整式的加减1

合集下载

第07讲 整式的加减(1) (解析版)

第07讲 整式的加减(1) (解析版)

第7讲整式的加减(1)一、知识梳理1.同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项.【例1】.(1)下列单项式中,a2b3的同类项是()A.a3b2B.3a2b3C.a2b D.ab3【分析】依据同类项的定义:所含字母相同,相同字母的指数相同,据此判断即可.【解答】解:A、字母a、b的指数不相同,不是同类项,故本选项不符合题意;B、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;C、字母b的指数不相同,不是同类项,故本选项不符合题意;D、相同字母a的指数不相同,不是同类项,故本选项不符合题意;故选:B.(2)下列各选项中的两个单项式,是同类项的是()A.3和2B.﹣a2和﹣52C.﹣a2b和ab2D.2ab和2xy【分析】利用同类项的定义判断即可.【解答】解:A、3和2是同类项;B、﹣52不含字母,与﹣a2不是同类项;C、a与b的指数不同,不是同类项;D、所含字母不同,不是同类项.故选:A.(3)如果3a2b2m﹣1与﹣2a2b m+2是同类项,则m的值为()A.1B.3C.﹣1D.﹣3【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+2,解得:m=3.故选:B.(4)如果单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,那么a b的值是()A.﹣6B.﹣8C.8D.﹣27【分析】先根据题意判断出单项式3x a+3y2与单项式﹣4xy b﹣1是同类项,从而依据同类项概念得出a、b的值,继而代入计算可得.【解答】解:∵单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,∴单项式3x a+3y2与单项式﹣4xy b﹣1是同类项,则a+3=1,2=b﹣1,解得a=﹣2,b=3,∴a b=(﹣2)3=﹣8,故选:B.【变式训练1】.(1)下列各选项的式子中,与6ab3是同类项的是()A.3ab6B.6a3b C.﹣6a2b2D.﹣ab3【分析】根据同类项的定义逐个判断即可.【解答】解:A.b的指数不相等,不是同类项,故本选项不符合题意;B.a、b的指数都不相等,不是同类项,故本选项不符合题意;C.a、b的指数都不相等,不是同类项,故本选项不符合题意;D.是同类项,故本选项符合题意;故选:D.(2)下列各组单项式中,不是同类项的是()A.32与23B.﹣5x2与36x2C.a3bc与23a3bc D.x2y与﹣0.9yx3【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【解答】解:A.所有的常数项都是同类项;B.所含的字母相同,并且相同字母的指数也分别相同,是同类项;C.所含的字母相同,并且相同字母的指数也分别相同,是同类项;D.所含的字母相同,但相同字母的指数不相同,所以不是同类项.故选:D.(3)已知﹣2x4y2n+5与5x m+1y是同类项,那么()A.m=3,n=2B.m=3,n=﹣2C.m=2,n=3D.m=2,n=4【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意得:m+1=4,2n+5=1,∴m=3,n=﹣2,故选:B.(4)若单项式2a m+6b2n+1与a5b7的和仍是单项式,则m+n的值为()A.﹣4B.4C.﹣2D.2【分析】根据差是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的加法,可得答案.【解答】解:∵单项式2a m+6b2n+1与a5b7的和仍是单项式,∴单项式2a m+6b2n+1与a5b7是同类项,∴m+6=5,2n+1=7,解得m=﹣1,n=3,∴m+n=﹣1+3=2,故选:D.2.合并同类项把多项式中的同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并前各项的系数的各,且字母边同它的指数不变.【例2】.(1)计算2a2+3a2﹣a2的结果等于4a2.【分析】根据合并同类项的法则计算即可.【解答】解:原式=(2+3﹣1)a2=4a2,故答案为:4a2.(2)下列各式正确的是()A.5xy2﹣3y2x=2xy2B.4a2b2﹣5ab=﹣aC.7m2n﹣7mn2=0D.2x2+3x4=5x6【分析】先判断两项是否是同类项,再根据合并同类项法则计算,据此逐一判断即可.【解答】解:A.5xy2﹣3y2x=2xy2,此选项正确;B.4a2b2与﹣5ab不是同类项,无法计算,此选项错误;C.7m2n与﹣7mn2不是同类项,无法计算,此选项错误;D.2x2与3x4不是同类项,无法计算,此选项错误;故选:A.【变式训练2】.(1)计算﹣6ab+ab+8ab的结果等于3ab.【分析】合并同类项是指同类项的系数相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:原式=(﹣6+1+8)ab=3ab,故答案为:3ab.(2)下面计算正确的是()A.2x2﹣x2=1B.4a2+2a3=6a5C.5+m=5m D.﹣0.25ab+ab=0【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此逐一判断即可.【解答】解:A.2x2﹣x2=x2,故本选项不合题意;B.4a2与2a3不是同类项,所以不能合并,故本选项不合题意;C.5与m不是同类项,所以不能合并,故本选项不合题意;D.﹣0.25ab+ab=0,故本选项符合题意.故选:D.3.整式的加减【例3】.(1)化简:5m+2n﹣m﹣3n.【分析】根据合并同类项法则计算即可.【解答】解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.(2)化简:5a2﹣7﹣3a﹣5+3a﹣2a2.【分析】先找同类项,再根据合并同类项法则合并即可.【解答】解:5a2﹣7﹣3a﹣5+3a﹣2a2=5a2﹣2a2﹣3a+3a﹣7﹣5=3a2﹣12.(3)化简:7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab﹣5ab2.【分析】关键合并同类项法则计算即可.【解答】解:7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab﹣5ab2=(7ab﹣7ab)+(﹣3a2b2+3a2b2)+(7﹣3)+(8ab2﹣5ab2)=3ab2+4.【变式训练3】.(1)化简:3b+5a﹣2a+4b.【分析】根据把同类项的系数相加,所得结果作为系数,字母和字母的指数不变解答即可.【解答】解:3b+5a﹣2a+4b=5a﹣2a+3b+4b=(5﹣2)a+(3+4)b=3a+7b.(2)化简:8a2+4﹣2a2﹣5a﹣a2﹣5+7a.【分析】利用合并同类项法则计算可得答案.【解答】解:原式=(8﹣2﹣1)a2+(﹣5+7)a+(4﹣5)=5a2+2a﹣1.(3)化简:4a2+3b2+2ab﹣2a2+4b2﹣ab.【分析】根据合并同类项:系数相加字母部分不变,可得答案.【解答】解:4a2+3b2+2ab﹣2a2+4b2﹣ab=(4a2﹣2a2)+(3b2+4b2)+(2ab﹣ab)=2a2+7b2+ab.二、课堂训练1.下列各组单项式中,不是同类项的是()A.﹣a2与2a2B.23与32C.2ab2与2a2b D.﹣mn与2nm【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.根据同类项的定义即可判断.【解答】解:A.同类项与系数无关,是同类项,不符合题意;B.所有的数字都是同类项,是同类项,不符合题意;C.a的指数,左边是1,右边是2;b的指数,左边是2,右边是1,不是同类项,符合题意;D.同类项与字母的顺序无关.故选:C.2.单项式x m﹣1y3与﹣4xy n是同类项,则m n的值是()A.1B.3C.6D.8【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:根据题意得:m﹣1=1,n=3,解得:m=2,所以m n=23=8.故选:D.3.下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2xC.7y2﹣5y2=2D.9a2b﹣4ab2=5a2b【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.5x﹣3x=2x,故本选项符合题意;C.7y2﹣5y2=2y2,故本选项不合题意;D.9a2b与﹣4ab2不是同类项,所以不能合并,故本选项不合题意;故选:B.4.下列单项式中,可以与x2y3合并同类项的是()A.x3y2B.C.3x2y D.2x2y3z【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可判断.【解答】解:A、x3y2与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;B、与x2y3,所含字母相同,相同字母的指数相同,是同类项,能合并,故本选项符合题意;C、x2y与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;D、2x2y3z与x2y3,所含字母不尽相同,不是同类项,所以不能合并,故本选项不合题意;故选:B.5.写出单项式﹣a3b的一个同类项:a3b(答案不唯一).【分析】根据同类项的概念解答即可.【解答】解:单项式a3b与单项式﹣a3b的是同类项,故答案为:a3b(答案不唯一).6.已知两个单项式3xy m与﹣3x n y2的和为0,则m+n的值是3.【分析】两个单项式3xy m与﹣3x n y2的和为0则两个单项式是同类项,根据同类项的定义可得答案.【解答】解:∵两个单项式3xy m与﹣3x n y2的和为0,∴两个单项式是同类项,即m=2,n=1,∴m+n=3.故答案为:3.7.化简:(1)x2y﹣3x2y;(2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab.【分析】合并同类项是指同类项的系数相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:(1)x2y﹣3x2y=(1﹣3)x2y=﹣2x2y;(2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab=(7ab﹣7ab)+(3a2b2﹣3a2b2)+8ab2+(7﹣3)=8ab2+4.三、课后巩固1.已知﹣2x m﹣1y3与x n y m+n是同类项,那么(n﹣m)2021的值是()A.1B.﹣1C.22021D.0【分析】利用同类项定义可得m﹣1=n,m+n=3,再计算(n﹣m)2021即可.【解答】解:由题意得:,解得:,则(n﹣m)2021=(1﹣2)2021=﹣1,故选:B.2.下列各式与2a2b是同类项的是()A.2ab2B.C.a2b2D.﹣2ab【分析】直接利用同类项的定义分析得出答案.【解答】解:与2a2b是同类项的是.故选:B.3.若3x2y m与2x m+n﹣1y的和仍为一个单项式,则m2﹣n的值为()A.1B.﹣1C.﹣3D.3【分析】单项式3x2y m与2x m+n﹣1y的和仍是一个单项式,就是说它们是同类项.由同类项的定义(所含字母相同,相同字母的指数相同)可得:m=1,m+n﹣1=2,解方程即可求得m和n的值,从而得出结果.【解答】解:由题意知3x2y m与2x m+n﹣1y是同类项,所以有m+n﹣1=2,m=1,即n=2,m=1,m2﹣n=12﹣2=﹣1,故选:B.4.下列计算中正确的是()A.5a+6b=11ab B.9a﹣a=8C.a2+3a=4a3D.3ab+4ab=7ab 【分析】首先判断是不是同类项,然后再看是否合并正确.【解答】解:A.不是同类项,不能合并,不符合题意;B.应该为8a,不符合题意;C.不是同类项,不能合并,不符合题意;D.合并同类项,系数相加,字母和字母的指数不变,符合题意.故选:D.5.计算:3a﹣5a=(3﹣5)a=﹣2a.(请写出中间步骤)【分析】直接利用合并同类项法则计算得出答案.【解答】解:3a﹣5a=(3﹣5)a=﹣2a.故答案为:(3﹣5),﹣2.6.若多项式x2+2kxy﹣5y2﹣2x﹣6xy+4中不含xy项,则k=3.【分析】先合并同类项,根据已知得出2k﹣6=0,求出即可.【解答】解:x2+2kxy﹣5y2﹣2x﹣6xy+4=x2+(2kxy﹣6xy)﹣5y2﹣2x+4=x2+(2k﹣6)xy﹣5y2﹣2x+4,因为多项式x2+2kxy﹣5y2﹣2x﹣6xy+4中不含xy项,所以2k﹣6=0,解得k=3.故答案为:3.7.化简:(1)5x+2y﹣3x﹣7y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7.【分析】(1)直接合并同类项得出答案;(2)直接合并同类项得出答案.【解答】解:(1)5x+2y﹣3x﹣7y=(5x﹣3x)+(2y﹣7y)=2x﹣5y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7=(3a2﹣2a2)+(3ab﹣3ab)+(7﹣5)=a2+2.。

