七年级数学相交线与平行线达标检测2
(必考题)初中数学七年级数学下册第二单元《相交线与平行线》检测题(包含答案解析)(4)
一、选择题1.如图,////,//AB CD EF CG AF ,那么图中与∠AFE 相等的角的个数是( )A .4B .5C .6D .72.已知3619'COD ∠=︒,则下列说法正确的是( )A .COD ∠等于36.19︒B .COD ∠的补角为14441'︒C .COD ∠的余角为5319'︒D .COD ∠的余角为5341'︒3.下列说法正确的是( )A .锐角的补角一定是钝角B .一个角的补角一定大于这个角C .锐角和钝角一定互补D .两个锐角一定互为余角4.在同一平面内,两条直线的位置关系可能是( )A .相交或垂直B .垂直或平行C .平行或相交D .相交或垂直或平行 5.已知∠1=43°27′,则∠1的余角为( )A .136°33′B .136°73′C .46°73′D .46°33′ 6.如图,某地域的江水经过B 、C 、D 三点处拐弯后,水流的方向与原来相同,若∠ABC =125°,∠BCD =75°,则∠CDE 的度数为( )A .20°B .25°C .35°D .50°7.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3 8.如图所示,如果 AB ∥ CD ,则∠α、∠β、∠γ之间的关系为( )A .∠α+∠β+∠γ=180°B .∠α-∠β+∠γ=180°C .∠α+∠β-∠γ=180°D .∠α-∠β-∠γ=180°[9.如图,平面内直线////a b c ,点,,A B C 分别在直线,,a b c 上,BD 平分ABC ∠,并且满足a β∠>∠,则,,a βγ∠∠∠关系正确的是( )A . 2a βγ∠=∠+∠B .22a βγ∠=∠-∠C .a βγ∠=∠+∠D . 2a βγ∠=∠-∠10.如图,//,120,30AB CD BAE DCE ∠=︒∠=︒,则AEC ∠=_______度.()A .70B .150C .90D .10011.下列说法中正确的有( )①在同一平面内,不相交的两条直线必平行②过一点有且只有一条直线与已知直线垂直③相等的角是对顶角:④两条直线被第三条直线所截,所得的同位角相等⑤两条平行线被第三条直线所截,一对内错角的角平分线互相平行A .4个B .3个C .2个D .1个12.如图,AB //EF,∠D=90°,则α,β,γ的大小关系是( )A .βαγ=+B .90βαγ=+-︒C .90βγα=+︒-D .90βαγ=+︒-二、填空题13.一个锐角的补角比它的余角的3倍少40︒,这个锐角的度数是______.14.如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.15.如图,直线EF 、CD 相交于点O ,OA ⊥OB ,OC 平分∠AOF ,若∠AOE=40°,则∠BOD=______.16.一副直角三角尺按如图1所示方式叠放,现将含45°角的三角尺ADE 固定不动,将含30°角的三角尺ABC 绕顶点A 顺时针转动,当两块三角尺至少有一组边互相平行,则∠BAD (0°<∠BAD <90°)所有符合条件的度数为_____.17.已知如图,直线AB 、CD 相交于点O ,OE 平分COB ∠,若55EOB ∠=︒,则DOB ∠的度数是______.18.如图,点 B 在点 C 北偏东 39°方向,点 B 在点 A 北偏西 23°方向,则∠ABC 的度数为 ___________.19.如图//a b ,M ,N 分别在直线a ,b 上,P 为两条平行线间的一点,则123∠+∠+∠=_________.20.如图,直线AB CD 、相交于点,O OE AB ⊥于,56O AOC ∠=︒,则DOE ∠= ______________________.三、解答题21.如图,直线AB 与CD 交于点O ,OF AB ⊥垂足为O ,OE 平分FOD ∠.(1)若70AOC ∠=︒,求BOD ∠和EOB ∠的度数;(2)若AOC α∠=,则EOB ∠=___________.(用含α的代数式表示)22.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠. (1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.23.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.24.如图,直线AB ,CD 相交于点O ,OA 平分EOC ∠.(1)若70EOC ∠=︒,求BOD ∠的度数;(2)若:4:5∠∠=EOC EOD ,求BOC ∠的度数.25.如图,已知ABC 中,AB AC =,点P 在BC 上.(1)试用直尺和圆规在AC 上找一点D ,使CPD BAP ∠=∠(不写作法,但需保留作图痕迹);(2)在(1)的条件下,若2APC ABC ∠=∠;求证://PD AB .26.已知:如图,∠BAP +∠APD =180°,∠1=∠2.试说明:∠E =∠F .(请在横线处填理由)解:∵∠BAP+∠APD=180°,∴AB∥CD.(),∴∠BAP=∠APC(),∵∠1=∠2(已知)由等式的性质得:∴∠BAP﹣∠1=∠APC﹣∠2,即,∴AE∥FP(),∴∠E=∠F().【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据CD∥EF得出∠CGE=∠GCD,再由CG∥AF得出∠CGE=∠AFE,根据AB∥CD∥EF可得出∠AFE=∠DHF=∠AHC=∠BAH,由此可得出结论.【详解】解:∵CD∥EF,∴∠CGE=∠GCD,∠AFE=∠DHF.∵CG∥AF,∴∠CGE=∠AFE.∵AB∥CD,∴∠BAH=∠DHF,∴∠AFE=∠CGE=∠AFE=∠DHF=∠AHC=∠BAH.故选:B.【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,同位角相等,内错角相等.2.D解析:D【分析】根据角的度量,余角和补角的定义计算即可.【详解】∠约等于36.32︒,故错误;解:A选项,COD︒,故错误;B选项,COD∠的补角为14341'︒,故错误;C选项,COD∠的余角为5341'︒,故正确;D选项,COD∠的余角为5341'故选:D.【点睛】本题考查了角的度量之间的转换,余角和补角的定义以及角的计算,解题关键是掌握角的度量是60进制,准确理解余角和补角的定义及角的单位转换.3.A解析:A【分析】根据余角和补角的概念判断.【详解】解:A、锐角的补角一定是钝角,本选项说法正确;B、一个角的补角一定大于这个角,本选项说法错误,例如:120°的补角是60°,而60°<120°;C、锐角和钝角一定互补,本选项说法错误,例如20°+120°=140°,20°与120°不互补;D、两个锐角一定互为余角,本选项说法错误,30°与30°不是互为余角;故选:A.【点睛】此题考查余角和补角的概念,熟记概念是解题的关键.4.C解析:C【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.5.D解析:D【分析】根据余角的定义进行计算即可得答案.【详解】∵∠1=43°27′,∴∠1的余角为90°-43°27′=46°33′,故选:D.【点睛】此题考查了余角的定义及角度的计算,如果两个角的和是90°,那么这两个角互余;熟练掌握余角的定义是解题关键.6.A解析:A【分析】由题意可得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,再由平行线的性质,即可得出∠CDE的度数.【详解】解:由题意得,AB∥DE,如图,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=180°-125°=55°,∴∠DCF=75°-55°=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.7.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.8.C解析:C【分析】过E 作EF ∥AB ,由平行线的质可得EF ∥CD ,∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED 即可得∠α、∠β、∠γ之间的关系.【详解】解:过点E 作EF ∥AB ,∴∠α+∠AEF=180°(两直线平行,同旁内角互补),∵AB ∥CD ,∴EF ∥CD ,∴∠FED=∠EDC (两直线平行,内错角相等),∵∠β=∠AEF+∠FED ,又∵∠γ=∠EDC ,∴∠α+∠β-∠γ=180°,故选:C .【点睛】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.9.A解析:A【分析】由平行线的性质可得∠ABC=a β∠+∠,然后根据1=2ABC βγ∠+∠∠求解即可. 【详解】解:∵////a b c ,∴∠ABE=∠α,∠CBE=∠β,∴∠ABC=a β∠+∠,∵BD 平分ABC ∠,∴∠CBD 1=2ABC ∠, ∴()1=2βγαβ∠+∠∠+∠, ∴2a βγ∠=∠+∠.故选A .【点睛】本题考查了角平分线的定义,以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.10.C解析:C【分析】如图(见解析),先根据平行线的判定与性质可得6030AEF CEF ∠=︒,∠=︒,再根据角的和差即可得.【详解】如图,过点E 作//EF AB ,//AB CD ,////AB CD EF ∴,12030BAE DCE ∠=︒,∠=︒,1806030AEF BAE CEF DCE ∴∠=︒-∠=︒,∠=∠=︒,60300AEC AEF CEF ∴∠=∠+∠=︒+︒=9︒,故选:C .【点睛】本题考查了平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键. 11.C解析:C【分析】在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).在同一平面内,不相交的两条直线叫平行线.两条平行线被第三条直线所截,同位角相等,内错角相等,据此逐一进行判断.【详解】解:①在同一平面内,直线的位置关系只有相交或平行,所以不相交的两条直线必平行,该项说法正确;②过直线外一点有且只有一条直线与已知直线垂直,该项说法错误③相等的角不一定是对顶角,该项说法错误:④两条平行直线被第三条直线所截,所得的同位角相等,该项说法错误;⑤两条平行线被第三条直线所截,一对内错角的角平分线互相平行,该项说法正确;正确的说法有2个,故选:C.【点睛】本题主要考查了平行线的概念,平行线的性质以及对顶角的概念的运用,同一平面内的两条直线的位置关系为:平行或相交,对于这一知识的理解过程中,要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.12.D解析:D【分析】通过作辅助线,过点C和点D作CG//AB,DH//AB,可得CG//DH//AB,根据AB//EF,可得AB//EF//CG//DH,再根据平行线的性质即可得γ+β-α=90°,进而可得结论.【详解】解:如图,过点C和点D作CG//AB,DH//AB,∵CG//AB,DH//AB,∴CG//DH//AB,∵AB//EF,∴AB//EF//CG//DH,∵CG//AB,∴∠BCG=α,∴∠GCD=∠BCD-∠BCG=β-α,∵CG//DH,∴∠CDH=∠GCD=β-α,∵HD//EF,∴∠HDE=γ,∵∠EDC=∠HDE+∠CDH=90°,∴γ+β-α=90°,∴β=α+90°-γ.故选:D.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.二、填空题13.【分析】设这个角为α根据余角的和等于90°补角的和等于180°表示出这个角的补角与余角然后根据题意列出方程求解即可【详解】解:设这个角为α则它的补角为180°-α余角为90°-α根据题意得180°-解析:25︒【分析】设这个角为α,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】解:设这个角为α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α)-40°,解得α=25°.故答案为:25°.【点睛】本题考查了余角与补角的定义,熟记“余角的和等于90°,补角的和等于180°”是解题的关键.14.16【分析】根据角平分线的定义可求∠BCF的度数再根据角平分线的定义可求∠BCD和∠DCF的度数再根据平行线的性质可求∠CDF的度数【详解】解:∵∠BCA=64°CE平分∠ACB∴∠BCF=32°∵解析:16【分析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.【详解】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=16°,∵DF∥BC,∴∠CDF=∠BCD=16°,故答案为:16.【点睛】本题考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.15.【分析】先根据互补角的定义可得再根据角平分线的定义可得然后根据垂直的定义可得最后根据角的和差即可得【详解】平分故答案为:【点睛】本题考查了互补角的定义角平分线的定义垂直的定义等知识点掌握理解各定义是解析:20︒【分析】先根据互补角的定义可得140AOF ∠=︒,再根据角平分线的定义可得70AOC ∠=︒,然后根据垂直的定义可得90AOB ∠=︒,最后根据角的和差即可得.【详解】40AOE ∠=︒,180140AOF AOE ∴∠=︒-∠=︒, OC 平分AOF ∠, 1702AOC AOF ∴∠=∠=︒, OA OB ⊥,90AOB ∠=︒∴,18020BOD AOB AOC ∴∠=︒-∠-∠=︒,故答案为:20︒.【点睛】本题考查了互补角的定义、角平分线的定义、垂直的定义等知识点,掌握理解各定义是解题关键.16.45°和60°【分析】根据题意画出图形分情况讨论:∥或BC ∥AD 再由平行线的性质定理或判定定理即可得出结论【详解】解:如图当AC ∥DE 时此时重合∠BAD =∠DAE =45°;当BC ∥AD 时∠DAB =∠解析:45°和60°【分析】根据题意画出图形,分情况讨论:AC ∥DE 或BC ∥AD ,再由平行线的性质定理或判定定理即可得出结论.【详解】解:如图,当AC ∥DE 时,90,DEA CAB ∴∠=∠=︒此时,AB AE 重合,∴ ∠BAD =∠DAE =45°;当BC ∥AD 时,∠DAB =∠B =60°;综上所述,当两块三角尺至少有一组边互相平行,则∠BAD (0°<∠BAD <90°)所有符合条件的度数为45°和60°,故答案为:45°和60°.【点睛】本题考查的是平行线的性质与判定,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.17.【分析】先根据角平分线的定义可得再根据邻补角的定义即可得【详解】平分由邻补角的定义得:故答案为:【点睛】本题考查了角平分线的定义邻补角的定义熟记各定义是解题关键解析:70︒【分析】先根据角平分线的定义可得110COB ∠=︒,再根据邻补角的定义即可得.【详解】 OE 平分COB ∠,55EOB ∠=︒2110COB EOB ∴∠=∠=︒由邻补角的定义得:11071801800DOB COB ∠=︒∠-︒-==︒︒故答案为:70︒.【点睛】本题考查了角平分线的定义、邻补角的定义,熟记各定义是解题关键.18.62°【分析】过B 作BF ∥CD 则BF ∥AE 依据平行线的性质即可得到∠CBF=39°∠ABF=23°进而得出∠ABC 的度数【详解】如图所示过B 作BF ∥CD 则BF ∥AE ∵点B 在点C 北偏东39°方向点B 在解析:62°【分析】过B 作BF ∥CD ,则BF ∥AE ,依据平行线的性质即可得到∠CBF=39°,∠ABF=23°,进而得出∠ABC 的度数.【详解】如图所示,过B 作BF ∥CD ,则BF ∥AE ,∵点B 在点C 北偏东39°方向,点B 在点A 北偏西23°方向,∴∠BCD=39°,∠BAE=23°,∴∠CBF=39°,∠ABF=23°,∴∠ABC=39°+23°=62°,故答案为62°.【点睛】本题主要考查了平行线的性质以及方向角,解题时注意:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.19.【分析】过点P作PA∥a如图根据平行公理的推论可得PA∥a∥b根据平行线的性质可得∠1+∠MPA=180°∠3+∠NPA=180°然后两式相加即可求出答案【详解】解:过点P作PA∥a如图∵a∥b∴P解析:360【分析】过点P作PA∥a,如图,根据平行公理的推论可得PA∥a∥b,根据平行线的性质可得∠1+∠MPA=180°,∠3+∠NPA=180°,然后两式相加即可求出答案.【详解】解:过点P作PA∥a,如图,∵a∥b,∴PA∥a∥b,∴∠1+∠MPA=180°,∠3+∠NPA=180°,∴∠1+∠MPA+∠3+∠NPA=360°,∠+∠+∠=360°.即123故答案为:360°.【点睛】本题考查了平行公理的推论和平行线的性质,正确添加辅助线、熟练掌握平行线的性质是解题的关键.20.34°【分析】先求出∠AOD的度数再求∠DOE的度数即可【详解】解:∵∠AOC=56°∴∠AOD=180°-56°=124°∵OE⊥AB∴∠AOE=90°∴∠DOE=124°-90°=34°故答案为解析:34°【分析】先求出∠AOD的度数,再求∠DOE的度数即可.【详解】解:∵∠AOC=56°,∴∠AOD=180°-56°=124°,∵OE⊥AB,∴∠AOE=90°,∴∠DOE=124°-90°=34°.故答案为:34°.【点睛】本题考查了邻补角的定义,垂直的定义,以及角的和差计算,熟练掌握邻补角的定义和垂直的定义是解答本题的关键.三、解答题21.(1)70,10BOD EOB ∠=︒∠=︒;(2)452α︒-【分析】(1)根据对顶角相等求得∠BOD 的度数,利用垂直的定义求得90FOB ∠=︒,然后利用角的和差运算及角平分线的定义求解;(2)根据角的和差运算及角平分线的定义列式求解.【详解】解:(1) ∵AOC ∠与BOD ∠是对顶角∴70AOC BOD ∠=∠=︒(对顶角相等)∵FO OB ⊥∴90FOB ∠=︒∴9070160FOD FOB BOD ︒︒∠=∠+∠=+=︒∵OE 平分FOD ∠ ∴111608022FOE FOD ∠=∠==︒⨯︒ ∴908010EOB FOB FOE ∠=∠-∠=︒-=︒︒(2)由题意可得:AOC BOD α∠=∠=∵FO OB ⊥∴90FOB ∠=︒∴90FOD FOB BOD α∠=∠+=︒∠+∵OE 平分FOD ∠ ∴2(90)112FOE FOD α=∠=︒+∠ ∴1(90)452290EOB FOB FOE αα︒∠=∠-∠==︒+︒-- 故答案为:452α︒-.【点睛】本题考查对顶角相等,角平分线的定义及角的和差运算,准确识图,掌握相关概念正确推理计算是解题解题关键.22.(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒, ∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠, ∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.23.(1)55CBE ∠=︒;(2)25F ∠=︒.【分析】(1)利用三角形的外角性质和角的平分线性质求解即可;(2)根据三角形外角的性质和两直线平行,同位角相等求解.【详解】(1)在ABC 中,30A ∠=︒,80ACB ∠=︒,3080110CBD A ACB ∴∠=∠+∠=︒+︒=︒, BE 是CBD ∠的平分线,111105522CBE CBD ∴∠=∠=⨯︒=︒; (2)80ACB ∠=︒,55CBE ∠=︒,805525CEB ACB CBE ∴∠=∠--︒∠=︒=︒,//DF BE ,25F CEB ∴∠=∠=︒.【点睛】本题考查了运用三角形外角性质,角平分线性质,平行线的性质求角的度数,熟练并灵活运用这些性质是解题的关键.24.(1)35BOD ∠=︒;(2)140∠=︒BOC【分析】(1)首先根据角平分线的性质得出∠AOC ,然后利用对顶角相等即可得出∠BOD ; (2)首先设4EOC x ∠=,则5EOD x ∠=,然后根据平角的性质构建方程,得出∠EOC ,再利用角平分线的性质得出∠AOC ,最后由平角得旋转即可得出∠BOC 即可.【详解】()170,EOC OA ∠=︒平分EOC ∠,1352AOC EOC ∴∠=∠=︒, 35BOD AOC ∴∠=∠=︒;()2设4EOC x ∠=,则5EOD x ∠=,,54180x x ∴+=︒,解得20x =︒,则80EOC ∠=︒,又OA 平分0E C ∠,40AOC ∴∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒.【点睛】本题主要考查利用角平分线、对顶角以及平角的性质求解角的度数,熟练掌握,即可解题.25.(1)如图所示.见解析;(2)见解析.【分析】(1)作∠CPD=∠BAP ,则∠CPD 的另一边与AC 的交点即为所求作的点D ;(2)证明CPD ABP ∠=∠即可.【详解】解:(1)如图所示.(2)∵2APC APD DPC ABC BAP ABC ∠=∠+∠=∠+∠=∠∴BAP ABC ∠=∠∵BAP CPD ∠=∠∴CPD ABC ∠=∠∴//PD AB .【点睛】此题主要考查了作一个角等于已知角,以及平行线的判定,熟练掌握判定定理是解答此题的关键.26.同旁内角互补,两直线平行;两直线平行,内错角相等;∠EAP =∠FPA ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定与性质即可说明理由.【详解】解:∵∠BAP+∠APD=180°,∵∠APD+∠APC=180°,∴∠BAP=∠APC (同角的补角相等),∵∠1=∠2(已知),由等式的性质得:∴∠BAP-∠1=∠APC-∠2,即∠EAP=∠FPA ,∴AE ∥FP (内错角相等,两直线平行),∴∠E=∠F (两直线平行,内错角相等).故答案为:同角的补角相等;∠EAP=∠FPA ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.。
2023年北师大七年级数学下册第二章《相交线与平行线》综合测评卷附答案解析
2023年七年级数学下册第二章《相交线与平行线》综合测评卷(试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 在数学课上,老师让同学们画对顶角∠1与∠2,下列画法正确的是()A B C D2. 如图1,三条直线交于点O,若∠1=30°,∠2=60°,则直线AB与CD的位置关系是()A. 平行B. 垂直C. 重合D. 以上均有可能图1 图2 图33. 如图2,已知a∠b,直线a,b被直线c所截,若∠1=∠60°,则∠2的度数为()A. 130°B. 120°C. 110°D. 100°4. 一副三角尺按图3所示放置,点C在FD的延长线上,若AB∠CF,则∠DBC的度数为()A. 10°B. 15°C. 30°D. 45°5. 如图4,在三角形ABC中,AB∠AC,AD∠BC,垂足分别为点A,D,则点B到直线AD的距离为()A. 线段AB的长B. 线段BD的长C. 线段AC的长D. 线段DC的长图4 图5 图6 图7 图86. 如图5,与∠α构成同位角的角有()A. 1个B. 2个C. 3个D. 4个7. 有下列说法:∠两条直线被第三条直线所截,内错角相等;∠互补的两个角就是平角;∠过一点有且只有一条直线与已知直线平行;∠平行于同一条直线的两直线平行;∠在同一平面内,垂直于同一条直线的两条直线平行. 其中正确的有()A. 0个B. 1个C. 2个D. 3个8.如图6,∠AOB与∠AOC互余,∠AOD与∠AOC互补,OC平分∠BOD,则∠AOB的度数是()A.20°B.22.5°C.25°D.30°9.如图7,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,∠ODE=∠ADC.若反射光DC恰好与OB平行,则∠DEB的度数是()A. 74°B. 63°C. 64°D. 73°10. 如图8,已知AF平分∠BAC,D在AB上,DE平分∠BDF,∠1=∠2,有下列结论:∠DF∠AC;∠DE∠AF;∠∠1=∠DF A;∠∠C+∠DEC=180°.其中成立的有()A. ∠∠∠B. ∠∠∠C. ∠∠∠D. ∠∠∠二、填空题(本大题共6小题,每小题3分,共18分)11. 图9是苗苗同学在体育课上跳远后留下的脚印,她的跳远成绩是线段(选填“AM”“BN”或“CN”)的长度,这样测量的依据是.图9 图10 图1112. 如图10,已知直线AB与CD相交于E点,FE∠AB,垂足为点E,若∠1=120°,则∠2=°.13. 如图11,已知DE∠BF,AC平分∠BAE,∠DAB=70°,那么∠ACF=°.14. 如图12,点E是AD延长线上一点,∠B=30°,∠C=120°,如果添加一个条件,使BC∠AD,则可添加的条件为.(只填一个即可)图12 图13 图1415. 如图13,把一张长方形纸片沿AB折叠,已知∠1=75°,则∠2的度数为________°.16. 如图14,已知DH∠EG∠BC,DC∠EF,DC与EG交于点M,那么在图中与∠EFB相等的角(不包括∠EFB)有.(填上所有符合条件的角)三、解答题(本大题共6小题,共52分)17.(6分)如图15,已知∠α,∠β,求作∠AOB,使∠AOB=2∠α-∠β.(要求:尺规作图,不写作法,保留作图痕迹)图1518.(7分)如图16,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°,求∠COF的度数.图1619.(8分)如图17,已知∠1+∠2=180°,∠3=∠B,直线AB与DE是否平行?并说明理由.图1720.(9分)如图18,已知∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?请说明理由.图1821.(10分)如图19,已知直线AB,CD相交于点O,OF平分∠AOE,∠COF=∠DOF=90°.(1)写出图中所有与∠AOD互补的角.(2)若∠AOE=120°,求∠BOD的度数.图1922.(12分)如图20,已知BC∠EG,AF∠DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠F AC,交BC于点Q,且∠Q=15°,求∠ACB的度数.图20附加题(共20分,不计入总分)1.(6分)如图1,已知点D是射线AB上一动点,连接CD,过点D作DE∠BC交直线AC于点E.若∠ABC=84°,∠CDE=20°,则∠ADC的度数为()A. 104°B. 64°C. 104°或64°D. 104°或76°2.(14分)如图2,已知直线l1∠l2,直线l3与l1,l2分别交于点C,D,在C,D之间有一点P,当P点在C,D之间运动时,∠P AC,∠APB,∠PBD之间的数量关系是否发生变化?若点P在C,D两点的外侧运动时(与点C,D不重合),试探索∠P AC,∠APB,∠PBD之间的数量关系.图2参考答案一、1. C 2. B 3. B 4. B 5. B 6. C 7. C 8. B 9. A 10. A二、11. BN垂线段最短12. 30 13. 125 14. 答案不唯一,如∠1=30°15. 30 16. ∠DCB,∠GMC,∠DME,∠HDC,∠FEG三、17. 解:如图1所示,∠AOB即为所求.图118.∠COF=110°.19.解:AB∥DE.理由如下:因为∠1+∠ADC=180°,∠1+∠2=180°,所以∠ADC=∠2.根据“同位角相等,两直线平行”,可得EF∥DC.根据“两直线平行,内错角相等”,可得∠3=∠EDC.因为∠3=∠B,所以∠EDC=∠B.根据“同位角相等,两直线平行”,可得AB∥DE.20. 解:(1)AD∠BC.理由如下:因为∠ADE+∠BCF=180°,∠ADE+∠ADF=180°,所以∠ADF=∠BCF.根据“同位角相等,两直线平行”,可得AD∠BC.(2)AB∠EF.理由如下:因为BE平分∠ABC,所以∠ABC=2∠ABE.因为∠ABC=2∠E,所以∠ABE=∠E.根据“内错角相等,两直线平行”,可得AB∠EF.21. 解:(1)因为直线AB,CD相交于点O,所以∠AOC,∠BOD分别与∠AOD互补.因为OF平分∠AOE,所以∠AOF=∠EOF.因为∠COF=∠AOF+∠AOC,∠DOF=∠EOF +∠EOD,且∠COF=∠DOF=90°,所以∠DOE=∠AOC,所以∠DOE也是∠AOD的补角.所以与∠AOD互补的角有∠AOC,∠BOD和∠DOE.(2)因为OF平分∠AOE,所以∠EOF=12∠AOE=12×120°=60°.因为∠DOF=90°,所以∠DOE=∠DOF-∠EOF=90°-60°=30°.因为∠DOE与∠BOD都是∠AOD的补角,所以∠BOD=∠DOE=30°.22. 解:(1)因为BC∠EG,所以∠E=∠1=50°.因为AF∠DE,所以∠AFG=∠E=50°.(2)如图2,过点A作AM∠BC.因为BC∠EG,所以AM∠EG,所以∠F AM=∠AFG=50°.因为AM∠BC,所以∠QAM=∠Q=15°. 所以∠F AQ=∠F AM+∠QAM=50°+15°=65°.因为AQ平分∠F AC,所以∠CAQ=∠F AQ=65°.所以∠MAC=∠CAQ+∠QAM=65°+15°=80°. 图2因为AM∠BC,所以∠ACB=∠MAC=80°.附加题1. C 提示:分两种情况讨论:∠点D在线段AB上;∠点D在线段AB的延长线上.2. 解:不变化,当P点在C,D之间运动时,∠APB=∠PAC+∠PBD. 理由如下:如图1,过点P作PE∠l1,则∠APE=∠PAC.因为l1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.图1 图2 图3若点P在C,D两点的外侧运动时(与点C,D不重合),有两种情况:∠如图2,当点P在点C的上方时,∠APB=∠PBD-∠PAC. 理由如下:过点P作PE∠l1,则∠APE=∠PAC.因为l 1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APB=∠BPE-∠APE =∠PBD-∠PAC.∠如图3,当点P在点D的下方时,∠APB=∠PAC-∠PBD. 理由如下:过点P作PE∠l2,则∠BPE=∠PBD.因为l1∠l2,所以PE∠l1,所以∠APE=∠PAC,所以∠APB=∠APE-∠BPE =∠PAC-∠PBD.。
