4a ,即a =-2时,等号成立.对于C ,若a ∈(0,1),b ∈(0,1), 则lg a <0,lg b <0,不等式不成立. 对于D ,a <0,b <0,则b a >0,ab >0,∴b a +ab≥2b a ·ab=2, 当且仅当b a =ab ,即a =b 时,等号成立.二、填空题7.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t log a t +12.(填“>”“≥”“≤”或“<”) 答案 ≤解析 ∵a 2+a -2>0,∴a >1或a <-2(舍), ∴y =log a x 是增函数, 又t +12≥ t ,∴log a t +12≥log a t =12log a t . 8.设a ,b 为非零实数,给出不等式:①a 2+b 22≥ab ;②a 2+b 22≥⎝⎛⎭⎫a +b 22;③a +b 2≥ab a +b ;④a b +b a ≥2.其中恒成立的不等式是 . 答案 ①②解析 由重要不等式a 2+b 2≥2ab ,可知①正确;a 2+b 22=2(a 2+b 2)4=(a 2+b 2)+(a 2+b 2)4≥a 2+b 2+2ab 4=(a +b )24=⎝⎛⎭⎫a +b 22,可知②正确; 当a =b =-1时,不等式的左边为a +b 2=-1,右边为ab a +b =-12,可知③不正确;当a =1,b =-1时,可知④不正确.9.已知a >b >c ,则(a -b )(b -c )与a -c2的大小关系是 .答案(a -b )(b -c )≤a -c2解析 因为a >b >c ,所以a -b >0,b -c >0,所以a -c 2=(a -b )+(b -c )2≥(a -b )(b -c ),当且仅当a -b =b -c 时,等号成立.10.设a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是 .(用“>”连接) 答案 m >p >n解析 ∵a >1,∴a 2+1>2a >a +1,∴log a (a 2+1)>log a (2a )>log a (a +1),故m >p >n . 三、解答题11.设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c .证明 ∵a ,b ,c 都是正数, ∴bc a ,ca b ,abc也都是正数, ∴bc a +ca b ≥2c ,ca b +ab c ≥2a ,bc a +abc ≥2b , 三式相加得2⎝⎛⎭⎫bc a +ca b +ab c ≥2(a +b +c ), 即bc a +ca b +abc≥a +b +c ,当且仅当a =b =c 时,等号成立.12.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 证明 (1)1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b , ∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a≥2+2=4, ∴1a +1b +1ab ≥8(当且仅当a =b =12时,等号成立). (2)方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a, 同理,1+1b =2+a b, ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9,∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时,等号成立). 方法二 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab. 由(1)知,1a +1b +1ab≥8, 故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab ≥9,当且仅当a =b =12时,等号成立.13.设0<a <1<b ,则一定有( )A .log a b +log b a ≥2B .log a b +log b a ≥-2C .log a b +log b a ≤-2D .log a b +log b a >2答案 C解析 ∵0<a <1<b ,∴log a b <0,log b a <0,-log a b >0,-log b a >0,∴(-log a b )+(-log b a )=(-log a b )+⎝⎛⎭⎫-1log a b ≥2,当且仅当ab =1时,等号成立,∴log a b +log b a ≤-2.14.设x ,y 为正实数,且xy -(x +y )=1,则( )A .x +y ≥2(2+1)B .xy ≤2+1C .x +y ≤(2+1)2D .xy ≥2(2+1) 答案 A解析 ∵x ,y 为正实数,且xy -(x +y )=1,xy ≤⎝⎛⎭⎫x +y 22,∴⎝⎛⎭⎫x +y 22-(x +y )-1≥0,解得x +y ≥2(2+1),当且仅当x =y =1+2时取等号.。

人教A版高中数学必修5第三章 不等式3.4 基本不等式导学案(1)

人教A版高中数学必修5第三章 不等式3.4 基本不等式导学案(1)

