重点高中平面几何培训资料(好资料)
高中数学平面解析几何知识点总结
平面解析几何一、直线与圆1.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).3.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; < ②1212120l l A A B B ⊥⇔+=;4.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心⎪⎭⎫ ⎝⎛--2,2E D ,半径r=2422F E D -+. 6.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种: .若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 7.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 其中22B A CBb Aa d +++=.8.两圆位置关系的判定方法#设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .$二、圆锥曲线1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|).2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上); (2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b 2=1(a >0,b >0)(焦点在y 轴上). 3.圆锥曲线的几何性质&(1)椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.长轴长为2a ,短轴长为2b ,焦距为2c ,三者满足a 2=b 2+c 2,顶点为(a,0),(0,b),焦点为(c,0),离心率e=ac ,准线c a 2±=x (X 型). (2)双曲线22221(0,0)x y a b a b-=>>,实轴长为2a ,虚轴长为2b ,焦距为2c ,三者满足a 2+b 2=c 2,顶点为(a,0),焦点为(c,0),离心率e=a c (e>1),渐近线为x ab y ±=. 4.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±=. (2)共轭双曲线: 12222=-b y ax 与1-2222=a x b y 渐近线一样. (3)等轴双曲线:若双曲线与12222=-by a x 中a=b ,(e=2,渐近线为y=x ±). 5.抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.准线:x=2p ,离心率为e=1.(点到焦点的距离等于点到准线的距离).。
高中平面几何讲义
高中平面几何(上海教育出版社叶中豪)知识要点三角形的特殊点重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon点, Brocard 点,垂聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线特殊直线、圆Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆,Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆特殊三角形中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形,第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形相关直线及相关三角形Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形重心坐标和三线坐标四边形和四点形质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线完全四边形Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理重要轨迹平方差,平方和,Apollonius圆三角形和四边形中的共轭关系等角共轭点,等角共轭线,等截共轭点,等截共轭线几何变换及相似理论平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心Miquel定理内接三角形,外接三角形,Miquel点根轴圆幂,根轴,共轴圆系,极限点反演反演,分式线性变换(正定向和反定向)配极极点与极线,共轭点对,三线极线及三线极点,垂极点射影几何点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues定理,Pascal 定理,Brianchon定理著名定理三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli 问题,Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley 定理,Mannheim定理例题和习题1.以△ABC的AB、AC两边向形外作正方形ABEP和ACFQ,AD是BC边上的高。
7-平面几何与立体几何培训资料
平面几何内容在义务教育阶段课程标准中称为“空间与 图形”。平面几何课程改革的主要方向是:强调几何内 容的现实背景和应用价值;注重几何建模以及探究过程 (包括合情推理);强调发展几何直觉和空间观念;突出 学科的文化价值,着力培养理性精神。
初中阶段的空间与图形在内容安排上既不以欧氏几何公 理体系为主线,甚至也不严格按照知识的逻辑顺序展开, 而是以图形的认识、图形与变换、图形与坐标、图形与 证明为线索,并对内容呈现顺序也不作任何规定。
7-平面几何与立体几何
7.1 内容概述
几何学是研究现实世界中物体的形状、大小方法认识和探索 几何图形及其性质。
平面几何与立体几何是最基本的几何学,中学数 学对它们的总的教学安排是:初中学习平面几何, 高中学习立体几何。几何学历来是中学数学课程 改革的重点与难点。当前课程标准对这部分内容 作了较大的调整和变化。
立体几何初步大部分内容与以往课程相同(值得注意的 是,新课程删除了对距离和角度度量的要求)。但对于 这些相同内容,新课程处理上却有很大不同。
以往安排是从局部到整体,先介绍点、线、面,再讲授 几何体。新课程则是从整体到局部、先展示大量的几何 体(柱、锥、台、球),在学生感性认识的基础上,再深 入研究构成几何体的元素——点、线、面。
◎有用与实用。
平面几何学的重要价值不仅在命题本身,更在于它如何确定一个 结论的真理性。几何学是人类不凭直观和实验,运用逻辑证明真 理的典范。 几何学很多问题是理性思维的问题,并不和生活有多大的联系。 几何对许多学生来说的确很难,应当减轻他们的负担。但“在一 个只包含‘有用’成分的学习课程里,无法唤起个人的积极进取 精神。”(R.Tome)
因此,立体几何的学习要特别强调类比的思想, 要把类比作为整理知识、获得猜想(包括概念)的 基本手段。当然也要注意空间与平面,有些性质 是相同的,有些是类似的,有些则是完全不同的。
(完整word)重点高中自招必备九年级专题24平面几何的定值问题
专题24平面几何的定值问题【阅读与思考】所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的元素的量保持不变(或几何元素间的某些几何性质或位置关系不变).几何定值问题的基本特点是:题设条件中都包含着变动元素和固定元素,变动元素是指可变化运动的元素,固定元素也就是“不变量”,有的是明显的,有的是隐含的,在运动变化中始终没有发生变化的元素,也就是我们要探求的定值.解答定值问题的一般步骤是:1.探求定值;2.给出证明.【例题与求解】—^ PA + PC .【例1】如图,已知P为正方形ABCD的外接圆的劣弧AD上任意一点.求证:一后一为定值.PB解题思路:线段的和差倍分考虑截长补短,利用圆的基本性质,证明三角形全等.【例2】如图,AB为。
O的一固定直径,它把。
O分成上、下两个半圆,自上半圆上一点C作弦CD±AB,Z OCD的平分线交。