七年级数学整式的加减1

七年级数学整式的加减1

决策题:1、某移动通讯公司开设了两种通讯业务:“全 球通”使用者缴50元月租费, 然后每通话1分钟再 付话费0.4元;“快捷通”不缴月租费,每通话1分钟, 付话费0.6 元(本题的通话均指市内通话).若一个月 内通话x分钟,两种方式的费用分别为y1 元和y2元. (1)用含x的代数式分别表示y1和y2,则 y1=________,y2=________. (2)某人估计一个月内通话300分钟,应选择哪种移 动通讯合算些?
2、合并同类项法则:
系数相加,字母和字母的指数不变。
3、去括号法则:
括号前面带“+”的括号,去括号时括号内的各 项都不变符号。 括号前面带“-”的括号,去括号时括号内的各 项都改变符号。 如果括号前面有系数,可按乘法分配律和 去括号法则去括号,不要漏乘,也不要弄错 各项的符号.
4、整式加减法则:
2 2 2
5 x 3 x 8 x
课堂练习
1.选择题:
(1)一个二次式加上一个一次式,其和是( B ) A.一次式 B.二次式 C.三次式 D.次数不定
(2).一个二次式加上一个二次式,其和是( D ) A.一次式 C.常数 B.二次式 D. 次式不高于二次的整式
(3). 一个二次式减去一个一次式,其差是( B )
(3)当一个单项式的系数是1或–1时,“1” 通 常省略不写,但不要误认为是0,如a² ,–abc; (4)单项式的系数是带分数时,还常写成假分 1 2 5 2 数,如 1 x y写成 x y 。 4 4 (5)单独的数字不含字母,所以它的次数是零次.
(1)列式表示:p的3倍的 是
1 4
.
(2) 0.4 xy 的次数是
则9 x 2 6 x 7的值是
中西药品 /zxyp/ 中西药品

2_1_3多项式及整式的加减(1)

2_1_3多项式及整式的加减(1)

2.1.3多项式一、预习案:1、多项式:几个单项式的叫做多项式,在多项式中,每个单项式叫做多项式的。

其中,不含的项叫常数项。

一个多项式含有几项,就叫几项式。

2、多项式的次数:多项式里,次数的项的次数,就是这个多项式的次数。

3、整式:与统称为整式。

课堂导学案一.学习目标:1.掌握多项式、多项式的项及其次数,常数项的概念。

2.确定一个多项式的项、项数和次数。

3.由单项式与多项式归纳出整式概念。

4. 在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式实行比较,使用化归思想,让学到的知识系统化。

学习重点:掌握整式及多项式的相关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

学习难点:多项式的次数。

二、课堂学习:(一)预习检查(随机抽取2~3组作汇报或提出困惑)(二)自主学习课本P57-58页并完成以下各题1.指出以下多项式的项和次数:(1)3x -1+3x 2; (2)4x 3+2x -2y 2。

2.把多项式a 3-b 3-3a 2b +3a b 2重新排列。

(1)按a 升幂排列; (2)按a 降幂排列。

(三)小组合作学,共同解决疑惑的问题 1、将多项式23465x x x --+升幂排列与降幂排列。

2、多项式a 3-3ab 2+3a 2b-b 3是 次 项式,它的各项的次数都是 ,按字母b 降幂排列得 .3、把多项式-5x 2-6x 4+2x-31x 3+5按字母x 的升幂排列为: . 4、 把多项式4x 3y 2-xy 3-2x 2y 4+3x 4-5按x 的降幂排列,再按y 的升幂排列. 5、 把多项式5x 3y-y 4-3xy 3+2x 2y 2-7.按y 的升幂排列:(四)巩固练习(先独做后交流,共同解决): 1.判断题(对的画“√”,错的画“×”)1、(1)263m-是整式;( ) (2)单项式6ab 3的系数是6,次数是4;( ) (3)acb 23-是多项式;( ) 2、将以下多项式中的(1),(2)按字母x 的降幂排列,(3),(4)按字母y 的升幂排列:()2221x y xy ++= ;()33222532x y xy y x -+-= ;()7233322-+-y x y x xy= ;()4342233454y y x x y x xy --+-= 。

整式的加减(1) —— 初中数学第一册教案

整式的加减(1) —— 初中数学第一册教案

整式的加减(1)——初中数学第一册教案Addition and subtraction of integral form (1) -- teaching plan of mathematics volume 1 in j unior high school整式的加减(1)——初中数学第一册教案前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。

本教案根据数学课程标准的要求和针对教学对象是初中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。

便于学习和使用,本文下载后内容可随意修改调整及打印。

整式的加减(1)教学目的1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程一、复习1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:y2+(x2+2xy-3y2)-(2x2-xy-2y2)二、新授1、引入整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题例1 (P166例1)求单项式5x2y,-2 x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。

几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材P166)例2(P166例2)求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6)(每个多项式要加括号)=3x2-6x+5+4x2-7x-6 (去括号)=7x2+x-1 (合并同类项)例3。