基本不等式中不等式在各种题型中均有出现,渗透在各类考试试卷中;基本不等式是不等式中高频考点之一,其应用、变形等是考试热点.本节将针对于基本不等式及其常见母题进行解答技巧的讲解与归纳.1.基本不等式ab ≤a +b2基本不等式的使用条件:① 一正:a >0,b >0,即:所求最值的各项必须都是正值;② 二定:ab 或a +b 为定值,即:含变量的各项的和或积必须是常数; ③ 三相等:当且仅当a =b 时取等号;即:等号能否取得.在应用基本不等式求最值时,要把握不等式成立的三个条件,若忽略了某个条件,就会出现错误. 2.由公式a 2+b 2≥2ab 和ab ≤a +b2可以引申出的常用结论(1)b a +a b ≥2(a ,b 同号); (2)b a +a b≤-2(a ,b 异号); (3)21a +1b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0) ⎝ ⎛⎭⎪⎫或ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a >0,b >0).3.利用基本不等式求最大、最小值问题(1)如果x >0,y >0,且xy =P (定值).那么当x =y 时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x >0,y >0,且x +y =S (定值).那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)类型一、直接应用类此类问题较为基础,利用基本不等式求最值时应注意:①非零的各数(或式)均为正;②和或积为定值;③等号能否成立,即“一正、二定、三相等”,这三个条件缺一不可.解答技巧一:直接应用【母题一】若x >0,y >0,且x +y =18,则xy 的最大值是________. 【解析】由于x >0,y >0,则x +y ≥2xy ,所以xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,xy 取到最大值81.【答案】81 【变式】1.已知f (x )=x +1x-2(x <0),则f (x )有 ( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4【解析】∵x <0,∴f (x )=-⎣⎢⎡⎦⎥⎤-x +1-x -2≤-2-2=-4,当且仅当-x =1-x ,即x =-1时取等号.【答案】C2.已知0<x <1,则x (3-3x )取得最大值时x 的值为 ( ) A .13 B .12 C .34D .23【解析】∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝ ⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.【答案】B3.(2014·成都诊断)已知定义在(0,+∞)上的函数f (x )=3x,若f (a +b )=9,则f (ab )的最大值为__________.【解析】∵3a +b=9,∴a +b =2≥2ab ,得ab ≤1,∴f (ab )=3ab≤3.【答案】34.已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是________.【解析】依题意得a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |·|2b |=22|ab |=2100=20,当且仅当|a |=|2b |=10时取等号,因此|a +2b |的最小值是20.【答案】20类型二、配凑定值类(恒等变形类)此类问题一般不能直接使用基本不等式,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,凑项,凑系数等.不论条件怎么变形,都需要根据条件:凑和为定值时求积最大、凑积为定值求和最小.解答技巧二:拆项【母题二】已知t >0,则函数y =t 2-4t +1t的最小值为________.【解析】∵t >0,∴y =t 2-4t +1t =t +1t-4≥2-4=-2,且在t =1时取等号.【答案】-2解答技巧三:凑项【母题三】若x >2,则函数y =x +1x -2的最小值为________. 【解析】∵x >2,∴y =(x -2)+1x -2+2≥2+2=4,当且仅当x =3时取等号. 【答案】4 解答技巧四:凑系数【母题四】若0<x <83,则函数y =x (8-3x )的最大值为________.【解析】∵x >2,∴y =13(3x )(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当x =43时取等号. 【答案】163【变式】1.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2【解析】∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2x -1⎝ ⎛⎭⎪⎫3x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.【答案】A2.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的最大值为________. 【解析】∵x >1,∴x -1>0.又x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x =2时等号成立.则a ≤3,所以a 的最大值为3.【答案】33.(2014·潍坊一模)已知a >b >0,ab =1,则a 2+b 2a -b的最小值为________.【解析】a 2+b 2a -b =a -b 2+2ab a -b =a -b 2+2a -b =(a -b )+2a -b≥22.当且仅当a -b =2时,取等号.【答案】2 2 4.已知函数f (x )=2xx 2+6. (1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围. 【解】(1)f (x )>k ⇔kx 2-2x +6k <0.由已知{x |x <-3,或x >-2}是其解集,得kx 2-2x +6k =0的两根是-3,-2. 由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.(2)因为x >0,f (x )=2x x 2+6=2x +6x≤226=66,当且仅当x =6时取等号. 由已知f (x )≤t 对任意x >0恒成立,故t ≥66,即t 的取值范围是⎣⎢⎡⎭⎪⎫66,+∞.类型三、条件最值类利用基本不等式求最值的方法及注意点(1)知和求积的最值:求解此类问题的关键:明确“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:明确“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.