北师大版七年级下册数学第二章相交线与平行线测试题(附答案)
北师大版七年级下册数学第二章相交线与平行线测试题(附答案)北师大版七年级下册数学第二章相交线与平行线测试题(附答案)一、单选题1.如图,已知直线l1∥l2,将一块直角三角板ABC按如图所示方式放置,若∠1=39°,则∠2等于()A。
39° B。
45° C。
50° D。
51°2.如图.直线a∥b,直线L与a、b分别交于点A,B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为()A。
130° B。
50° C。
40° D。
25°3.如图,三点共线A、B、C,D、E、F三点共线,且AD∥CF,BE∥CD,下列结论错误的是()A。
∠ABE=∠XXX∠ABE=∠CDEC。
∠ABE=∠XXX∠ABE=∠BDF4.如图,平行线AB∥CD,EF⊥CD,垂足为G,图中∠AGE=()A。
90° B。
45° C。
30° D。
60°5.如图,互余的角有()A。
1个 B。
2个 C。
3个 D。
4个6.如图,AB∥CD,EF∥GH,则下列等式正确的是()A。
∠AEF=∠GHF B。
∠AEF=∠HGFC。
∠XXX∠GHF D。
∠XXX∠HGF7.已知同一平面内的三条直线AB,CD,EF,AB∥CD,CD∥EF,则下列结论错误的是()A。
AB∥EF B。
AB∥CD C。
EF∥CD D。
AB∥EF8.如果a<b,且a+b=5c,如果c<a,b<c,比a与b 的和的3倍少2,那么a与b的位置关系是()A。
a<b B。
a>b C。
a=b D.无法确定9.如图,已知AB∥CD,AE=2cm,EC=3cm,则图中互相平行的线段是()A。
AB//CD B。
AE//DC C。
BE//CD D。
AB//EC10.如图,AB∥CD,点E在直线AD上,且∠AEC=34°,则∠BED的大小为()A。
(北师大版)北京市七年级数学下册第二单元《相交线与平行线》检测题(包含答案解析)
一、选择题1.如图,////,//AB CD EF CG AF ,那么图中与∠AFE 相等的角的个数是( )A .4B .5C .6D .7 2.下列说法不正确...的是( ) A .对顶角相等 B .两点确定一条直线C .一个角的补角一定大于这个角D .垂线段最短 3.如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒4.如图,已知直线//AD BC ,BE 平分ABC ∠交直线DA 于点E ,若58DAB ∠=︒,则E ∠等于( )A .25°B .29°C .30°D .45° 5.用一副三角板不能画出的角是( ).A .75°B .105°C .110°D .135° 6.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④ 7.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70° 8.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58° 9.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个10.如图,五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为( )A .180°B .270°C .360°D .450°11.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=25°, 则∠2的度数为( )A .55°B .60°C .65°D .75°二、填空题13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若36DOE ∠=︒,则BOC ∠的度数为______.14.如图,直线AB 与CD 相交于点O ,OM AB ⊥,若55DOM ∠=︒,则AOC ∠=______°.15.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.16.如图,//,//,62AC ED AB FD A ∠=︒,则EDF ∠度数为___________.17.如图,AB//CD , 15,25A C ︒︒∠=∠=则M ∠=______18.在同一平面上有三条互相平行的直线,,a b c ,已知a 与b 的距离为5,cm b 与c 的距离为2cm ,则a 与c 的距离为________.19.将如图1的长方形ABCD 纸片()//AD BC 沿EF 折叠得到图2,折叠后DE 与BF 相交于点P .如果70,EPF ∠=︒则PEF ∠的度数为____.20.如图//a b ,M ,N 分别在直线a ,b 上,P 为两条平行线间的一点,则123∠+∠+∠=_________.三、解答题21.在平面内有三点A ,B ,C .(1)如图,作出A ,C 两点之间的最短路线;在射线BC 上找一点D ,使线段AD 长最短; (2)若A ,B ,C 三点共线,若20cm AB =,14cm BC =,点E ,F 分别是线段AB ,BC 的中点,求线段EF 的长.22.已知A ∠与B 互为余角,且A ∠的补角比B 的3倍少50︒,假设A x ∠=︒,求A ∠,B 的度数.23.如图,直线AB ,CD 相交于点O ,OA 平分EOC ∠.(1)若70EOC ∠=︒,求BOD ∠的度数;(2)若:4:5∠∠=EOC EOD ,求BOC ∠的度数.24.作图题:如图,A 为射线OB 外一点.(1)连接OA;(2)过点A画出射线OB的垂线AC,垂足为点C(可以使用各种数学工具);(3)在线段AC的延长线上取点D,使得CD AC(4)画出射线OD;(5)请直接写出上述所得图形中直角有个.25.如图,点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM在射线OB上方,另一边ON在直线AB的下方.①探究∠AOM和∠CON之间的数量关系,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.26.如图,直线AB,CD相交于点O,OE平分∠BOC,FO⊥CD于点O,若∠BOD∶∠EOB=2∶3,求∠AOF的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据CD ∥EF 得出∠CGE=∠GCD ,再由CG ∥AF 得出∠CGE=∠AFE ,根据AB ∥CD ∥EF 可得出∠AFE=∠DHF=∠AHC=∠BAH ,由此可得出结论.【详解】解:∵CD ∥EF ,∴∠CGE=∠GCD ,∠AFE=∠DHF .∵CG ∥AF ,∴∠CGE=∠AFE .∵AB ∥CD ,∴∠BAH=∠DHF ,∴∠AFE=∠CGE=∠AFE=∠DHF=∠AHC=∠BAH .故选:B .【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,同位角相等,内错角相等. 2.C解析:C【分析】根据对顶角的性质,直线的性质,补角的定义,垂线段的性质依次判断即可得到答案.【详解】解:A 、对顶角相等,故该项不符合题意;B 、两点确定一条直线,故该项不符合题意;C 、一个角的补角一定不大于这个角,故该项符合题意;D 、垂线段最短,故该项不符合题意;故选:C .【点睛】此题考查对顶角的性质,直线的性质,补角的定义,垂线段的性质,正确理解各性质及定义是解题的关键.3.B解析:B【分析】由平行线的性质和角平分线的定义,求出60BOD D ∠=∠=︒,20DOF ∠=︒,然后即可求出∠BOF 的度数.【详解】解:∵//CD AB ,60D ∠=︒∴60BOD D ∠=∠=︒,18060120AOD ∠=︒-︒=︒,∵OE 平分∠AOD , ∴1120602DOE ∠=⨯︒=︒, ∴806020DOF EOF DOE ∠=∠-∠=︒-︒=︒;∴602040BOF BOD DOF ∠=∠-∠=︒-︒=︒;【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数.4.B解析:B【分析】根据平行线的性质可知∠ABC=58°,再根据角平分线的性质可求∠EBC=29°,再利用平行线的性质可求∠E .【详解】解:∵//AD BC ,∴58ABC DAB ∠=∠=︒,∵BE 平分ABC ∠, ∴1292EBC ABC ∠=∠=︒, ∵//AD BC ,∴29E EBC ∠=∠=︒,故选B .【点睛】本题考查了平行线的性质和角平分线的性质,灵活运用这两个性质是解题关键. 5.C解析:C【分析】105°=60°+45°,105°角可以用一幅三角板中的60°角和45°角画;75°=45°+30°,75°角可以用一幅三角板中的45°角和30°角画;135°=90°+45°,135°角可以用一幅三角板中的直角和90°角或45°角画;110°角用一副三角板不能画出.【详解】解:105°角可以用一幅三角板中的60°角和45°角画;75°角可以用一幅三角板中的45°角和30°角画;110°角用一副三角板不能画出;135°角可以用一幅三角板中的直角和90°角或45°角画。
(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测(包含答案解析)(2)
一、选择题1.如图所示,已知//AB CD ,则( ).A .123∠=∠+∠B .123∠∠∠>+C .213∠=∠+∠D .123∠∠∠<+2.如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠互补的是( ) A . B . C . D .3.下列语句中正确的是( )A .直线AB 和直线BA 是两条不同的直线B .连接两点间的线段叫两点的距离C .一条射线就是一个周角D .一个角的余角比这个角的补角小 4.下列说法正确的是( )A .锐角的补角一定是钝角B .一个角的补角一定大于这个角C .锐角和钝角一定互补D .两个锐角一定互为余角5.如图,已知直线//AD BC ,BE 平分ABC ∠交直线DA 于点E ,若58DAB ∠=︒,则E ∠等于( )A .25°B .29°C .30°D .45°6.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35°7.下列说法中:①40°35′=2455′;②如果∠A+∠B =180°,那么∠A 与∠B 互为余角;③经过两点有一条直线,并且只有一条直线;④在同一平面内,不重合的两条直线不是平行就是相交.正确的个数为( ).A .1个B .2个C .3个D .4个 8.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º9.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65°10.已知a ∥b ,将等腰直角三角形ABC 按如图所示的方式放置,其中锐角顶点B ,直角顶点C 分别落在直线a ,b 上,若∠1=15°,则∠2的度数是( )A .15°B .22.5°C .30°D .45° 11.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30B .︒40C .50︒D .60︒12.如图,CB 平分∠ACD ,∠2=∠3,若∠4=60°,则∠5的度数是( )A .60°B .30°C .20°D .40°二、填空题13.一个角的补角比它的余角的3倍少20︒,这个角的度数是_______度.14.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.15.如图,已知直线12l l ,130∠=︒,则23∠+∠=_________.16.将一副直角三角板如图放置,点E 在AC 边上,且ED//BC ,∠C=30°,∠F=∠DEF=45°,则∠AEF=_____度.17.关于垂线,小明给出了下面三种说法:①两条直线相交,所构成的四个角中有一个角是直角,那么这两条直线互相垂直;②这两条直线的交点叫垂足;③直线AB CD ⊥,也可以说成CD AB ⊥.其中正确的有______(填序号).18.如图,AB CD ∥,EF 平分BED ∠,66DEF D ︒∠+∠=,28B D ∠-∠=︒,则BED ∠=__________.19.如图,已知AB//CD ,120AFC ∠=︒,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AEC ∠=____度.20.如图//a b ,M ,N 分别在直线a ,b 上,P 为两条平行线间的一点,则123∠+∠+∠=_________.三、解答题21.如图,直线AB 、CD 相交于点O ,已知80AOC ︒∠=,射线OE 把BOD ∠分成两个角,且∠BOE ;3:5EOD ∠=.(1)求EOB ∠的度数;(2)过点O 作射线OF OE ⊥,求BOF ∠的度数.22.如图,180,AEM CDN EC ︒∠+∠=平分AEF ∠.若62EFC ︒∠=,求C ∠的度数.根据提示将解题过程补充完整.解:180CDM CDN ︒∠+∠=(平角的意义),180AEM CDN ︒∠+∠=(已知), AEM CDM ∴∠=∠//AB CD ∴(___________________)AEF ∴∠+(________)180︒=(两直线平行,同旁内角互补)62EFC ︒∠=,118AEF ︒∴∠= EC 平分AEF ∠,59AEC ︒∴∠=(_________)//AB CD ,59C AEC ︒∴∠=∠=(___________________)23.如图,已知三角形ABC 和射线EM ,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):(1)在射线EM 的上方,作NEM B ∠=∠;(2)在射线EN 上作线段DE ,在射线EM 上作线段EF ,使得DE AB =,EF BC =;(3)连接DF ,观察并猜想:DF 与AC 的数量关系是DF ______AC ,填(“>”、“<”或“=”)24.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.25.利用网格画图,每个小正方形边长均为1(1)过点C 画AB 的平行线CD ;(2)仅用直尺,过点C 画AB 的垂线,垂足为E ;(3)连接CA 、CB ,在线段CA 、CB 、CE 中,线段______最短,理由___________. (4)直接写出△ABC 的面积为 _________.26.已知:如图,O 是直线AB 上一点,OD 是AOC ∠的平分线,COD ∠与COE ∠互余.求证:AOE ∠与COE ∠互补.请将下面的证明过程补充完整;证明:O 是直线AB 上一点,180AOB ∴∠=︒COD ∠与COE ∠互余,COD COE ∴∠+∠=_______︒.90AOD BOE ∴∠+∠=︒ OD 是AOC ∠的平分线,AOD ∴∠=∠_________.(理由:_________)B O E COE ∴∠=∠.(理由:______________)=AOE BOE ∠+∠_______︒.180AOE COE ∴∠+∠=︒AOE ∴∠与COE ∠互补.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平行线的性质,得3ABO ∠=∠;根据补角的性质,得1801AOB ∠=-∠;根据角的和差的性质计算,即可得到123∠=∠+∠,从而完成求解.【详解】∵//AB CD∴3ABO ∠=∠∵1801AOB ∠=-∠又∵1802ABO ABO ∠=-∠-∠∴312∠=∠-∠∴123∠=∠+∠故选:A .【点睛】本题考查了平行线、角的知识;解题的关键是熟练掌握平行线、补角、角的和差的性质,从而完成求解.2.D解析:D【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】解:A 、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项不符合题意; B 、图中∠α=∠β,不一定互余,故本选项错误;C 、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D 、图中∠α+∠β=180°,互为补角,故本选项正确.故选:D .【点睛】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.3.D解析:D【分析】根据射线、直线的定义,余角与补角,周角的定义,以及线段的性质即可求解.【详解】A 、直线AB 和直线BA 是一条直线,原来的说法是错误的,不符合题意;B 、连接两点间的线段的长度叫两点的距离,原来的说法是错误的,不符合题意;C 、周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的,不符合题意;D 、一个角的余角比这个角的补角小是正确的,符合题意;故选:D .【点睛】本题考查了射线、直线的定义,余角与补角,周角的定义,以及线段的性质,是基础题,熟记相关概念与性质是解题的关键.4.A解析:A【分析】根据余角和补角的概念判断.【详解】解:A 、锐角的补角一定是钝角,本选项说法正确;B 、一个角的补角一定大于这个角,本选项说法错误,例如:120°的补角是60°,而60°<120°;C 、锐角和钝角一定互补,本选项说法错误,例如20°+120°=140°,20°与120°不互补;D 、两个锐角一定互为余角,本选项说法错误,30°与30°不是互为余角;故选:A .【点睛】此题考查余角和补角的概念,熟记概念是解题的关键.5.B解析:B【分析】根据平行线的性质可知∠ABC=58°,再根据角平分线的性质可求∠EBC=29°,再利用平行线的性质可求∠E .【详解】解:∵//AD BC ,∴58ABC DAB ∠=∠=︒,∵BE 平分ABC ∠, ∴1292EBC ABC ∠=∠=︒, ∵//AD BC ,∴29E EBC ∠=∠=︒,故选B .【点睛】本题考查了平行线的性质和角平分线的性质,灵活运用这两个性质是解题关键. 6.D解析:D【分析】根据对顶角相等求出∠AOC ,根据角平分线的定义计算即可求出∠COE 的度数.【详解】∵∠BOD=70︒,∴∠AOC=∠BOD=70︒,∵OE 平分∠AOC ,∴∠COE=12∠AOC=170352⨯︒=︒, 故选:D .【点睛】 本题考察对顶角、角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键. 7.B解析:B【分析】根据角的性质计算,可得到①不正确;根据补角和余角的定义,可得到②不正确;根据直线的性质分析,可得③和④正确,从而得到答案.【详解】()40354060352435'''︒=⨯+=,故①不正确;如果∠A+∠B =180°,那么∠A 与∠B 互为补角,故②不正确;③、④正确;故选:B .【点睛】本题考查了角、直线的知识;解题的关键是熟练掌握角的计算、余角和补角、直线的性质,从而完成求解.8.C解析:C【分析】由AO ⊥CO 和∠1=20º求得∠BOC =70º,再由邻补角的定义求得∠2的度数.【详解】∵AO ⊥CO 和∠1=20º,∴∠BOC =90 º-20 º=70º,又∵∠2+∠BOC =180 º(邻补角互补),∴∠2=110º.故选:C .【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.9.B解析:B【分析】l m,利用平行线的判定定理和性质定理进行分析即可得出答案.由题意过点B作直线//【详解】l m,解:如图,过点B作直线//∵直线m//n,//l m,∴//l n,∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,∵//l m,∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.10.C解析:C【分析】利用等腰直角三角形的定义求∠3,再由平行线的性质求出∠2即可.【详解】如图,∵△ABC是等腰直角三角形,∴∠1+∠3=45°,∵∠1=15°,∴∠3=30°,∵a∥b,∴∠2=∠3=30°,故选C.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识.11.A解析:A【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A.【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.12.B解析:B【分析】证出∠AB∥CD,由平行线的性质得∠4=∠ACD=∠1+∠2=60°,∠5=∠2,由角平分线定义得∠1=∠2=30°,即可得出答案.【详解】∵∠2=∠3,∴AB∥CD,∴∠4=∠ACD=∠1+∠2=60°,∠5=∠2,∵CB平分∠ACD,∴∠1=∠2=30°,∴∠5=∠2=30°;故选:B.【点睛】本题考查了平行线的判定与性质以及角平分线定义;熟练掌握平行线的判定与性质是解题的关键,属于中考常考题型.二、填空题13.35【分析】设这个角为x度根据一个角的补角比它的余角的3倍少20°构建方程即可解决问题【详解】解:设这个角为x度则180°-x=3(90°-x)-20°解得:x=35°答:这个角的度数是35°故答案解析:35【分析】设这个角为x度.根据一个角的补角比它的余角的3倍少20°,构建方程即可解决问题.【详解】解:设这个角为x度.则180°-x=3(90°-x)-20°,解得:x=35°.答:这个角的度数是35°.故答案为:35.【点睛】本题考查余角、补角的定义,一元一次方程等知识,解题的关键是学会用方程分思想思考问题,属于中考常考题型.14.70【分析】根据两直线平行同位角相等可得∠C=∠1再根据两直线平行内错角相等可得∠2=∠C【详解】∵DE∥AC∴∠C=∠1=70°∵AF∥BC∴∠2=∠C =70°故答案为70【点睛】本题考查了平行线解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.15.【分析】过∠2的顶点作AB∥可由得出AB∥根据平行线的性质即可解答【详解】如图;过∠2的顶点作AB∥∴∠DAB=又∵∴AB∥∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=故答案为解析:210 .【分析】过∠2的顶点作AB ∥1l ,可由12l l 得出AB ∥2l ,根据平行线的性质即可解答.【详解】如图; 过∠2的顶点作AB ∥1l ∴∠DAB=130∠=︒ 又∵12l l∴AB ∥2l ∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=210︒ 故答案为210︒【点睛】本题考查的是平行线的性质及平行公理的推论,掌握平行线的性质定理及平行公理的推论是解答关键.16.165【分析】根据两直线平行内错角相等求出∠DEC 然后由角的和差关系求得∠CEF 最后由邻补角的性质求得结果【详解】解:∵ED ∥BC ∠C=30°∴∠DEC=∠C=30°∵∠DEF=45°∴∠CEF=∠解析:165 【分析】根据两直线平行,内错角相等求出∠DEC ,然后由角的和差关系求得∠CEF ,最后由邻补角的性质求得结果. 【详解】解:∵ED ∥BC ,∠C=30° ∴∠DEC=∠C=30°, ∵∠DEF=45°,∴∠CEF=∠DEF-∠DEC=45°-30°=15°. ∴∠AEF=180°-∠CEF=165°, 故答案为:165. 【点睛】本题考查了角的和差,平行线的性质,邻补角的性质,熟记性质是解题的关键.17.①③【分析】根据垂线的定义分别进行判断可得答案【详解】解:①两条直线相交所构成的四个角中有一个角是直角那么这两条直线互相垂直;①正确;②互相垂直的两条直线的交点叫做垂足故②错误;③直线也可以说成③正解析:①③. 【分析】根据垂线的定义,分别进行判断,可得答案. 【详解】解:①两条直线相交,所构成的四个角中有一个角是直角,那么这两条直线互相垂直;①正确;②互相垂直的两条直线的交点叫做垂足,故②错误; ③直线AB CD ⊥,也可以说成CD AB ⊥,③正确; ∴正确的有:①③. 故答案为:①③. 【点睛】本题考查了垂线,熟练掌握垂线的定义是解题关键.18.【分析】过E 点作EM ∥AB 根据平行线的性质可得∠BED=∠B+∠D 利用角平分线的定义可求得∠B+3∠D=132°结合∠B-∠D=28°即可求解【详解】解:过E 点作EM ∥AB ∴∠B=∠BEM ∵AB ∥C 解析:80︒【分析】过E 点作EM ∥AB ,根据平行线的性质可得∠BED =∠B +∠D ,利用角平分线的定义可求得∠B +3∠D =132°,结合∠B -∠D =28°即可求解. 