七年级数学整式的加减1

七年级数学整式的加减1
记忆力培训加盟
是在经济、技术、科学及管理等社会实践中,以改进产品、过程和服务的适用性,防止贸易壁垒,促进技术合作,促进最大社会效益为目的,对重复性事物和概念通过制定、发布和实施标准,达到统一,获得最佳秩序和社会效益的过程。A.标准B.规范C.规程D.标准化 国家颁布的与流行病学有关的防治法有A.糖尿病防治法B.艾滋病防治法C.心血管病防治法D.传染病防治法E.肿瘤防治法 大倾角稳性不能用GM值来表示其大小,主要原因是。A.在同一排水量时,横稳心点M不再是定点B.船舶水下部分形状发生明显变化C.船舶倾斜前后两个水线面对于横倾轴的惯性矩数值发生变化,因而稳心半径发生变化D.A、B、C均对 出现宫缩乏力,行人工破膜加速产程进展适用于A.头先露,已衔接,宫口开3cmB.臀位,宫口开大3cm以上C.横位,宫口开大3cmD.胎头浮,跨耻征(+)E.头先露,宫口开1cm,胎心率170次/分 小鼠自发性肿瘤中发生率最高。A、乳腺肿瘤B、肺肿瘤C、肝肿瘤D、白血病 《中药品种保护条例》受保护的中药品种必须是A.列入《中华人民共和国药典》的品种B.国家பைடு நூலகம்部分重点中药材购销实行严格管理的品种C.国家实行进出口管理的中药材品种D.列入国家药品标准的品种E.列入国家重点保护的野生药材物种名录的品种 什么是中低产田?中低产田低产的原因是什么? 经国际协议,以本初子午线处的平均太阳时为世界时间的。 信息分类中,指分类体系的建立应满足事物的不断发展和变化的需要,在分类体系中应留有适当的空位,以便新的事物或概念增加时,在体系中有一定的位置安排,而不至于由于新的事物或概念头的增加而导致分类体系又推倒重来A、科学性B、系统性C、可扩充性D、兼容性E、综合实用性(信息 无权代理是指行为人没有代理权而以他人名义进行民事、经济活动,其情况包括。A.拒绝担任代理人B.代理权范围内的代理行为C.没有代理权的代理行为D.超越代理权限的代理行为E.代理权终止的代理行为 下列哪种病原体一般是条件致病菌。A.金黄色葡萄球菌B.克雷白杆菌C.铜绿假单胞菌D.白色念珠菌E.大肠杆菌 干式自动喷水灭火系统可用于室内温度高于的建筑物内。A、50℃B、60℃C、70℃D、100℃ 患者,男,18岁。身高172cm,体重100kg,属于肥胖症,医生建议控制饮食减轻体重。应给予的最佳饮食是()A.低纤维素饮食B.低蛋白饮食C.低盐饮食D.低脂饮食E.半流质饮食 提示急重症肝炎最有意义的指标是A.血清胆红素水平升高B.ALT明显升高C.凝血酶原时间明显延长D.血清白蛋白降低E.γ-谷氨酰转肽酶增高 对公路工程中发生的质量问题,负责调查处理的单位应该是。A.国务院交通主管部门会同省级交通主管部门B.国务院交通主管部门C.建设单位或企业D.省级交通主管部门 下列不属于信息的是A、上课的铃声B、收到的开会通知书C、电视里播放的汽车跌价消息D、存有照片的数码相机 理中丸主治证是A.虚劳里急证B.脾胃虚寒证C.虚寒腹痛证D.脾胃气虚证E.虚寒呕吐证 目前市场上应用最普遍、数量最多的探测器是哪一种?A、感烟式火灾探测器B、感温式火灾探测器C、感光火灾探测器D、可燃气体火灾探测器 手少阴心经之别。A.系舌本B.络舌本C.夹舌本D.结于舌本E.散舌下 头向前弯属于()A.前倾B.屈曲C.伸展D.内收E.外展 [单选,共用题干题]女,60岁,绝经8年,腹胀伴消瘦1个月。体检全腹部膨隆。妇检:发现后穹隆触及结节,子宫附件触诊不满意。盆腔B超见大量腹腔积液,右附件区12cm×10cm×8cm实性包块,边界不规则合适的进一步确诊手段为。A.立即剖腹探查B.腹腔穿刺细胞学检查,后再次妇检C.放疗D. 车身上封闭的内表面不使用漆基底层涂料,原因是。A.黏合性不够B.挠性不够C.容易老化脱落 关于伤寒的病原,叙述错误的是A.伤寒沙门菌属于沙门菌属中的D群B.不形成芽胞,有鞭毛,能运动C.有荚膜D.在普通培养基中能生长,在含胆汁的培养基中更佳E.不产生外毒素,菌体裂群后释放出内毒素 胃插管术适应证 道德最显著的特征是A.继承性B.实践性C.自律性D.他律性E.客观性 以下为肺血增多的X线征象,但除外A.肺野内肺血管增多B.肺动脉段膨凸C.肺门舞蹈D.肺门血管增粗、扭曲E.肺野透亮度增高,血管纹理纤细 早期妊娠的辅助检查,正确的是A.乳胶凝集实验有凝集现象BBT双相高温持续2周不降,早孕的可能性大C.B超显示于妊娠第5周后即可见妊娠环D.宫颈黏液涂片检查可见羊齿状结晶E.妊娠7~8周超声多普勒呈阴性 方中同用酸枣仁、柏子仁、五味子的方剂是()A.酸枣仁汤B.归脾汤C.五仁丸D.三仁汤E.天王补心丹 静脉快速输入1000ml生理盐水,血浆渗透压将。A.降低B.升高C.不变D.先升高后降低E.先降低后升高 构件按其运动状态分为。A.静件与动件B.主动件与被动件C.机器与机构D.机械与机构 某企业拥有A、B两栋房产,A栋自用,B栋出租。A、B两栋房产在2014年1月1日的原值分别为1200万元和1000万元,2014年4月底B栋房产租赁到期。自2014年5月1日起,该企业由A栋搬至B栋办公,同时对A栋房产开始进行大修至年底完工。企业出租B栋房产的月租金为10万元,地方政府确定按房产原 患者,男性,45岁,双眼高度近视。左眼鼻下方飞蚊、闪光伴视野缺损1周就诊。检查发现左眼视网膜脱离。如为孔源性视网膜脱离,则首先考虑裂孔位于()A.鼻上方B.颞下方C.颞上方D.鼻下方E.黄斑部 患者因严重烧伤住院,需给予鼻饲要素饮食补充营养。要素饮食溶液的温度应是()A.45~48℃B.38~42℃C.35~40℃D.29~34℃E.24~28℃ 相同条件下,吸入麻醉药的麻醉诱导速度与下述因素成正比,但除外()A.饱和蒸气压B.分子量C.最低肺泡气浓度D.血/气分布系数E.油/水溶解比率 分配阀紧急放风阀膜板鞲鞴上侧是列车管压力,下侧为压力。 根据土地增值税相关规定,下列说法中正确的是。A.政府出让国有土地使用权属于土地增值税征税范围B.土地增值税征税范围不包括转移地下的各种附属设施C.土地增值税针对出售或者其他方式有偿转让房地产的行为征收,不包括无偿赠与方式转让房地产的行为D.土地增值税征收对象包括地上的 下列各项,不属三有余,四不足小儿生理病理学说的是.A.肺常不足B.脾常不足C.心常不足D.阴常不足E.肾常不足 下列工具书中,属于专科词典的是。A.《新华字典》B.《辞海》C.《中国人名大辞典》D.《汉语大词典》 目标管理的基本精神是A.以经济为中心B.以整体人为中心C.以工作为中心D.以自我管理为中心E.以人际关系为中心 市场调查的内容有。A.市场环境调查B.产品调查C.价格调查D.市场需求量调查E.促销方式调查

整式的加减基础知识详解

整式的加减基础知识详解

注:《初中数学典型题思路分析》已被多位老师选用备课。

可提供样本!《初中数学典型题思路分析》亮点:内容为王!A.题目典型易错,重思路分析—“渔、鱼”兼得!按照★到★★★★标注难度。

B.整体难度较大.严格选题,标注难度,不用浪费时间重复做简单题。

二、整式的加减(二)——去括号与添括号基础知识讲解【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2.会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+- 添括号去括号,()a b c a b c -+-- 添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.三、《整式的加减》全章复习与巩固【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3.多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.。

整式的加减(1)

整式的加减(1)

已知两个正方形A、B,边长分别为a,2a. 一、合并同类项
a A 2a B 4a (1)正方形A的周长是_______, 8a 正方形B的周长是________; (2)正方形A的面积是 a2 _________,正方形B的面积是 4a2 ___________; (3)正方形A、B的周长和是 4a+8a __________; (4)正方形A、B的面积和是 ___________. a2+4a2
平行四 边形 梯形
\ \
底×高
½×(上底+下底)×高
序号
类别
长方体
正方体 圆柱
1பைடு நூலகம்
2
立体图形 表面积(S) 体积(V) 2×(ab+ac 长×宽×高 +bc) 6a² a³
底面积+侧面积 S底=πr² S侧=2πr×h
3 4
5
底面积×高 =πr²×h
底面积×高 =π(R²-r² )×h 1/3×底面积×高 =1/3πr²×h
(5)5与 6
注意
关于同类项的两点说明:
(1)两个相同:字母相同,同字母 的指数相同. (2)两个无关:与系数的大小无关, 与字母的顺序无关.
判断: (1)在一个多项式中,所含字母相
同,并且指数也相同的项,叫同类项. 如2x2y3和y2x3. (2)两个单项式的次数相同 ,所含 的字母也相同,它们就是同类项. 如3x2y3和-2x3y2.
-4(a+b)
(2) -2(a-b) +(a+b)2+7(a-b) -5(a+b)2
5(a-b) -4 (a+b)2
例1:合并下列各式的同类项.
1 2 3 (1) x y x y ; 5 3 2 3 2 ( 2) 4xy 2x y 4xy 3x y;

整式的加减运算

整式的加减运算

整式的加减运算整式是由数字与字母的乘积及其相加、相减而得到的式子。

整式的加减运算是指将两个或多个整式进行相加或相减的过程。

本文将详细介绍整式的加减运算及其相关性质。

一、整式的加法运算整式的加法运算是指将两个或多个整式相加的过程。

在进行整式的加法运算时,我们需要注意以下几点:1. 同类项相加:整式中具有相同字母的指数和变量的系数相加。

例如:3a + 2a = 5a。

2. 合并同类项:将整式中的同类项合并到一起,即将具有相同字母的指数和变量的系数相加,而不改变其他项的位置。

例如:2a + 3b + 4a = 6a + 3b。

3. 不同字母的项直接相加:不同字母的项不能合并,直接写在一起即可。

例如:2a + 3b + 4c。

二、整式的减法运算整式的减法运算是指将一个整式减去另一个整式的过程。

在进行整式的减法运算时,我们需要注意以下几点:1. 减去一个整式,等价于加上这个整式的相反数。

例如:5a - 3a 等价于 5a + (-3a)。

2. 合并同类项:减法运算也需要按照加法运算的规则合并同类项。

例如:5a - 3a = 2a。

3. 注意符号:减法运算中,当减数为正时,减法可视为加上相反数;当减数为负时,则减法可视为加上一个正数。

例如:5a - (-3a) 可视为5a + (3a)。

三、整式的加减混合运算整式的加减混合运算是指在一个式子中同时存在加法运算和减法运算的过程。

在进行整式的加减混合运算时,我们需要按照以下规则进行操作:1. 先进行括号内的运算:如果整式中存在括号,首先进行括号内的加减运算。

2. 合并同类项:将整式中同类项合并到一起。

3. 按照运算顺序进行计算:按照从左到右的顺序依次进行加法和减法运算。

四、整式的加减运算的性质整式的加减运算具有以下性质:1. 交换律:a + b = b + a,a和b为整式。

即整式的加法运算满足交换律。

2. 结合律:(a + b) + c = a + (b + c),a、b、c为整式。

整式的加减(1)

