电梯调控问题的数学模型

合集下载

数学建模 电梯调度问题16

数学建模 电梯调度问题16

电梯调度问题商业中心某写字楼有二十二层地上建筑楼层和两层地下停车场,6部电梯,每部电梯最大载重是20个正常成人的体重总和。

工作日里每天早晚高峰时期均是非常拥挤,而且等待电梯的时间明显增加。

请你针对早晚高峰期的电梯调度问题建立数学模型,以期获得合理的优化方案。

1)请给出若干合理的模型评价指标。

2)暂不考虑该写字楼的地下部分,每层楼层的平均办公人数经过调查已知(见表1)。

假设每层楼之间电梯的平均运行时间是3秒,最底层(地上一层)平均停留时间是20秒,其他各层若停留,则平均停留时间为10秒,电梯在各层的相应的停留时间内乘梯人员能够完成出入电梯。

表1:该写字楼各层办公人数楼层人数楼层人数楼层人数1无9236 6172002 3 4 5 6 7 8208 52177222 5130181191236 7101112131415161392722722722703002641819202l22200200200207207请你针对这样的简化情况,建立你的数学模型(列明你的假设),给出一个尽量最优的电梯调度方案,并利用所提评价指标进行比较。

3)将你在第2问中所建立的数学模型进一步实际化,以期能够尽量适用于实际情况,用于解决现实的电梯调度问题。

问题备注:本题的评分标准按照以下先后顺序:逻辑的严谨程度-行文与模型描述的条理程度-模型和现实问题的接近程度-以及所用数学工具的理论程度。

摘要随着科技的发展,人们逐步加快了自己的步伐,高节奏的生活,对于时间的要求,越来越高,写字楼里的人来也匆匆去也匆匆,在高峰期时段对电梯的使用最多,电梯的合理化应用在此显得尤为重要,没有合理的优化方案,不仅影响了乘客的上班时间,同时,电梯的多次停顿也造成了一定程度的能源浪费,所以在此提出得到优化方案,并作出计算分析其优化程度。

本文首先根据电梯群控模型评价指标体系,从乘客者的候梯时间和乘梯时间和能耗三个角度考虑。

最初选定方案一电梯编号负责楼层1—2 2-103—4 11-175—6 18-22方案二电梯编号负责楼层1 2 3 4 5 62 7 8 9 103 11 12 134 14 15 165 17 18 196 20 21 22我们将建立一个多目标规划模型,对该模型的建立,分三个目标:乘客的平均候梯时间要短,乘客的平均乘梯时间要短,能源耗损要少。

数学建模电梯调度问题15

数学建模电梯调度问题15

电梯调度问题摘要商务写字楼早晚上下班高峰时段电梯十分拥堵,因此合理的安排电梯调度的方案成了缩短乘客等候电梯时间,乘客平均乘梯时间和减少电梯能耗的有效途径。

对于问题一,本文选用乘客的平均候梯时间、平均乘梯时间和电梯系统的能耗作为评价一个电梯系统合理与否的指标。

并将这三个指标简化为电梯在单位时间内运送人数尽量大这一单一指标。

由于电梯的运行周期成为增加单位时间内运送人数的关键因素,所以最终以电梯的运行周期为指标来评价电梯系统的优劣性。

对于问题二,本文根据题目首先分别建立随机运行、分层运行、分段运行的三大类电梯调度模型。

并在分层运行模型中考虑并求出了六台电梯分成三组运行时所用周期最短,最终得出采用三组的分段运行最为合理。

然后对三组分段运行的模型进行优化改进,确定每组电梯所工作的楼层。

最终解出当两台电梯在2~10层停靠,两台在11~16层停靠,两台在17~22层停靠时所设计出的电梯调度方案最为合理。

对于问题三,在问题二的基础上,考虑了一些实际因素,主要有(1)通常低楼层的办公人员在电梯工作繁忙时会选择走楼梯而不去坐电梯。

(2)由于此写字楼有两层地下停车场,而地下停车场人员可在停车场先乘坐电梯前往一层,随后在一楼乘坐电梯前往办公楼层。

(3)电梯在开始运行的过程中会有一个加速过程,同样停的时候会有一个减速问题,电梯连续性停靠时电梯在每次运行过程中始终不能达到最大速度,而间断性停靠可能使电梯在某段时间内以最大的速度运行。

(4)通常建筑物第一层比较其他各层的高度要高,这点在实际的运行时间计算中不可忽视。

通过添加这些实际因素建立了新的电梯调度模型,最终求出当两台电梯在2~12层停靠,两台在13~17层停靠,两台在18~22层停靠时所设计出的电梯调度方案最为合理。

关键词:平均候梯时间、运行周期、分段运行1、问题重述现代商务写字楼里一般都配套了多台电梯来保证楼里人员能够正常的出行,工作日里每天早晚高峰时期等候电梯的人员增多,而且等待电梯的时间明显增加。

数学建模例子详解-电梯控制问题

数学建模例子详解-电梯控制问题
方程为:
(3)或矩阵形式为:(4) Nhomakorabea即
(5)
其中 。
初始条件为: (6)
控制约束为: (7)
性能指标为: (8)
现求最优控制 ,把系统从初态 转移到终态 使 达到最小。
2.模型求解
该问题是有约束条件的泛函极值问题,由极小值原理
确定最优控制。
哈密尔顿函数为:
(9)
要使 全局最小,即 使最小,而 ,故可得最优控制为
电梯控制问题
在高为100米的观光塔内装有一电梯,问如何确定控制策略(电梯的动力),才能使游客从塔底到塔顶所化时间最少?
一、建模假设
1.假设电梯装满人后的总质量为 。
2.为了使乘客乘电梯感到舒适,假设电梯运行的加速度 ,且在从塔底到塔顶的整个过程中只有一个加速过程和一个减速过程。
3.假设电源提供的动力和电梯本身的设备在 时不受限制。
(10)
由协态方程得:
(11)