O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.等分DBD.随C点的移动而移动(济南市中考试题)解题思路:添出圆中相关辅助线,运用圆的基本性质,用排除法得出结论.【例3】如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,P是S对AB作垂线的垂足.求证:不管ST滑到什么位置,Z SPM是一定角.(加拿大数学奥林匹克试题)解题思路:不管ST滑到什么位置,Z SOT的度数是定值.从探寻Z SPM与Z SOT的关系入手.【例4】如图,扇形OAB的半径OA=3,圆心角/AOB=90°.点C是箫上异于A, B的动点,过点C作CD±OA于点D,作CE±OB于点E.连接DE,点G, H在线段DE上,且DG=GH=HE.(1)求证:四边形OGCH是平行四边形;(2)当点C在箫上运动时,在CD, CG, DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3 CH2是定值. (广州市中考试题)解题思路:延长OG交CD于N,利用题中的三等分点、平行四边形和三角形中位线的性质,实现把线段ON转化成线段CH的倍分关系,再以及△ OND为基础,通过勾股定理,使问题得以解决.【例5】如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,。
高中数学平面几何知识点知识清单
高中课程复习专题 ——数学立体几何一空间几何体 ㈠空间几何体的类型1多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面, 相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中, 这条直线称为旋转体的轴。
㈡几种空间几何体的结构特征1棱柱的结构特征1.1棱柱的定义:有两个面互相平行, 其余各面都是四边 形,并且每相邻两个四边形的公共边都互相平行,由这些 面所围成的几何体叫做棱柱。
1.2棱柱的分类瓦他棱柱…②四检杆 底血为甲行四边遊 T-trAfij 休 侧检旺亢丁底向 A-'K'tf'AlkJtt 囱向为和序------------------ ► ------------- - ----------------- ■------------------ A长方体I 屁血为止方册.1』四棱相 傭棱打底血边怅*||簞 止方体 1.3棱柱的性质⑴侧棱都相等,侧面是平行四边形;⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。
1.4长方体的性质⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12⑵长方体的一条对角线 AC 1与过定点A 的三条棱所成 的角分别是a 伙Y 那么:2 2 2cos a + cos 3 + COS 丫=1sin 2 a + sin 3 + siny =2⑶ 长方体的一条对角线 AC 1与过定点A 的相邻三个面所组成的角分别为a 3 Y 则:.咬llLI 昭|1.呂出*正棱柱够一;I ;从图1-2长方体2 COs a2 2+ cos 3 + COSY = 2sin 2 a 2 2+ sin 3 + sinY =1E'A图图1棱柱棱柱1.5棱柱的侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱为邻边的矩形。
高中数学几何知识复习资料
高中数学几何知识复习资料高中数学几何知识复习资料几何作为数学的一个重要分支,是高中数学中的一项重要内容。
掌握好几何知识,对于高中生来说至关重要。
下面,我将为大家提供一份高中数学几何知识复习资料,希望对大家的学习有所帮助。
一、平面几何1. 直线与线段直线是由无穷多个点组成的,没有起点和终点;线段有起点和终点,是有限个点组成的。
2. 角的概念角是由两条射线共同起点组成的,可以用角的顶点来表示。
3. 三角形三角形是由三条线段组成的,其中两条线段的和大于第三条线段,任意两条线段的差小于第三条线段。
4. 四边形四边形是由四条线段组成的,其中相邻两条线段的和大于其他两条线段的和。
5. 圆的概念圆是由平面上所有到圆心距离相等的点组成的。
二、空间几何1. 空间中的点、线和面空间中的点是没有长度、宽度和高度的;线是由无穷多个点组成的,没有宽度和高度;面是由无穷多个点组成的,有长度和宽度。
2. 空间中的角空间中的角是由两个平面的交线和这两个平面上的两条射线共同组成的。
3. 空间中的立体图形立体图形是由平面图形组成的,包括立方体、正方体、棱柱、棱锥、圆柱、圆锥和球等。
4. 空间中的相交关系两个平面相交于一条直线;两个直线相交于一个点;两个平面和一个直线相交于一个点。
三、坐标几何1. 平面直角坐标系平面直角坐标系是由两条相互垂直的直线组成的,称为x轴和y轴。
2. 坐标表示平面上的点可以用坐标表示,其中x坐标表示点在x轴上的位置,y坐标表示点在y轴上的位置。
3. 距离公式平面上两点之间的距离可以用勾股定理来表示:d = √((x₂-x₁)²+(y₂-y₁)²)。
4. 斜率公式平面上两点之间的斜率可以用斜率公式来表示:k = (y₂-y₁)/(x₂-x₁)。
四、解析几何1. 直线方程直线可以用一般式方程、斜截式方程和点斜式方程来表示。
2. 圆的方程圆可以用标准方程和一般方程来表示。
3. 曲线的方程曲线可以用一般方程、参数方程和极坐标方程来表示。
(完整)高中平面几何定理
(高中)平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD-AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则 ①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点); ④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=. 26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360; (3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a=++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CY YA =1. 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点M .35. 塞瓦定理的逆定理:(略)36. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37. 塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于一点.38. 西摩松(Simson )定理:从△ABC 的外接圆上任意一点P 向三边BC 、CA 、AB 或其延长线作垂线,设其垂足分别是D 、E 、R ,则D 、E 、R 共线,(这条直线叫西摩松线Simson line ).39. 西摩松定理的逆定理:(略)40. 关于西摩松线的定理1:△ABC 的外接圆的两个端点P 、Q 关于该三角形的西摩松线互相垂直,其交点在九点圆上.41. 关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42. 史坦纳定理:设△ABC 的垂心为H ,其外接圆的任意点P ,这时关于△ABC 的点P 的西摩松线通过线段PH 的中心.43. 史坦纳定理的应用定理:△ABC 的外接圆上的一点P 的关于边BC 、CA 、AB 的对称点和△ABC的垂心H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC 的镜象线.44. 牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45. 牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46. 笛沙格定理1:平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR 为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.54.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.55.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q两点关于圆O互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.61.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.62.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD 的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||Rd R S S EF -=∆∆.。