整式的加减(1)
一个正整数
减2
加上它本身
乘以5 加上3
加上一个小于10的正整数
你会做吗? 3 x + 2 x = ( 5) x
2y 2 x 12 -3 x y
=(9)
=?
2 xy
2
x
+3
2 xy
同类项的概念:
所含字母相同,并且相同字母的指数也相 同的项,叫做同类项。
同类项的特点:
相同字母的指数相同 与项的系数无关 与字母的排列顺序无关 两无关: 同类项所含字母相同 两同:
(3 3) x 2 y (3 2) xy2
(移)
(并)
同类项
xy
2
合并同类项步骤:
带着符号移
系数相加,字母及指数不变
同类项
两个条件
(1)所含字母相同; (2)相同字母的指数分别 相同;
合并同类项
法则
(1)系数相加作为
结果的系数。
(2)字母与字母的
指数不变。
2、合并同类项的法则:
合并同类项时,把同类项的系数相加, 字母和字母的指数不变。
1 2
3
这有一堆水果,里面有苹果、橙子和 火龙果,要怎样才能又快又好的知道 它们有多少个呢?
例1
合并同类项
3x y 3xy 3x y 2xy (找)
2 2 2 2
解:原式 ( 3x 2 y 3x 2 y) (3xy2 2y 3与x 2 y n1 是同类项,那么n的值 是( B )
A、1
B、2
C、3
D、4
把多项式中的同类项合并成一项,叫做 合并同类项。
3x+2x= (3+2)x 5x =5x
2 2 12x2y-3x2y= (12-3) 9x y x y =9x2y

1第二章《整式的加减》整式的概念及整式的加减1

1第二章《整式的加减》整式的概念及整式的加减1
〔3〕单项式 的系数是,次数是.
〔4〕单项式 的系数是,次数是.
〔5〕单项式 的系数是,次数是.
〔6〕单项式 的系数是,次数是.
〔7〕多项式 的次数是.
〔8〕多项式 的次数是,项数是,常数项为.
〔9〕当a=______时,整式x2+a-1是单项式.
〔10〕多项式 是六次四项式,单项式 与该多项式的次数一样,那么m=__,n=__.
〔11〕多项式 的次数为5,那么x=______
〔12〕多项式 是关于x的二次二项式,那么m=__,n=__.
知识点三:整式的代值计算
例3:当x=-2时,代数式 的值是0,那么当x=2时,代数式 的值是-8.
解:把x=-2代入代数式有-〔-2〕²+a×〔-2〕-〔-2〕=0,解得a=-1
求得代数式为 ,代入求值得﹣8
按 降幂排列为____________;按 升幂排列为____________.
知识点五:整式的加减——合并同类项
例5:
解:原式= =
评析:原式中 和 含有一样的字母,且字母的指数一样的项称为同类项,整式加减的过程就是合并同类项
课堂练习:
〔1〕如果 与 是同类项,那么 =________;
〔2〕如果 与 是同类项,那么 =________;
单独的一个字母或数也叫做单项式,例: 、 .
单项式的次数:是指单项式中所有字母的指数和.例如:单项式 ,它的指数为 ,是四次单项式.单独的一个数(零除外),它们的次数规定为零,叫做零次单项式.
单项式的系数:单项式中的数字因数叫做单项数的系数.例如:我们把 叫做单项式 的系数.
同类项:所含字母一样,并且一样字母的指数也分别一样的项叫做同类项.
例4:假设 ,那么 的值为1.