技巧五:换衣(“1”)(或整体代换)【母题五】已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.【解析】∵a >0,b >0,a +b =1,∴1a +1b =a +b a+a +b b =2+b a +ab≥2+2b a ·ab=4, 即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 【答案】4 【变式】1.本例的条件不变,则⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b 的最小值为________.【解析】⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎫1+a +b a ⎝⎛⎭⎪⎫1+a +b b =⎝⎛⎭⎪⎫2+b a ·⎝⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号. 【答案】92.本例的条件和结论互换即:已知a >0,b >0,1a +1b=4,则a +b 的最小值为________.【解析】由1a +1b =4,得14a +14b =1.∴a +b =⎝ ⎛⎭⎪⎫14a +14b (a +b )=12+b 4a +a 4b ≥12+2b 4a +a4b=1.当且仅当a =b =12时取等号.【答案】13.若本例条件变为:已知a >0,b >0,a +2b =3,则2a +1b的最小值为________.【解析】由a +2b =3得13a +23b =1,∴2a +1b =⎝ ⎛⎭⎪⎫13a +23b ⎝ ⎛⎭⎪⎫2a +1b =43+a 3b +4b 3a ≥43+2a 3b ·4b 3a =83.当且仅当a =2b =32时,取等号.【答案】834.本例的条件变为:已知a >0,b >0,c >0,且a +b +c =1,则1a +1b +1c的最小值为________.【解析】∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +ca+a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9.当且仅当a =b =c =13时,取等号. 【答案】95.若本例变为:已知各项为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m ·a n =22a 1,则1m +4n的最小值为________.【解析】设公比为q (q >0),由a 7=a 6+2a 5⇒a 5q 2=a 5q +2a 5⇒q 2-q -2=0(q >0)⇒q =2.a m ·a n =22a 1⇒a 12m -1·a 12n -1=8a 21⇒2m -1·2n -1=8⇒m +n -2=3⇒m +n =5,则1m +4n =15⎝ ⎛⎭⎪⎫1m +4n (m +n )=15⎣⎢⎡⎦⎥⎤5+⎝ ⎛⎭⎪⎫n m +4m n ≥15(5+24)=95,当且仅当n =2m =103时等号成立.【答案】956.(2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A .245B .285C .5D .6【解析】∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x =15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝ ⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号).【答案】C7.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值是( )A .2B .4C .6D .8【解析】(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥1+a +2a ,∴当1+a +2a ≥9时不等式恒成立,故a +1≥3,a ≥4.【答案】B技巧六:构造一元二次不等式在运用该方式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.思考方式还能以保留“和(a +b )”还是“积(ab )”来确定公式的运用方向.【变式】1.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C .92D .112【解析】依题意,得2xy =-(x +2y )+8≤⎝ ⎛⎭⎪⎫x +2y 22,当且仅当⎩⎪⎨⎪⎧x =2y ,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立.∴(x +2y )2+4(x +2y )-32≥0,解得x +2y ≥4或x +2y ≤-8(舍去),∴x +2y 的最小值是4.【答案】B2.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( ) A .23B .223C .33D .233【解析】对于x 2+3xy -1=0可得y =13(1x -x ),∴x +y =2x 3+13x ≥229=223(当且仅当2x 3=13x,即x =22时等号成立). 【答案】B3.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 【解析】x 2+y 2+xy =1⇔(x +y )2-xy =1⇔(x +y )2-1=xy ≤(x +y2)2,解得-233≤x +y ≤233. 【答案】233类型四、基本不等式的应用1.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________公里处.【解析】设x 为仓库与车站距离,由已知y 1=20x,y 2=0.8x .费用之和y =y 1+y 2=0.8x +20x≥20.8x ·20x =8,当且仅当0.8x =20x,即x =5时等号成立.【答案】52.创新题规定记号“⊙”表示一种运算,即a ⊙b =ab +a +b (a ,b 为正实数).若1⊙k =3,则k 的值为________,此时函数f (x )=k ⊙xx的最小值为________.【解析】1⊙k =k +1+k =3,即k +k -2=0,∴k =1或k =-2(舍),∴k =1.f (x )=k ⊙x x =x +x +1x =1+x +1x ≥1+2=3,当且仅当x =1x,即x =1时等号成立.【答案】1;33.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b的最小值是( )A .4B .92C .8D .9【解析】∵AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).