【详解】解:过E 点作EM ∥AB ,∴∠B =∠BEM , ∵AB ∥CD , ∴EM ∥CD , ∴∠MED =∠D , ∴∠BED =∠B +∠D , ∵EF 平分∠BED , ∴∠DEF =12∠BED , ∵∠DEF +∠D =66°, ∴12∠BED +∠D =66°, ∴∠BED +2∠D =132°,即∠B+3∠D=132°,∵∠B-∠D=28°,∴∠B=54°,∠D=26°,∴∠BED=80°.故答案为:80°.【点睛】本题主要考查平行线的性质,角平分线的定义,作出辅助线证出∠BED=∠B+∠D是解题的关键.19.90【详解】解:如图过点E作EH∥AB过点F作FG∥AB∵AB∥CD∴AB∥FG∥CDAB∥EH∥CD∴又∵∴∴∴即:∴故答案为:90【点睛】本题考查了平行线的性质平行公理作辅助线构造内错角是解题的解析:90【详解】解:如图,过点E作EH∥AB,过点F作FG∥AB,∵AB∥CD,∴AB∥FG∥CD,AB∥EH∥CD,∴AFG FAB,GFC FCD,AFG FAB,GFC FCD,又∵13EAF EAB∠=∠,13ECF ECD∠=∠,∴3EAB EAF,3ECD ECF,∴4FAB EAF,4ECD ECF,∴44120AFC AFG GFC FAB ECD EAF ECF,即:30EAF ECF,∴33390AEC EAB ECD EAF ECF EAF ECF.故答案为:90.【点睛】本题考查了平行线的性质,平行公理,作辅助线构造内错角是解题的关键.20.【分析】过点P作PA∥a如图根据平行公理的推论可得PA∥a∥b根据平行线的性质可得∠1+∠MPA=180°∠3+∠NPA=180°然后两式相加即可求出答案【详解】解:过点P作PA∥a如图∵a∥b∴P解析:360【分析】过点P作PA∥a,如图,根据平行公理的推论可得PA∥a∥b,根据平行线的性质可得∠1+∠MPA=180°,∠3+∠NPA=180°,然后两式相加即可求出答案.【详解】解:过点P作PA∥a,如图,∵a∥b,∴PA∥a∥b,∴∠1+∠MPA=180°,∠3+∠NPA=180°,∴∠1+∠MPA+∠3+∠NPA=360°,∠+∠+∠=360°.即123故答案为:360°.【点睛】本题考查了平行公理的推论和平行线的性质,正确添加辅助线、熟练掌握平行线的性质是解题的关键.三、解答题21.(1)30°;(2)120°或60°【分析】(1)根据对顶角相等可得∠BOD=∠AOC,然后根据比例求解即可;(2)分OF在∠AOD的内部时,∠BOF=∠EOF+∠BOE,OF在∠BOC的内部时,∠BOF=∠EOF-∠BOE进行计算即可得解.【详解】解:(1)∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵∠BOE:∠EOD=3:5,∴∠BOE=80°×3=30°;+35(2)∵OF⊥OE,∴∠EOF=90°,OF在∠AOD的内部时,∠BOF=∠EOF+∠BOE=90°+30°,=120°,OF在∠BOC的内部时,∠BOF=∠EOF-∠BOE=90°-30°,=60°,综上所述:∠DOF=120°或60°.【点睛】本题考查了对顶角相等的性质,角的计算,熟记概念并准确识图是解题的关键.22.见解析【分析】根据同角的补角相等可得出∠AEM=∠CDM,利用“同位角相等,两直线平行”可得出AB∥CD,由“两直线平行,同旁内角互补”及∠EFC=62°可求出∠AEF=118°,结合角平分线的定义可求出∠AEC的度数,再利用“两直线平行,内错角相等”即可求出∠C的度数.【详解】解:∵∠CDM+∠CDN=180°(平角的意义),∠AEM+∠CDN=180°(已知),∴∠AEM=∠CDM,∴AB∥CD,(同位角相等,两直线平行)∴∠AEF+∠EFC=180°,(两直线平行,同旁内角互补)∵∠EFC=62°,∴∠AEF=118°,∵EC平分∠AEF,∴∠AEC=59°,(角平分线的定义)∵AB∥CD,∴∠C=∠AEC=59°.(两直线平行,内错角相等).【点睛】本题考查了平行线的判定与性质以及角平分线,牢记各平行线的判定与性质定理是解题的关键.23.(1)见解析;(2)见解析;(3)=【分析】(1)根据作一个角等于已知角的尺规作图即可解答(2)根据作一条线段等于已知线段的尺规作图即可解答 (3)结合图形易证ABC EDF △≌△,即可得到答案 【详解】 (1)如图所示:作法:①以点B 为圆心任意长为半径画圆弧,交AB ,BC 于点G ,H ②再以点E 为圆心以①中的半径画圆弧,交EM 于点P③再以点P 为圆心GH 长为半径画圆弧,与②所画的圆弧交于点N ,连接EN 即可 (2)如图所示:作法:①用圆规取BC 的长度,以点E 为圆心BC 长为半径画弧,交EM 于点F ,则EF=BC ②用圆规取AB 的长度,以点E 为圆心AB 长为半径画弧,交EN 的延长线于点D ,则DE=AB(3)根据EF=BC ,DE=AB ,B NEM ∠=∠可证ABC EDF △≌△,则DF=AC 【点睛】本题考查了尺规作图,解题关键是熟练掌握作一个角等于已知角的尺规作图方法,以及作一条线段等于已知线段的尺规作图方法.24.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEFS 的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =, ∴10cm BC AD ==,6cm AB DC ==, ∵点F 是DC 的中点, ∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm , ∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形=()()()1111066510353222⨯-⨯-⨯-⨯ =156015152---=4522cm ; (2)由题意得AE=t ,DE=10-t ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形=()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152tt ---+=3302t -,∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫- ⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =,8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD∴AD CD ⊥,//,//AB CD AD BC , ∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅,∵10cm AD =,6cm DC =, ∴106EG HF =,即53EG FH =. 【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.25.(1)见详解;(2)见详解;(3)CE ,垂线段最短;(4)8. 【分析】(1)取点D 作直线CD 即可; (2)取点F 作直线CF 交AB 与E 即可; (3)根据垂线段最短即可解决问题;(4)用割补法,大长方形的面积减去三个小三角形的面积即可; 【详解】解:(1)直线CD 即为所求; (2)直线CE 即为所求;(3)在线段CA 、CB 、CE 中,线段CE 最短,理由:垂线段最短; 故答案为CE ,垂线段最短; (4) S △ABC =18﹣12×1×5﹣12×1×3﹣12×2×6=8, ∴△ABC 的面积为8. 【点睛】本题主要考查垂线、平行线及其做图,注意作图的准确性. 26.90;COD ; 角平分线的定义;等式性质,180. 【分析】根据余角的定义可得∠COD+∠COE=90°,再根据平角的定义可得∠AOD+∠BOE=90°;根据角平分线的定义可得∠AOD=∠COD ,再根据等式性质可得∠BOE=∠COE ,进而得证. 【详解】证明:∵O 是直线AB 上一点 ∴∠AOB=180° ∵∠COD 与∠COE 互余 ∴∠COD+∠COE=90° ∴∠AOD+∠BOE=90°∵OD是∠AOC的平分线∴∠AOD=∠COD(理由:角平分线的定义)∴∠BOE=∠COE(理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等式性质,180.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.。
北师大版数学七年级下册第二章相交线与平行线 达标测试卷
第二章相交线与平行线达标测试卷一、选择题(每题3分,共30分)1.下列选项中,∠1和∠2是对顶角的是()2.已知∠1=50°,则∠1的补角的度数是()A.130°B.140°C.40°D.60°3.如图,为了解决村民饮水问题,某村庄需要在河岸上建立取水点,下面四个点中最方便作为取水点的是()A.A点B.B点C.C点D.D点(第3题)(第4题)4.如图,点O在直线AB上,OC⊥OD.若∠BOD=25°,则∠AOC的大小为() A.65°B.105°C.120°D.115°5.下列图形中,∠1与∠2不是同位角的是()6.如图,已知直线a∥b,∠1=85°,∠2=60°,则∠3=()A.35°B.25°C.15°D.30°7.在同一平面内有三条不同的直线a,b,c,如果a∥b,a与b的距离是2 cm,并且b上的点P到直线c的距离也是2 cm,那么a与c的位置关系是() A.平行B.相交但不垂直C.垂直D.不能确定8.如图,在下列给出的条件中,不能判定DE∥BC的是()A.∠1=∠2B.∠3=∠4C.∠5=∠CD.∠B+∠BDE=180°9.如图,将长方形ABCD沿线段EF折叠,若∠EFC′=100°,则∠DFC′的度数为()A.20°B.30°C.40°D.50°10.如图,若∠1=∠2,DE∥BC,则下列结论中正确的有()①FG∥DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B=90°;⑤∠BFG=∠BDC.A.1个B.2个C.3个D.4个(第10题)(第11题)二、填空题(每题3分,共15分)11.如图所示,请添加一个条件,使AB∥CE.则添加的条件为________________.12.已知l1∥l2,一个含有30°角的三角尺按照如图所示的位置摆放,若∠1=65°,则∠2=______°.(第12题)(第13题)13.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为______.14.如图,直线AB和直线CD相交于点O,∠BOE=90°,有下列结论:①∠AOC 与∠COE互为余角;②∠AOC=∠BOD;③∠AOC=∠COE;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠BOD与∠COE互为余角.其中错误的是______.(填序号)3(第14题)(第15题)15.如图,已知AB∥CD,则∠A、∠C、∠P的关系为______________.三、解答题(一)(每题8分,共24分)16.看图填空:(请将不完整的解题过程及根据补充完整)已知:如图,AB∥CD,BC平分∠ABD,∠1=50°,求∠2的度数.解:因为AB∥CD,∠1=50°,根据________________________,所以∠ABC=∠1=50°.因为BC平分∠ABD,∠ABC=50°,所以______=2∠ABC=100°.根据“两直线平行,同旁内角互补”,所以∠ABD+______=180°,所以∠CDB=180°-∠ABD=80°.根据______________,所以∠2=∠CDB=80°.17.一个角的余角比它的补角的一半还小10°,求这个角.18.如图,已知点D为△ABC的边AB上一点.(1)尺规作图:请在边AC上确定一点E,使得∠ADE=∠B(保留作图痕迹,不写作法);(2)DE平行于BC吗?请说明理由.四、解答题(二)(每题9分,共27分)19.如图,已知∠1=∠2,CD、EF分别是∠ACB、∠AED的平分线.试说明:BC∥DE .20.如图,AB∥CD,连接CA并延长至点H,CF平分∠ACD,CE⊥CF,∠GAH 与∠AFC互余.(1)试判断AG与CE的位置关系,并说明理由.(2)若∠GAF=110°,求∠AFC的度数.521.如图,直线AB,CD相交于点O,EO⊥CD.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD∶∠BOC=1∶5,求∠AOE的度数.五、解答题(三)(每题12分,共24分)22.如图,已知AC∥FE,∠1+∠2=180°.(1)∠F AB和∠BDC相等吗?请说明理由;(2)若AC平分∠F AD,EF⊥BE于点E,∠F AD=80°,求∠BCD的度数.23.如图①,已知直线l1∥l2,l3和l1、l2分别交于A、B两点,l4和l1、l2分别交于C、D两点,点P在线段AB上.记∠ACP=∠1,∠BDP=∠2,∠CPD=∠3.(1)若∠1=22°,∠2=33°,则∠3=______.(2)试找出∠1、∠2、∠3之间的等量关系,并说明理由.(3)应用(2)中的结论解答下列问题:如图②,点A在B处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数.(4)如果点P在直线l3上且在A、B两点外侧运动时,其他条件不变,试探究∠1、∠2、∠3之间的关系(点P和A、B两点不重合,直接写出结论即可).7答案一、1.D 2.A 3.B 4.D 5.B 6.A7.D8.B9.A10.C二、11.∠B=∠DCE(答案不唯一)12.2513.60°14.③⑤15.∠A+∠C-∠P=180°点拨:如图所示,作PE∥CD,因为PE∥CD,所以∠C+∠CPE=180°.因为AB∥CD,所以PE∥AB,所以∠A=∠APE,因为∠CPE=∠APE-∠APC,所以∠CPE=∠A-∠APC,所以∠C+∠A-∠APC=180°.三、16.“两直线平行,同位角相等”;∠ABD;∠CDB;“对顶角相等”17.解:设这个角为x°,根据题意得90-x=12(180-x)-10,解得x=20.故这个角的度数为20°. 18.解:(1)如图,点E即为所求.(2)平行.理由如下:因为∠ADE=∠B,所以DE∥BC.四、19.解:因为∠1=∠2,所以EF∥CD,所以∠3=∠4.9 因为CD 、EF 分别是∠ACB 、∠AED 的平分线, 所以∠ACB =2∠3,∠AED =2∠4, 所以∠AED =∠ACB ,所以BC ∥DE . 20.解:(1)AG ∥CE ,理由如下:因为AB ∥CD ,所以∠AFC =∠DCF . 因为CF 平分∠ACD ,所以∠DCF =∠ACF , 所以∠AFC =∠ACF ,因为CE ⊥CF ,∠GAH 与∠AFC 互余,所以∠ECH +∠ACF =90°,∠GAH +∠AFC =90°, 所以∠ECH =∠GAH ,所以AG ∥CE . (2)因为AB ∥CD ,AG ∥CE , 所以易得∠ECD =∠GAF =110°, 因为CE ⊥CF ,所以∠ECF =90°, 所以∠DCF =∠ECD -∠ECF =20°, 所以∠AFC =∠DCF =20°.21.解:(1)因为EO ⊥CD ,所以∠COE =90°.因为∠AOC =36°,所以∠BOE =180°-∠COE -∠AOC =54°.(2)因为∠BOD ∶∠BOC =1∶5,∠BOD +∠BOC =180°, 所以∠BOD =180°×16=30°,所以∠AOC =∠BOD =30°,又因为∠COE =90°,所以∠AOE =∠AOC +∠COE =120°. 五、22.解:(1)∠F AB =∠BDC .理由:因为AC ∥EF ,所以∠1+∠F AC =180°, 又因为∠1+∠2=180°,所以∠2=∠F AC , 所以F A ∥CD ,所以∠F AB =∠BDC .(2)因为AC 平分∠F AD ,所以∠F AD =2∠F AC , 由(1)知∠2=∠F AC ,所以∠F AD =2∠2. 因为∠F AD =80°,所以∠2=12×80°=40°.因为EF⊥BE,AC∥EF,所以易得AC⊥BE,所以∠ACB=90°,所以∠BCD=90°-∠2=50°. 23.解:(1)55°(2)∠1+∠2=∠3理由如下:因为l1∥l2,所以∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,所以∠1+∠2=∠3.(3)由题意得∠BAC=∠DBA+∠ACE=40°+45°=85°.(4)当P点在A的外侧时,如图①,∠3=∠2-∠1.当P点在B的外侧时,如图②,∠3=∠1-∠2.。
七年级数学下册试卷单元测试(二)_相交线与平行线
单元测试(二) 相交线与平行线一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.如图,下列各组角中,是对顶角的一组是( )A.∠1和∠2B.∠3和∠5C.∠3和∠4D.∠1和∠52.过一点画已知直线的平行线( )A.有且只有一条B.不存在C.有两条D.不存在或有且只有一条3.如图所示,点P到直线l的距离是( )A.线段PB的长度B.线段PA的长度C.线段PC的长度D.线段PD的长度4.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为( )A.20°B.35°C.45°D.70°5.如图,直线a,b被直线c所截,下列条件能判定直线a与b平行的是( )A.∠3=∠4B.∠l+∠3=180°C.∠2=∠4D.∠1=∠46.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6是同旁内角;④∠5和∠2是同位角;⑤∠1和∠3是同旁内角.其中正确的是( )A.①②④⑤B.①②③④C.①②③④⑤D.①②③7.下列说法不正确的是( )A.钝角没有余角,但一定有补角B.若两个角相等且互补,则它们都是直角C.锐角的补角比该锐角的余角大D.一个锐角的余角一定比这个锐角大8.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠l=33°,那么∠2为( )A.33°B.57°C.67°D.60°9.如图,小芳从A出发沿北偏东60°方向行至B处,又沿北偏西20°方向行至C处,则∠ABC的度数是( )A.80°B.90°C.100°D.95°10.如图,AB∥CD,则图中α,β,γ三角之间的关系是( )A.α+β+γ=180°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=360°二、填空题(每小题3分,共15分)11.如果一个角等于20°,那么它的余角是_______.12.如图,已知∠1=∠2,则图中互相平行的线段是_______.13.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路选点来建火车站(位置已选好),说明理由_______.14.如图,已知点O在直线AB上,CO⊥DO于点O,若∠l=145°,则∠3=_______.15.如图,长方形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=60°,则∠2的度数为_______.三.、解答题(本大题共8个小题,满分75分)16.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.17.(9分)如图,在屋架上要加一根横梁DE,且DE∥BC,请你用尺规作出DE,并说说你的方法和根据.18.(9分)如图,AB和CD交于0点,OD平分∠BOF,0E⊥CD于点0,∠A0C=40°,求∠EOF的度数.19.(9分)补全下列推理过程:如图,已知AB∥CE,∠A=∠E,试说明:∠CGD=∠FHB.解:因为AB∥CE(______),所以∠A=∠______(______).因为∠A=∠E(已知),所以∠______=∠______(______).所以______∥______(______).所以∠CGD=∠______(______).因为∠FHB=∠GHE(______),所以∠CGD=∠FHB(______).20.(9分)如图,AB∥CD∥EF,写出∠B,∠D,∠BED之间的数量关系式,并说明理由.21.(10分)如图所示,已知BA平分∠EBC,CD平分∠ACF,且AB∥CD.(1)试判断AC与BE的位置关系,并说明理由;(2)若DC⊥EC,垂足为C,猜想∠E与∠FCD之间的关系,并推理判断你的猜想.22.(10分)如图,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE,BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变.若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).23.(11分)生活常识:如图l,MN,EF是两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,则∠1=∠2.旧知新意:(1)若光线BC经镜面EF反射后的反射光线为CD;试判断AB与CD的位置关系,说明理由;尝试探究:(2)如图2,有两块互相垂直的平面镜MN,EF,有一束光线射在其中一块MN上,经另一块EF反射,两束光线会平行吗?若平行,请说明理由;拓展提升:(3)如图3,两面镜子的夹角为α(0°<α<90°)时,进入光线与离开光线的夹角为β(0°<β<90°).试探索α与β的数理关系:______.参考答案1.B2.D3.A4.B5.D6.A7.D8.B9.C 10.C11.70°12.AD∥BC 13.垂线段最短14.55°15.60°16.解:∠2=50°.17.解:图略.18.解:∠EOF=130°.19.已知ADC 两直线平行,内错角相等ADC E 等量代换AD EF同位角相等,两直线平行GHE 两直线平行,同位角相等对顶角相等等量代换20.解:∠BED=∠B-∠D.理由如下:因为AB∥CD∥EF,所以∠B=∠BEF,∠D=∠DEF.因为∠BED=∠BEF-∠DEF,所以∠BED=∠B-∠D.21.解:(1)AC∥BE.理由:因为AB∥CD,所以∠BAC=∠ACD,∠ABC=∠DCF.因为BA 平分∠EBC,CD平分∠ACF,所以∠ACD=∠DCF,∠ABC=∠ABE.所以∠BAC=∠ABE.所以AC∥BE.(2)∠E与∠FCD互余.理由如下:因为AC∥BE,所以∠E=∠ACE.因为CD 平分∠ACF,所以∠ACD=∠FCD.又因为DC⊥EC,所以∠ACE+∠ACD=90°.所以∠E +∠FCD=90°,即∠E与∠FCD互余.22.解:(1)∠BED=65°.(2)过点E作EF∥PQ,因为∠CBN=100°,所以∠CBM=80°.因为DE平分∠ADC,BE平分∠ABC,所以∠EBM=12∠CBM=40°,∠EDQ=12∠ADQ=12n°.因为EF∥PQ,所以∠DEF=180°-∠EDQ=180°-12n°.因为EF∥PQ,MN∥PQ,所以EF∥MN.所以∠FEB=∠EBM=40°.所以∠BED=220°-12 n°.23.解:(1)AB∥CD.理由如下:因为∠1=∠2,所以∠ABC=180°-2∠2.因为光线BC经镜面EF反射后的反射光线CD,所以∠BCQ=∠DCQ.所以∠BCE=∠DCF.所以∠BCD=180°-2∠BCE.因为MN∥EF,所以∠2=∠BCE.所以∠ABC=∠BCD.所以AB∥CD.(2)a∥b,略.(3)2α+β=180°.。
(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测卷(包含答案解析)(2)