高中平面几何讲义
高中平面几何(上海教育出版社叶中豪)知识要点三角形的特殊点重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon点, Brocard 点,垂聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线特殊直线、圆Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆,Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆特殊三角形中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形,第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形相关直线及相关三角形Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形重心坐标和三线坐标四边形和四点形质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线完全四边形Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理重要轨迹平方差,平方和,Apollonius圆三角形和四边形中的共轭关系等角共轭点,等角共轭线,等截共轭点,等截共轭线几何变换及相似理论平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心Miquel定理内接三角形,外接三角形,Miquel点根轴圆幂,根轴,共轴圆系,极限点反演反演,分式线性变换(正定向和反定向)配极极点与极线,共轭点对,三线极线及三线极点,垂极点射影几何点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues定理,Pascal 定理,Brianchon定理著名定理三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli 问题,Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley 定理,Mannheim定理例题和习题1.以△ABC的AB、AC两边向形外作正方形ABEP和ACFQ,AD是BC边上的高。
平面几何知识点总结大全
平面几何知识点总结大全一、基本图形。
1. 点。
- 点是平面几何中最基本的元素,没有大小、长度、宽度或厚度。
它通常用一个大写字母表示,如点A。
2. 线。
- 直线。
- 直线没有端点,可以向两端无限延伸。
直线可以用直线上的两个点表示,如直线AB;也可以用一个小写字母表示,如直线l。
- 经过两点有且只有一条直线(两点确定一条直线)。
- 射线。
- 射线有一个端点,它可以向一端无限延伸。
射线用表示端点的字母和射线上另一点的字母表示,端点字母写在前面,如射线OA。
- 线段。
- 线段有两个端点,有确定的长度。
线段用表示两个端点的字母表示,如线段AB;也可以用一个小写字母表示,如线段a。
- 两点之间,线段最短。
3. 角。
- 由公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
角通常用三个大写字母表示(顶点字母写在中间),如∠AOB;也可以用一个大写字母表示(这个大写字母表示顶点,且以这个顶点为顶点的角只有一个时),如∠ O;还可以用一个数字或希腊字母表示,如∠1、∠α。
- 角的度量单位是度、分、秒,1^∘=60',1' = 60''。
- 角的分类:- 锐角:大于0^∘而小于90^∘的角。
- 直角:等于90^∘的角。
- 钝角:大于90^∘而小于180^∘的角。
- 平角:等于180^∘的角。
- 周角:等于360^∘的角。
二、相交线与平行线。
1. 相交线。
- 对顶角。
- 两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角。
对顶角相等。
- 邻补角。
- 两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角互补,即和为180^∘。
- 垂直。
- 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
高中数学竞赛-平面几何讲义(很详细)
HBC
(5)H 关于三边的对称点在△ABC 的外接圆上,关于三边中
点的对称点在△ABC 的外接圆上
(6)三角形任一顶点到垂心的距离
A
等于外心到对边的距离的 2 倍。 (7)设△ABC 的垂心为 H,外接圆
F
B'
半径为 R,
OH E
则 HA HB HC 2R B | cos A | | cos B | | cosC |
A
M
N
B
EF
C
D
证明:设∠BAE=∠CAF= ,∠EAF=
则
S AMDN
1 2
AM
AD sin
1 2
AD
AN sin(
)
= 1 AD[AF cos( )sin AF cos sin( )
2
= 1 AD AF sin(2 ) AF AD BC
从而 AB A' F = AC A' E ,又∠AFE=∠AEF
故
S△ABA’=
1 2
sin
AFE
AB
A'
F
=
1 2
s
in
A
EF
A
C
A'
E
=S△ACA’
由此式可知直线 AA’必平分 BC 边,即 AA’必过△
ABC 的重心
同理 BB’,CC‘必过△ABC 的重心,故结论成立。
例 3.设△ABC 的三条高线为 AD,BE,CF,自 A, B,C 分别作 AK EF 于 K,BL DF 于 L, CN ED 于 N,证明:直线 AK,BL,CN 相 交于一点。
必刷几何题书
必刷几何题书
在数学学习中,尤其对于几何部分的强化训练,以下是一些受到好评且涵盖初中至高中阶段几何必刷题目的书籍推荐:
1.《几何原本》及其配套习题集:
《几何原本》是古希腊数学家欧几里得所著的经典之作,通过这本书可以系统地学习几何学的基础理论和证明方法。
国内有多种版本的翻译与注解,适合深入学习。
2.《平面几何典型题精讲精练》(华东师范大学出版社):
这本书收集了大量平面几何题目,并对每一道题目进行了详细的解答和分析,适合中学生进行几何专项训练。
3.《奥数经典教程:平面几何》(北京师范大学出版社):
针对参加数学奥林匹克竞赛的学生,这套书中的平面几何部分包含了大量难度适中到较高的几何题目,有助于提升解题能力。
4.《五年高考三年模拟》系列丛书的几何部分:
这套丛书汇总了历年来全国各地高考真题及模拟试题,是针对中国高考准备的重要参考书目。
5.《张景中院士数学讲座:帮你学数学——几何卷》:
张景中院士以其深入浅出的语言,为读者揭示了几何问题背后的数学思想,同时提供了丰富的例题供读者练习。
6.《中学数学教材全解》系列中的几何教材同步辅导用书:
对应于各个版本的中学数学教科书,这类辅导书一般都会提供详尽的解析和大量的课后习题,便于同步巩固课堂知识并进行自我
检测。
选择适合自己水平和需求的几何题目书籍,结合扎实的理论学习和不断的实践演练,能够有效提高几何解题能力和空间想象能力。
初高中衔接教材第三部分——平面几何
初高中衔接教材第三部分——平面几何(一)知识要点1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推理1:经过三角形一边的中点与另一边平行的直线必平分第三边.推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰.2.平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相似三角形的判定与性质:定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似三角形对应边的比值叫做相似比(或相似系数).判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似.判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似.判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似.引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似.定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和直角边对应成比例,那么这两个直角三角形相似.