若A ,B ,C 三点共线,则有AB →∥AC →, ∴(a -1)×2-1×(-b -1)=0,∴2a +b =1,又a >0,b >0,∴2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a +2ab≥5+22b a ×2a b=9,当且仅当⎩⎪⎨⎪⎧2b a =2a b ,2a +b =1,即a =b =13时等号成立.【答案】D4.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x +1y -2z的最大值为( )A .0B .1C .94D .3【解析】由已知得z =x 2-3xy +4y 2(*),则xy z =xy x 2-3xy +4y 2=1x y +4yx-3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y2=-⎝ ⎛⎭⎪⎫1y -12+1≤1.【答案】B5.已知x >0,y >0,x +y +3=xy ,且不等式(x +y )2-a (x +y )+1≥0恒成立,则实数a 的取值范围是________.【解析】要使(x +y )2-a (x +y )+1≥0恒成立,则有(x +y )2+1≥a (x +y ),即a ≤(x +y )+1x +y恒成立.由x +y +3=xy ,得x +y +3=xy ≤⎝ ⎛⎭⎪⎫x +y 22,即(x +y )2-4(x +y )-12≥0,解得x +y ≥6或x +y ≤-2(舍去).设t =x +y ,则t ≥6,(x +y )+1x +y =t +1t .设f (t )=t +1t,则在t ≥6时,f (t )单调递增,所以f (t )=t +1t 的最小值为6+16=376,所以a ≤376,即实数a 的取值范围是⎝⎛⎦⎥⎤-∞,376. 【答案】⎝⎛⎦⎥⎤-∞,376【总结】对使用基本不等式时等号取不到的情况,可考虑使用对勾函数y =x +mx(m >0)的单调性.1.小王从甲地到乙地的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <abB .v =abC .ab <v <a +b2D .v =a +b2【解析】设甲、乙两地之间的距离为s .∵a <b ,∴v =2s s a +s b=2sab a +b s =2ab a +b <2ab2ab=ab .又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a . 【答案】A2.函数y =x 4+3x 2+3x 2+1的最小值是( )A .2 3B .2C .3D .5【解析】y =x 4+3x 2+3x 2+1=(x 2+1)2+(x 2+1)+1x 2+1=(x 2+1)+1 x 2+1+1≥2+1=3,当且仅当(x 2+1)=1x 2+1,即x =0时,取等号. 【答案】C3.(2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x2+4y 2的最小值为________.【解析】⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时,等号成立. 【答案】94.(2014·贵阳适应性监测)已知向量m =(2,1),n =(1-b ,a )(a >0,b >0).若m ∥n ,则ab 的最大值为__________.【解析】依题意得2a =1-b ,即2a +b =1(a >0,b >0),因此1=2a +b ≥22ab ,即ab ≤18,当且仅当2a =b =12时取等号,因此ab 的最大值是18.【答案】185.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.【解】(1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0,则1=8x +2y≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. ∴xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y ·8yx=18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.1.(2012·福建)下列不等式一定成立的是 ( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D .1x 2+1>1(x ∈R ) 【解析】当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝⎛⎭⎪⎫x 2+14≥lg x (x >0),故选项A 不正确;而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;当x =0时,有1x 2+1=1,故选项D 不正确. 【答案】C2.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A .72 B .4 C .92D .5【解析】依题意,得1a +4b =12⎝ ⎛⎭⎪⎫1a +4b ·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4a b,即a =23,b =43时取等号,即1a +4b 的最小值是92.【答案】C3.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是 ( )A .43 B .53 C .2D .54【解析】由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.【答案】C4.已知a >b >0,则a 2+16ba -b的最小值是________. 【解析】∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24,当且仅当a =2b 时等号成立.∴a 2+16b a -b ≥a 2+16a 24=a 2+64a2≥2a 2·64a 2=16,当且仅当a =22时等号成立.∴当a =22,b =2时,a 2+16b a -b取得最小值16.【答案】165.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【解】(1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x-200≥212x ·80 000x-200=200, 当且仅当12x =80 000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为 200元. (2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.1.函数y =x 2+7x +10x +1(x >-1)的最小值是( )A .9B .2 3C .10D .2【解析】∵x >-1,∴x +1>0.∴y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5≥2x +1⎝ ⎛⎭⎪⎫4x +1+5=9.