一、选择题1.如果∠l 与∠2互补,∠2为锐角,则下列表示∠2余角的式子是( )A .90°-∠1B .∠1 - 90°C .∠1 + 90°D .180°-∠1 2.按语句画图:点P 在直线a 上,也在直线b 上,但不在直线c 上,直线a ,b ,c 两两相交正确的是( )A .B .C .D .3.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35°4.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°5.如图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( )A .110°B .115°C .125°D .130°6.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒7.如图,有A ,B ,C 三个地点,且AB ⊥BC ,从A 地测得B 地在A 地的北偏东43°的方向上,那么从B 地测得C 地在B 地的( )A .北偏西47B .南偏东47C .北偏东43D .南偏西43 8.下列图形中,1∠与2∠是对顶角的是( )A .B .C .D . 9.如图,平面内直线////a b c ,点,,A B C 分别在直线,,a b c 上,BD 平分ABC ∠,并且满足a β∠>∠,则,,a βγ∠∠∠关系正确的是( )A . 2a βγ∠=∠+∠B .22a βγ∠=∠-∠C .a βγ∠=∠+∠D . 2a βγ∠=∠-∠10.如图,点P 在直线m 上移动,,A B 是直线n 上的两个定点,且直线//m n .对于下列各值:①点P 到直线n 的距离;②PAB △的周长;③PAB △的面积;④APB ∠的大小.其中不会随点P 的移动而变化的是( )A .①②B .①③C .②④D .③④11.如图,直线a b 、被直线c 所截,若//a b ,则下列不正确的是( )A .12∠=∠B .24∠∠=C .14∠=∠D .15∠=∠ 12.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数是( )A .35°B .45°C .50°D .65°二、填空题13.已知β∠的一边与α∠的一边平行,β∠的另一边与α∠的另一边垂直,若53α∠=︒,则β∠=______.14.已知n (3n ≥,且n 为整数)条直线中只有两条直线平行,且任何三条直线都不交于..........同一个点.....如图,当3n =时,共有2个交点;当4n =时,共有5个交点;当5n =时,共有9个交点;…依此规律,当图中有n 条直线时,共有交点________个.15.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.16.如图,//AB CD ,若1120∠=︒,285∠=︒,则3∠=______.17.如图,AB ∥CD ,EG 平分AEN ∠,若EFD ∠=108°,则GEN ∠的度数为_________________.18.如图,AB ∥CD ,CE 平分∠ACD ,若∠A =110°,则∠AEC =_____°.19.如图,若a //b ,则图中x 的度数是______________度.20.如图,直线AB CD 、相交于点,O OE AB ⊥于,56O AOC ∠=︒,则DOE ∠= ______________________.三、解答题21.如图,直线AB ,CD 相交于点O ,OF CD ⊥,OE 平分BOC ∠.(1)若65BOE ∠=︒,求DOE ∠的度数;(2)若:2:3BOD BOE ∠∠=,求AOF ∠的度数.22.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON =∠α(2)在边OM 上截取OA =m ,在边ON 上截取OB =n .(3)作直线AB .23.已知:如图,O 是直线AB 上一点,OD 是AOC ∠的平分线,COD ∠与COE ∠互余.求证:AOE ∠与COE ∠互补.请将下面的证明过程补充完整;证明:O 是直线AB 上一点,180AOB ∴∠=︒COD ∠与COE ∠互余,COD COE ∴∠+∠=_______︒.90AOD BOE ∴∠+∠=︒ OD 是AOC ∠的平分线,AOD ∴∠=∠_________.(理由:_________)B O E COE ∴∠=∠.(理由:______________) =AOE BOE ∠+∠_______︒. 180AOE COE ∴∠+∠=︒ AOE ∴∠与COE ∠互补. 24.如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,DE H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示) 25.按要求作图(1)如图,已知线段,a b ,用尺规做一条线段,使它等于+a b (不要求写作法,只保留作图痕迹)(2)已知:∠α,求作∠AOB=∠α(要求:直尺和圆规作图,不写作法,保留作图痕迹)26.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先根据补角的定义可得∠2=180°-∠1,再根据余角定义可得∠2余角的式子是90°-∠2,再进行等量代换即可.【详解】解:∵∠1与∠2互补,∴∠1+∠2=180°,∴∠2=180°-∠1,∴∠2余角的式子是,90°-∠2=90°-(180°-∠1)=∠1-90°,故选:B.【点睛】本题主要考查了补角和余角,关键是掌握余角和补角的定义.2.A解析:A【分析】根据相交线的概念、点与直线的位置关系进行判断即可.【详解】解:A.符合条件,B.不符合点P不在直线c上;C.不符合点P在直线a上;D.不符合直线a、b、c两两相交;故选:A.【点睛】本题考查的是相交线、点与直线的位置关系,正确理解题意、认识图形是解题的关键.3.D解析:D【分析】根据对顶角相等求出∠AOC ,根据角平分线的定义计算即可求出∠COE 的度数.【详解】∵∠BOD=70︒,∴∠AOC=∠BOD=70︒,∵OE 平分∠AOC ,∴∠COE=12∠AOC=170352⨯︒=︒, 故选:D .【点睛】 本题考察对顶角、角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键. 4.C解析:C【分析】如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】 如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键.5.C解析:C【分析】先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两直线平行,内错角相等,即可求得∠BFD的度数.【详解】解:如图,过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故选:C.【点睛】此题考查了平行线的性质与角平分线的定义,解题的关键是注意数形结合思想的应用,注意辅助线的作法.6.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.7.A解析:A【分析】根据方向角的概念和平行线的性质求解.【详解】解:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°-∠ABC-∠ABE=47°,∴C地在B地的北偏西47°的方向上.故选:A.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.解析:C【分析】根据对顶角的定义即可判断.【详解】解:A 、∠1与∠2的两边没有都互为反向延长线,故A 不是对顶角;B 、∠1与∠2的两边没有都互为反向延长线,故B 不是对顶角;C 、∠1与∠2符合对顶角定义,是对顶角,故C 选项正确;D 、∠1与∠2没有公共顶点,故D 不是对顶角;故选:C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.9.A解析:A【分析】由平行线的性质可得∠ABC=a β∠+∠,然后根据1=2ABC βγ∠+∠∠求解即可. 【详解】解:∵////a b c ,∴∠ABE=∠α,∠CBE=∠β,∴∠ABC=a β∠+∠,∵BD 平分ABC ∠,∴∠CBD 1=2ABC ∠, ∴()1=2βγαβ∠+∠∠+∠, ∴2a βγ∠=∠+∠.故选A .【点睛】本题考查了角平分线的定义,以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.解析:B【分析】根据平行线间的距离不变即可判断①;根据三角形的周长和点P的运动变化可判断②④;根据同底等高的三角形的面积相等可判断③;进而可得答案.【详解】m n,解:∵直线//∴①点P到直线n的距离不会随点P的移动而变化;∵PA、PB的长随点P的移动而变化,∴②△PAB的周长会随点P的移动而变化,④∠APB的大小会随点P的移动而变化;∵点P到直线n的距离不变,AB的长度不变,∴③△PAB的面积不会随点P的移动而变化;综上,不会随点P的移动而变化的是①③.故选:B.【点睛】本题主要考查了平行线间的距离和同底等高的三角形的面积相等等知识,属于基础题型,熟练掌握平行线间的距离的概念是关键.11.D解析:D【分析】根据平行线的性质得出∠2=∠4,∠1=∠4,根据对顶角相等和邻补角互补得出∠1=∠2,∠1+∠5=180°,即可得出选项.【详解】解:∵a∥b,∴∠2=∠4,∠1=∠4,∵∠4+∠5=180°,∴∠1+∠5=180°,∵∠1=∠2(对顶角相等),所以选项A、B、C答案正确,只有选项D答案错误;故选:D.【点睛】本题考查了平行线的性质,对顶角相等,邻补角互补等知识点,能灵活运用知识点进行推理是解此题的关键.12.C解析:C【分析】根据两条直线平行,同位角相等得∠1的同位角是40°,再根据平角的定义和垂直定义即可求得∠2.【详解】解:∵a∥b,∴BC与b所夹锐角等于∠1=40°,又AB⊥BC,∴∠ABC=90°∴∠2=180°-90°-40°=50°故选:C.【点睛】本题考查了平行线的性质以及平角的概念,熟练应用两直线平行同位角相等是解题关键.二、填空题13.143°或37°【分析】分AB∥CFEF⊥BD和AB∥CFEF⊥BD两种情况画出图形根据平行线的性质和垂直的定义求解【详解】解:如图1AB∥CFEF⊥BD∵AB∥CF∴∠CFD=∠α=53°∵EF⊥解析:143°或37°【分析】分AB∥CF,EF⊥BD和AB∥CF,EF⊥BD两种情况,画出图形,根据平行线的性质和垂直的定义求解.【详解】解:如图1,AB∥CF,EF⊥BD,∵AB∥CF,∴∠CFD=∠α=53°,∵EF⊥BD,∴∠DFE=90°,∴∠β=∠CFD+∠DFE=53°+90°=143°;如图2,AB∥CF,EF⊥BD,∵AB∥CF,∴∠CFD=∠α=53°,∵EF⊥BD,∴∠EFD=90°,∴∠β=∠EFD-∠CFD=90°-53°=37°;故答案为:143°或37°.【点睛】本题考查了平行线的性质,垂直的定义,解题的关键是根据题意画出图形,分类讨论求出结果.14.【分析】首先通过观察图形找到交点个数与直线条数之间的规律然后列出n条直线时交点个数关于n的代数式即可【详解】∵当n=3时每增加一条直线交点的个数就增加n−1即:当n=3时共有2个交点;当n=4时共有解析:222n n--【分析】首先通过观察图形,找到交点个数与直线条数之间的规律,然后列出n 条直线时,交点个数关于n的代数式即可.【详解】∵当n=3时,每增加一条直线,交点的个数就增加n−1.即:当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;…,∴n条直线共有交点2+3+4+…+(n−1)=222n n--个.故答案为:222n n--.【点睛】本题考查了相交线.解题的关键是,仔细观察图形,发现规律.15.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC是直角即可得出结果【详解】解:如图所示∵a∥b∴∠1+∠3=180°则∠3=180°-∠1∵b∥c∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.16.【分析】过点E作EF∥AB由平行线的性质可知AB∥CD∥EF故可得出∠4及∠5的度数再由平行线的性质即可求出∠3的度数【详解】过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∴∠1+∠4=180°∠解析:145【分析】过点E作EF∥AB,由平行线的性质可知AB∥CD∥EF,故可得出∠4及∠5的度数,再由平行线的性质即可求出∠3的度数.【详解】过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠1+∠4=180°,∠3+∠5=180°,∵∠1=120°,∠2=85°,∴∠4=60°,∴∠5=180°-∠4-∠2=35°,∴∠3=180°-35°=145°.故答案为:145°.【点睛】本题考查了平行线的判定和性质,根据题意作出辅助线,构造出平行线是解答此题的关键.17.36°【分析】由平行线的性质得再由角平分线的定义即可求出答案【详解】解:∵=108°∴∵∥∴∵平分∴;故答案为:36°【点睛】本题考查了平行线的性质角平分线的定义以及邻补角的定义解题的关键是熟练掌握解析:36°【分析】由平行线的性质,得AEN CFE ∠=∠,再由角平分线的定义,即可求出答案.【详解】解:∵EFD ∠=108°,∴18010872CFE ∠=︒-︒=︒,∵AB ∥CD ,∴72AEN CFE ∠=∠=︒,∵EG 平分AEN ∠, ∴172362GEN ∠=⨯︒=︒; 故答案为:36°.【点睛】 本题考查了平行线的性质,角平分线的定义,以及邻补角的定义,解题的关键是熟练掌握所学的性质定理进行解题.18.35【分析】首先根据AB ∥CD 得到∠ACD70°再由CE 平分∠ACD 得到∠ACE =∠DCE =35°最后由两直线平行内错角相等得到∠AEC =35°【详解】解:∵AB ∥CD ∴∠AEC =∠DCE ∠A+∠A解析:35【分析】首先根据AB ∥CD ,得到∠ACD 70°,再由CE 平分∠ACD ,得到∠ACE =∠DCE =35°,最后由两直线平行内错角相等,得到∠AEC =35°.【详解】解:∵AB ∥CD ,∴∠AEC =∠DCE ,∠A +∠ACD =180°,∴∠ACD =180°﹣∠A =180°﹣110°=70°,∵CE 平分∠ACD ,∴∠ACE =∠DCE =1702︒⨯=35°, ∴∠AEC =∠DCE =35°;【点睛】本题考查了平行线的基本性质:两直线平行,同旁内角互补;两直线平行,内错角相等.熟记并灵活运用平行线基本性质是解本题的关键.19.72【分析】根据平角的定义可求再根据平行线的性质即可求解【详解】解:如图过两平行线中间角的顶点作的平行线由平行线的性质可得解得故答案为:72【点睛】考查了平行线的性质关键是熟悉两直线平行内错角相等的解析:72【分析】∠=︒,再根据平行线的性质即可求解.根据平角的定义可求160【详解】解:如图,过两平行线中间角的顶点作a的平行线,∠=︒-︒=︒,118012060x+︒=︒+︒+︒,由平行线的性质可得48603030x=︒.解得72故答案为:72.【点睛】考查了平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.20.34°【分析】先求出∠AOD的度数再求∠DOE的度数即可【详解】解:∵∠AOC=56°∴∠AOD=180°-56°=124°∵OE⊥AB∴∠AOE=90°∴∠DOE=124°-90°=34°故答案为解析:34°【分析】先求出∠AOD的度数,再求∠DOE的度数即可.【详解】解:∵∠AOC=56°,∴∠AOD=180°-56°=124°,∵OE⊥AB,∴∠AOE=90°,∴∠DOE=124°-90°=34°.【点睛】本题考查了邻补角的定义,垂直的定义,以及角的和差计算,熟练掌握邻补角的定义和垂直的定义是解答本题的关键.三、解答题21.(1)115°;(2)45°【分析】(1)根据角平分线的定义求出∠EOC 的度数,根据邻补角的性质求出∠DOE 的度数即可; (2)根据题意设BOD x ∠=°,则32COE BOE x ∠=∠=°,然后根据180COE BOE BOD ∠+∠+∠=︒计算即可得出BOD ∠,从而利用对顶角及余角的概念求解即可.【详解】(1)∵OE 平分BOC ∠,65BOE ∠=︒,∴65EOC BOE ∠=∠=︒,∴18065115DOE ∠=︒-︒=︒.(2)∵:2:3BOD BOE ∠∠=,设BOD x ∠=°,则32COE BOE x ∠=∠=° , ∵180COE BOE BOD ∠+∠+∠=︒, ∴3318022x x x ++=, ∴45x =. ∵OF CD ⊥,BOD AOC ∠=∠,∴90COF ∠=︒,∴904545AOF ∠=︒-︒=︒.【点睛】本题考查与角平分线相关的计算,以及列一元一次方程求解角度问题,理解角平分线的定义并根据题意运用方程思想求解是解题的关键.22.(1)见解析;(2)见解析;(3)见解析【分析】(1)先画一条射线ON ,以∠α的顶点为圆心,任意长度为半径画弧,交∠α的两个边于两个点,这两个点的距离记为a ,接着以点O 为圆心,同样的长度为半径画弧,交ON 于一个点,以这个点为圆心,a 为半径画弧,与刚刚画的弧有一个交点,连接这个点和点O ,得到射线OM ,即可得到∠MON =∠α;(2)以点O 为圆心,m 为半径画弧,交OM 于点A ,以点O 为圆心,n 为半径画弧,交ON 于点B ;(3)连接AB ,线段AB 所在的直线即直线AB .【详解】解:(1)如图所示,(2)如图所示,(3)如图所示,【点睛】本题考查尺规作图,解题的关键是掌握作已知角度的方法,截取线段和画直线的方法.23.90;COD;角平分线的定义;等式性质,180.【分析】根据余角的定义可得∠COD+∠COE=90°,再根据平角的定义可得∠AOD+∠BOE=90°;根据角平分线的定义可得∠AOD=∠COD,再根据等式性质可得∠BOE=∠COE,进而得证.【详解】证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=90°∵OD是∠AOC的平分线∴∠AOD=∠COD(理由:角平分线的定义)∴∠BOE=∠COE(理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等式性质,180.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.24.(1)见解析(2)90°+1 2α【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE=180°,∠1+∠3=180°∴∠DFE=∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠BDE=180°−α又∵DH平分∠BDE∴∠1=12∠BDE=12(180°−α)∴∠3=180°− 12(180°−α)=90°+12α.【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.25.(1)作图见解析;(2)作图见解析.【分析】(1)根据题意,作一条长射线,在射线上连续截取a和b即可;(2)作射线OA,通过截取角度即可得解.【详解】(1)作射线CF,在射线上顺次截取CD=a,DE=b,如下图所示,线段CE即为所求:(2)首先作射线OA ,如下图所示,∠AOB 即为所求:【点睛】本题主要考查了尺规作图,属于基础题,熟练掌握尺规作图的相关方法是解决本题的关键.26.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键。
(压轴题)人教版初中七年级数学下册第五章《相交线与平行线》模拟检测(包含答案解析)(2)
一、选择题1.(0分)[ID:68957]下列定理中,没有逆定理的是().A.两直线平行,同旁内角互补B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.等腰三角形两个底角相等D.同角的余角相等2.(0分)[ID:68954]在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相平行3.(0分)[ID:68933]如图,将直角边长为a(a>1)的等腰直角三角形ABC沿BC向右平移1个单位长度,得到三角形DEF,则图中阴影部分面积为()A.a-12B.a-1C.a+1 D.a2-1 4.(0分)[ID:68922]下列哪个图形是由图1平移得到的()A.B.C .D .5.(0分)[ID :68921]如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180° 6.(0分)[ID :68915]如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm ,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm7.(0分)[ID :68911]光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=( )A .61°B .58°C .48°D .41°8.(0分)[ID :68906]已知,//AB CD ,且2CD AB ,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )A .3B .4C .5D .69.(0分)[ID :68897]下面命题中是真命题的有( )①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个10.(0分)[ID :68888]如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ()①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF 的长度.A .1B .2C .3D .411.(0分)[ID :68886]下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A .0B .1C .2D .312.(0分)[ID :68882]如图,下列不能判定DF ∥AC 的条件是( )A.∠A=∠BDF B.∠2=∠4C.∠1=∠3 D.∠A+∠ADF=180°13.(0分)[ID:68881]如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°14.(0分)[ID:68880]如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°∕∕,AF交CD于点E,且15.(0分)[ID:68872]如图,已知AB CD⊥∠=︒,则A,40BE AF BED∠的度数是()A.40︒B.50︒C.80︒D.90︒二、填空题∠=∠=∠=︒,则∠4的度数是___________.16.(0分)[ID:69047]已知:如图,1235417.(0分)[ID:69031]如图,将一张长方形纸片按如图所示折叠,如果∠1=55°,那么∠2=_____°.18.(0分)[ID:69018]如图,在长方形草地内修建了宽为2米的道路,则草地面积为_______米2.19.(0分)[ID :69017]将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,60A ︒∠=,30D ︒∠=;45E B ︒∠=∠=),当90ACE ︒∠<且点E 在直线AC 的上方,使ACD △的一边与三角形ECB 的某一边平行时,写出ACE ∠的所有可能的值____.20.(0分)[ID :69009]若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.21.(0分)[ID :69004]用反证法证明“一个三角形中最大的内角不小于60”时,第一步我们要先假设:______.22.(0分)[ID :68990]如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.23.(0分)[ID :68982]如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.24.(0分)[ID :68980]如图,AB ∥CD ,∠B =75°,∠E =27°,则∠D 的度数为_____.25.(0分)[ID :68967]如图,AB ∥CD ,∠β=130°,则∠α=_______°.26.(0分)[ID :68963]如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.27.(0分)[ID :68962]在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.三、解答题28.(0分)[ID :69156]如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠.(1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.29.(0分)[ID :69112]如图,直线AB ∥CD ,EB 平分∠AED ,170∠=︒,求∠2的度数.30.(0分)[ID:69094]如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B的度数.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.A4.B5.D6.A7.B8.B9.C10.D11.B12.B13.C14.C15.B二、填空题16.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如17.110【分析】根据平行线的性质和折叠的性质可以得到∠2的度数本题得以解决【详解】如图:由折叠的性质可得∠1=∠3∵∠1=55°∴∠1=∠3=55°∵长方形纸片的两条长边平行∴∠2=∠1+∠3∴∠2=18.144【分析】先求出道路的总长度进而求出道路的面积最后用总面积减去道路的面积即可【详解】解:由图形得到了的总长度为20+10-2=28米所以道路的总面积为28×2=56米2所以草地面积为20×10-19.30°或45°【分析】分2种情况进行讨论:当CB∥AD时当EB∥AC时根据平行线的性质和角的和差关系分别求得∠ACE角度即可【详解】解:当时;当时故答案为:30°或45°【点睛】本题主要考查了平行线20.55或20【分析】根据平行线性质得出∠A+∠B=180°①∠A=∠B②求出∠A=3∠B﹣40°③把③分别代入①②求出即可【详解】解:∵∠A与∠B的两边分别平行∴∠A+∠B =180°①∠A=∠B②∵∠21.答案不唯一例如一个三角形中最大的内角小于【分析】根据反证法的步骤从命题的反面出发假设出结论【详解】解:∵用反证法证明在一个三角形中最大的内角不小于60°∴第一步应假设结论不成立即假设最大的内角小于622.40【解析】根据平行线的性质先求出∠BEF和∠CEF的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°23.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE和BC被AB所截∴当时AD∥BC(内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大24.48°【分析】将BE与CD交点记为点F由两直线平行同位角相等得出∠EFC度数再利用三角形外角的性质可得答案【详解】解:如图所示将BE与CD交点记为点F∵AB∥CD∠B =75°∴∠EFC=∠B=75°25.50【分析】根据平行线的性质解答即可【详解】解:∵AB∥CD∴=∠1∵∠1+=180°∠=130°∴∠1=180°-=180°-130°=50°∴=50°故答案为:50【点睛】本题考查了平行线的性质26.【分析】如图利用平行线的性质得出∠3=35°然后进一步得出∠4的度数从而再次利用平行线性质得出答案即可【详解】如图所示∵∴∴∠4=90°−∠3=55°∵∴∠2=∠4=55°故答案为:55°【点睛】本27.15°15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°从而得到∠BCD再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°再由等腰直角三角形三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A 、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意; B 、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C 、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D 、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D .【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.2.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B .【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.3.A解析:A【分析】直接根据平移的性质得到DE=AB=a ,EF=BC=a ,EC=a-1,结合三角形面积公式即可求解.【详解】解:根据平移的性质得,DE=AB=a ,EF=BC=a ,EC=a-1,∴阴影部分的面积为:111(1)(1)222a a a a a ⨯--⨯-=- 故选:A .【点睛】本题考查了平移的性质,比较简单,注意熟练掌握平移性质的内容. 4.B解析:B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误;故选:B .【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.5.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 6.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.7.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B .【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.8.B解析:B【分析】利用平行线间的距离相等可知ABC 与ACD △的高相等,底边之比等于面积之比,设ACE △的面积为x ,建立方程即可求解.【详解】∵//AB CD∴ABC 与ACD △的高相等∵2CD AB =∴=2ACD ABC S S设ACE △的面积为x ,则=8+=+ACD CDE ACE SS S x ,=2+=+ABC ABE ACE S S S x ∴()822+=+x x解得4x =∴=4ACE S故选B .