相似三角形的性质:(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;(2)相似三角形周长的比等于相似比;(3)相似三角形面积的比等于相似比的平方.4.射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.5.圆周角定理:圆上一条弧所对的圆周角等于它所对的圆周角的一半.6.圆心角定理:圆心角的度数等于它所对弧的度数.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.7.圆内接四边形的性质与判定定理定理1:圆的内接四边形的对角互补.定理2:圆内接四边形的外角等于它的内角的对角.圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆. 推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.8.切线的性质定理:圆的切线垂直于经过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.9.弦切角定理:弦切角等于它所夹的弧所对的圆周角.10.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.11.割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.12.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(二) 典型例题例1:如图1,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =a2,点E ,F 分别为线段AB ,AD 的中点,则求EF 的长.例2:如图2,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,求BE 的长.例3:如图3,A 、E 是半圆周上的两个三等分点,直线BC =4,AD ⊥BC ,垂足为D ,BE 与AD 相交于点F ,则求AF 的长.图 1图2 图3例4:如图4,过圆外一点P 作⊙O 的割线PBA 与切线PE ,E 为切点,连接AE 、BE ,∠APE 的平分线分别与AE 、BE 相交于点C 、D ,若∠AEB =30°,则求∠PCE .(三) 拓展练习例5:设圆1O 与圆2O 的半径分别为3和2,124O O ,,A B 为两圆的交点,试求两圆的公共弦AB 的长度.例6:如图:已知AD 为⊙O 的直径,直线BA 与⊙O 相切于点A ,直线OB 与弦AC 垂直并相交于点G ,连接DC . 求证:BA ·DC =GC ·AD .图5图4图6(四) 巩固练习1.如图7,321////l l l ,3AM =,5BM =, 4.5CM =,16EF =,则DM =_____,EK =____,FK =____.2.如图8,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm ,则梯子的长为 cm .3.如图9,在平行四边形ABCD 中, DB 是对角线,E 是AB 上一点,连结CE 且延长和DA 的延长线交于F ,则图中相似三角形的对数是 .4. 如图10,在R t A B C ∆中,90C ∠=︒,D 是BC 中点,DE AB ⊥,垂足为E ,30B ∠=︒,7AE =,则DE 的长为 .5.如图11,BD 、CE 是ABC V 的中线,P 、Q 分别是 BD 、CE 的中点,则:PQ BC = .6.如图12,AB 是O 的直径,P 是AB 延长线上一点,PC 切O 于点C ,3PC =,1PB =,则O 的半径为 .7.如图13,圆O 上的一点C 在直径AB 上的射影为D ,CD =4,BD =8,则圆O 的直径为 .ABPC·图12OBA MCE KF BD l 1 l 2l 3 图7 ADB ┐┐图8 AFE BCGD图9 D A┐CBE 图10图118.如图14,AB 为O 的直径,且8AB = ,P 为OA 的中点,过P 作O 的弦CD ,且:3:4CP PD =,则弦CD 的长度为 .9.如图15,PA 切O 于点A ,4PA =,PBC 过圆心O ,且与圆相交于B 、C 两点,:1:2AB AC =,则O 的半径为 .10.如图,PC 切O 于点C ,割线PAB 经过圆心O ,弦CD AB ⊥ 于点E ,已知O 的半径为3,2PA =,则PC =_________,OE =_________.11.如图17,在ABC ∆中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F . 求证:AC AF AB AE ⋅=⋅.图16B图1412.如图18,已知AP 是⊙O 的切线,P 为切点,AC 是 ⊙O 的割线,与⊙O 交于B C ,两点,圆心O 在PAC ∠的内部,点M 是BC 的中点.(1)证明: AP O M ,,,四点共圆; (2)求OAM APM ∠+∠的大小.13:如图,在△ABC 中,D 是AC 的中点,E 是BD 的中点,AE 的延长线交BC 于F . (1)求FCBF的值; (2)若△BEF 的面积为1S ,四边形CDEF 的面积为2S ,求21:S S 的值.ABC∠的角平分线,过点C作14:如图,AB是⊙O的直径,C,F为⊙O上的点,CA是BAF⊥交AF的延长线于D点,CM AB⊥,垂足为点M.CD AF(1)求证:DC是⊙O的切线;⋅=⋅.(2)求证:AM MB DF DA参考答案例1.解析:连接BD 、DE ,由题意可知DE ⊥AB ,DE =32a ,BC =DE =32a , ∴BD =⎝⎛⎭⎫a 22+⎝⎛⎭⎫32a 2=a ,∴EF =12BD =a 2.例2解析:由∠B =∠D ,AE ⊥BC ,知△ABE ∽△ADC ,∴AE AC =AB AD ,∴AE =AB AD ·AC =6×412=2, ∴BE =AB 2-AE 2=32=4 2.例3解析:如图所示,∵A 、E 是半圆周上两个三等分点,∴△ABO 和△AOE 均为正三角形. ∴AE =BO =12BC =2.∵AD ⊥BC ,∴AD =22-12=3,BD =1. 又∠BOA =∠OAE =60°,∴AE ∥BD . ∴△BDF ∽△EAF ,∴DF AF =BD AE =12.∴AF =2FD ,∴3AF =2(FD +AF )=2AD =23, ∴AF =233.例4解析:由切割线性质得:PE 2=PB ·P A ,即PE P A =PBPE,∴△PBE ∽△PEA ,∴∠PEB =∠P AE , 又△PEA 的内角和为2(∠CP A +∠P AE )+30°=180°, 所以∠CP A +∠P AE =75°,即∠PCE =75°. 例5.解析:连AB 交12O O 于C ,则12OO AB ⊥,且C 为AB 的中点,设AC x =,则12O C O C ==124O O =,解得x =.故弦AB 的长为2x =例6.证明:∵ AC OB ^ ,∴ 90AGB ? ,又 AD 是⊙O的直径, ∴ 90DCA ? ,又 ∵ BAGADC ??(弦切角等于同弧对圆周角)∴ Rt △AGB ∽Rt △DCA ∴BA AGAD DC= , 又∵ OG AC ^ ∴ GC AG = ∴BA GCAD DC= 即 BA •DC=G C •AD巩固练习:1.7.5,6,10;2. 440;3. 5;4.5; 5. 1:4 6. 4; 7. 10; 8. 7; 9. 3; 10. 4, 12511解析: 证明: ∵AD ⊥BC ,∴ADB ∆为直角三角形,又∵DE ⊥AB ,由射影定理知,AB AE AD ⋅=2. 同理可得AC AF AD ⋅=2, ∴AC AF AB AE ⋅=⋅. 12解析:证明:(1)连结OP OM ,,因为AP 与⊙O 相切于点P ,所以OP AP ⊥. 因为M 是⊙O 的弦BC 的中点,所以OM BC ⊥. 于是180OPA OMA ∠+∠=°. 由圆心O 在PAC ∠的内部,可知四边形APOM 的对角互补,所以AP O M ,,,四点共圆.(2)连接OA ,如图.由(1)得AP O M ,,,四点共圆, 所以OAM OPM ∠=∠.11F A B C 由(1)得OP AP ⊥.由圆心O 在PAC ∠的内部, 可知90OPM APM ∠+∠=°.所以90OAM APM ∠+∠=°.13.解析:(1)过D 点作//DG BC ,并交AF 于G 点,∵E 是BD 的中点,∴BE DE =,又∵EBF EDG ∠=∠,BEF DEG ∠=,∴BEF DEG ∆≅∆,则BF DG =,∴::BF FC DG FC =,又∵D 是AC 的中点,则:1:2DG FC =, 则:1:2BF FC =;(2)若BEF ∆以BF 为底,BDC ∆以BC 为底, 则由(1)知:1:3BF BC =,又由:1:2BE BD =可知1h :2h =1:2,其中1h 、2h分别为△BEF 和△BDC 的高,则612131=⨯=∆∆BDC BEF S S , 则12:1:5S S =.14.解析:(I )连结OC ,有∠OAC =∠OCA ,∵CA 是∠BAF 的角平分线,∴∠OAC =∠F AC , ∴∠F AC =∠ACO ,∴OC ∥AD .∵CD ⊥AF ,∴CD ⊥OC ,即DC 是⊙O 的切线.(Ⅱ)连结BC ,在Rt △ACB 中,CM ⊥AB , ∴CM 2=AM ·MB .又∵DC 是⊙O 的切线,∴DC 2=DF ·DA .易知△AMC ≌△ADC ,∴DC =CM ,∴AM ·MB =DF ·DA .。