《整式的加减(1)》名师教案

《整式的加减(1)》名师教案

8.2 整式的加减 第一课时(刘绍中)——合并同类项一、教学目标(一)学习目标1.理解同类项的概念,会判断同类项.2.掌握合并同类项的法则,并能正确合并同类项.3.能在合并同类项的基础上进行化简求值.(二)学习重点会判断同类项并能正确合并同类项.(三)学习难点同类项的定义,合并同类项法则的形成过程和应用.二、教学设计(一)课前设计1.预习任务(1)所含字母相同,并且相同字母的指数也相同的项叫做 同类项 ,几个常数项也是同类项.(2)把多项式中的同类项 合并成一项 叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的 和 ,字母连同它的指数 不变 .(3)观察:b a 22,2a b ,2ba 的共同点是所含 字母 相同,并且 相同字母的指数也相同 ,它们 是 (填“是”或“不是”)同类项.2.预习自测(1)下列各组中的两项,是同类项的组数为( ) ①213x y 与231xy ; ②xy 31与yx 33; ③25与2a ; ④72与27. A . 1组 B .2组 C .3组 D .4组【知识点】同类项的概念.【解题过程】解:①虽含相同字母,但相同字母的指数不同,故错.②所含字母相同且相同字母的指数也相同,故正确.③一个是常数项,一个含有字母,所以不是同类项.④都是常数项,所以是同类项.故选B.【思路点拨】按照同类项两相同两无关的特征判定即可.【答案】B.(2)已知n ab 4与42b a m -是同类项,则有( )A .1m =,2n =B .1m =,4n =C .4m =,2n =-D .2m n ==【知识点】同类项的概念.【解题过程】解:因为n ab 4与42b a m -是同类项,所以1m =,4n =,故选B.【思路点拨】根据同类项定义的特征逆向思维即可.【答案】B.(3)下列计算正确的是( )A .23a b ab +=B .2221a b a b -=C .22222(2)0a a --=D .2242a a a +=【知识点】合并同类项发则.【解题过程】解:A 中不是同类项,不能合并,故错;B 中虽是同类项,但是系数相加,字母和字母指数不能改变,故错;C 正确;D 中是同类项,但是字母和字母指数不能改变,故错.故选C.【思路点拨】合并同类项发则是系数相加所得结果作为和的系数,字母和字母指数不变.【答案】C.(4)如果773+y x n m 与3254n m x +-的和是单项式,那么x ,y 的值是( ).A .1x =,4y = B. 1x =-,4y = C .1x =,4y =- D .4y =-,4y =-.【知识点】同类项和合并同类项的概念.【解题过程】解:因为773+y x n m 与3254n m x +-的和是单项式,所以773+y x n m 与3254n m x +-是同类项,所以752x x =+,73y +=,所以1x =,4y =-,故选C.【思路点拨】因为只有同类项才可以合并,由和是单项式,则说明它们是同类项,根据同类项两相同特征建立方程即可.【答案】C.(二)课堂设计1.知识回顾(1)单项式的定义:数与字母的乘积形式.(2)单项式的系数:单项式中的数字因数,注意包括前面的符号.(3)单项式的次数:所含字母的指数和.2.问题探究探究一 同类项的定义 同类项的特征★▲●活动① (回顾旧知,感受分类的作用)师问:在一次“送温暖、献爱心”活动中,我们班同学非常积极,其中一位同学把储钱罐捐出来,满满的一罐硬币里有一元、五角、一角,你能以最快的方式统计一下这罐硬币共有多少钱吗? 学生抢答.师问:(1)分类需要什么样的标准?(2)分类的作用又是什么?师归纳:生活中处处有分类的现象,我们可以把具有相同特征的事物归为一类,利用好分类将会给我们的生活和学习带来便利.【设计意图】让学生感知分类需要标准,以及分类的数学思想,为同类项概念的学习作准备. ●活动② (整合旧知,探究同类项的定义和特征)师问:游戏一:找朋友,并说明你的分类标准是什么?(1) 325x y ;(2) 3223x y -;(3) 32x y z ;(4) 2315zy x ;(5)-125;(6)12;(7) 3a -; (8) 35a -. 生答:学生通过小组的讨论和交流,学生代表展示,按照所含的字母相同以及相同字母的指数相同为标准判断的(1)与(2);(3)与(4);(5)与(6);(7)与(8).注意:老师在肯定学生众多的答案中,最后确定(1)与(2);(3)与(4);(5)与(6);(7)与(8).师问:每一对“朋友”具有哪些相同的特征?生答:所含的字母相同,相同字母的指数也相同.总结:凡是所含的字母相同,相同字母的指数也相同的几个单项式就叫同类项.几个常数项也是同类项.师问:对于这个概念我们应抓住哪几个关键词理解?生答:①所含字母相同,②相同字母的指数也相同.师问:同类项与系数和字母的顺序有关吗?生答:无关.归纳:同类项的特征是“两相同,两无关”.二相同:字母相同,相同字母的指数也相同;二无关:与系数无关,与字母的顺序无关.游戏二:同类项速配.师问:先判断每一组是同类项吗?为什么?如果不是的,为前者配一个同类项.(1) 22x y 与23x y -;(2) 2abc 与2ab ;(3) 3pq -与3qp ;(4) 24x y -与25xy .生答:(1)是同类项,因为所含字母相同且相同字母的指数也相同;(2)不是同类项,因为所含字母不同,配的同类项为12abc ;(3)是同类项,因为所含字母相同且相同字母的指数也相同;(4)不是同类项,因为相同字母的指数不同,配的同类项为2x y -.总结:同类项的识别:二相同:字母相同,相同字母的指数也相同,这两条件缺一不可;二无关:与系数无关,与字母的顺序无关.不要忘记几个常数项也是同类项.【设计意图】强化同类项的概念以及基本特征“二相同和二无关”,从而能准确识别同类项.探究二 ★▲●活动① (大胆猜想,探究合并同类项法则).师问:类比数的运算,我们如何化简式子100252t t +呢?(1)运用有理数的运算律计算10022522⨯+⨯= ;100(2)252(2)⨯-+⨯-= .师问:你运用了有理数的哪些运算律?生答:逆用了乘法的分配律.师问:你能根据(1)中的方法完成下面的运算吗?并说明其中的道理.生答:100252t t +=(100252)t +⨯=352t ,逆用了乘法的分配律.归纳:事实上它们都有相同的结构,都是两个数分别与同一个数乘积的和,所以如果把t 看着数2或-2,根据乘法分配律运算就有100252t t +=(100252)t +⨯=352t 师问:填一填:并说明理由.100252t t -=( )t ;2232x x +=( )2x ;2234ab ab -=( )2ab . 生答:100252t t -=(100-252)t ;2232x x +=(3+2)2x ;2234ab ab -=(3-4)2ab师问:上述运算中式子的左边有什么共同特点?右边式子具有什么特征?你能从中得出什么规律?学生举手抢答.总结:左边多项式中各项都是同类项,右边是单项式,几个同类项可以合并为单项式.【设计意图】类比观察从而发现规律,都可以运用乘法的分配律分别合并为一个单项式,通过互动让学生初步知道合并的依据,理解数式的通性,掌握类比的数学思想.●活动② (集思广益,发现合并同类项的法则).师问:由上可知具有什么特征的几个单项式才可以合并成一个单项式?生答:同类项.师问:什么叫合并同类项?生答:把几个同类项合并成一个单项式,叫做合并同类项.师问:合并同类项的依据是什么?生答:乘法分配律.师问:观察上述式子的运算,合并同类项时,几个同类项中的哪部分在参与运算,哪部分不变? 生答:系数在相加所得的和作为结果的系数,而字母和字母的指数不变,简记“一加二不变”. 师问:不是同类项能不能合并?生答:不能.师问:下列合并同类项对吗?不对的,说明理由.①2a a +=; ②325a b ab +=;③22245x y x y x y -=-;④235325x x x +=;⑤ 53a a a a +-= . 生答:①错,因为字母和字母指数部分没有了;②错,因为他们不是同类项;③对;④错,因为他们不是同类项;⑤错,因为系数相加时符号错了.总结:合并同类项法则:几个同类项相加,系数相加所得结果作为结果的系数,字母和字母的指数不变.简记为 “一加二不变”【设计意图】在互动过程中凸显同类项系数相加,字母和指数不变,便于学生发现总结合并同类项的法则,设计一个互动是让学生巩固合并同类项法则.探究三 ★▲●活动① (基础性例题)师问:本节课学习了什么法则生答:我们学习了同类项以及合并同类项法则.师问:利用同类项以及合并同类项法则可以解决什么?生答:整式的化简或求值.例1.化简:222227498667ab a b ab a b ab -+-+--;【知识点】合并同类项.【解题过程】解:原式=222227746968ab ab a b a b ab --++--(用不同的符号划出多项式中的同类项).=222227764968ab ab a b a b ab -+-+--(加法交换律,注意交换时连同符号交换走). =22222(77)(64)(96)8ab ab a b a b ab -+-+--(加法结合律).=222(77)(64)(96)8ab a b ab -+-+--(乘法分配律).=2220238ab a b ab ++-=222283a b ab -+(注意升降幂排列).【思路点拨】按照同类项概念确定出多项式中同类项,再合并,注意每一步的依据.【答案】222283a b ab -+.师归纳:通常把一个多项式的各项按照某个字母的指数从大(小)到小(大)的顺序排列叫做降(升)幂排列常数项视作字母指数为0.师问:多项式的化简实际就是合并多项式中的同类项,化简步骤是什么?生答:先用不同标记确定同类项,再运用加法交换律结合律把同类项结合在一起,第三按照合并同类项法则合并,第四把结果进行升降幂排列.师问:在化简过程中应注意哪几点?生答:交换项的位置时注意项的符号跟着交换走,合并时注意系数相加,子母和字母的指数不变.总结:交换项的位置时注意连同符号交换走,没有同类项的项连同符号写下来,合并时注意“一加二不变”的原则,最后结果应从新升幂或降幂排列.练习:化简:222243244a b ab a b ++--【知识点】同类项的识别和合并.【解题过程】解:222243244a b ab a b ++--=222244342a a b b ab -+-+(加法交换律)=2222(44)(34)2a a b b ab -+-+(结合律)=22(44)(34)2a b ab -+-+(分配律)=22b ab -+【思路点拨】按照同类项概念确定出多项式中同类项,再合并,注意每一步的依据.【答案】22b ab -+.【设计意图】通过例习题的学习使学生熟练掌握同类项的特征,熟练合并同类项,让学生明白数学学习必须弄清算理.例2.求多项式22225432x x x x x -++--的值,其中12x =. 【知识点】多项式的化简求值【解题过程】解:22225432x x x x x -++--=22223542x x x x x +--+-=222(23)(54)2x x x x x +----=2(213)(54)2x x +----=2x -- 当12x =时,原式=15222=--=-. 【思路点拨】先化简,再代入求值,这样更简单. 【答案】52-. 师追问:直接把12x =代入计算又如何? 师问:哪种方法更简单?体会合并同类项的作用.总结:求多项式的值时,一般先化简,再代入指定的数值进行计算,合并时注意系数是负数的情况,必要时要正确使用括号,强调化简求值的格式书写.练习:2222748387y x xy y xy x ---+-,其中21=x ,21-=y .【知识点】化简求值.【解题过程】解:2222748387y x xy y xy x ---+-=2222743788x x y y xy xy -+---=2222(74)(37)(88)x x y y xy xy -+--+=22(74)(37)(88)x y xy -+--+=223164x xy y --当21=x ,21-=y 时 原式=2211113()16()4()2222⨯-⨯⨯--⨯- =1134444⨯+-⨯ =3414+- =154【思路点拨】先化简再求值更简单且不易出错. 【答案】154. 【设计意图】让学生熟练的掌握合并同类项法则,弄清书写格式和步骤,初步理解代数的值得含义.●活动2 (提升型例题)例3.把()x y -当作一个因式,对223()7()8()5()x y x y x y x y ---+---合并同类项.【知识点】合并同类项进行多项式的化简.【数学思想】整体思想.【解题过程】解:223()7()8()5()x y x y x y x y ---+---=223()8()7()5()x y x y x y x y -+-----=[]223()8()7()5()x y x y x y x y ⎡⎤-+---+-⎣⎦=2(38)()(75)()x y x y +--+-=211()12()x y x y ---【思路点拨】把()x y -看作整体,按照多项式的化简步骤依据进行即可.【答案】211()12()x y x y ---练习:22()3()4()5()x y y x y x x y -----+-【知识点】合并同类项进行多项式的化简.【数学思想】整体思想.【解题过程】22()3()4()5()x y y x y x x y -----+-=22()3()4()5()x y x y x y x y -+---+-=22()4()3()5()x y x y x y x y ---+-+-=2(14)()(35)()x y x y --++-=23()8()x y x y --+-【思路点拨】注意()x y -与()y x -互为相反数,()()x y y x -=--,22()()x y y x -=-.【答案】23()8()x y x y --+-.【设计意图】通过例习题的学习使学生熟练掌握同类项的特征,熟练合并同类项. 掌握()()x y y x -=--,22()()x y y x -=-的变形,渗透整体的数学思想.●活动3 (探究型例题)例4.若单项式4252+m b a 与832b a n -的和仍是单项式,则m 与n 的值分别是( ).A .2,4B .4,2C .1,1D .1,3【知识点】同类项的概念.【解题过程】4252+m b a 与832b a n -的和仍是单项式,所以523n =-,248m +=所以4n =,2m =,选A.【思路点拨】由和是单项式确定这两个单项式是同类项,按照两相同特征列出方程解之即可.【答案】A.练习:若347--n b a 与171+m ba 是同类项,求100)(n m - 的值.【知识点】同类项的概念.【解题过程】解:347--n b a 与171+m ba 是同类项,所以31n -=,14m +=所以4n =,3m =,100100()(34)1m n -=-=.【思路点拨】注意同类项两相同两无关的特征.【答案】1.【设计意图】通过例习题的学习,熟练掌握同类项的特征,准确判断识别.3. 课堂总结知识梳理(1)所含字母相同,且相同字母的指数也相同的单项式是同类项,两相同、两无关.(2)几个同类项合并成一项叫合并同类项,合并同类项法则是系数相加,字母和字母的指数不变.(3)多项式的化简实际就是合并同类项.重难点归纳(1)同类项的特征:两相同、两无关.(2)合并同类项的法则.(3)多项式的化简求值及步骤.(三)课后作业基础型 自主突破1.下列不是同类项的是( )A.-25和1B.224z xy -和224yz x -C.y x 2和2yx -D.3a -和34a【知识点】同类项的定义.【解题过程】解:A.都是常数项,故是同类项.B.虽所含字母相同,但相同字母的指数不相同,故不是同类项.C.所含字母相同且相同字母的指数也相同,与顺序无关,故是同类项.D.所含字母相同且相同字母的指数也相同,与系数无关,故是同类项.【思路点拨】根据同类项的定义判断.【答案】B.2.下列合并同类项正确的是( )①325a b ab +=;②33a a -=;③532523x x x =+;④770ab ba -=;⑤32323254y x y x y x -=-;⑥235--=-;A .①②③④B .③④⑤C .③④⑤⑥D .④⑤⑥【知识点】合并同类项.【解题过程】解:①多项式各项不是同类项,不能合并,故错;②各项是同类项,但应是系数相加,字母及指数不能变,故错;③多项式各项不是同类项,不能合并,故错;④系数是相反数的同类项合并为0,故对;⑤各项是同类项,系数相加仍是系数,字母及指数不变,故对;⑥是常数项,故对;所以选D.【思路点拨】按照合并同类项的法则逐一判断排除.【答案】D.3. 若单项式22m x y 与313n x y -是同类项,则m n +的值是 . 【知识点】同类项定义.【解题过程】解:单项式22m x y 与313n x y -是同类项,所以2n =,3m =,所以235m n +=+=.【思路点拨】根据同类项的定义逆向思维求出m 和n 的值,代入m n +计算即可.【答案】5.4. 化简:(1)22318115a b ab a b ab +--+-;(2)223()4()8()5()x y x y y x y x ---+---.【知识点】多项式的化简.【解题过程】解:(1)22318115a b ab a b ab +--+-=22381151a b a b ab ab --+-+=2(31)(811)(51)a b ab -----=2234a b ab +-;(3)223()4()8()5()x y x y y x y x ---+---=223()4()8()5()x y x y x y x y ---+-+-=223()8()4()5()x y x y x y x y -+---+-=211()()x y x y -+-.【思路点拨】根据合并同类项的法则,进行计算即可.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.x y -与y x -是互为相反数的,注意()x y y x -=--,22()()x y y x -=-的变形.【答案】(1)2234a b ab +-;(2)211()()x y x y -+-.5.当4x =-, 2y =时,求代数式2232233333x y xy x x y xy y -+++--的值.【知识点】化简求值.【解题过程】解:2232233333x y xy x x y xy y -+++--=2222333333x y x y xy xy x y -++-+-=33x y -当4x =-, 2y =时,原式=33(4)2--=648--=72-.【思路点拨】先化简,在代入求值.【答案】72-.6.已知x 和y 的多项式22222ax bxy x x xy y +--++合并后不含二次项,求34a b -的值.【知识点】多项式的化简求值.【解题过程】解:22222ax bxy x x xy y +--++=2(1)(22)2a x b xy x y -++-+,又知合并后不含二次项,故1a =,1b =-,即34314(1)7a b -=⨯-⨯-=.【思路点拨】根据题意关于x 和y 的22222ax bxy x x xy y +--++不含二次项,由此可解出a ,b 的值,将其代入34a b -即可求解.【答案】7.能力型 师生共研1.若 2313a x y +与140.4b x y -是同类项,求2222221152346a b ab a b ab a b +---的值. 【知识点】多项式的化简求值 【解题过程】解:2313a x y +与140.4b x y -是同类项, 所以12b -=,34a +=,即1a =,1b =-.2222221152346a b ab a b ab a b +--- =2222221152346a b a b a b ab ab --+- =2211(523)()46a b ab --+- =112ab 当1a =,1b =-时,原式=11(1)12⨯⨯-=112-. 【思路点拨】根据同类项的定义求出a ,b 的值,再化简多项式后代入求值. 【答案】112-. 2..若当1x =时,多项式31ax bx ++的值为5,则当1x =-时,求多项式311122ax bx ++的值. 【知识点】多项式的化简求值.【数学思想】整体思想.【解题过程】解:因为31ax bx ++的值为5,即31ax bx ++=5,所以34ax bx +=当1x =时,4a b +=当1x =-,311122ax bx ++=1()12a b --+=1()12a b -++=-1. 【思路点拨】先根据当1x =时,多项式31ax bx ++的值为5,求出4a b +=,再求出当1x =-时,1()12a b -++,整体代入求值. 【答案】-1.探究型 多维突破1.有这样一道题:当0.35a =,0.28b =-时,求333337636310a a b a a b a -++--的值.小明说:本题中0.35a =,0.28b =-是多余的条件,小强马上反对说:这多项式中每一项都含有a 和b ,不给出a ,b 的值怎么能求出多项式的值呢?你同意哪位同学的观点?请说明理由.【知识点】多项式的化简求值.【解题过程】解:同意小明的说法,理由如下:333337636310a a b a a b a -++--=333337310663a a a a b a b +--+-=-3化简后不含有a 和b 的项,所以多项式的值就与a 和b 的取值无关.【思路点拨】先把多项式进行化简,看最后的结果是否含有a 和b .【答案】同意小明的说法. 2.(1)水库水位第一天连续下降了ah ,每小时平均下降2cm ,第二天连续上升了a h ,每小时平均上升了0.5cm ,这两天水位的变化情况如何?(2)某商店原有5袋大米,每袋重:r kg .上午卖出3袋,下午又购进同样包装的大米4袋.商店现有大米多少千克?【知识点】整式表示数量关系.【解题过程】(1)解:∵水库中水位第一天连续下降了a 小时,每小时平均下降2cm , ∴第一天水位的变化量是:2a -cm ,∵第二天连续上升了a 小时,每小时平均上升0.5 cm ,∴第二天水位的变化量是:0.5a cm ,∴这两天水位的总变化量为: 2a -cm +0.5a cm = 1.5a -cm ,即水位下降了1.5a cm(2)∵商店原有5袋大米,每袋重r kg ,上午卖出3袋,下午又购进同样包装的大米4袋 ∴商店现有大米=534r -+() =6r kg【思路点拨】(1)分别求出第一天水位的变化量,第二天水位的变化量,相加即可;(2)原有的大米减去上午卖出的大米加上下午购进的大米数量等于商店现有的大米数量.【答案】(1) 1.5a -cm ;(2)6r kg .自助餐下列各式中,是23x y 的同类项的是( )A .23a bB .22xy -C .2x yD .3xy【知识点】同类项的定义.【解题过程】解:A.字母不同, 不是同类项,故A 不符合题意;B.相同字母的指数不同,不是同类项,故B 不符合题意;C.23x y 的同类项的是2x y ;D.相同字母的指数不同不是同类项,故D 不符合题意;故选:C .【思路点拨】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【答案】C.2.合并同类项正确的是( ).A .2222x x x +=B .2244x x x +=C .2222x x -=D .2222x x x -=【知识点】合并同类项【解题过程】解:A.系数相加字母及指数不变,故A 正确;B.系数相加字母及指数不变,故B 错误;C.系数相加字母及指数不变,故C 错误;D.系数相加字母及指数不变,故D 错误;故选:A .【思路点拨】根据合并同类项的法则把系数相加即可.【答案】A.3.若24m m n x y +与623x y -的和是单项式,则mn = .【知识点】单项式定义和合并同类项发则.【解题过程】解:∵24m m n x y +与623x y -的和是单项式,∴26m =,2m n +=,∴3m =,1n =-,∴3mn =-,故答案为﹣3.【思路点拨】根据同类项的概念列出方程求得m ,n 的值即可.【答案】﹣3.4.已知多项式224223mx xy x x nxy y +--+-合并后不含二次项,则m n 的值是 .【知识点】同类项的定义.【解题过程】解:原式=2(2)(24)3m x n xy x y -++--由于不含二次项,故20m -=,240n +=,∴2m =,2n =-∴2(2)4m n =-=,故答案为:4.【思路点拨】先合并同类项,然后令二次项的系数为0即可.【答案】4.5.合并同类项:(1)22318115a b ab a b ab +--+-;(2)2222222a ab b a ab b -+++-;(3)223()7()8()5()x y y x y x x y -+---+-.【知识点】合并同类项【解题过程】解:(1)22318115a b ab a b ab +--+-=2(31)(811)(15)a b ab ---+-=2234a b ab +-;(2)2222222a ab b a ab b -+++-=23a ;(3)223()7()8()5()x y y x y x x y -+---+-=223()7()8()5()x y x y x y x y -----+-=2(38)()(75)()x y x y -----=25()2()x y x y ----【思路点拨】根据合并同类项的法则,进行计算即可.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.【答案】(1)2234a b ab +-;(2)23a ;(3)25()2()x y x y ----.6.对于代数式22222735x xy y x kxy y +++-+,老师提出了两个问题,第一个问题是:当k 为何值时,代数式中不含xy 项,第二个问题是:在第一问的前提下,如果2x =,1y =-,代数式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解题写在下面吧.(2)在做第二个问题时,马小虎同学把1y =-,错看成1y =,可是他得到的最后结果却是正确的,你知道这是为什么吗?【知识点】整式表示数量关系.【解题过程】解:(1)因为22222735x xy y x kxy y +++-+=2222(2)(35)(7)x x y y xy kxy ++++-=2238(7)x y k xy ++-所以只要70k -=,这个代数式就不含xy 项,即7k =时,代数式中不含xy 项.(2)因为在第一问的前提下原代数式化简为:2238x y +当2x =,1y =-时,原式=2238x y +22328112820=⨯+⨯=+=(-).马小虎同学的计算过程应该为:当2x =,1y =时,原式=2238x y +22328112820=⨯+⨯=+=. 因为1±的平方都等于1,所以马小虎的最后结果是正确的.【思路点拨】(1)代数式中不含xy 项就是合并同类项以后xy 项得系数等于0,据此即可求得;(2)把2x =,1y =-和2x =,1y =-代入(1)中的代数式求值即可判断.【答案】(1)7k =;(2)当2x =,1y =-时,原式=2238x y +22328112820=⨯+⨯=+=(-).马小虎同学的计算过程应该为:当2x =,1y =时,原式=2238x y +22328112820=⨯+⨯=+=. 所以马小虎的最后结果是正确的.。