【点睛】本题考查平行线间的距离问题,由平行线间的距离相等得到两三角形的高相等,从而建立方程是解题的关键.9.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.10.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.11.B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.B解析:B根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.13.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.14.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质15.B解析:B【分析】直接利用垂线的定义结合平行线的性质得出答案.解:∵,40BE AF BED ⊥∠=︒,∴50FED ∠=︒,∵AB CD ∕∕,∴50A FED ∠=∠=︒.故选B .【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出FED ∠的度数是解题关键.二、填空题16.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l 1∥l 2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l 1∥l 2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键. 17.110【分析】根据平行线的性质和折叠的性质可以得到∠2的度数本题得以解决【详解】如图:由折叠的性质可得∠1=∠3∵∠1=55°∴∠1=∠3=55°∵长方形纸片的两条长边平行∴∠2=∠1+∠3∴∠2=解析:110【分析】根据平行线的性质和折叠的性质,可以得到∠2的度数,本题得以解决.【详解】如图:由折叠的性质可得,∠1=∠3,∵∠1=55°,∴∠1=∠3=55°,∵长方形纸片的两条长边平行,∴∠2=∠1+∠3,∴∠2=110°,故答案为:110.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.18.144【分析】先求出道路的总长度进而求出道路的面积最后用总面积减去道路的面积即可【详解】解:由图形得到了的总长度为20+10-2=28米所以道路的总面积为28×2=56米2所以草地面积为20×10-解析:144【分析】先求出道路的总长度,进而求出道路的面积,最后用总面积减去道路的面积即可.【详解】解:由图形得到了的总长度为20+10-2=28米,所以道路的总面积为28×2=56米2,所以草地面积为20×10-56=144米2.故答案为:144【点睛】本题考查了请不规则图形的面积,根据题意求出道路的总长度是解题关键,注意应减去重合的部分.19.30°或45°【分析】分2种情况进行讨论:当CB∥AD时当EB∥AC时根据平行线的性质和角的和差关系分别求得∠ACE角度即可【详解】解:当时;当时故答案为:30°或45°【点睛】本题主要考查了平行线解析:30°或45°【分析】分2种情况进行讨论:当CB∥AD时,当EB∥AC时,根据平行线的性质和角的和差关系分别求得∠ACE角度即可.【详解】解:当//CB AD 时,18060120,1209030ACB ACE ︒︒︒︒︒︒∠=-=∠=-=;当//EB AC 时,45ACE E ︒∠=∠=.故答案为:30°或45°.【点睛】本题主要考查了平行线的性质,解题时注意分类讨论思想的运用,分类时不能重复,也不能遗漏.20.55或20【分析】根据平行线性质得出∠A+∠B =180°①∠A =∠B②求出∠A =3∠B ﹣40°③把③分别代入①②求出即可【详解】解:∵∠A 与∠B 的两边分别平行∴∠A+∠B =180°①∠A =∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B =180°①,∠A =∠B②,求出∠A =3∠B ﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A+∠B =180°①,∠A =∠B②,∵∠A 比∠B 的3倍少40°,∴∠A =3∠B ﹣40°③,把③代入①得:3∠B ﹣40°+∠B =180°,∠B =55°,把③代入②得:3∠B ﹣40°=∠B ,∠B =20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.21.答案不唯一例如一个三角形中最大的内角小于【分析】根据反证法的步骤从命题的反面出发假设出结论【详解】解:∵用反证法证明在一个三角形中最大的内角不小于60°∴第一步应假设结论不成立即假设最大的内角小于6解析:答案不唯一,例如一个三角形中最大的内角小于60【分析】根据反证法的步骤,从命题的反面出发假设出结论.【详解】解:∵用反证法证明在一个三角形中,最大的内角不小于60°,∴第一步应假设结论不成立,即假设最大的内角小于60°.故答案为:最大的内角小于60°.【点睛】本题考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.22.40【解析】根据平行线的性质先求出∠BEF和∠CEF的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.23.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE和BC被AB所截∴当时AD∥BC(内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【详解】∵DE和BC被AB所截,∠=∠时,AD∥BC(内错角相等,两直线平行).∴当DAB B∠=∠故答案为DAB B【点睛】此题考查平行线的性质,难度不大24.48°【分析】将BE与CD交点记为点F由两直线平行同位角相等得出∠EFC 度数再利用三角形外角的性质可得答案【详解】解:如图所示将BE与CD交点记为点F∵AB∥CD∠B=75°∴∠EFC=∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.25.50【分析】根据平行线的性质解答即可【详解】解:∵AB∥CD∴=∠1∵∠1+=180°∠=130°∴∠1=180°-=180°-130°=50°∴=50°故答案为:50【点睛】本题考查了平行线的性质解析:50【分析】根据平行线的性质解答即可.【详解】解:∵AB∥CD,∠ =∠1,∴α∵∠1+β∠=180°,∠β=130°,∴∠1=180°-β∠=180°-130°=50°,∴α∠=50°,故答案为:50.【点睛】本题考查了平行线的性质和平角的定义,解题的关键掌握平行线的性质和平角的定义. 26.【分析】如图利用平行线的性质得出∠3=35°然后进一步得出∠4的度数从而再次利用平行线性质得出答案即可【详解】如图所示∵∴∴∠4=90°−∠3=55°∵∴∠2=∠4=55°故答案为:55°【点睛】本解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.27.15°15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°从而得到∠BCD 再利用角的和差得到∠ACE ;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°再由等腰直角三角形解析:15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD ,再利用角的和差得到∠ACE ;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°,再由等腰直角三角形的性质得到∠BAC=90°,∠ACB=45°,结合∠1的度数可得结果.【详解】解:(1)由三角板的性质可知:∠D=60°,∠ACB=45°,∠DCE=90°,∵BC ∥DE ,∴∠D+∠BCD=180°,∴∠BCD=120°,∴∠BCE=∠BCD-∠DCE=30°,∴∠ACE=∠ACB-∠BCE=15°,故答案为:15°;(2)∵a ∥b ,∴∠2+∠BAC+∠ACB+∠1=180°,∵△ABC 为等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠2=180°-∠BAC-∠ACB=45°,∵∠1=30°,∴∠2=15°,故答案为:15°.【点睛】本题考查了三角板的性质,平行线的性质,解题时注意:两直线平行,同旁内角互补.三、解答题28.(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒, ∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠, ∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】 本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.29.55︒.【分析】先根据对顶角相等可得170BAE ∠=∠=︒,再根据平行线的性质可得110AED ∠=︒,然后根据角平分线的定义可得55BED ∠=︒,最后根据平行线的性质即可得.【详解】170∠=︒,170BAE ∴∠=∠=︒,//AB CD ,180110AED BAE ∴∠=︒-∠=︒, EB 平分AED ∠,1552BED AED ∴∠=∠=︒, 又//AB CD ,255BED ∴∠=∠=︒.【点睛】 本题考查了对顶角相等、平行线的性质、角平分线的定义,熟练掌握平行线的性质是解题关键.30.(1)CD 与EF 平行.理由见解析;(2)∠B=35°【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF ∥CD ;(2)由EF ∥CD ,根据平行线的性质得∠2=∠BCD ,而∠1=∠2,所以∠1=∠BCD ,根据内错角相等,两直线平行得到DG ∥BC ,所以∠ACB=∠3=115°,根据三角形的内角和即可得到结论.【详解】(1)CD 与EF 平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质,注意:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.。
2021-2022学年北师大版七年级数学下册《第2章相交线与平行线》单元达标测试(附答案)
2021-2022学年北师大版七年级数学下册《第2章相交线与平行线》单元达标测试(附答案)一.选择题(共10小题,满分40分)1.同一平面内,三条不同直线的交点个数可能是()个.A.1或3B.0、1或3C.0、1或2D.0、1、2或3 2.如图,在所标识的角中,互为对顶角的两个角是()A.∠1和∠2B.∠1和∠4C.∠2和∠3D.∠3和∠43.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°4.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短5.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.6.如图,直线l与∠BAC的两边分别相交于点D、E,则图中是同旁内角的有()A.2对B.3对C.4对D.5对7.如图,直线DE截AB,AC,其中内错角有()对.A.1B.2C.3D.48.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.在同一平面内两条不重合的直线的位置关系是()A.相交或垂直B.平行或垂直C.相交或平行D.以上都不对10.下列说法正确的有()①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;④同一平面内两条直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分)11.下列说法中,①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.不正确的是(填序号)12.已知直线a∥b,b∥c,则直线a、c的位置关系是.13.如图所示,请你填写一个适当的条件:,使AD∥BC.14.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为.(任意添加一个符合题意的条件即可)15.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.16.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.17.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是.18.已知直线l1∥l2,BC=3cm,S△ABC=3cm2,则S△A1BC的高是.三.解答题(共9小题,满分48分)19.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.20.画图题:(1)在如图所示的方格纸中(单位长度为1),经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF和平行线GH.(2)判断EF、GH的位置关系是.(3)连接AC和BC,则三角形ABC的面积是.21.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA,OB的垂线,分别交BO的延长线于M、N,线段的长表示点P到直线BO的距离;线段的长表示点M 到直线AO的距离;线段ON的长表示点O到直线的距离;点P到直线OA的距离为.22.看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF 平行吗?解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以∥().又因为AC⊥AE(已知),所以∠EAC=90°.()所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=°.所以∠EAB=∠FBG().所以∥(同位角相等,两直线平行).23.如图,∠ACD=2∠B,CE平分∠ACD,求证:CE∥AB.24.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.25.(1)如图1,已知AB∥CD,那么图1中∠P AB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE 的平分线交于点F,请利用(1)的结论求图2中∠F的度数.26.如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.27.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转至如图③,当∠CON=5∠DOM 时,MN与CD相交于点E,请你判断MN与BC的位置关系,并求∠CEN的度数(3)将图①中的三角板OMN绕点O按每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,三角板MON运动几秒后直线MN恰好与直线CD平行.(4)将如图①位置的两块三角板同时绕点O逆时针旋转,速度分别每秒20°和每秒10°,当其中一个三角板回到初始位置时,两块三角板同时停止转动.经过秒后边OC与边ON互相垂直.(直接写出答案)参考答案一.选择题(共10小题,满分40分)1.解:如图,三条直线的交点个数可能是0或1或2或3.故选:D.2.解:观察图形可知,互为对顶角的两个角是∠3和∠4.故选:D.3.解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠B′OC=90°+60°=150°.故选:C.4.解:要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是:垂线段最短,故选:D.5.解:线段AD的长表示点A到直线BC距离的是图D,故选:D.6.解:直线AC与直线AB被直线l所截形成的同旁内角有:∠ADE与∠AED、∠CDE与∠BED;直线AC与直线DE被直线AB所截形成的同旁内角有:∠DAE与∠DEA;直线AB与直线DE被直线AC所截形成的同旁内角有:∠EAD与∠EDA;故选:C.7.解:直线DE截AB、AC,形成两对内错角,直线AB截AC,DE,形成一对内错角;直线AC截AB,DE,形成一对内错角.综上,共形成4对内错角.故选:D.8.解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.9.解:在同一平面内两条不重合的直线的位置关系是平行和相交.故选:C.10.解:∵同位角不一定相等,∴①错误;∵互补或互余是两个角之间的关系,∴说∠A+∠B+∠C=180°,则∠A、∠B、∠C互补错误,∴②错误;∵同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交,∴③正确;∵同一平面内两条直线的位置关系可能是平行或相交,∴④错误;∵如图,∠ABC=∠ABD,∠ABC和∠ABD有公共顶点并且相等的角,但不是对顶角,∴⑤错误;即正确的个数是1个,二.填空题(共8小题,满分32分)11.解:①在同一平面内,不相交的两条线段叫做平行线,正确;②过一点,有且只有一条直线平行于已知直线,正确;③两条平行直线被第三条直线所截,当两直线平行,同位角相等,故原命题错误;④同旁内角相等,两直线平行,正确.故答案为:①②④.12.解:若直线直线a∥b,b∥c,则直线a、c的位置关系是平行,故答案为:平行.13.解:添加∠F AD=∠FBC,或∠ADB=∠DBC,或∠DAB+∠ABC=180°.∵∠F AD=∠FBC∴AD∥BC(同位角相等两直线平行);∵∠ADB=∠DBC∴AD∥BC(内错角相等两直线平行);∵∠DAB+∠ABC=180°∴AD∥BC(同旁内角互补两直线平行).14.解:若∠A+∠ABC=180°,则BC∥AD;若∠C+∠ADC=180°,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD;故答案为:∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)15.解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.16.解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.17.解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为:3.18.解:过点A作AD⊥l2,过A1作A1E⊥l2,∵l1∥l2,∴AD=A1E,∴S△ABC=S△A1BC=3cm2,即BC•AD=BC•A1E=3,∵BC=3cm,∴A1E=2cm,则S△A1BC的高是2cm,故答案为:2cm三.解答题(共9小题,满分48分)19.解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线上各点的连线中,垂线段最短”是把河水引入蓄水池H中开渠最短的根据.20.解:(1)如图(2)EF与GH的位置关系是:垂直;(3)设小方格的边长是1,则AB=2,CH=2,∴S△ABC=×2×2=10.21.解:如图所示:线段PN的长表示点P到直线BO的距离;线段PM的长表示点M到直线AO的距离;线段ON的长表示点O到直线PN的距离;点P到直线OA的距离为0,故答案为:PN,PM,PN,0.22.解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°.(垂直的定义)所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125°.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).故答案为:AC;BD;同位角相等,两直线平行;垂直的定义;125;等量代换;AE;BF.23.证明:∵CE平分∠ACD,∴∠ACD=2∠DCE,∵∠ACD=2∠B,∴∠DCE=∠B,∴AB∥CE.24.解:(1)∠AOC的对顶角为∠BOD,∠BOE的邻补角为∠AOE;故答案为:∠BOD,∠AOE;(2)∵∠DOB=∠AOC=70°,∠DOB=∠BOE+∠EOD,∠BOE:∠EOD=2:3,∴,∴,∴∠BOE=28°,∴∠AOE=180°﹣∠BOE=152°.25.解:(1)结论:∠P=∠PCD﹣∠P AB.理由:如图1中,设AB交PC于H.∵AB∥CD,∴∠PCD=∠AHC,∵∠AHC=∠P AB+∠P,∴∠P=∠AHC﹣∠P AB,∴∠P=∠PCD﹣∠P AB.(2)如图2中,设∠ABF=∠FBD=y,∠ACF=∠FCE=x,由(1)可知:∠F=x﹣y,∵BD∥CE,∴∠BDC=∠DCE=2x,∵∠BDC=∠ABD+∠A,∴2x=2y+80°,∴x﹣y=40°,∴∠F=40°.26.证明:直线AB、CD的位置关系为:AB∥CD,理由如下:∵BE是∠ABD的平分线,DE是∠BDC的平分线,∴∠1=∠ABD,∠2=∠BDC.∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=2×90°=180°,∴AB∥CD.27.解:(1)在△CEN中,∠CEN=180°﹣30°﹣45°=105°;(2)如图②,∵∠CON=5∠DOM∴180°﹣∠DOM=5∠DOM,∴∠DOM=30°∵∠OMN=60°,∴MN⊥OD,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(3)如图③,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷5°=15秒,或t=255°÷5°=51秒;所以,在旋转的过程中,三角板MON运动15秒或51秒后直线MN恰好与直线CD平行.(4)MN⊥CD时,旋转角的角度差上90°,所以90°÷(20°﹣10°)=9秒,故答案为:9.。
(典型题)初中数学七年级数学下册第二单元《相交线与平行线》测试卷(有答案解析)
一、选择题1.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于()A.35°B.45°C.50°D.55°2.已知一个角是这个角的余角的13,则这个角的度数是().A.45︒B.60︒C.67.5︒D.22.5︒3.下列语句中正确的是()A.直线AB和直线BA是两条不同的直线B.连接两点间的线段叫两点的距离C.一条射线就是一个周角D.一个角的余角比这个角的补角小4.一个角的补角,等于这个角的余角的3倍,则这个角是()A.30°B.35°C.40°D.45°5.如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°6.如图,∠1=20º,AO⊥CO,点B、O、D在同一条直线上,则∠2的度数为()A.70º B.20º C.110º D.160º7.下列四个说法中,正确的是()A.相等的角是对顶角B.平移不改变图形的形状和大小,但改变直线的方向C.两条直线被第三条直线所截,内错角相等D.两直线相交形成的四个角相等,则这两条直线互相垂直8.在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c9.如图,直线AB ∥CD ,AP 平分∠BAC ,CP ⊥AP 于点P ,若∠1=50°,则∠2的度数为( )A .30°B .40°C .50°D .60°10.如图,直线a ,b 被直线c 所截,则下列说法中错误的是( )A .∠1与∠2是邻补角B .∠1与∠3是对顶角C .∠2与∠4是同位角D .∠3与∠4是内错角11.如图,在墙面上安装某一管道需经两次拐弯,拐弯后的管道与拐弯前的管道平行.若第一个弯道处142B ∠=︒,则第二个弯道处∠C 的度数为( )A .38°B .142°C .152°D .162°12.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .60二、填空题13.如图,已知://AB DE ,80B ∠=︒,CM 平分BCD ∠,CN CM ⊥,则NCE ∠的度数是______.14.已知α∠的余角是354520'''︒,则α∠补角的度数是_______.15.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒.16.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.17.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.18.如图,已知AB ∥CD ,∠1=120°,则∠C =____.19.如图,直线AB 、CD 相交于点O ,OM AB ⊥于点O ,若42MOD ∠=,则COB ∠=__________度.20.如图,要把池中的水引到D 处,可过D 点作CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据:______.三、解答题21.如图,已知//AB CD ,∠B=∠D ,AE 交BC 的延长线于点E .(1)求证://AD BE ;(2)若∠1=∠2=60°,∠BAC=2∠EAC ,求∠DCE 的度数.22.小明同学在完成七年级上册数学的学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知//AB CD ,则∠AEC=∠BAE +∠DCE 成立吗?请说明理由;(2)如图2,已知//AB CD ,BE 平分∠ABC ,DE 平分∠ADC .BE 、DE 所在直线交于点E ,若∠FAD=60°,∠ABC=40°,求∠BED 的度数;(3)将图2中的点B 移到点A 的右侧,得到图3,其他条件不变,若∠FAD =α°,∠ABC=β°,请你求出∠BED 的度数(用含α,β的式子表示).23.如图,已知点O 在直线AB 上,作射线OC ,点D 在平面内,BOD ∠与AOC ∠互余.(1)若:4:5AOC BOD ∠∠=,则BOD ∠=______________;(2)若()045AOC αα∠=︒<︒,ON 平分COD ∠、补全图形,求出AON ∠的值(用含α的式子表示).24.如图,已知直线AB 与CD 相交于点40O OE CD AOC OF ︒⊥∠=,,,为AOD ∠的角平分线.(1)求EOB ∠的度数;(2)求EOF ∠的度数.25.(1)计算:(﹣3)2﹣(32)2×29﹣6÷23; (2)α∠的余角比这个角少20°,则α∠的补角为多少度? 26.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM ,且∠BON =55°,求∠BOD 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】过点E 作EF ∥AB ,则EF ∥CD ,利用“两直线平行,内错角相等”可得出∠BAE =∠AEF 及∠C =∠CEF ,结合∠AEF +∠CEF =90°可得出∠BAE +∠C =90°,由邻补角互补可求出∠BAE 的度数,进而可求出∠C 的度数.