高考补习班学习材料(立体几何)
立体几何一.1.线面平行定义:直线和平面没有公共点。
2. 直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示为:.////,,αααa b a b a ⇒⊂⊄3.面面平行的定义:平面与平面没有公共点叫平面与平面平行。
4.平面与平面的判定定理: 一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
符号语言表示为:,,//a b a b A a b αααβββ⊂⊂=⎫⇒⎬⎭∥,∥; 简记为:线面平行,则面面平行.判定两个平面平行,也可以用以下方法:(1)垂直于同一条直线的两个平面平行;(2)平行于同一个平面的两个平面互相平行。
5.平行线的找法:①见中点找中点;②有经过它的平面和要证的平行平面相交可以找交线;③模型一:;④模型二:三角形中位线③模型三:三角形分割。
说明:模型一适用于线面大小适中,模型二适用于短线段大平面,模型三适用于长线段小平面。
例1:如图,梯形ECBD 与三角形ABC 交与BC ,BD ∥CE ,并且EC=2BD ,M 是EA 的中点, 求证:DM//平面ABC.证明:取AC 中点N ,连接MN ,BN ,由M ,N 分别是边AE 和边AC 的中点得,MN 为三角形ACE 中位线,所以 EC MN 21//,因为BD ∥CE ,并且EC=2BD ,所以BD MN //,所以四边形MNBD 为 平行四边形,所以MD//BN ,又ABC MD 平面⊄,ABC BN 平面⊂,所以 DM//平面ABC.课堂练习一:1. 如图,四棱锥P —ABCD 中,ABCD 为矩形, E 、F 分别为PC 和BD 的中点.证明:EF ∥面PAD 。
2.如图,三棱柱ABC-A 1B 1C 1中,侧棱A 1A ⊥底面ABC,且各棱长均相等. D,E,F 分别为棱AB,BC,A 1C 1的中点. 证明:EF ∥平面A 1CD.D例2:正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥平面BCE. 证明:如图,连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC,∴QKAQQB DQ =.又∵正方形ABCD 与正方形ABEF 有公共边AB , 且AP=DQ ,∴PEAPQK AQ =.则PQ ∥EK.∴EK ⊂平面BCE ,PQ ⊄平面BCE.∴PQ ∥平面BCE. 例3:如图,已知四棱锥P ABCD -的底面ABCD 是菱形ABCD , 点F 为PC 的中点.求证://PA 平面BFD 。
高中数学讲义微专题96 平面几何
微专题96 平面几何一、基础知识:1、相似三角形的判定与性质 (1)相似三角形的判定① 三个角:若两个三角形对应角都相等,则这两个三角形相似 注:由三角形内角和为180可知,三角形只需两个内角对应相等即可② 两边及一夹角:若两个三角形的两条边对应成比例,且所夹的角相等,则这两个三角形相似 ③ 三边:若两个三角形三边对应成比例,则这两个三角形相似④(直角三角形)若两个直角三角形有两组对应边成比例,则这两个直角三角形相似(2)相似三角形性质:若两个三角形相似,这它们的对应角相等,对应边成比例即相似比(主要体现出“对应”两字),例如:若'''ABCA B C ,则有:''',,,A A B B C C ∠=∠∠=∠∠=∠''''''AB AC BCA B AC B C== 2、平行线分线段成比例:如图:已知123l l l ∥∥,且直线,m n 与平行线交于,,,,,A B C D E F ,则以下线段成比例:(1)AB DEBC EF =(上比下) (2)AB DE AC DF =(上比全) (3)BC EF AC DF=(下比全) 3、常见线段比例模型:(1)“A ”字形:在ABC 中,平行BC 的直线交三角形另两边于,D E ,即形成一个“A ”字,在“A ”字形中,可得ABC ADE ,进而有以下线段成比例:①AD AEDB EC =② DB CEAB AC= ③ AD AE DEAB AC BC== (2)“8”字形:已知AB CD ∥,连结,AD BC 相交于O ,即形成一个“8”字,在“8”字形中,有:AOB DOC ,从而AO BO ABOD CO CD== 4、圆的几何性质:(1)与角相关的性质 ① 直径所对的圆周角是直角② 弦切角与其夹的弧所对的圆周角相等 ③ 同弧(或等弧)所对的圆周角是圆心角的一半 ④ 圆内接四边形,其外角等于内对角 (2)与线段相关的性质: ① 等弧所对的弦长相等② 过圆心作圆上一条弦的垂线,则直线垂直平分该弦 ③ 若一条直线与圆相切,则圆心与切点的连线与该直线垂直 5、与圆相关的定理(1)切割线定理:设PA 是O 的切线,PBC 为割线,则有:2PA PB PC =⋅(2)相交弦定理:设,AB CD 是圆内的两条弦,且,AB CD 相交于P ,则有AP BP CP DP ⋅=⋅(3)切线长定理:过圆外一点P 可作圆的两条切线,且这两条切线的长度相等6、射影定理:已知在直角三角形ABC 中,90BCA ∠=,CD 为斜边AB 上的高(双垂直特点),则以下等式成立:2BC BD BA =⋅ 2AC AD AB =⋅ 2CD BD AD =⋅注:射影定理结合勾股定理,以及等面积法。
高中数学知识点平面几何与立体几何知识点-精品
高中数学知识点平面几何与立体几何知识点-精品高中数学知识点:平面几何与立体几何一、引言数学是一门精密的科学,其中包含了多个分支,其中平面几何与立体几何是高中数学中的两个重要部分。
平面几何与立体几何研究的是空间中的几何形状、结构和性质,对于学生来说,掌握这些知识点不仅有助于提高数学水平,还能培养逻辑思维能力和创造力。
本文将介绍高中数学中的平面几何与立体几何的主要知识点。
二、平面几何的主要知识点1. 点、线、面的基本概念在平面几何中,点是最基本的几何概念,它没有长度、宽度和高度。
线由无数个点组成,它是一维的几何对象。
面是由无数个线组成的,它是二维的几何对象。
2. 直线和射线直线是由无数个点组成的,它没有起点和终点,可以无限延伸。
射线有一个起点,但是没有终点,它只能延伸出去。
3. 角的概念与性质角是由两条射线共享一个起点所形成的,常用度量单位是角度。
角分为锐角、直角、钝角和平角。
锐角小于90度,直角等于90度,钝角大于90度,平角等于180度。
4. 三角形的性质三角形是由三条线段组成的,它有三个顶点和三条边。
根据边的长短和角的大小,三角形可以分为等边三角形、等腰三角形、直角三角形和一般三角形。
三角形还具有角内、角上和角外的性质,包括内角和等于180度、外角等于两个不相邻内角之和等。
5. 四边形的性质四边形是由四条线段组成的,它有四个顶点和四条边。
根据边的长度和角的大小,四边形可以分为矩形、正方形、平行四边形、菱形和梯形等。
四边形还具有对角线的性质,如对角线相等、对角线垂直等。
6. 圆的性质圆是一个平面上的点到另一个点的距离不变的轨迹,由圆心和半径确定。
圆具有直径、弧长、圆心角和切线等性质,其中圆心角是以圆心为顶点的角,在同一个弧上的两个圆心角相等。
三、立体几何的主要知识点1. 空间几何体的概念与性质空间几何体是指在三维空间中的有界区域,包括点、线、面和体。
常见的空间几何体有球、立方体、棱柱、棱锥和圆锥等。
高中平面几何讲义