当且仅当x +1=4x +1,即x =1时,取等号.【答案】A2.(2015·金华十校模拟)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .6【解析】由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4.【答案】B3.(2015·西安模拟)设x ,y ∈R ,a >1,b >1,若a x =b y=3,a +b =23,则1x +1y的最大值为( )A .2B .32 C .1D .12【解析】由a x =b y=3,得x =log a 3,y =log b 3,则1x +1y =1log a 3+1log b 3=lg a +lg b lg 3=lg ab lg 3.又a >1,b >1,所以ab ≤(a +b 2)2=3,所以lg ab ≤lg 3,从而1x +1y ≤lg 3lg 3=1,当且仅当a =b =3时等号成立.【答案】C4.已知x >0,y >0,且2x +y =1,则1x +2y的最小值是_____________.【解析】∵1x +2y=(2x +y )⎝ ⎛⎭⎪⎫1x +2y =4+y x +4x y≥4+2y x ·4x y =8,当且仅当y =12,x =14时,等号成立. 【答案】C5.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.【解】(1)∵x >0,y >0,由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25yx ·2x y =7+21020, 当且仅当5y x =2xy时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x=2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020.1.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C .92D .112【解析】依题意,得(x +1)(2y +1)=9,∴(x +1)+(2y +1)≥2x +12y +1=6,即x +2y ≥4.当且仅当⎩⎪⎨⎪⎧x +1=2y +1,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立. ∴x +2y 的最小值是4.【答案】B2.若a ,b 均为大于1的正数,且ab =100,则lg a ·lg b 的最大值是( ) A .0 B .1 C .2D .52【解析】∵a >1,b >1,∴lg a >0,lg b >0.lg a ·lg b ≤lg a +lg b24=lg ab 24=1.当且仅当a =b =10时取等号.【答案】B3.已知不等式x +2x +1<0的解集为{x |a <x <b },点A (a ,b )在直线mx +ny +1=0上,其中mn >0,则2m+1n的最小值为( ) A .4 2 B .8 C .9D .12【解析】易知不等式x +2x +1<0的解集为(-2,-1),所以a =-2,b =-1,2m +n =1,2m +1n =(2m +n )(2m+1n )=5+2m n +2n m ≥5+4=9(当且仅当m =n =13时取等号),所以2m +1n的最小值为9. 【答案】C4.(2014·成都诊断)函数f (x )=lgx2-x,若f (a )+f (b )=0,则3a +1b的最小值为_________.【解析】依题意得0<a <2,0<b <2,且lg ⎝ ⎛⎭⎪⎫a 2-a ·b 2-b =0,即ab =(2-a )(2-b ),a +b 2=1,3a +1b =a +b 2⎝ ⎛⎭⎪⎫3a +1b =12⎝ ⎛⎭⎪⎫4+3b a +a b ≥12(4+23)=2+3,当且仅当3b a =ab ,即a =3-3,b =3-1时取等号,因此3a +1b的最小值是2+3.【答案】2+ 35.(2014·泰安期末考试)小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)【解】(1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元,则y =25x -[6x +x (x -1)]-50(0<x ≤10,x ∈N ), 即y =-x 2+20x -50(0<x ≤10,x ∈N ),由-x 2+20x -50>0,解得10-52<x <10+52.而2<10-52<3,故从第3年开始运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出,所以销售二手货车后,小王的年平均利润为y =1x [y +(25-x )]=1x (-x 2+19x -25)=19-⎝⎛⎭⎪⎫x +25x ,而19-⎝⎛⎭⎪⎫x +25x ≤19-2x ·25x=9,当且仅当x =5时等号成立,即小王应当在第5年将大货车出售,才能使年平均利润最大.1.若a ,b ∈R 且ab >0,则下列不等式中,恒成立的是( ) A .a +b ≥2abB .1a +1b>2abC .b a +ab≥2D .a 2+b 2>2ab【解析】∵ab >0,∴b a >0,a b >0.由基本不等式得b a +a b ≥2,当且仅当b a =a b,即a =b 时等号成立. 【答案】C2. 函数y =log a (x +3)-1 (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为( )A .2B .4C .8D .16【解析】点A (-2,-1),所以2m +n =1.所以1m +2n=(2m +n )⎝ ⎛⎭⎪⎫1m +2n =4+n m +4m n≥8,当且仅当n =2m ,即m =14,n =12时等号成立.【答案】C3.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值为________.【解析】由x 2+y 2+xy =1,得(x +y )2-xy =1,即xy =(x +y )2-1≤(x +y )24,所以34(x +y )2≤1,故-233≤x +y ≤233,当x =y 时等号成立,所以x +y 的最大值为233. 【答案】2334.已知x >0,y >0,且满足x 3+y4=1,则xy 的最大值为________.【解析】∵x >0,y >0且1=x 3+y 4≥2xy12,∴xy ≤3,当且仅当x 3=y4时取等号.【答案】35.(2014·重庆卷)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是__________.【解析】由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,且a >0,b >0,∴4a +3b =1,∴a +b =(a +b )·(4a+3b)=7+(3ab+4ba)≥7+23ab·4ba=7+43,当且仅当3ab=4ba时取等号.【答案】7+4 3。