【详解】解:过点E 作EF ∥AB ,则EF ∥CD ,如图所示.∵EF ∥AB ,∴∠BAE =∠AEF .∵EF ∥CD ,∴∠C =∠CEF .∵AE ⊥CE ,∴∠AEC =90°,即∠AEF +∠CEF =90°,∴∠BAE +∠C =90°.∵∠1=125°,∠1+∠BAE =180°,∴∠BAE =180°﹣125°=55°,∴∠C =90°﹣55°=35°.故选:A .【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.2.D解析:D【分析】设这个角的度数为x ,则它的余角为90°-x ,再根据题意列出方程,求出x 的值即可;【详解】解:设这个角的度数为x ,则它的余角为90°-x , 依题意得:()1903x x =︒- , 解得:x=22.5,故选:D .【点睛】 本题考查的是余角的定义,能根据题意列出关于x 的方程是解题的关键.3.D解析:D【分析】根据射线、直线的定义,余角与补角,周角的定义,以及线段的性质即可求解.【详解】A 、直线AB 和直线BA 是一条直线,原来的说法是错误的,不符合题意;B 、连接两点间的线段的长度叫两点的距离,原来的说法是错误的,不符合题意;C 、周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的,不符合题意;D 、一个角的余角比这个角的补角小是正确的,符合题意;故选:D .【点睛】本题考查了射线、直线的定义,余角与补角,周角的定义,以及线段的性质,是基础题,熟记相关概念与性质是解题的关键.4.D解析:D【分析】设这个角的度数是x ,根据题意列得1803(90)x x ︒-=︒-,求解即可.【详解】设这个角的度数是x ,则1803(90)x x ︒-=︒-解得x=45︒,故选:D .【点睛】此题考查余角、补角定义,与余角补角有关的计算,正确掌握余角、补角的定义是解题的关键.5.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 6.C解析:C【分析】由AO ⊥CO 和∠1=20º求得∠BOC =70º,再由邻补角的定义求得∠2的度数.【详解】∵AO ⊥CO 和∠1=20º,∴∠BOC =90 º-20 º=70º,又∵∠2+∠BOC =180 º(邻补角互补),∴∠2=110º.故选:C .【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.7.D解析:D【分析】根据对顶角的概念、平移的性质、平行线的性质以及垂直的概念进行判断.【详解】A.相等的角不一定是对顶角,而对顶角必定相等,故A错误;B.平移不改变图形的形状和大小,也不改变直线的方向,故B错误;C.两条直线被第三条直线所截,内错角不一定相等,故C错误;D.两直线相交形成的四个角相等,则这四个角都是90°,即这两条直线互相垂直,故D正确.故选D.【点睛】本题考查了平移的性质、对顶角、平行线以及垂直的定义,解题时注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.8.A解析:A【分析】根据线段垂直平分线上的定义,平行公理以及平行线的性质对各选项分析判断后利用排除法求解.【详解】解:A.在同一平面内,若a∥b,b∥c,则a∥c正确,故本选项正确;B.在同一平面内,若a⊥b,b⊥c,则a∥c,故本选项错误;C.在同一平面内,若a∥b,b⊥c,则a⊥c,故本选项错误;D.在同一平面内,若a∥b,b∥c,则a∥c,故本选项错误.故选:A.9.B解析:B【分析】根据平行线的性质和角平分线的定义可得∠ACD=80°,再根据CP⊥AP,可得出∠ACP的度数,即可得∠2的度数.【详解】∵AB∥CD,∴∠BAC+∠ACD=180°,∵AP平分∠BAC,∴∠BAC=2∠1=100°,∴∠ACD=180°﹣100°=80°,∵CP⊥AP,∴∠P=90°,∴∠ACP=90°﹣∠1=90°﹣50°=40°,∴∠2=∠ACD-∠ACP=80°﹣40°=40°.故选:B.【点睛】本题考查平行线的性质、角平分线的定义及垂直的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.10.D解析:D【详解】解:∠3与∠4是同旁内角.故选:D11.B解析:B【分析】由AB∥CD得∠B=∠C,根据∠B=142°得∠C=142°.【详解】如图,∵拐弯后的管道与拐弯前的管道平行,∴AB∥CD,∴∠B=∠C,又∵∠B=142°,∴∠C=142°,故选:B.【点睛】本题考查了平行线的性质的应用和等量代换相关知识,重点掌握平行线的性质,难点是从生活实际中抽象出平行线和相交线.12.B解析:B【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.二、填空题13.40°【分析】先根据AB∥DE∠B=70°CM平分∠DCB可求出∠BCM及∠BCE 的度数再根据CM⊥CN可求出∠BCN的度数再由∠NCE=∠BCE-∠BCN即可解答【详解】解:∵AB∥DE∠B=80解析:40°【分析】先根据AB∥DE,∠B=70°,CM平分∠DCB可求出∠BCM及∠BCE的度数,再根据CM⊥CN 可求出∠BCN的度数,再由∠NCE=∠BCE-∠BCN即可解答.【详解】解:∵AB∥DE,∠B=80°,∴∠DCB=180°-∠B=180°-80°=100°,∠BCE=∠B=80°,∵CM平分∠DCB,∴∠BCM=12∠DCB=12×100°=50°,∵CM⊥CN,垂足为C,∴∠BCN=90°-∠BCM=90°-50°=40°,∴∠NCE=∠BCE-∠BCN=80°-40°=40°.故答案为:40°.【点睛】此题主要考查平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补,属于基础题,注意细心掌握.14.125°45′20″【分析】当两角的和为90°时则两角互余当两个角和为180°则两角互补角度之间的等量关系为:1°=60′1′=60″【详解】根据定义:∵∠α的余角是35°45′20′′∴∠α的度数解析:125°45′20″【分析】当两角的和为90°时则两角互余,当两个角和为180°则两角互补,角度之间的等量关系为:1°=60′,1′=60″.【详解】根据定义:∵∠α 的余角是 35°45′20′′∴∠α的度数是:90°-35°45′20″=54°14′40″.∠α的补角度数是:180°-∠α=180°-54°14′40″=125°45′20″故答案为:125°45′20″【点睛】本题考查了余角和补角的知识,属于基础题,解题的关键是掌握当两角的和为90°时则两角互余,当两个角和为180°则两角互补.15.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 16.40°【分析】本题主要利用两直线平行同旁内角互补两直线平行内错角相等以及角平分线的定义进行做题【详解】∵AD ∥BC ∴∠BCD=180°-∠D=80°又∵CA 平分∠BCD ∴∠ACB=∠BCD=40°∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD ∥BC ,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.17.70【分析】根据两直线平行同位角相等可得∠C=∠1再根据两直线平行内错角相等可得∠2=∠C【详解】∵DE∥AC∴∠C=∠1=70°∵AF∥BC∴∠2=∠C =70°故答案为70【点睛】本题考查了平行线解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.18.60°【解析】∵∠1+∠FEB=180°∠1=120°∴∠FEB=180°-∠1=60°∵AB//CD∴∠C=∠FEB=60°故答案为60°解析:60°【解析】∵∠1+∠FEB=180°,∠1=120°,∴∠FEB=180°-∠1=60°,∵AB//CD,∴∠C=∠FEB=60°,故答案为60°.19.132【分析】先根据垂直定义得到∠AOM=90°求出∠AOD的度数然后根据对顶角的性质求解即可【详解】∵∴∠AOM=90°∵∴∠AOD=90+42=132°∴∠AOD=132°故答案为:132【点睛解析:132【分析】先根据垂直定义得到∠AOM=90°,求出∠AOD的度数,然后根据对顶角的性质求解即可.【详解】,∵OM AB∴∠AOM=90°,∵42MOD ∠=,∴∠AOD=90+42=132°,∴COB ∠=∠AOD=132°.故答案为:132.【点睛】本题考查了垂直的定义,对顶角的性质,熟练掌握对顶角相等是解答本题的关键. 20.垂线段距离最短【分析】过直线外一点作直线的垂线这一点与垂足之间的线段就是垂线段且垂线段最短【详解】解:过D 点引CD ⊥AB 于C 然后沿CD 开渠可使所开渠道最短根据垂线段最短故答案为:垂线段距离最短【点睛 解析:垂线段距离最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段, 且垂线段最短.【详解】解:过D 点引CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,根据垂线段最短. 故答案为: 垂线段距离最短.【点睛】本题主要考查垂线段的应用,解决本题的关键是要掌握垂线段距离最短.三、解答题21.(1)证明见解析;(2)80︒.【分析】(1)根据平行线的性质和判定定理即可得到结论;(2))根据AB//CD ,∠2=60°,得到∠BAE=∠2=60°,∠BAC=∠ACD ,进而得出∠CAE+∠BAC=60°,又根据∠BAC=2∠EAC ,得到∠BAC=∠ACD=40°,根据内角和定理即可求出∠DCE 的度数.【详解】解:(1)∵//AB CD ,∴B DCE ∠=∠∵B D ∠=∠,∴DCE D ∠=∠,∴//AD BE ,(2)∵//AB CD ,260∠=︒,∴260BAE ∠=∠=︒,BAC ACD ∠=∠∴60CAE BAC ∠+∠=︒∵2BAC EAC ∠=∠,∴40BAC ACD ∠=∠=︒∵1180ACD DCE ∠+∠+∠=︒∴1801180604080DCE ACD ∠=-∠-∠=--=【点睛】本题考查平行线的性质和判定的应用,能熟练地运用定理进行推理是解答此题的关键. 22.(1)成立,理由见解析;(2)50︒;(3)1118022βα-+. 【分析】(1)根据平行线的性质即可得到结论;(2)先过点E 作EH ∥AB ,根据平行线的性质和角平分线的定义,即可得到结论; (3)过E 作EG ∥AB ,根据平行线的性质和角平分线的定义,即可得到结论.【详解】解:(1)如图1中,作EF//AB ,则有EF//CD ,∴∠1=∠BAE ,∠2=∠DCE ,∴∠AEC=∠1+∠2=∠BAE+∠DCE .(2)如图2,过点E 作EH ∥AB ,∵AB//CD ,∠FAD=60°,∴∠FAD=∠ADC=60°,∵DE 平分∠ADC ,∠ADC=60°,∴∠EDC=12∠ADC=30°, ∵BE 平分∠ABC ,∠ABC=40°, ∴∠ABE=12∠ABC=20°, 由(1)的结论,得203050BED ABE EDC ∠=∠+∠=︒+=︒︒.(3)如图3,过点E 作//EG AB .∵BE 平分ABC ∠,DE 平分ADC ∠,ABC β∠=︒,FAD ADC α∠=∠=︒ ∴1122ABE ABC β∠=∠=︒,1122CDE ADC α∠=∠=︒ ∵//AB CD ,////AB CD EG∴11801802BEG ABE β∠=-∠=-,12CDE DEG α∠=∠= 1118022BED BEG DEG βα∠=∠+∠=-+ 【点睛】本题主要考查了平移的性质,平行线的性质以及角平分线的定义的运用,解决问题的关键是正确的作出辅助线.23.(1)50BOD ∠=︒;(2)图见详解,点D 在BOC ∠内,45AON α∠=+︒;点D 在BOC ∠外,45AON ∠=︒.【分析】(1)由BOD ∠与AOC ∠互余,知90BOD AOC ∠+∠=︒,再由:4:5AOC BOD ∠∠=知BOD ∠占90°的545+,问题可解; (2)分两种情形,当点D 在BOC ∠内时,先得90COD ∠=︒,再求得45CON ∠=︒,最后得AON ∠;当点D 在BOC ∠外时,先求得COD AOD α∠=+∠,再用α表示AOD ∠,得902COD α∠=︒+,据ON 平分COD ∠得45NOC α∠=︒+,最后得45AON ∠=︒.【详解】解:(1)∵:4:5AOC BOD ∠∠=,BOD ∠与AOC ∠互余,∴5905045BOD ∠=︒⨯=︒+; (2)分两种情形:情形一:点D 在BOC ∠内.在045α︒<≤︒的条件下,补全图形如下:.∵BOD ∠与AOC ∠互余,∴90BOD AOC ∠+∠=︒,∴90COD ∠=︒,∵ON 平分COD ∠,∴45CON ∠=︒,∴45AON α∠=+︒;情形二:点D 在BOC ∠外.在045α︒<≤︒的条件下,补全图形如下:∵BOD ∠与AOC ∠互余,()045AOC αα∠=︒<︒∴90BOD α∠=︒-∴COD AOD α∠=+∠(180)[180(90)]BOD ααα=+︒-∠=+︒-︒-902α=︒+,即902COD α∠=︒+∵ON 平分COD ∠ ∴11(902)4522NOC COD αα∠=∠=︒+=︒+ ∴(45)45AON NOC AOC αα∠=∠-∠=︒+-=︒即45AON ∠=︒.综上所述,点D 在BOC ∠内,45AON α∠=+︒;点D 在BOC ∠外,45AON ∠=︒.【点睛】考查余角、角平分线的概念及角的和与差等,其关键是熟悉相关概念并能结合图形进行应用.24.(1)50EOB ∠=︒;(2)160EOF ∠=︒【分析】(1)由对顶角相等的性质得40BOD AOC ∠=∠=︒,再由90EOD ∠=︒,即可求出EOB ∠的度数;(2)先求出AOD ∠的度数,再由角平分线的性质得到FOD ∠的度数,即可求出EOF ∠的度数.【详解】解:(1)OE CD ⊥,∴90EOD ∠=︒,∵40BOD AOC ∠=∠=︒,50EOB EOD BOD ∴∠=∠-∠=︒;(2)∵直线AB 与CD 相交于点O ,40AOC BOD ∴∠=∠=︒,∴180140AOD BOD =︒-=︒∠∠, OF 为AOD ∠的角平分线,70AOF FOD ∴∠=∠=︒,160EOF EOD FOD ∴∠=∠+∠=︒.【点睛】 本题考查角度求解,解题的关键是掌握对顶角的性质,垂直的性质,以及角平分线的性质.25.(1)12-;(2)125° 【分析】(1)先计算乘方,再计算乘除,最后计算加减;(2)根据题意可得关于α∠的方程,求出α∠后再根据互补的定义求解.【详解】 解:(1)原式=9﹣94×29﹣6×32=9﹣12﹣9=﹣12; (2)根据题意,得α∠﹣(90﹣α∠)=20°,解得:α∠=55°,所以α∠的补角为180°﹣55°=125°. 【点睛】本题考查了有理数的混合运算、余角和补角以及一元一次方程的求解等知识,熟练掌握上述知识是解题的关键.26.∠BOD=70°【分析】首先根据垂线的定义和已知条件求出∠AOM 的度数,根据角平分线的定义求出∠AOC 的度数,根据对顶角相等的性质即可得出所求.【详解】解:∵ON ⊥OM ,∴∠MON=90°,∵∠BON=55°,∴∠AOM=180°-90°-55°=35°,∵射线OM平分∠AOC,∴∠AOC=2∠AOM=70°,∴∠BOD=∠AOC=70°.【点睛】本题考查的是邻补角的概念、对顶角相等的性质以及角平分线的定义,求出∠AOC的度数是解决问题的关键.。
北师大版七年级数学下册第2章相交线与平行线同步达标测试(Word版含答案)
北师大版七年级数学下册《第2章相交线与平行线》同步达标测试(附答案)一.选择题(共10小题,满分40分)1.三条直线相交,交点最多有()A.1个B.2个C.3个D.4个2.如图,测量运动员跳远成绩选取的是AB的长度,其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短3.如图所示,直线AB与CD相交于O点,∠1=∠2.若∠AOE=140°,则∠AOC的度数为()A.40°B.60°C.80°D.100°4.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行5.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.6.下列关于几何画图的语句,正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转180°,终止位置OB与起始位置OA形成平角D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b7.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个8.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是()A.22°B.46°C.68°D.78°9.如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为()A.20°B.30°C.40°D.50°10.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交二.填空题(共8小题,满分40分)11.如图,∠B的内错角是.12.如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.13.如图,将一张长方形的纸条折叠,若∠1=70°,则∠2的度数为.14.将一副三角板如图放置,若AE∥BC,则∠AFD=度.15.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25°,∠2=75°,则∠B=.16.若一个角的补角等于它的余角4倍,则这个角的度数是度.17.小张同学观察如图1所示的北斗七星图,小张同学把北斗七星:摇光、开阳、玉衡、天权、天玑、天璇、天枢按图2分别标为点A,B,C,D,E,F,G,然后将点A,B,C,D,E,F,G顺次首尾连接,发现AG恰好经过点C,且∠B﹣∠DCG=115°,∠B﹣∠D=10°,若AG∥EF,则∠E=m°,这里的m=.18.如果两个角的两边分别平行,其中一个角为45°,则另一个角的度数为.三.解答题(共5小题,满分40分)19.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC =26°时,求∠BOE的度数.20.如图,∠BAP+∠APD=180°,∠BAE=∠CPF,求证:AE∥PF.21.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.22.如图,AB∥CD,若∠ABE=120°,∠DCE=35°,求∠BEC的度数.23.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN 交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.参考答案一.选择题(共10小题,满分40分)1.解:如图:,交点最多3个,故选:C.2.解:该运动员跳远成绩的依据是:垂线段最短;故选:D.3.解:∵∠AOE+∠BOE=180°,∠AOE=140°,∴∠2=40°,∵∠1=∠2,∴∠BOD=2∠2=80°,∴∠AOC=∠BOD=80°.故选:C.4.解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D正确.故选:A.5.解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.6.解:A.延长射线AB到点C,使BC=2AB,因为射线不能延长,所以A选项错误,不符合题意;B.因为直线不能反向延长,所以B选项错误,不符合题意;C.将射线OA绕点O旋转180°,终止位置OB与起始位置OA形成平角,C选项正确,符合题意;D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b或=a﹣b.所以D选项错误,不符合题意.故选:C.7.解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;故选:C.8.解:∵OB平分∠COD,∠BOD=22°,∴∠BOC=22°,∵BO⊥AO,∴∠BOA=90°,∴∠AOC=∠BOA﹣∠BOC=90°﹣22°=68°;故选:C.9.解:由翻折知,∠EFC=∠EFC'=100°,∴∠EFC+∠EFC'=200°,∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,故选:A.10.解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.二.填空题(共8小题,满分40分)11.解:∠B的内错角是∠BAD;故答案为:∠BAD.12.解:∵∠1+∠2=60°,∠1=∠2,∴∠1=×60°=30°,∴∠AOD=180°﹣30°=150°.故答案为:150°.13.解:由题意可得,∠3=∠1+∠2,∵∠3+∠1=180°,∠1=70°,∴∠3=110°,∴∠1+∠2=110°,∴∠2=110°﹣∠1=110°﹣70°=40°,故答案为:40°.14.解:因为AE∥BC,∠B=60°,所以∠BAE=180°﹣60°=120°;因为两角重叠,则∠DAF=90°+45°﹣120°=15°,∠AFD=90°﹣15°=75°.故∠AFD的度数是75度.故答案为:75.15.解:∵m∥n,∴∠3=∠2=75°,∴∠BAC=∠3﹣∠1=75°﹣25°=50°,∵∠C=90°,∴∠B=90°﹣∠BAC=90°﹣50°=40°.故答案为:40°16.解:设这个角为x度,则:180﹣x=4(90﹣x).解得:x=60.故这个角的度数为60度.17.解:延长ED交AG于点H,∵AG∥EF,∴∠E=∠CHD,∴∠CHD=∠CDE﹣∠DCG,∵∠B﹣∠DCG=115°,∠B﹣∠CDE=10°,∴∠CDE=∠B﹣10°,∠DCG=∠B﹣115°,∴∠E=∠CHD=∠B﹣10°﹣(∠B﹣115°)=105°,故答案为:105.18.解:如图1,∵AB∥EF,∴∠3=∠2,∵BC∥DE,∴∠3=∠1,∴∠1=∠2.如图2,∵AB∥EF,∴∠3+∠2=180°,∵BC∥DE,∴∠3=∠1,∴∠1+∠2=180°∴如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.其中一个角为45°,若两角相等,则另一个角的度数为45°;若两角互补,则另一个角的度数为180°﹣45°=135°;故答案为:45°或135°.三.解答题(共5小题,满分40分)19.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.20.证明:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠CP A,∵∠BAE=∠CPF,∴∠P AE=∠APF,∴AE∥PF.21.∠AED=∠C.证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).22.解:如图,过点E作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠FEB+∠ABE=180°.∵∠ABE=120°,∴∠FEB=180°﹣∠ABE=60°,∵EF∥CD,∠DCE=35°,∴∠FEC=∠DCE=35°,∴∠BEC=∠FEB+∠FEC=95°.23.解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.。
2022-2023学年人教版七年级数学下册 第五章相交线与平行线达标练习
人教版七年级数学下册第五章相交线与平行线达标练习一、单选题(共 10 小题)1、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为()A.40°B.50°C.140°D.150°2、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A.125°B.115°C.105°D.95°3、下列命题是真命题的是()A.等边对等角B.周长相等的两个等腰三角形全等C.等腰三角形的角平分线、中线和高线互相重合D.三角形一条边的两个顶点到这条边上的中线所在直线的距离相等4、下列说法中,假命题的个数为()①两条直线被第三条直线所截,同位角相等②如果两条直线都与第三条直线垂直,那么这两条直线互相平行③过一点有且只有一条直线与这条直线平行④在同一平面内,过一点有且只有一条直线与已知直线垂直A.1个B.2个C.3个D.4个5、在下列各题中,属于尺规作图的是()A.用直尺画一工件边缘的垂线B.用直尺和三角板画平行线C.利用三角板画45 的角D.用圆规在已知直线上截取一条线段等于已知线段6、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )A.70°B.80°C.100°D.110°7、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:已知:如图,b∥a,c∥a,求证:b∥c;证明:作直线DF交直线a、b、c分别于点D、E、F,∵a∥b,∴∠1=∠4,又∵a∥c,∴∠1=∠5,∴b∥c.小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是()A.嘉淇的推理严谨,不需要补充B.应补充∠2=∠5C.应补充∠3+∠5=180°D.应补充∠4=∠58、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FD∥AB,∠B=30°,则∠ADB的度数是()A.95°B.105°C.115°D.125°9、在图形的平移中,下列说法中错误的是().A.图形上任意点移动的方向相同;B.图形上任意点移动的距离相同C.图形上可能存在不动点;D.图形上任意对应点的连线长相等10、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是()A.100°B.140°C.160°D.105°二、填空题(共 10 小题)1、如图,在直线AB上有一点O,OC⊥OD,OE是∠DOB的角平分线,当∠DOE=20°时,∠AOC=___°.2、判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角()(2)如果两个角相等,那么这两个角是对顶角()(3)有一条公共边的两个角是邻补角()(4)如果两个角是邻补角,那么它们一定互补()(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角()∥,三角尺(30°,60,90°)如图摆放,若∠1=52°,则∠2的度数为 _____.3、如图,直线a b4、如图,直线AB 、CD 相交于点O ,OE ⊥AB 于点O ,若∠COE=55°,则∠BOD 为______.5、如图,点E 是BA 延长线上一点,下列条件中:①∠1=∠3;②∠5=∠D ;③∠2=∠4;④∠B +∠BCD =180°,能判定AB ∥CD 的有___.(填序号)6、如图,已知AB CD ∥,CE 平分ACD ∠,50A ∠=︒,则ACE ∠=______°.7、如图,AB ∥CD ,∠EGB =50°,则∠CHG 的大小为 _____.8、将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于_____.9、如图,已知AB ∥CD ,∠1=55°,则∠2的度数为 ___.10、如图,把一条两边边沿互相平行的纸带折叠,若56β∠=︒,则α∠=_______.三、解答题(共 8 小题)1、如图所示,M 、N 是直线AB 上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?2、如图(1)将ABD 平移,使点D 沿BD 延长线移至点C 得到A B D '''△,A B ''交AC 于点E ,AD 平分∠BAC .(1)猜想∠B 'EC 与∠A '之间的关系,并说明理由.(2)如图将ABD 平移至如图(2)所示,得到A B D '''△,请问:A D ''平分B A C ''∠吗?为什么?3、已知:如图,ABC 中,点D 、E 分别在AB 、AC 上,EF 交DC 于点F ,32180∠+∠=︒ ,1B ∠=∠.(1)求证:∥DE BC ;(2)若DE 平分ADC ∠,33B ∠=∠,求2∠的度数.4、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)5、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB达到60°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.6、给出下列语句,先判断是否为命题,如果是命题请指明其题设和结论.(1)同旁内角互补,两直线平行;(2)直角都相等;(3)画直线AB ;(4)凡内错角都相等.7、如图,已知点O 是直线AB 上一点,射线OM 平分AOC ∠.(1)若70AOC ∠=︒,则BOC ∠=______度;(2)若90BOC AOM ∠-∠=︒,求BOC ∠的度数.8、任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.第11页/ 共12页第12页/ 共12页。