高中平面几何(上海教育出版社叶中豪)知识要点三角形的特殊点重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat 点, Napoleon点, Brocard点,垂聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线特殊直线、圆Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆,Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆特殊三角形中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形,第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形相关直线及相关三角形Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形重心坐标和三线坐标四边形和四点形质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线完全四边形Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理重要轨迹平方差,平方和,Apollonius圆三角形和四边形中的共轭关系等角共轭点,等角共轭线,等截共轭点,等截共轭线几何变换及相似理论平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心Miquel定理内接三角形,外接三角形,Miquel点根轴圆幂,根轴,共轴圆系,极限点反演反演,分式线性变换(正定向和反定向)配极极点与极线,共轭点对,三线极线及三线极点,垂极点射影几何点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus 定理,Desargues定理,Pascal定理,Brianchon定理著名定理三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli问题,Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner 定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley定理,Mannheim定理例题和习题1.以△ABC的AB、AC两边向形外作正方形ABEP和ACFQ,AD是BC边上的高。
平面几何基础知识基本定理
高中数学联赛二试讲义(组编)平面几何1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+;中线长:222222a c b m a -+=.4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥.高线长:C b B c A abcc p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理).角平分线长:2cos 2)(2Ac b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R C cB b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半; (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC AC G BC G ABGS S S S ∆∆∆∆===31;(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKHCA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+;②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (CB A yC cy B b y A a C B A x C c x B b x A a H CB AC B A ++++++++垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I CB AC B A ++++++++内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心; (4)设I 为△ABC 的内心,,,,c AB b AC a BC ===A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则acb KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O CB AC B A ++++++++外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R . 28. 三角形面积公式:C B A R R abc C ab ah S a ABCsin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a=++===30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBARQA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CYYA=1. 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点M . 35. 塞瓦定理的逆定理:(略)36. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37. 塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT交于一点.38. 西摩松(Simson )定理:从△ABC 的外接圆上任意一点P 向三边BC 、CA 、AB 或其延长线作垂线,设其垂足分别是D 、E 、R ,则D 、E 、R 共线,(这条直线叫西摩松线Simson line ). 39. 西摩松定理的逆定理:(略)40. 关于西摩松线的定理1:△ABC 的外接圆的两个端点P 、Q 关于该三角形的西摩松线互相垂直,其交点在九点圆上. 41. 关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42. 史坦纳定理:设△ABC 的垂心为H ,其外接圆的任意点P ,这时关于△ABC 的点P 的西摩松线通过线段PH 的中心. 43. 史坦纳定理的应用定理:△ABC 的外接圆上的一点P 的关于边BC 、CA 、AB 的对称点和△ABC 的垂心H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC 的镜象线.44. 牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45. 牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46. 笛沙格定理1:平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47. 笛沙格定理2:相异平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48. 波朗杰、腾下定理:设△ABC 的外接圆上的三点为P 、Q 、R ,则P 、Q 、R 关于△ABC 交于一点的充要条件是:弧AP +弧BQ +弧CR =0(mod2π) .49. 波朗杰、腾下定理推论1:设P 、Q 、R 为△ABC 的外接圆上的三点,若P 、Q 、R 关于△ABC 的西摩松线交于一点,则A 、B 、C 三点关于△PQR 的的西摩松线交于与前相同的一点.50. 波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A 、B 、C 、P 、Q 、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51. 波朗杰、腾下定理推论3:考查△ABC 的外接圆上的一点P 的关于△ABC 的西摩松线,如设QR 为垂直于这条西摩松线该外接圆的弦,则三点P 、Q 、R 的关于△ABC 的西摩松线交于一点.52. 波朗杰、腾下定理推论4:从△ABC 的顶点向边BC 、CA 、AB 引垂线,设垂足分别是D 、E 、F ,且设边BC 、CA 、AB 的中点分别是L 、M 、N ,则D 、E 、F 、L 、M 、N 六点在同一个圆上,这时L 、M 、N 点关于关于△ABC 的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线. 56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点) 57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心. 59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点. 60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线. 62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||R d R S S EF -=∆∆.