整式的加减1导学案

整式的加减1导学案
班级
科目
数学
编号
5
主备人
崔明飞
授课时间




⑹0.3mn与2nm⑸a3与a2
5.怎样合并同类项?
6.完成教材P91的例2.
7.完成教材P91的“做一做”
三.达标检测:
教材P91的“随堂练习”。
四.拓展延伸:
合并同类项:-4ab+8-2b2-9ab-8并求当a=2,b=--1时,代数式的值。
课堂小结:




一.课前准备:我们给一灾区同学捐款,因为我们都是学生,所以捐的都是平时我们自己积攒的零花钱,学校在统计捐款总数时,总是很头疼,零零散散的几十块钱就能装一袋子。大家能想出什么好办法吗?
二.学习新课:
1.观各单项式,把你认为相同类型的式子归类,并说出分类依据
0.3ab2、-4a2b、9xy、-ab2、-xy。
一、只有是同类项的才能合并,不是同类项的不能合并;二、合并同类项,只合并系数,字母与字母的指数不变;
三、通过合并同类项,可以把多项式化简
四、合并同类项的最终结果,可能是单项式,也可能是多项式。
老师导学
课题
整式的加减(1)
备课成员
苏春霞马志远




1.理解多项式中同类项的概念,会识别同类项。
2.掌握合并同类项的法则,并会运用法则化简整式。
2、判断同类项必须满足哪几个条件?
3、几个常数项如-3与0.7也是同类项吗?
4、同类项与系数的大小和字母的排列有没有关系?
试一试:判断下列各组是否为同类项?(请说出理由)
⑴x与y⑵a2与ab2
⑶-3pq与3qp⑷abc与ac