(必考题)初中数学七年级数学下册第二单元《相交线与平行线》检测卷(包含答案解析)
一、选择题1.下列说法不正确...的是( ) A .对顶角相等B .两点确定一条直线C .一个角的补角一定大于这个角D .垂线段最短 2.已知一个角是这个角的余角的13,则这个角的度数是( ). A .45︒ B .60︒ C .67.5︒ D .22.5︒ 3.下列说法正确的是( )A .锐角的补角一定是钝角B .一个角的补角一定大于这个角C .锐角和钝角一定互补D .两个锐角一定互为余角4.一个角的余角是它的补角的25,这个角是( ) A .30B .60︒C .120︒D .150︒ 5.如果∠l 与∠2互补,∠2为锐角,则下列表示∠2余角的式子是( ) A .90°-∠1B .∠1 - 90°C .∠1 + 90°D .180°-∠1 6.已知A ∠与B 互补,B 与C ∠互余,若120A ∠=︒,则C ∠的度数是( )A .70︒B .60︒C .30D .20︒ 7.一个角的余角是它的补角的25,则这个角等于 ( ) A .60°B .45°C .30°D .75° 8.用一副三角板不能画出的角是( ).A .75°B .105°C .110°D .135° 9.我们利用尺规作图可以作一个角()''A O B ∠等于已知角()AOB ∠,如下所示:(1)作射线OA ;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ;(3)以O '为圆心,OC 为半径作弧,交OA '于'C ;(4)以C '为圆心,OC 为半径作弧,交前面的弧于D ;(5)连接'O D '作射线,O B ''则A O B '''∠就是所求作的角.以上作法中,错误的一步是( )A .()2B .()3C .()4D .()510.已知点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4 cm ,PB =5 cm ,PC =2 cm ,则点P 到直线m 的距离为( )A .4 cmB .5 cmC .小于2 cmD .不大于2 cm 11.如图,计划把河水引到水池A 中,可以先引AB CD ⊥,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是( )A .垂线段最短B .两点之间,线段最短C .两点确定一条直线D .以上说法都不对12.下列图形中,1∠与2∠是对顶角的是( )A .B .C .D .二、填空题13.一个角的补角比它的余角的3倍少20︒,这个角的度数是_______度.14.已知n (3n ≥,且n 为整数)条直线中只有两条直线平行,且任何三条直线都不交于..........同一个点.....如图,当3n =时,共有2个交点;当4n =时,共有5个交点;当5n =时,共有9个交点;…依此规律,当图中有n 条直线时,共有交点________个.15.已知70AOB ∠=︒,COB ∠与AOB ∠互余,则AOC ∠的度数为______.16.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC=62°,则∠DFE 的度数为_______.17.如图,一环湖公路的AB 段为东西方向,经过四次拐弯后,又变成了东西方向的FE 段,则B C D E ∠+∠+∠+∠的度数是______.18.将一副直角三角板如图放置,点E 在AC 边上,且ED//BC ,∠C=30°,∠F=∠DEF=45°,则∠AEF=_____度.19.如图,//AB CD ,点E 在CB 的延长线上,若60ABE ∠=︒,则ECD ∠的度数为__________.20.如图,直线a ∥b ,点A ,B 位于直线a 上,点C ,D 位于直线b 上,且AB :CD =1:2,如果△ABC 的面积为10,那么△BCD 的面积为_____.三、解答题21.如图,AD BE ⊥,BC BE ⊥,A C ∠=∠,点C ,D ,E 在同一条直线上.(1)请说明AB 与CD 平行.(2)若3ABC E ∠=∠,求E ∠的度数.22.如图,在三角形ABC 中,D 、E 、G 分别是AC 、AB 、BC 上的点,CF 是ACB ∠的平分线,已知3ACB ∠=∠,45180︒∠+∠=.(1)图中1∠与3∠是一对______,2∠与5∠是一对______,3∠与4∠是一对______.(填“同位角”或“内错角”或“同旁内角”)(2)判断CF 与DE 是什么位置关系?并说明理由.(3)若CF AB ⊥,垂足为F ,56︒∠=A ,则ACB ∠的度数为______,ADE ∠的度数为______.23.如图,将长方形纸片的一角折叠,使顶点A 落在A '处,EF 为折痕,点F 在线段AD 上,且点F 不与点D 重合,点E 在线段AB 上,此时∠AFE 和∠AEF 互为余角,若EA '恰好平分∠FEB ,回答下列问题.(1)求∠AEF 的度数;(2)∠A FD '= 度.24.在一张地图上有、、A B C 三地,但地图被墨迹污染,C 地具体位置看不清楚,但知道C 地在A 地的北偏东30°方向,在B 地南偏东45°方向.(1)根据以上条件,在地图上画出C 地的位置;(2)直接写出ACB ∠的度数.25.如图,O 是直线AB 上的一点,90BOD COE ∠=∠=︒.(1)图中与1∠互余的角有______;(2)写出图中相等的角______;(直角除外)(3)3∠的补角是______.26.补全解答过程:如图,EF∥AD,∠1=∠2,若∠BAC=70°,求∠AGD.解:∵EF∥AD,(已知)∴∠2=,(两直线平行,同位角相等).又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥,()∴∠AGD+∠BAC=180°.()∵∠BAC=70°,(已知)∴∠AGD=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据对顶角的性质,直线的性质,补角的定义,垂线段的性质依次判断即可得到答案.【详解】解:A、对顶角相等,故该项不符合题意;B、两点确定一条直线,故该项不符合题意;C、一个角的补角一定不大于这个角,故该项符合题意;D、垂线段最短,故该项不符合题意;故选:C.【点睛】此题考查对顶角的性质,直线的性质,补角的定义,垂线段的性质,正确理解各性质及定义是解题的关键.2.D解析:D【分析】设这个角的度数为x ,则它的余角为90°-x ,再根据题意列出方程,求出x 的值即可;【详解】解:设这个角的度数为x ,则它的余角为90°-x , 依题意得:()1903x x =︒- , 解得:x=22.5,故选:D .【点睛】 本题考查的是余角的定义,能根据题意列出关于x 的方程是解题的关键.3.A解析:A【分析】根据余角和补角的概念判断.【详解】解:A 、锐角的补角一定是钝角,本选项说法正确;B 、一个角的补角一定大于这个角,本选项说法错误,例如:120°的补角是60°,而60°<120°;C 、锐角和钝角一定互补,本选项说法错误,例如20°+120°=140°,20°与120°不互补;D 、两个锐角一定互为余角,本选项说法错误,30°与30°不是互为余角;故选:A .【点睛】此题考查余角和补角的概念,熟记概念是解题的关键.4.A解析:A【分析】设这个角的度数是x°,根据题意得出方程2901805x x -=-(),求出方程的解即可.【详解】 解:设这个角的度数是x°,则2901805x x -=-(),解得:x=30,即这个角的度数是30°,故选A .【点睛】本题考查了余角和补角,注意:∠A 的余角是90°-∠A ,∠A 的补角是180°-∠A . 5.B解析:B【分析】首先根据补角的定义可得∠2=180°-∠1,再根据余角定义可得∠2余角的式子是90°-∠2,再进行等量代换即可.【详解】解:∵∠1与∠2互补,∴∠1+∠2=180°,∴∠2=180°-∠1,∴∠2余角的式子是,90°-∠2=90°-(180°-∠1)=∠1-90°,故选:B .【点睛】本题主要考查了补角和余角,关键是掌握余角和补角的定义.6.C解析:C【分析】先根据互补角的定义可得60B ∠=︒,再根据互余角的定义即可得.【详解】 A ∠与B 互补,且120A ∠=︒,18060B A ∴∠=︒-∠=︒,又B ∠与C ∠互余,9030C B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键.7.C解析:C【分析】设这个角的度数是x°,根据余角是这个角的补角的25,即可列出方程,求得x 的值. 【详解】解:设这个角的度数是x°,根据题意得:90-x=25(180-x ), 解得:x=30,所以,这个角等于30°故选:C .【点睛】本题考查了余角和补角的定义,正确列出方程,解方程是关键.8.C解析:C【分析】105°=60°+45°,105°角可以用一幅三角板中的60°角和45°角画;75°=45°+30°,75°角可以用一幅三角板中的45°角和30°角画;135°=90°+45°,135°角可以用一幅三角板中的直角和90°角或45°角画;110°角用一副三角板不能画出.【详解】解:105°角可以用一幅三角板中的60°角和45°角画;75°角可以用一幅三角板中的45°角和30°角画;110°角用一副三角板不能画出;135°角可以用一幅三角板中的直角和90°角或45°角画。
最新人教版七年级数学下册相交线与平行线试题(带答案)(二)解析
一、选择题1.为了亮化某景点,石家庄市在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转,B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°,B 灯先转动2秒,A 灯才开始转动,当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是( )A .1或6秒B .8.5秒C .1或8.5秒D .2或6秒 2.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒3.给出下列说法: (1)两条直线被第三条直线所截,同位角相等;(2)不相等的两个角不是同位角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;(5)过一点作已知直线的平行线,有且只有一条.其中真命题的有( )A .0个B .1个C .2个D .3个4.如下图,在“A ”字型图中,AB 、AC 被DE 所截,则A ∠与4∠是( )A .同位角B .内错角C .同旁内角D .邻补角 5.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒6.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,CH =2cm ,EF =4cm ,下列结论:①BH //EF ;②AD =BE ;③DH =CH ;④∠C =∠BHD ;⑤阴影部分的面积为6cm 2.其中正确的是( )A .①②③④⑤B .②③④⑤C .①②③⑤D .①②④⑤ 7.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒8.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个 9.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 10.如图,已知AB ∥CD ,BE 和DF 分别平分∠ABF 和∠CDE ,2∠E-∠F=48°,则∠CDE 的度数为( ).A .16°B .32°C .48°D .64°二、填空题11.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点,若:5:2BAE CAE ∠∠=,则CAE ∠的度数为__________.(用含α的代数式表示).12.一副三角尺按如图所示叠放在一起,其中点,B D 重合,若固定三角形AOB ,将三角形ACD 绕点A 顺时针旋转一周,共有 _________次 出现三角形ACD 的一边与三角形AOB 的某一边平行.13.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.14.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.15.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)16.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.17.一副三角板按如图所示(共定点A)叠放在一起,若固定三角板ABC,改变三角板ADE的位置(其中A点位置始终不变),当∠BAD=___°时,DE∥AB.18.把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论:(1)'32C EF ∠=︒;(2)148AEC ∠=︒;(3)64BGE ∠=︒;(4)116BFD ∠=︒.正确的有________个.19.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD .若CD ∥BE ,∠1=28°,则∠2的度数是______.20.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.三、解答题21.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;(2)如图2,CD ∥AB ,点E 在PQ 上,∠ECN =∠CAB ,求证:∠MCA =∠DCE ;(3)如图3,BF 平分∠ABP ,CG 平分∠ACN ,AF ∥CG .若∠CAB =60°,求∠AFB 的度数.22.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数. 23.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数;(3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.24.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)25.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒.(1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设A 灯旋转的时间为t 秒,求出t 的取值范围为016t <≤,再分①06t <≤,②612t <≤和③1216t <≤三种情况,先分别求出MAM '∠和PBP '∠的度数,再根据平行线的性质可得MAM PBP ''∠=∠,由此建立方程,解方程即可得.【详解】解:设A 灯旋转的时间为t 秒,A 灯光束第一次到达AN 所需时间为180630︒=︒秒,B 灯光束第一次到达BQ 所需时间为1801810︒=︒秒, B 灯先转动2秒,A 灯才开始转动,0182t ∴<≤-,即016t <≤,由题意,分以下三种情况:①如图,当06t <≤时,//AM BP '',30,10(2)MAM t PBP t ''∴∠=︒∠=︒+,//,//MN PQ AM BP '',1,1MAM PBP ''∴∠=∠∠=∠,MAM PBP ''∴∠=∠,即3010(2)t t ︒=︒+,解得1t =,符合题设;②如图,当612t <≤时,//AM BP '',18030(6)36030,10(2)MAM t t PBP t ''∴∠=︒-︒-=︒-︒∠=︒+,//,//MN PQ AM BP '',2180,2180MAM PBP ''∴∠+∠=︒∠+∠=︒,MAM PBP ''∴∠=∠,即3603010(2)t t ︒-︒=︒+,解得8.5t =符合题设;③如图,当1216t <≤时,//AM BP '',30(12)30360,10(2)MAM t t PBP t ''∴∠=︒-=︒-︒∠=︒+,同理可得:MAM PBP ''∠=∠,即3036010(2)t t ︒-︒=︒+,解得1916t =>,不符题设,舍去;综上,A 灯旋转的时间为1秒或8.5秒,故选:C .【点睛】本题考查了平行线的性质、一元一次方程的几何应用等知识点,正确求出时间t 的取值范围,并据此分三种情况讨论是解题关键.2.B解析:B【分析】过点P 作MN ∥AB ,结合垂直的定义和平行线的性质求∠EPF 的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.3.B解析:B【详解】试题分析:根据两平行线被第三条直线所截,同位角相等,故(1)不正确;同位角不一定相等,只有在两直线平行时,同位角相等,故(2)不正确;平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故(3)正确;从直线外一点到这条直线的垂线段的长度,叫做该点到直线的距离,故(4)不正确;过直线外一点作已知直线的平行线,有且只有一条,故(5)不正确.故选B.4.A解析:A【分析】根据同位角,内错角,同旁内角和邻补角的定义判断即可.【详解】解:在“A”字型图中,两条直线AB、AC被DE所截形成的角中,∠A与∠4都在直线AB、DE的同侧,并且在第三条直线(截线)AC的同旁,则∠A与∠4是同位角.故选:A.【点睛】本题主要考查了同位角,内错角,同旁内角和邻补角的定义,正确理解定义是解题的关键.5.B解析:B【分析】记∠1顶点为A ,∠2顶点为B ,∠3顶点为C ,过点B 作BD ∥l 1,由平行线的性质可得∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B 作BD ∥l 1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC +∠ABD +(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B .【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 6.D解析:D【分析】根据平移的性质直接可判断①②;先根据线段的和差可得2cm BH =,再根据直角三角形的斜边大于直角边即可判断③;根据平行线的性质可判断④;根据阴影部分的面积等于直角梯形BEFH 的面积即可判断⑤.【详解】解:由题意得:90ABC ∠=︒,由平移的性质得:,4cm,2cm AB DE BC EF AD BE =====,//,//,90BH EF AC DF E ABC ∠=∠=︒,则结论①②正确;2cm CH =,2cm BH BC CH CH ∴=-==,在Rt BDH 中,斜边DH 大于直角边BH ,DH CH ∴>,即结论③错误;//AC DF ,C BHD ∴∠=∠,即结论④正确;由平移的性质得:ABC 的面积等于DEF 的面积,则阴影部分的面积为ABC BDH DEF BDH S S S S -=-,BEFH S =直角梯形,2BH EF BE +=⋅, 2422+=⨯, 26(cm )=,即结论⑤正确;综上,结论正确的是①②④⑤,故选:D .【点睛】本题考查了平移的性质、平行线的性质等知识点,熟练掌握平移的性质是解题关键. 7.B解析:B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.【详解】∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 8.D解析:D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB //CD ,∴∠1=∠2,∵AC 平分∠BAD ,∴∠2=∠3,∴∠1=∠3,∵∠B =∠CDA ,∴∠1=∠4,∴∠3=∠4,∴BC //AD ,∴①正确;∴CA 平分∠BCD ,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.9.D解析:D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE∥CD∴∠ 2+∠C=180°,∠ 3+∠D=180°∵∠ 2=50°,∠ 3=120°∴∠C=130°,∠D=60°又∵BE∥AF,∠ 1=40°∴∠A=180°-∠ 1=140°,∠F=∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.10.B解析:B【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∵BE和DF分别平分∠ABF和∠CDE,∴∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∵//AB CD,∴////AB CD EM//FN,∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∵2∠BED-∠BFD=48°,∴2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∴∠CDE=32°.故选B.【点睛】本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键.二、填空题11.或【分析】根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,,列出等量关系求解即可得出结论;②若点运动到下方,根据 解析:41203α︒-或36047α︒-【分析】根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可得出结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可得出结论.【详解】解:如图,若点E 运动到l 1上方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠+∠∠=, 5(1802):2CAE CAE α︒-+∠∠=, 解得180241205312CAE αα︒-∠==︒--; 如图,若点E 运动到l 1下方,//AC BD ,CBD ACB α∴∠=∠=, BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-, 又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠-∠∠=, 5(1802):2CAE CAE α︒--∠∠=, 解得180236045712CAE αα︒-︒-∠==+. 综上CAE ∠的度数为41203α︒-或36047α︒-. 故答案为:41203α︒-或36047α︒-. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等,合理应用平行线的性质是解决本题的关键. 12.【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°或135°;;解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°或135°;;(2)如图2,当AC 边与OB 平行时,∠BAD =90°+45°=135°或45°;(3)如图3,DC 边与AB 边平行时,∠BAD =60°+90°=150°,(4)如图4,DC 边与OB 边平行时,∠BAD =135°+30°=165°,(5)如图5,DC 边与OB 边平行时,∠BAD =45°﹣30°=15°;(6)如图6,DC 边与AO 边平行时,∠BAD =15°+90°=105°(7)如图7,DC 边与AB 边平行时,∠BAD =30°,(8)如图8,DC 边与AO 边平行时,∠BAD =30°+45°=75°;综上所述:∠BAD 的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.13.【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,解析:2n【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,则可得出∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2, ∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n 12n=∠BEC , ∴当∠E n =1度时,∠BEC 等于2n 度.故答案为:2n .【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.15.【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠解析:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.16.【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l1∥l2,∠A =125°,∠B =85°,∴,,,∴,∴,解析:17︒【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285∠+∠=︒,13125∠+∠=︒,34180∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17 .