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形及其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine -point circle 〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven 〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆. 九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.数论一、数学竞赛中数论问题的基本内容 主要有8个定义、15条定理.定义1 (带余除法)给定整数,,0,a b b ≠如果有整数(),0q r r b ≤<满足a qb r =+,则q 和r 分别称为a 除以b 的商和余数.特别的,0r =时,则称a 被b 整除,记作b a ,或者说a 是b 的倍数,而b是a 的约数.定义2 (最小公倍数)非零整数12,,,n a a a 的最小公倍数是能被其中每一个()1i a i n ≤≤所整除的最小正整数,记作[]12,,,n a a a .定义 3 (最大公约数)设整数12,,,n a a a 中至少有一个不等于零,这n 个数的最大公约数是能整除其中每一个整数的最大正整数,记作()12,,,n a a a .定理1 对任意的正整数,有()[],,a b a b ab ⋅=.定义4 如果整数,a b 满足(),1a b =,则称a 与b 是互素的(以前也称为互质). 定义5 大于1且除1及其自身外没有别的正整数因子的正整数,称为素数(以前也称为质数).其余大于1的正整数称为合数;数1既不是素数也不是合数.定理2 素数有无穷多个,2是唯一的偶素数.定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记(mod )a b c ≡作若则称,a b关于模c 不同余,记作a(mod )b c .定理3 (整除的性质)设整数,,a b c 为非零整数,(1) 若c b ,b a ,则c a ; (2) 若c a ,则bc ab ;(3) 若c a ,c b ,则对任意整数,m n ,有c ma nb +;(4) 若(),1a b =,且a bc ,则a c ; (5) 若(),1a b =,且,a c b c ,则ab c(6) 若a 为素数,且abc ,则a b 或a c .定理4 (同余的性质)设,,,,a b c d m 为整数,0,m > (1) 若(mod )a b m ≡且(mod )b c m ≡,则(mod )a c m ≡;(2) 若(mod )a b m ≡且(mod )c d m ≡,则(mod )a c b d m +≡+且(mod )ac bd m ≡. (3) 若(mod )ab m ≡,则对任意的正整数n 有(mod )n n a b m =,且(mod )an bn mn ≡; (4) 若(mod )ab m ≡,且对非零整数k 有(,,)k a b m ,则mod a b m k k k ⎛⎫= ⎪⎝⎭. 定理5 设,a b 为整数,n 为正整数, (1) 若a b ≠,则()()n na b a b --;(2) 若a b ≠-,则()()2121n n a b a b --++; (3) 若ab ≠-,则()()22n na b a b +-.定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a 是小于k 的非负整数,且10a >.若12121m m m m n a k a k a k a ---=++++,则称数12m a a a 为n 的k 进制表示.定理6 给定整数2k≥,对任意的正整数n ,都有唯一的k 进制表示.定理7 任意一个正整数n 与它的十进制表示中的所有数字之和关于模9同余.定理8 (分解唯一性)每个大于1的正整数都可分解为素数的乘积,而且不计因数的顺序时,这种表示是唯一的 1212k a a a k n p p p =.定理9 若正整数n的素数分解式为1212,k a a a k n p p p =则n的约数的个数为()()()()12111k d n a a a =+++,n 的一切约数之和等于121212111111k a a a k k p p p p p p ---⋅⋅⋅---. 定义8 对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+.定理10 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦定理11 如果素数p 不能整除整数a ,则()11p p a --.定理12 设p 为素数,对任意的整数a ,有()mod p a a p ≡.定理13 设正整数1212.k a a a k n p p p =,则不大于n 且与n 互素的正整数个数()n ϕ为()12111111k n n a a a ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.定理14 整系数二元一次方程ax by c +=存在整数解的充分必要条件是(),c a b .定理15 若()00,x y 是整系数二元一次方程ax by c +=的一个整数解,则方程的一切整数解可以表示为00,.x x bt y y at =-⎧⎨=+⎩()t Z ∈ 二. 数学竞赛中数论问题的重点类型 主要出现8类问题.:1.奇数与偶数(奇偶分析法、01法);2.约数与倍数、素数与合数;3.平方数;4.整除;5.同余;6.不定方程;7.数论函数、[]x 高斯函数、()n φ欧拉函数;8.进位制(十进制、二进制). 三. 例题选讲例1 有100盏电灯,排成一横行,从左到右,我们给电灯编上号码1,2,…,99,100.每盏灯由一个拉线开关控制着.最初,电灯全是关着的.另外有100个学生,第一个学生走过来,把凡是号码为1的倍数的电灯的开关拉了一下;接着第2个学生走过来,把凡是号码为2的倍数的电灯的开关拉了一下;第3个学生走过来,把凡是号码为3的倍数的电灯的开关拉了一下,如此等等,最后那个学生走过来,把编号能被100整除的电灯的开关拉了一下,这样过去之后,问哪些灯是亮的?讲解 (1)直接计算100次记录,会眼花缭乱.(2)拉电灯的开关有什么规律:电灯编号包含的正约数(学生)才能拉、不是正约数(学生)不能拉,有几个正约数就被拉几次.(3)灯被拉的次数与亮不亮(开、关)有什么关系:灯被拉奇数次的亮!(4)哪些数有奇数个约数:平方数. (5)1~100中有哪些平方数:共10个:1,4,9,16,25,36,49,64,81,100.答案:编号为1,4,9,16,25,36,49,64,81,100共10个还亮. 例2 用[]x 表示不大于x 的最大整数,求122004366366366366⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦.讲解 题目的内层有2004个高斯记号,外层1个高斯记号.关键是弄清[]x 的含义,进而弄清加法谁与谁加、除法谁与谁除:(1)分子是那些数相加,求出和来;由36651830200421963666⨯=<<=⨯,知分子是0~5的整数相加,弄清加数各有几个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B D
C
平面几何(一)
一、(本题满分20分)如图,AB是⊙O的直径,M为圆上一点,ME⊥AB,垂足为E,点C为⊙O上任一点,AC,EM交于点D,BC交DE于点F.
(Ⅰ)求证:EM2=ED·EF;
(Ⅱ)若E, F分别线段OB, EM的中点,且AB=4,
求CF的长.
二、(本题满分20分)如图,△ABC中,AB>AC,AE是其外接圆的切线,D为AB上的点,且AD=AC=AE.求证:直线DE过△ABC的内心.
三、(本题满分20分)如图,已知PA, PB 是⊙O 的两条切线,PCD 是⊙O 的一条割线,
E 是AB 与PD 的交点.证明:DE
CE
PD PC .
_ _ B
四、(本题满分20分)如图,在ABC ∆中,60A ∠=︒, ABC ∆的内切圆I 分别切边,AB AC 于点D, E ,直线DE 分别与直线BI, CI 相交于点F, G .
证明:1
2
FG BC =.