整式的加减练习1(有答案)

整式的加减练习1(有答案)

整式的加减一、判断.1.整式与整式的和或差仍为整式.( )2.单项式与单项式的和仍为单项式.( )3.把238332+-+x x x 按x 的降幂排列为.2,3,8,323x x x ()4.单项式与多项式都是整式.( )5.xy x 232-有两项,即3.2,2xy x ( )6.多项式c bx ax +-2是二次三项式.( )7.单项式34x -的系数是–4,单项式ab π3的系数是3,单项式x 54-的系数是.54-( ) 8.0既是代数式,又是单项式.() 9.πab 4不是单项式,xx 3是单项式.( ) 10.n a xy x -,,,32都是单项式.( )二、填空.11.__________和__________统称为整式.12.代数式bx a y xy x ab b a b a y x 222232,2,0,32),)((,,21+--+-中单项式有__________,多项式有__________. 13.写出系数是2,含两个字母b a ,的三次单项式__________.14.多项式1421233--+-y x xy y x 是__________次__________项式,最高次项是__________,常数项是__________,它的三次项是__________,三次项系数是__________.15.多项式3322253y x xy y x +--,按x 的降幂排列为__________,按y 的升幂排列为__________.16.把一个多项式各项的位置按照某一字母的__________从__________的顺序排列起来,叫做这个多项式按这个字母的降幂排列.17.多项式, __________的次数,就是这个多项式的次数.例如:多项式22542y xy x +-是__________次__________项式;多项式32463ax x x ++-是__________次__________项式.18.几个单项式的__________叫做多项式.在多项式中,每个__________叫做多项式的项(多项式的第一项都包括前面的__________).其中, __________的项叫做常数项.例如:多项式12323-+-x x x 有4项,它们是__________,常数项是__________.19.单项式中的数字因数叫做这个单项式的__________,所有__________叫做这个单项式的次数.例如:单项式x 5y z 的系数是__________,次数是__________;单项式y x 3的系数是__________,次数是__________.20.代数式,,,3,23r m ab x π--它们都是由__________与__________的__________组成的,这样的代数式叫单项式.特别地,单独一个__________或一个__________也是单项式.三、选择.21.下列叙述正确的是( ).A.a 2是单项式,系数是2,B.2ab 是二项式,系数是21C.3n m -是多项式,其各项系数都是31D.22b a -是多项式,其各项系数的和等于022.下列多项式中,是三次二项的是( ).A.cx bx ax ++23B.1223+++-a y x xC.c bx ax ++2D.abcd x +4323.将多项式y y y -++-1232按照字母y 升幂排列正确的是( ).A.1223+--y y yB.1232++--y y yC.y y y --+2321D.3221y y y +--24.下列说法正确的是( ).A.7,,2,3,422y x xy y x 分别是多项式723422--+-y x xy y x 的项B.多项式322++-c bx ax 是二次四项式C.代数式y x 23z 3,4abc 都是单项式,也都是整式25.在下列关于单项式x 的说法中正确的是( ).A.是一个系数为0,次数为0的单项式 B. 是一个系数为1,次数为1的单项式C. 是一个系数为1,次数为0的单项式D. 是一个系数为0,次数为1的单项式26.下列说法正确的是( ).A.单项式与单项式的和是单项式B.多项式与多项式的和是多项式C.单项式与多项式的和是单项式D.整式与整式的和是整式27.下列各式中,( )不是整式.A.xy 6B.))((22b ab a b a +-+C.x y 2D.328.下列各式中,( )是多项式.A.y x 27-zB.32xC.x y 12-D.12+x29.下列各式中,( )是单项式.A.x y 12-B.1+xC.422y xD.)1(42+x30.代数式0,,)(2,21,32,,223222中y x y x x x y x x +-+π单项式的个数为( ). A.3 B.4 C.5 D.6四、解答.31.已知多项式12332423+--+n n m mn n m ,分别按字母m 和n 对其作降幂排列,并求当时2,3-==n m 多项式的值.32.对下列多项式分别按字母a 和b 作升幂排列.(1);194231334423+-+-b a b ab b a (2).1252422335+-+-ab b a b a b a33.对下列多项式先按x 降幂排列,再按x 升幂排列.(1);83173322+-+-y x xy y x (2);214331213244--+-y x xy y x (3);12561213234d cx bx ax +-+ (4).21851032x x x +--34.写出下列多项式的次数和项数.(1);43123x x x +--- (2);510754432234b ab b a b a a -+-+- (3);3323y xy y x x +-+ (4).22522323b a b ab a ++-35.指出下列代数式中哪些是单项式,它们的系数和次数;哪些是多项式,它们的项数和次数.(1);425+b a (2);3423y x (3);232b a c ++ (4);4x - (5)31(++22y x z );(6)433.0y x -z .; (7)1; (8);1768485+--x x x (9);2y x +- (10)xy z ;(11).5b a -答案:一、1. √2. × 3. × 4. √ 5. × 6. × 7. × 8. √ 9.×10.√ 提示:2.单项式与单项式的和有可能是多项式,如单项式y x xy 2与的和为,2y x xy +就是多项式.3.多项式按某个字母升(降)幂排列是把多项式各项的位置按照某个字母的升(降)幂顺序重新排列,所以应为.238323+++-x x x5.多项式的每一项都包括它前面的符号,故xy x 232-的项为.2,32xy x -6.c bx ax +-2是三次三项式.(c b a ,,也是字母)7.单项式34x -的系数应为,34-而ab π3的系数为x54,3-π根本就不是单项式. 8.单独的一个数或字母也是单项式. 9.πab4是单项式,系数为,4π注意:π是常数,不是字母.x x 3不是单项式,因为分母中含有字母,一般地,分母中含有字母的代数式不是整式,也不是单项式.二、11. 单项式 多项式12. ,13.14. 四 四 –1 –415.16. 指数 大到小17. 最高项 二 三 四 四提示: 最高项 是四次单项式.18.和 单项式 符号 不含字母 1,,2,323--x x x –119.系数 字母的指数的和 –5 3 1 4 20.数 字母 乘积 数 字母三、21. D 22. C 23. D 24. C 25. B26. D 27. C 28. D 29.C 30.A提示:21.A 中的a 2不是整式,B 中的2ab 是单项式,C 中的多项式3n m -的各项系数分别为平共D ,31,31-中22b a -的各项系数是1,–1,系数和.,0)1(1D 故选=-+22.A 中多项式是四次三项式,B 中多项式是三次四项式,D 中多项式是四次二项式.24.A 中多项式的项应包括前面的符号,即.7,,2,3,422---y x xy y x B 中多项式应为三次四项式.D 中三次多项式并不要求多项式中各项均为三次单项式,而是指最高次项的次数是3.25..1,1,11的单项式次数也是是系数为即x x x ⋅=27.A 反例:单项式x 3-和单项式2x 的和x x 32-是多项式,实际上单项式与单项式的和既可能是单项式也有可能是多项式.B 反例:多项式22y x +-和多项式22y x +的和22y 是单项式.C 反例:单项式–1和多项式12+x 的和2x 是单项式.A,B,C 均不对,故选D.28.A,B 均为单项式,C 不是整式.29.A 中xy 12-分母含有字母,既不是单项式,也不是多项式.B,D 中的代数式都是多项式,故选C. 30.单项式有0,.21,223y x x -π 四、31. 按字母m 降幂排列: 按字母n 降幂排列: 的 变形时应注意: (1)按照哪一个字母的指数来排列;(1)按照哪一个字母的指数来排列;(2)升幂还是降幂;(3)要连同符号一起移动;(4)常数项是多项式的零次项.当 时,多项式32.(1)按a 升幂排列:.433121934234b a b a ab b -+-+按b 升幂排列:.314321943423ab b a b a b --++(2)按a 升幂排列:.2512352342b a b a b a ab +-+-按b 升幂排列:.5212423523b a b a b a ab ++--33.(1)x 降幂排列:.83172233++--xy y x y xx 升幂排列:.73183322y x y x xy --+(2)x 降幂排列:212131434234--+-y xy y x xx 升幂排列:.433121214324x y x xy y +-+--(3)x 降幂排列:.12521613234d bx cx ax ++-x 升幂排列:.32612112543ax cx bx d +-+(4)x 降幂排列:.81052123-+-x x xx 升幂排列:.21510832x x x +-+-34.(1)三次四项 (2)四次五项 (3)四次四项 (4)三次四项. 35.单项式有:(2)3423y x (系数为34,次数为5)(6)433.0y x -z 5(系数为–0.3,次数为12) (4)4x -(系数为–1,次数为4) (7)1(系数为1,次数为0) (10)xy z (系数为1,次数为0) 多项式有:(1)425+b a (七次二项式) (3)232b a c ++(三次三项式) (5)++22(31y x z )(二次三项式) (8)1768485+--x x x (八次四项式) (9)2y x +-(一次二项式) (10)b a -5(五次二项式)。

整式的加减(1)教案

整式的加减(1)教案

2.2整式的加减(1)—同类项、合并同类项、升(降)幂排列【学习目标】1.理解同类项的概念,在具体情景中,认识同类项。

2. 理解合并同类项的概念,领会合并同类项法则。

3.理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。

【学习重难点】重点:理解同类项的概念;领会合并同类项法则。

难点:根据同类项的概念在多项式中找同类项。

【学习过程】一、创设问题情境:1、⑴、5个人+8个人=⑵、5只羊+8只羊= ⑶、5个人+8只羊=2、观察下列各单项式,把你认为相同类型的式子归为一类。

8x 2y , -mn 2, 5a , -x 2y , 7mn 2,83, 9a , -32xy , 0, 0.4mn 2,95,2xy 2.观察归为一类的式子,思考它们有什么共同的特征?说出各自的分类标准。