【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.17.30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D解析:30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D=∠BAD=180°,∵∠D=30°∴∠BAD=180°-30°=150°;故答案为:30°或150°.【点睛】本题主要考查了平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由直线的平行关系来寻找角的数量关系.18.3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,解析:3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,即可判断是否正确;(3)根据翻转的性质可得∠GEF=∠C′EF,又因为∠C′EG=64°,根据平行线性质即可得到∠BGE=∠C′EG=64°,即可判断是否正确;(4)根据对顶角的性质得:∠CGF=∠BGE=64°,根据平行线得性质即可得:∠BFD=180°-∠CGF即可得到结果.【详解】AE BG,∠EFB=32°,解:(1)∵//∴∠C′EF=∠EFB=32°,故本小题正确;(2)∵AE∥BG,∠EFB=32°,∴∠AEF=180°-∠EFB=180°-32°=148°,∵∠AEF=∠AEC+∠GEF,∴∠AEC<148°,故本小题错误;(3)∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;(4)∵∠BGE=64°,∴∠CGF=∠BGE=64°,DF CG,∵//∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.故正确的为:(1)(3)(4)共3个,故答案为:3.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.19.56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD =180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.【详解】解:如解析:56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD =180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.【详解】解:如图,由折叠的性质,可得∠3=∠1=28°,∴∠4=∠1+∠3=56°,∵CD ∥BE ,AC ∥BD ,∴∠EBD =180°﹣∠4=124°,又∵CD ∥BE ,∴∠2=180°﹣∠CBD =180°﹣124°=56°.故答案为:56°.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 20.90°【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90°902n︒ 【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠.【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°;同理可得:∠P 2=14(∠AEF +∠CFE )=45°, ∠P 3=18(∠AEF +∠CFE )=22.5°, ...,∴902n nP ︒∠=, 故答案为:90°,902n ︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.三、解答题21.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB +∠ACD =180°,由邻补角定义得到∠ECM +∠ECN =180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB =120°﹣∠GCA ,再由角平分线的定义及平行线的性质得到∠GCA ﹣∠ABF =60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A 作AD ∥MN ,∵MN ∥PQ ,AD ∥MN ,∴AD ∥MN ∥PQ ,∴∠MCA =∠DAC ,∠PBA =∠DAB ,∴∠CAB =∠DAC +∠DAB =∠MCA +∠PBA ,即:∠CAB =∠MCA +∠PBA ;(2)如图2,∵CD ∥AB ,∴∠CAB +∠ACD =180°,∵∠ECM +∠ECN =180°,∵∠ECN =∠CAB∴∠ECM =∠ACD ,即∠MCA +∠ACE =∠DCE +∠ACE ,∴∠MCA =∠DCE ;(3)∵AF ∥CG ,∴∠GCA +∠FAC =180°,∵∠CAB =60°即∠GCA +∠CAB +∠FAB =180°,∴∠FAB =180°﹣60°﹣∠GCA =120°﹣∠GCA ,由(1)可知,∠CAB =∠MCA +∠ABP ,∵BF 平分∠ABP ,CG 平分∠ACN ,∴∠ACN =2∠GCA ,∠ABP =2∠ABF ,又∵∠MCA =180°﹣∠ACN ,∴∠CAB =180°﹣2∠GCA +2∠ABF =60°,∴∠GCA ﹣∠ABF =60°,∵∠AFB +∠ABF +∠FAB =180°,∴∠AFB =180°﹣∠FAB ﹣∠FBA=180°﹣(120°﹣∠GCA )﹣∠ABF=180°﹣120°+∠GCA ﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.22.(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B , ∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.23.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.24.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P 作PM ∥CD ,∴∠APM =∠DAP .(两直线平行,内错角相等),∵CD ∥EF (已知),∴PM ∥CD (平行于同一条直线的两条直线互相平行),∴∠MPB =∠FBP .(两直线平行,内错角相等),∴∠APM +∠MPB =∠DAP +∠FBP .(等式性质) 即∠APB =∠DAP +∠FBP =40°+70°=110°. (2)结论:∠APB=∠DAP +∠FBP .理由:见(1)中证明.(3)①结论:∠P=2∠P 1;理由:由(2)可知:∠P =∠DAP +∠FBP ,∠P 1=∠DAP 1+∠FBP 1,∵∠DAP =2∠DAP 1,∠FBP =2∠FBP 1,∴∠P =2∠P 1.②由①得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,∵AP 2、BP 2分别平分∠CAP 、∠EBP ,∴∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP ,∴∠AP 2B =12∠CAP +12∠EBP , = 12(180°-∠DAP )+ 12(180°-∠FBP ),=180°- 12(∠DAP +∠FBP ),=180°- 12∠APB ,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.25.(1)见解析;(2)10°;(3)18015α︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠.【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD ,∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠∵180DEB ABE CDE ∠+∠-∠=︒,∴180,FEB ABE ∠+∠=︒∴EF ∥AB ,∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图,设,,GEF x FEB EFB y ∠=∠=∠=由(1)得AB ∥CD ,则AB ∥CD ∥HE ,∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠=∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠=∴PND CDM DMQ α∠=∠=∠=,又∵14CDM CDE ∠=∠, ∴33,MDE CDM α∠=∠=∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+=又∵PN ∥AB ,∴4,PNB NBA α∠=∠= ∵14ABN ABE ∠=∠, ∴44416,ABM ABN αα∠=∠=⨯=又∵AB ∥QM ,∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教七年级下第5章自主学习达标检测 (§5.3~§5.4)(时间45分钟 满分100分)班级 学号 姓名 得分一、填空题(每小题3分,共30分)1.如图1所示,如果DE ∥AB ,那么∠A+______=180°,或∠B+_____=180°,根据是______;如果∠CED=∠FDE ,那么________∥_________.根据是________.2.如图2所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________.D CB A (1) (2 (3) (4)3.如图3所示,AB ∥CD ,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=____,∠ACD=•____.4.在平移过程中,平移后的图形与原来的图形______和______都相同,•因此对应线段和对应角都________.5.如图4,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,ED 平分∠BEF .若∠1=68°,则∠2的度数是 .6.如图5所示,长方体中,平移后能得到棱AA 1的棱有____.7.小明的一本书一共有104页,在这104页的页码中有两个数码的,并且这两个数码经过平移其中一个能得到另一个,则这样的页共有________页. 8.一手扶电梯向上的传送速度为每分钟20m ,小红以每分钟16m 的速度通过电梯上楼,如果小红用了15秒到达楼上,那么这部电梯的长为_____m .二、选择题(每小题3分,共24分)11.如图6所示,AB ∥CD ,则与∠1相等的角(∠1除外)共有( )A .5个B .4个C .3个D .2个D 1C 1B 1A 1CB AD FE DCBA 21(5)D C B A 1ED C BA(6) (7)12.如图7所示,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B=72°,∠ACB=40°,•那么∠BDC等于( )A .78°B .90°C .88°D .92°13.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行; ③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( )A .①B .②和③C .④D .①和④14.若两条平行线被第三条直线所截,则一组同位角的平分线互相( )A .垂直B .平行C .重合D .相交15.在俄罗斯方块游戏中,已拼成的图案如图所示,现又出现一小方块拼图向下运动,为了使所有图案消失,你必须进行以下哪项操作,才能拼成一个完整的图案,才能拼成一个完整的图案,使其自动消失.( )A.向右平移1格B.向左平移1格 C.向右平移2格 D.向右平移3格16.将图形A 向右平移3个单位得到图形B ,再将图形B 向左平移5个单位得到图形C 。
如果直接将图形A 平移到图形C ,则平移方向和距离为( )A 、向右2个单位B 、向右8个单位C 、向左8个单位D 、向左2个单位17.如图8所示,右边的两个图形中,经过平移能得到左边的图形的是()D C B A18.在5×5方格纸中将图9(1)中的图形N 平移后的位置如图5(2)中所示,那么正确的平移方法是( ).图8(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格三、解答题(每小题3分,共24分)19.(本题6分)如图所示,AD ∥BC ,∠1=78°,∠2=40°,求∠ADC 的度数. D CA1220.(本题6分)如图所示,AB ∥CD ,AD ∥BC ,∠A 的2倍与∠C 的3倍互补,求∠A 和∠D 的度数.•D CBA21.(本题8分)如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.a341222.(本题8分)如图所示,已知AB ∥CD ,分别探索下列四个图形中∠P 与∠A ,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.PD C B AP D B A P D C B A P DC B A(1) (2) (3) (4)图9(1) 图9(2)23.(本题8分)如图所示,ABC △平移得到DEF △,写出图中所有相等的线段、角,以及平行的线段.24.(本题10分)图形的操作过程(本题中四个矩形的水平方向的边长为a ,竖直方向的边长b)∙在图甲中,将线段21A A 向右平移1个单位得到21B B ,得到封闭图形21A A 21B B (即阴影部分);∙在图乙中, 将折线321A A A 向右平移1个单位得到321B B B ,得到封闭图形321A A A 321B B B (即阴影部分);(1)在图丙中,请你类似的画一条有两个折点的折线,同样向右平移一个单位,从而得到一个封闭图形,并用斜线画出阴影;(2)请你分别写出上述三个图形中阴影部分的面积:=1S _________;=2S __________;=3S ___________.(3)联想与探索:如图丁,在一个矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并说明你猜想的正确性.A 1 A 2B 1 B 2 甲 A 1 A 2 B1 B2 乙A 3B 3 丙丁(§5.3~§5.4)参考答案一、填空题1.∠AED ∠BDE 两直线平行,同旁内角互补 DF AC 内错角相等,两直线平行2.150° 3.60° 40° 4.形状 大小 相等 5.44 6.BB 1,CC 1,DD 1 7.9 8.9二、选择题11.C 12.C 13.A 14.B 15.C;16.D ;17.C ;18.C三、解答题19.∠ADC=118° 20.∠A=36°,∠D=144° 21.∠BED=78° 22.(1)∠P=360°-∠A-∠C ,(2)∠P=∠A+∠C ,(3)∠P=∠C -∠A ,(4)∠ P=∠ A -∠ C(说明略).23.相等的线段:AB DE =,BC EF =,AC DF =;相等的角:BAC EDF =∠∠,ABC DEF =∠∠,BCA EFD =∠∠;平行的线段:AB DE ∥,BC EF ∥,AC DF ∥ 24.540平方米.2.略解:(1)略.(2) =1S ab-b ;=2S ab-b ;=3S ab-b . (3)猜想类似面积仍是ab-b .方案:①将“路”沿左右两边界剪去;②把左右两侧草地合拼一个新矩形(如图4),则新矩形长为(a-1),宽为b ,面积为(a-1)b=ab-b .? JFIF ` ` C图4C?/" -? }!1A Qa"q2亼?#B绷R佯$3br?%&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz儎厗噲墛挀敃枟槞殺¥ウЖ┆渤? -? w !1AQ aq"2?B憽绷#3R?br?$4??&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz們剠唶垑姃摂晼棙櫄ⅲぅΗ? 鸞?^/馱? 鴒N鴩畑?D?7[h稓d瀌?:扟钭V摲荽 ?兦5y~8= ??屎d$Q泱渃窿??w╦?-檜╦7桗~漣M=赵?P疲,戊@U d抪1^-z諘wN-V_#歊i淿??•裷襁 x•昑狃闷d•蓅耒 x•昒?酄•>鴵D?? 胹A{mb咑顧諲絅哲罠q蕛揠康椓?Y莙u?掠G$?[N+? 攧?鮞6庝W兴?p X:柅~_rN鰒z%•吭昢?3饲?讎? 鵘J~<{€-錟x ?啵?|/鈰??X鴧㎡7捝醄Ap娰*3?X鐏-鄍rE}5リ标赨濎p蟧?:舥C2P羄6憜pT€A?巃曟鵐U濒%J5/X赎.?鴈?轳锨燌? SO肙>< ?颡? 嵖秝眠€?魺x竕鲼:叒?B谒偷穳澬4?筇m膆醐駑觫餑? ?•彲nn<A彷B?[9?陛y 钺?耪0o扻r鸽?滟熘?6?胿v煉{_硕?肱_]?[x•昒|;氥憧 ? * ? 唰n-[璻諫@?赼.剬?X瓽?袣杈~荥?O hZv縤▂2O巍h懨2?眷屗恟7(H$邐酦*jB訑泲I%蛔t冀L?貶魐?? 6>7蹎? 屎镤l?l}/?莖|4o\j与l?刉K?蔯?薀0F2x/曖砽黾肮l\?蔒++F*?秡g?^9'弽?羱? 屎??裱?騕傹晻K猝?瘥鄘i脬o泞?港E鰕?p杆m?伻馶,•? ??-? p{ ?],棄?1臽饀猄栆???5潪哋映椻z|> 衲潂8x鄛,4呭憧? *珄擂5?"xv踋鹞璳璱蝾?r?╊-?躓?霁鳮饸﨣x隠痹"m揧[椈竻??vC?0k<-6抛??为?rV揆J贻t:[F騠泑6氬惘 ? *?醆x? 蛁襁 x•昒骻南?噣<6dO xsV穹?#奘•超萫'鍂F搘mh?$-+ o瘑?仱旨Ik?kQ呕?峓J?9?儗R旁)耀S S鲙裋NW觴/z+U瑨^d,T-?4骪|w€-錟! 5乔•?? W咟&倵|(衿?kfS X]G-?2v篭G1実z?G n?Fx;?兙# ?馰嬧Cn•薆;w?)?綆囈糽??奟巆厺>]q|酱捈Z驧∑簾绿3蓂褡 x•@錟z 镻?汏c?磈??癞?涓x? 46骪<s€ *爰l歯+n8葛弾阄蠉?8醢?鵜X?O?s枫W審譔?鵞^忊]V厦?+咚湄豙蓇q(R?E,?搥綾除?曛Q芡鈰?g蝝n9?8輞朊-繀z,繄髪s珪彡謱O俾S硍j?隬?戅]磕?炽?嫃譓? 鵞X 譠锱|沣'妿=t?曊寝~? e蒓? p?\只鹒|-[Y$恶D棊?(篡狅?Fs"甛3菎?v'_鷖S ?殬珺~B黚?z' +昕???鬤<G偨曯?[?m≠kz-赺闂冰愊-p? 內 ?<?<姸4黺瘉瓩鏄j病Zr 屸趇?謲4鮉=g遵KNvW?•補???撓?喁E鍈K%?TB?珉?鸆?幘*8玢壙3D鍈L?X駤? ??鵢U?2巋Y ?_???鴿q嵾<T3棣h>$] gM锌疀Y??属疊徐?夂鑖根?忦;p D呓3:厦•n -穹芵{i? ++J/A eg碽? 徱疥8蘚灣g縉U-灬!鴚鉾7?? 屎?嘛?裣莾閍? W}o g硪痀??]O:_勣2?骫<}€--錟???韬x? |=湿舸鞷砖M璏O1黗• |=湿O鳷~0宵梍•?嚳鵘^バA酫x?騗|}€>-錟饗?蓇? 昒?U\g?聼??_ ?嚳鵘G?製? 昒?)j€蜓?? 鬩|•€>-錟8|-氻? ? *k??砷@-Z~•蛈? 昑凗/?骫|•€>-錟z?- yo?•製? 昑凗.㈨? ? *?_?噯t俚J?;8T磽J豒渋??)5v? ?嬁杌x |=湿?? ?•颡汲??懅粗???骒鵴}B晉蠄•l蠄诿廪馇GA?V?軛-徛緅?噼籈箊-uL茀>?? 匒? ??u•瘎5??臁漶~?鐢??b泅滧潵禸馿悦,瓴徴Mq.'犨? ??鰃苊?嬁杌x |=湿?忶? ?•颡綣? n_場0狾懆颁?? ?液??┞?o 谌节皱??鏬豇?S獹D3<鰰彙嚶?R聽駑?_ ?嚳鵘^)/?CC???嶢簭?鎽鸖麹耵•?抺G8K o,巠韶N 淖ls\5Gjm?捧? 昒区?弴6扠瓇?7窓Sz趮?4?~?+'>?肱~1~?|5汸?*$焠@?罣=q?虔鳦目> 玲鸞┊J K1<s繳闅岖汵O傩徑鎠O贴)-M侞A黰袂嬘C???g"?I< ?鑁K?庌&?a汛?8?洘Nr畿`Wo饆郷咡h)цV`问㈢P?=?r睚?.A^?yo?製? 昑•聼??_ ?嚳鵘^z Q 鍑?嬈•恸? ?U腺夏讏?躀?f隳晱坲?鸍?"歺m5k籬K????$巏牙??龣9鴞? 仉庀鼿/鑍A槱享Q?•閊穅k鸛麲讲眿?|讆,閆瀵洦泍%窗?拪譏?{睌??褹埯Tx? 詿嵯?蛛? m煂-鸱肹?x???匮ti?莙x e$q用摧~$8yV|薍?(5神|pZk$?霥瑲綇檄•劣xс?m?q龗鱮?N?U厶G HP?*絯????賸G?M?Q顃M?雄s$d婀;縿扻鼃?犸?肆桛%桳掦@彻惶栍?2I,22.?@+dT诜聖•臺.?鴚满f暔钱•y? %銖*e`?剝 s,U9U峦??s9敄*I$RjR换^磟y•Z•戯^?i??•?+蚄M惫吹焰mUeP懲鶘R y恳? l?|[恶碰pwW鹫弲殆? K掆骊?E淧导d菳緋IS?髢_1Zm•o總m?庇W枚裯?鍽撿~??^8匿42?69l]ld=y趙Zk硍譪绚驿阃Ⅳ?9?~佝:站冻?鰎?H揝?檡猕權奧崣@窎1#??菱??镶楛庙?鴘-儴阹[kQ鴚B壆]?)葋F?[$/偗x?n雡:宏⑤y+o3DY? 3譳c’状?鵁鰊?嶠.>舰H廎鸠勽蚔%}hE嶗~[蹞J?摐*!?o词p??S涏p?蛫鍽儵S T錟ssI>i+(?h瘇y嫂J-逤契?U厨p桟?~&?暣Zm籞j 髽?浵•睼EO&=羷!?嶰粳龔?F|a鈃_A癍緞4贯僗裉e痝b??轈銦問悍蜜_C?-?.;藭mB跪檬e朑劯输m?2 舣?硰偩&T??稻|M嗋沎琄)4?0檿儡?舢)#(㎎x焔Ntg?誛aY 恃j义SQ桔鑢邻W孵???陆S鉥脹?i>0吼[芪弎}i櫏??P鑦??9婞凐裪嵬?壹7?k期>愔鯻趓莜漴襦H恫`?+脕實???鴹Z?釓嗊納7咟?w戸(沶K谈e秋3€忔`??臒偤W? 鸔|+甬梬6燫M&骖鷔窜\5雘p??'?c鵚凒?鴋c匠礽B姧仍c絁撳?拸,T姊焀~]q缰荌岑奮+状w烞鴠??锉i:锲i韓5鞀M瞈\\C Aa K 騿?抳|鸐|T旨E G眠~[啉z)た?tvpZ$R?飗戉H昕+?#?o疬B,~?负瀩?O? Cmd 泼螒潂H濬]輵姶a7 ?h礂菬岨肪?7zf 蔇鉙稈埸HG•u?pG芘鋢?\f'-HS 匳躩N0鏃+Nq VQ\畳g??钳帪&裎熰?嗟噮|5v汻涤畉?8T|藉襐f#hC髇陷眠<}??Yj氺{7]鶔苗l七9cuY _?鵃^?溥?麷鴔i#鴯彷F5?廷鴬4i?mK闵蹠$2+?㏕蚶>获靓鳰饢頺?K霸!q?3]\履?化-@嘧缶z耨?旞n?筶?U%?-y?I;& x?^E鹞?/嘃馃N???懩!cr?`:?餑??~$ji oq? e薶簫弮4[璂C??娣騺I滻Iw侶?蠁?? Y|U繖铧w忭F{];Kw•溌?膵 YwI忶d??刿?€<A駴??奴{k?xoC己笝?穯)』穱瓦#酶零骈渃鸁<?Q倈帊V.vR|憐簰KJ湶|9?•b瘒^.脂|K痣獐劗.?h坈?<c3K<'蘣im扢呑k?齫鸱鄰€~ hz澐凈H|9{檈,Uq工欃偍岉c亽O鎃?卂?麰鹱兛f?咑祡Ie?|HX*硾澪?母诟e綇-坸勖:南瑼龤簃渥喕_(G#1蝦?鬄z左菆辘%K鯄規-骉胷{'-[/i:jも錜W歳硂^鲲毛軿鲭库|y? 罸>辋(坑酌?T碒?懝by q怟n 尐<T? Y鳭唧. ??緰鴔?|3鳧?x+I襫`?润 c?鍹覒炁?乚鼞?騲茏?S?昒?P歁铐+vF?和}?€V燑昇圑燄︹T?x演?I <子^#?痼臰弚瓁肸帝?怊H窎S燊?齥宵/?|餲?|Y6+]Z蔩篡粸Xb??'r湳R P oG1疳覔瘲b#;h昒$遞?J齳_=r鲒wCx??om蔍?@88#汓慅??xW?尲U醥h?婦?.u{]B?瀃/*R?颉v溧2Xp?犨登?狛限絼??詍$]'N垎慮?蹾3N7 d儚偪g?麺穹律>?占?Ⅷ籖l鍘蘨?aR)B?*фW;K曽蝥?倾q褎0贞P唱?r敧串湱h蜿娆礕.!?栬尊•膐x偹馇? 鴞J?7g}q?W敷⒍?欄(褉G?r0wc捈p?MG鉄聼姛钹K曛癷iEql辥?渱乧? ?钭祒泠W箾鈙?醊熲?xV{(-<U甠L棣奁竊bV ?Pv6萏F訰靬/趃鰓謣?尿xCTI>jb享赨衄?\D?$湈偋j扂[瀙韁?O V?F"t%(JqUjr7g叔蠏ks? d?m?霾x膻?痐铊+?c ~冫:xi i0Kw趓G鶯嵪客鵥揭<?W?S攛?? 槉邖I-|3!t??h魘銑琛遇疛礀籣┒5F?4q窌?+琄L霏+/$q蚼f泵&虧'G谾F8F必#9X痮唄霭鴡Rk{r1舎?<奺紐誵=盻IF姳炱#?請糟?Z荁€丱^磾?zQE嬕柡聰襍€?? ?(h???WaFM&艺?砉厅G3鸬址??陇i薍珙狑& [?t蚢??r>cS{诌?駫镡?舁&#C姚ha?G!蹊@?y?三>曺&u淭耪t?A~'茹背?o?F蚣g?詒 e }(v?-镜^G'8`+澧戔?p缹礮Y秾d?m牅?毷吭0vE髶苳Wm89%r宰Q@7H岁Z牺褮矶@瑎渘Yg2L廖3R@+H襂# ▋抸•Q^刟f?寀绪徺3?•|vn鮴? i;e篧,溢)骳?腱徻鰝?g?$0?谠?c???㈣要辺観符d朄?p7<澛/=v鑫G傸?獐阢?噵黃•,>K侖嬌喓#9?€伭=N钓榹徼?闗•$}{镳04焽>.e獐?+繗薆觤Ъ:劔蛙?惸醨1瀮?支旃鸕7羅\Yk?jn瞈?鬆|`: x铟?芸n張歡傼i??!祘旻付?D S?? 懘懽Лy蹁罢搩籟?揦j娢韓~謝G期/幋x鮉R吩欷鄹o蘵貙诸硭汓j?膹|7??疹4┴||?FS愡埊叠i>?U?匽R%"赹??鷠:W穭伍卧雋麨?e:?蹴.87助暏W6城so*啂X??#?z鷛II^.栾欪W桛?騉5啕|Y ?齴梒舣-錇k况: R??崗冢沁?xs K5?O佰•i鵡O踻曮技鏵黦ny苢\O氵?<9rK┾ナ韚?mi%3愸O??冦}s眯j>(新.?$?莋O?F*?#?'离X掁?殟u N3\5?F"樽?F毚Smǐ扪Oe}l垂身Rz'腳贌揽>(xo曲憝峪傾蚓蝝?qK錒d嬐P>m?瀲#婖?宖睼?隠{薪雔No嬈谣G VS??踛*鞑飚?i陮??饂膹?鴆I?Y1kf 原s q?`p#±?G岌傤|Q?穰?縩?敄14?&?曏8r+j]S Vu蕨戫\谪蕋?W拪M$れ斁$曧g誹阛R瑆辨??g |U•甥4?栻垿2爲J?錣I-偦???,眄糓≠?跦%穔報$恮F?囧*Fq蚛7痪敘髮s?盛门?麆?6?wj-j嶶R,覛骴`幼汄/- 餩?墯幍?壍???蔈'??1?媖扜L鬺?魢槹?砛8,?栒u?eNM8?渝挸Zth橨??鹣臡M舲5?o???言咶?r恜H?#?x鄔蹮邻榉罺骀I錇Y I!wH偷Fz.?$f穞弟繵_Ξz??D?;?K懢?抽英靧PI粴?#夜???鉣Q礝x os1Q衞t'巴u岕珛聛^?絣+鰳y?{I枞酐m6?K;x璵 A P@? 繳Q p ???x?腳x?級ㄝ$惲?O轉逅/^I>鐠8鞬纸l.i屄P ?扴I麵;ml?#妘9?迳\补?g姂詢M<?€鍒岏U?隬輝苆吉1指闌蔋蟑|?膡鸎鳲H罪l曝./?WU?2G+扤討扤+U磬贝娹?"A qDp b樊 ??得嬇b*覅?(C酠叮}於W?*{P沨5? ?ⅫM鹜鐕|Ajo4徊咹朏屽X:愂A*+冈Ic興;膳|?饡釄肕陇q抦4雍i璖OT厌誱?揽t/囖缎??洢蹡1聦蘲NI,某{扥錧t f"捤镰?宖姇+c+J?ns搉R搈鄂m帆o玣旈ЧV-3姅i 鍅屩琻厁猝U想Z狧霵]x??w5礳`W T袲絟[莻3]th珴4閾圹?9?b qQ?=牯h GF跟盏徔J?麺Xw-曤S厧剣(绛K亖LA€=jN帝P?JFi?8婊"4?QZ(@ QE? J? 廅8徖淡P窴? 钜???鵲鲻簹/?!"'?5鋐斟喠T?睐渪珊t'$|Qqs缁嚏s顾d??f 扇5?觝K辽郬猃O 匷昱s蜪)盥寸S橶jz?p蘽譛8X? A6?緅菰? ?ⅹ伇壚荺幷??孪6?隫|怆?鵀悄W禝ń?璵%麙L?楑P??絪鷧鬹朿埑廬切锟g?冫[<k%>U?蓫O髫`{d汋皹i諝?5)+坷飪^'> j>(??w碲坙痪3銬9懴@1?W鐳憍{鰑? 痂??瑒~N#fb}雥揽?疔FM/脷D M氻% L* 芮﹍。