B
五、(本题满分20分)如图,两圆1Γ、2Γ交于点A, B ,过点B 的一条直线分别交圆1Γ、
2Γ于点C, D ,过点B 的另一条直线分别交圆1Γ、2Γ于点E, F ,直线CF 分别交圆1Γ、2Γ于点P, Q .设M, N 分别是弧,PB QB 的中点.若CD=EF ,求证:C, F, M, N 四点共圆.
一、(本题满分20分)如图,AB 是⊙O 的直径,M 为圆上一点,ME ⊥AB ,垂足为E ,点C 为⊙O 上任一点,AC,EM 交于点D ,BC 交DE 于点F .
(Ⅰ)求证:EM 2=ED ·EF ;
(Ⅱ)若E, F 分别线段OB, EM 的中点,且AB=4, 求CF 的长.
证明:(1)∵MN AB ⊥,∴0
90B BFE D ∠=-∠=∠,
∴AED ∆∽FEB ∆,∴AE ·EB=ED ·FE ; 延长ME 与⊙O 交于点N ,由相交弦定理,
得EM ·EN=EA ·EB ,且EM=EN ,
∴EM 2=EA ·EB= ED ·EF .
(2)∵AB=4, OE=EB ,∴∠MOB=60°,∆OMB 为等边三角形
∴
BE=1,∴
由相交弦定理,CF ·FB=MF ·FN=3FE 2=
94,∴
CF=
二、(本题满分20分)如图,△ABC 中,AB >AC ,AE 是其外接圆的切线,D 为AB 上的点,且AD=AC=AE .求证:直线DE 过△ABC 的内心.
证明:设角C 的内角平分线与DE 交于点I ,连接AI, IC, CE, 由于AE 是∆ABC 外接圆的切线,
故180ACB DAE ∠=-∠,又AD AE =, 故180DAE -∠ADE AED =∠+∠2AED =∠, 故1
2
ACI ACB AED ∠=
∠=∠,所以A, E, I, C 四点共圆. IAC IEC AEC AED ∠=∠=∠-∠
18018022
CAE DAE -∠-∠=
-=A CAE DAE ∠=∠-∠21)(21
,
故AI 为角A 的角平分线,I 为ABC ∆的内心.
三、(本题满分20分)如图,已知PA, PB 是⊙O 的两条切线,PCD 是⊙O 的一条割线,
E 是AB 与PD 的交点. 证明:DE
CE
PD PC =. 证法一:连结BC AD AC ,,和BD ,
A
B
E
D
C
I
_
P
则
PBD
PBC
PAD PAC S S S S PD PC ∆∆∆∆=
= ∵ PAC ∆∽PDA ∆ ,PBC ∆∽PDB ∆
∴22AD AC S S PAD PAC =∆∆,2
2BD BC S S PBD PBC =
∆∆ ∴BD BC AD AC = ∴BD
BC
AD AC AD AC PD PC ⋅==22 ① 又∵ACE ∆∽DBE ∆ , BCE ∆∽DAE ∆ ∴
DE AE DB AC = ②, AE CE DA BC = ③ 故由①、②、③得 DE
CE
PD PC = 证法二:(同证法一前)∴BD
BC
AD AC AD AC PD PC ⋅==22 ① 又∵
ADB
ACB
BDE DAE BCE ACE BDE BCE DAE ACE S S S S S S S S S S DE CE ∆∆∆∆∆∆∆∆∆∆=
++=== 而
180=∠+∠ADB ACB ,∴ADB ACB ∠=∠sin sin
∴
DB DA CB AC ADB DB DA ACB CB AC DE CE ⋅⋅=∠⋅⋅∠⋅⋅=sin sin ② 由①、②知DE
CE
PD PC =.
四、(本题满分20分)如图,在ABC ∆中,60A ∠=︒, ABC ∆的内切圆I 分别切边,AB AC 于点D, E ,直线DE 分别与直线BI, CI 相交于点F, G ,证明:1
FG BC =. 证法一:分别连接CF BG ID IE AI ,,,,,
则A D I E 、、、四点共圆.
所以12IDE A ∠=∠,从而1
902
BDF A ∠=︒+∠,
又11
18022
BIC B C A ∠=︒-∠+∠︒+∠()=90,
所以BDF BIC ∠=∠.
又 DBF CBI ∠=∠,得FDB ∆∽CIB ∆.所以FB DB
CB IB
=. 又由 DBI FBC ∠=∠,得 IDB ∆∽CFB ∆,所以 CF BF ⊥,从而1
302
FCG A ∠=∠=︒.
同理BG GC ⊥,所以B C F G 、、、四点共圆,由此
sin FG BC FCG =∠,所以1
2
FG BC =. 证法二:因为1()2BIG B C ∠=∠+∠,又因为1801
()22
A BDG ADE
B
C ︒-∠∠=∠=
=∠+∠, B
所以B D I G 、、、四点共圆,因此90BGC BDI ∠=∠=︒. 同理90CFB ∠=︒,所以B C F G 、、、四点共圆.
又1
9090()302
FCG FBC BCI B C ∠=︒-∠-∠=︒-∠+∠=︒,
所以1
sin 2FG BC FCG BC =∠=.
五、(本题满分20分)如图,两圆1Γ、2Γ交于点A, B ,过点B 的一条直线分别交圆1Γ、
2Γ于点C, D ,过点B 的另一条直线分别交圆1Γ、2Γ于点E, F ,直线CF 分别交圆1Γ、2Γ于点P, Q .设M, N 分别是弧,PB QB 的中点.若CD=EF ,求证:C, F, M, N 四点共圆. 证明:连结AC, AD, AE, AF, DF ,
由∠ADB=∠AFB, ∠ACB=∠AEF 及CD=EF 知
⇒∆ACD ≌∆AEF ⇒AD=AF
⇒∠ADF=∠AFD
⇒∠ABC=∠AFD=∠ADF=∠ABF ⇒AB 是∠CBF 的角平分线
连结CM, FN .∵M 是弧PB 的中点, ∴CM 是∠DCF 的角平分线. 同理,FN 是∠CFB 的平分线 于是,BA, CM, FN 三线共点, 设交点为I .
在圆1Γ、2Γ中,由圆幂定理得
CI IM AI IB =,AI IB NI IF = ⇒NI IF CI IM =.
从而,C, F, M, N 四点共圆.。