和 , 和 , 和 , 和 分别是同一类。

因为: 。

3、运用加法交换律,任意交换多项式x 2+x +1中各项的位置,可以得到几种不同的排列方式?在众多的排列方式中,你认为那几种比较整齐? 二、自主学习与合作探究: (一)自学提纲:请同学们围绕着“什么叫做同类项?什么叫做合并同类项?合并同类项法则是什么?多项式的升(降)幂排列?”这些问题,自学课文第63页开始到65页“例题1”为止。

并把课文中的空填好。

(二)、自学检测:1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。

(1)3x 与3mx 是同类项。

( ) (2)2a b 与-5a b 是同类项。

( )(3)3x 2y 与-31yx 2是同类项。

( ) (4)5a b 2与-2a b 2c 是同类项。

( ) (5)23与32是同类项。

( )2. 若2a m b 2m+3n 与a 2n-3b 8可以合并成一项,则m 与 n 的值分别是______3.把多项式x 4-y 4+3x 3y -2xy 2-5x 2y 3用适当的方式排列。

七年级上册数学整式的加减1

七年级上册数学整式的加减1

七年级上册数学整式的加减1整式是指由常数、变量和其系数的乘积所组成的代数式。

整式运算主要包括加法和减法,我们可以使用以下规则来进行运算:1.相同变量的项相加减时,系数相加减,变量保持不变。

例如:3x + 5x = 8x、2y - 4y = -2y。

2.不同变量的项不能相加减,它们保持原样。

例如:5x + 3y、2a - 4b。

3.常数项可以与变量项进行相加减。

例如:7 + 3x、5 - 2y。

4.当遇到括号时,先按照括号内的整式进行运算。

例如:(3x + 2) + (4x - 5) = 7x - 3。

5.如果有相同变量的整式相加减,我们可以将它们合并为一项。

例如:3x + 2x = 5x、4y - 3y = y。

6.减法可以通过加法来进行运算。

例如:5x - 3x = 5x + (-3x) = 2x。

通过这些规则,我们可以进行整式的加减运算。

下面我们来看一些具体的例子:例1:计算3x - (4x + 2) + 3的值。

首先按照括号内的整式进行运算得到:3x - 4x - 2 + 3。

再进行同类项相加得到:(3x - 4x) - 2 + 3 = -x - 2 + 3。

继续合并常数项得到:-x - 2 + 3 = -x + 1。

所以3x - (4x + 2) + 3 = -x + 1。

例2:计算(2y - 3x) + (4x + 2y)的值。

首先按照括号内的整式进行运算得到:2y - 3x + 4x + 2y。

再进行同类项相加得到:(2y + 2y) + (-3x + 4x) = 4y + x。

所以(2y - 3x) + (4x + 2y) = 4y + x。

例3:计算(3a + 2b) - (4a - b)的值。

首先按照括号内的整式进行运算得到:3a + 2b - 4a + b。

再进行同类项相加得到:(3a - 4a) + (2b + b) = -a + 3b。

所以(3a + 2b) - (4a - b) = -a + 3b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减测试题
(满分:120分;考试时间:100分钟)
一、选择题(小题3分,共30分) 1.下列各式中是多项式的是 ( ) A.2
1-
B.y x +
C.3ab
D.2
2b a -
2.下列说法中正确的是( )
A.x 的次数是0
B.
y
1
是单项式 C.2
1
是单项式 D.a 5-的系数是5 3.如图1,为做一个试管架,在a cm 长的木条上钻了4个圆孔,每个孔直径2cm ,则x 等于 ( )
A.
58+a cm B.516-a cm C.54-a cm D.5
8
-a cm 4.+-=-+-)()(c a d c b a ( )
A. b d -
B.d b --
C.d b -
D. d b + 5.只含有z y x ,,的三次多项式中,不可能含有的项是 ( ) A.3
2x B.xyz 5 C.3
7y - D.yz x 2
4
1 6.化简 )]72(53[2b a a b a ----的结果是 ( )
A.b a 107+-
B.b a 45+
C.b a 4--
D.b a 109- 7.一台电视机成本价为a 元,销售价比成本价增加了0025,因库存积压,所以就按销售价的0070出售,那么每台实际售价为 ( )
图 1
A.a )701)(251(0000++元
B.a )251(700000+元
C.a )701)(251(0000-+元
D.a )70251(0000++元 8.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.
⎪⎭⎫ ⎝⎛-+-22213y xy x 2
22
2342
1y y xy x +=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )
A .xy 7- B. xy 7+ C. xy - D .xy + 9.用棋子摆出下列一组三角形,三角形每边有n 枚棋子,每个三角形的棋子总数是S .按此规律推断,当三角形边上有n 枚棋子时,该三角形的棋子总数S 等于 ( ) A. 33-n B. 3-n C. 22-n D. 32-n 10.把(x -3)2
-2(x -3)-5(x -3)2
+(x -3)中的(x -3)看成一个因式合并同类项,结果应( )
A. -4(x -3)2
+(x -3) B. 4(x -3)2
-x (x -3) C. 4(x -3)2
-(x -3) D . -4(x -3)2
-(x -3) 二、填空题(每小题3分,共30分)
11.单项式8
53
ab -的系数是 ,次数是 .
12.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是_____.
()3,2==S n ()6,3==S n ()9,4==S n
()12,5==S n
13.当2x =-时,代数式
65
1x x
+-的值是 ; 14.计算:22224(2)(2)a b ab a b ab --+= ;
15. (2008年湖州市)将自然数按以下规律排列,则2008所在的位置是第 行第 列.
16.规定一种新运算:1+--⋅=∆b a b a b a ,如1434343+--⨯=∆,请比较大小:()()34 43-∆∆-(填“>”
、“=”或“>”). 17根据生活经验,对代数式a b +作出解释: ; 18.下面是一组数值转换机,写出(1)的输出结果(写在横线上),找出(2)的转换步骤(填写在框内).
19.某城市按以下规定收取每月的煤气费:用
气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x 立方米
(x >60),则该户应交煤气费 元.
20.观察下列单项式:0,3x 2,8x 3,15x 4,24x 5
,……,按此规律写出第13个单项式是______。

2
⨯-3
输入x
输出
输入x
输出
2
3
+x
三、解答题(共60分) 21. (12分)化简: (1)144
mn mn -; (2)22
37(43)2x x x x ⎡⎤----⎣⎦;
(3)(2)()xy y y yx ---+ ;
22.(8分)化简求值
(1))522(2)624(22-----a a a a 其中 1-=a . (2))3123()21(22122b a b a a ----- 其中 3
2
,2=-=b a .
23.(6分)已知 1232
+-=a a A ,2352
+-=a a B ,求B A 32-.
24.(6分)如图所示,一扇窗户的上部是由4个扇形组成的半圆形,下部是边长相
同的4个小正方形,请计算这扇窗户的面积和窗框的总长.
25 (6
分)有这样一道题“当2,2-==b a 时,求多项式
⎪⎭⎫ ⎝⎛---+-
2233233414213b b a b a b b a b a ⎪⎭⎫ ⎝

++b a b a 23341 322+-b 的值”,
马小虎做题时把2=a 错抄成2-=a ,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.
26. (6分)某商店有两个进价不同的计算器都卖了a 元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店是赚了,还是赔了?赚了或赔了多少?
27. (7分)试至少写两个只含有字母x、y的多项式,且满足下列条件:(1)六次三项式;(2)每一项的系数均为1或-1;(3)不含常数项;(4)每一项必须同时含字母x、y,但不能含有其他字母.
28. (9分)某农户2007年承包荒山若干亩,投资7800•元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b 元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需8•人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用a,b表示两种方式出售水果的收入?
(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
(3)该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少(纯收入=总收入-总支出),该农户采用了(2)中较好的出售方式出售)?
人教七第二章整式的加减单元测试题参考答案
一、1.B 2.C 3.D 4.A 5.D 6.D 7.B 8.C 9. A 10.D 二、11.85-
, 4; 12.11a +20; 13.73
-; 14.22
310a b ab -; 15. 18,45; 16.=; 17.如: 今年小华年龄是a 岁,他的哥哥年龄是b 岁,小华和他哥哥的年龄共()a b +岁; 18.23,3,2x -+÷如;
19.1.2 x -24.; 20.(132
-1)
x 13
=168x 13
.
三、21. 解:(1)-154
mn 、(2)5 x 2
-3 x -3、(3)xy . 22. 解:(1)42+a ,2 (2)27
16
8,3442b a +-
23. 解:4592
-+-a a 24. 解:
a a a a 15,42
22++ππ
25. 解:将代数式进行化简,可得23b b -+.因为它不含有字母a ,所以代数式的值与a 的取值无关;
26. 解:根据题意,可得第一个计算器的进价为
a a 8
5
%601=+,卖一个这种计算器
可赚a a a 8385=-(元);同理,可得第二个计算器的进价为
a a 4
5
%201=-,卖一个这种计算器亏本a a a 4145=-(元),所以这次买卖中可赚a a a 8
1
4183=-元.
27. 解:下面是两种可能的答案:5
4
2
3
3
xy y x y x +-;2
4
2
xy xy y x ---.
28.解:(1)将这批水果拉到市场上出售收入为18000a -
180001000×8×25-18000
1000
×100=18000a -3600-1800=18000a -5400(元).在果园直接出售收入为18000b 元.
(2)当a=1.3时,市场收入为18000a-5400=18000×1.3-5400=18000(元).当b=1.1时,果园收入为18000b=18000×1.1=19800(元).因为18000<19800,所以应选择在果园出售.
(3)因为今年的纯收入为19800-7800=12000,所以1500012000
12000
×100%=25%,
所以增长率为25%.。

相关文档
最新文档