3.4 基本不等式教案(14)2020-2021学年高一数学人教A版必修五第三章

3.4 基本不等式教案(14)2020-2021学年高一数学人教A版必修五第三章

§3.4 基本不等式(第一课时)【教材分析】基本不等式是人教版必修 5 第 3 章 第 4 节第一课时内容。

本节课的主要学习任务是通过研究赵爽“弦图”中的面积关系,寻找相等关系和不等关系为思路启发研究不等关系,培养学生直观想象能力。

并从重要不等式中观察、抽象出基本不等式, 多角度探究、理解与证明基本不等式。

探究基本不等式的证明是从代数、几何两个方面展开,不等式的证明是本节课的核心部分,也是本节课的重点,其中利用基本不等式解决最值问题为本节课的难点。

【学情分析】网课期间,停课不停学,使用万彩动画制作和钉钉平台直播授课。

本节课的情感目标为培养学生的数学学习兴趣,也利用了几何画板动态演示,学生可以从中直观感知猜想出不等关系。

通过基本不等式的证明中让学生感受数形统一的辩证性。

对于应用基本不等式解决最值问题中引发学生思考,及知识应用的升华。

【设计思想】基本不等式是高中数学中解决最值问题的一个重要工具,同时在实际生活中也有着非常广泛的应用。

因此对于本节课的教学内容,我从在北京召开的第24届国际数学家大会的会标引入新课,告诉学生会标源于中国古代数学家赵爽的“弦图”作出的设计,以个别提问为主研究基本不等式,引导学生观察“弦图”的构成,思考利用面积关系研究问题。

多角度证明重要不等式。

通过重要不等式,学生类比得到基本不等式。

引导学生分析基本不等式的几何解释,感受几何直观与代数证明的紧密结合时,让学生在探究学习的过程中体会获取知识的成功,享受学习的乐趣。

【教学目标】 一、知识与技能1.2a b+的证明过程,了解这个基本不等式的几何意义,并掌握取等号的条件是:当且仅当这两个数相等;会用基本不等式解决简单的最大(小)值问题; 2.通过实例探究抽象基本不等式,体会特殊到一般的数学思想方法;3.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣;培养学生严谨、规范的学习能力,辩证地分析问题、解决问题的能力,并能进行简单应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.x +1≥2|x|(x∈R)
2
B.sin x+ D.
2
1 ≥2(x≠kπ ,k∈Z) sin x
1 >1(x∈R) x +1
课后作业
见配套《高一数学集体备课练案与学生作业》
题型二 利用基本不等式 求最值 【例 2】 (1) 已知 x>0,y>0 且 xy=100,则 x+y 的最小值是 _______,此时 x=___,y= _____ 1 1 (2)已知 x>0,y>0,且 2x+y=1,则 + 的最小值为________;
x y
1 1 变式训练 2:已知 x>0,y>0,且 2x+y=2,则 + 的最小值为________;
2 2
得到什么? 【归纳总结】
ab ,当且仅当 a=b 时,等号成立。 2 ab 我们称此不等式为基本不等式。 其中 称为 a,b 的算术平均数, ab 称为 a,b 2
如果 a,b 都是正数,那么 ab 的几何平均数。 三、理解升华: 1、联想数列的知识理解基本不等式 已知 a,b 是正数,A 是 a,b 的等差中项,G 是 a,b 的正的等比中项,A 与 G 有无确定 的大小关系?两个正数的等差中项不小于它们正的等比中项。 2、探究基本不等式证明方法: 方法一:作差比较或由 ( a b ) 0 展开证明。
).
1 1 x y 2.设 x,y∈R,a>1,b>1,若 a =b =3,a+b=2 3,则 + 的最大值为 ( )
x y
A.2
3 B. 2 1 B. 2
C.1
1 D. 2 ( D. 2 3 )
3.已知 0<x<1,则 x(3-3x)取得最大值时 x 的值为 A. 1 3 3 C. 4
4、若 a>0,b>0,且 a b 4 ,则( ) A.
x y
感悟:若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值; 若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。 简记为: “一正、二定、三相等” 。 五、反思总结,整合新知: 两种思想,三个注意 六、布置作业: 1、 已知 x 0,若 x+ A. 81 B. 9
81 的值最小,则 x 为( x C. 3 D.16
四、题型分类 题型一 利用基本不等式 证明不等式 思考:若 x
0 ,x
1 的最小值为________,此时 x _________ . x
【例 1】 已知 a>0,b>0,证明下列不等式: 变式训练 1:已知 a>0,b>0,证明下列不等式:
(1) a
1 1 1 2 (2)( a )( b ) 4 a a b

x y
4 6 的最小值是 x 1

9 的最小值 x
2 2 1 1 1.(2011·湖南高考)设 x,y∈R,且 xy≠0,则x + 2· 2+4y 的最小值 y x



为________. 2.(2012·福建)下列不等式一定成立的是 高考闯关
(
)
2 1 A.lgx + >lg xቤተ መጻሕፍቲ ባይዱx>0) 4
a 2 b 2 2ab 。在此基础上,引导学生认识基本不等式。
同时, (几何画板辅助教学)通过几何画板演示, 让学生更直观的抽象、归纳出以下结论: 二、抽象归纳: 一般地,对于任意实数 a,b,有 a b 2ab ,当且仅当 a=b 时,等号成立。
2 2
[问] 你能给出它的证明吗? 特别地,当 a>0,b>0 时,在不等式 a b 2ab 中,以 a 、 b 分别代替 a、b,
高考要求
ab 的证明过程及应用。 2
难点:基本不等式成立时的三个限制条件(简称一正、二定、三相等) ; 教学流程
一、 创设情景,提出问题; 如图是在北京召开的第 24 届国际数学家大会的会标,会标是根据中国古代数学家赵爽 的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。 [问]你能在这个图中找出一些相等关系或不等关系吗? 本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式
1 1 1 a b
B.
1 1 ab 2
C. ab 2
D. a b 4
2 2
5、若实数 a,b,满足 a b 2 ,则 3a 3b 的最小值是( A.18 B.6 二、填空题: C. 2 3 D. 3 2
).
1 6求函数 y x 的值域 _______ x
7.已知 x,y∈R ,且满足 + =1,则 xy 的最大值为________. 3 4 8.若 a>0,b>0,且 a+b=2,则 ab 的最大值为_______,此时 a=_____,b=_____。 9.设 x 1 ,则函数 y x 10、若 x>0,求 f ( x ) 4 x
高一数学集体备课学案与教学设计
章节标题
第三章 不等式 3.4 基本不等式(1)
计划学时
2
学案作者 掌握基本不等式,并能运用基本不等式解决一些简单最大(小)值问题;培 养学生探究能力以及分析问题解决问题的能力。 1、知识与能力目标:掌握基本不等式,并能运用基本不等式解决一些简单 问题;培养学生探究能力以及分析问题解决问题的能力。 2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解 三维目标 释→ 应用(最值的求法、证明)的过程呈现,体验成功的乐趣。 3、情感与态度目标:使学生认识到数学是从实际中来,培养学生用数学的 眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的 良好品质。 教学重点教 学难点及 解决措施 重点:从不同角度探索基本不等式 ab
2
方法二:分析法(完成课本填空) 3、探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生探究不等
ab

ab (a, b 0) 2 的 几 何 解 释 , 通 过 数 形 结 合 , 赋 予 不 等 式
ab
ab (a, b 0) 2 几何直观。进一步领悟不等式中等号成立的条件。
相关文档
最新文档