(12)

(13)
所以
(14)
由此可得
(15)
在 平面上, 是一直线,其四种形状以及相应的 如图所示。
由此可见,可供选择的最优控制有下列四种:
a. b.
c d.
切换次数最多一次,切换时间为 ,由该问题的实际推断可得:
(16)
又因为 ,故
由假设2,可设电梯在AB段加速运行,在BO段减速运行,切换点为B点。则AB段的加速度为:
4.假设重力加速度为 (常数)。
5.假设电梯在塔底时 米, ,电梯运行到塔顶时 (待求), 。其中 表示位移,表示 速度。坐标系如图1
6.假设电梯提供的动力为 。
二、模型的建立
根据假设问题的数学模型是:在控制条件

数学建模 电梯调度问题18

数学建模 电梯调度问题18

电梯调度方案问题摘要:本文是一个控制分析问题,通过对各种控制方法进行分析评价,得出优化的电梯调度方案。

针对具体问题,我们将电梯的运行时间作为目标函数, 在早晚高峰模式下对电梯群控的各部电梯进行分配,分别建立“跳跃式模型”和“连续型分阶段模型”,对每种模型,我们给出不同的电梯调度方案,通过对不同调度方案的分析、比较和优化,筛选出比较满意的调度方案。

结合实际情况,我们考虑到生活中存在的具体约束,并增加新的评价指标,完善模型,达到快速效应乘客需求、节能和提高电梯利用率的目的。

关键词:优化调度跳跃式模型连续型分阶段模型1.问题的提出与分析背景分析:随着社会的发展,高楼大厦不断兴建,电梯已经成为生产与生活中不可缺少的机电设备。

现阶段人们不断追求生活质量,对电梯运行的快速性、舒适性等都提出了更高的要求,如何让电梯更好的发挥其作用已成为备受关注的问题。

如何合理地调控使用现有电梯,提高电梯的服务效率,尽量减少人流的乘梯等待时间和乘梯时间,是电梯管理中的一个首要任务。

在电梯管理中,关于上班高峰期的电梯优化调度问题也一直是大家关心的焦点。

我们考虑商业中心某写字楼早晚高峰时期电梯合理调度的数学建模问题。

已知条件及要求:商业中心某写字楼共有22层地上建筑楼层和2层地下停车场,其内设有6部电梯。

工作日里,每天早晚高峰时期电梯非常拥挤,乘客等待电梯的时间很长,降低了电梯的服务质量。

该写字楼各层办公人数分布如下:楼层人数分布501001502002503003500510152025楼层人数系列1现要求考虑下列问题:(1)分析确定合理的评价指标体系,用以评价该问题的电梯调度模型的优劣。

(2)针对具体的简化情况建立数学模型,给出一个尽量最优的电梯调度方案,并利用所提评价指标进行比较分析。

(3)实际情况,将所建立的数学模型进一步实际化,用于解决现实的电梯调度问题。

问题分析:1、考虑到电梯的快速性和舒适性以及乘客的舒适度和满意度要求,评价调度方案优劣除了将减少侯梯时间作为评价指标外,还应考虑减少乘梯时间、减少乘客的长侯梯率以及减少电梯的能耗作为多目标的评价体系[1],即在保证乘客和侯梯者都满意的前提下, 提高电梯的运输效率和服务质量,有效地控制电能消耗。

电梯调度问题模型

电梯调度问题模型

综合演训楼电梯调度问题张天一、问题重述:综合演训楼有十一层地上建筑楼层和一层地下停车场,共有12部电梯,每部电梯最大载重是13个正常成人的体重总和。

电梯的使用安排不合理,每天早晚高峰时期均是非常拥挤,而且等待电梯的时间明显增加。

请针对高峰期的电梯调度问题建立数学模型,制定一个合理的电梯调度优化方案。

二、基本假设:(1)上班高峰时期的办公人员全部为从最底楼上行的乘客,下班时乘客都是下到最底层。

(均不考虑其他性质的乘客)(2)不考虑地下一层,即电梯在一至十一层间运行。

(3)假设优化电梯调度模型后乘客一定按照所设计的方案乘坐相应的电梯,而不选择其他的电梯。

(4)电梯无任何故障始终按预定的调度运行。

(5)乘客进入电梯后,电梯门随即关闭,不考虑人为因素的等待情况。

(6)进入电梯的乘客不存在个体的差异,并且进入的乘客不超过额定得承载人数。

三、问题分析:由于本问题要求是缓解上下班高峰期的电梯拥堵情况,如果我们能够减少电梯往返一次所用的总时间,便能减少其他办公人员等待电梯的时间,所以所建立的评价指标首先应该考虑的是各电梯往返一次所用的总时间。

其次每一楼层的情况都不一样,我们还要以所有办公人员都到达其所在楼层的时间为评价指标。

综合这两个评价指标可以很好的评价各个调度方案的优劣。

我们可以通过限制电梯的停靠楼层,使相同楼层办公人员相对集中的乘坐某一部或多部电梯,进而减少停靠次数,减少平均停留总时间;同时通过限制电梯停靠楼层,减少电梯在楼层间的平均运行总时间。

根据题中条件,本模型有电梯容量和楼层平均办公人数两个约束:由于是上班高峰期,为了满足基本要求,使每个人都能层电梯到达办公楼层,需限制能够运载到某一层的总人数大于或等于该层平均办公人数。

解决本问题还需要统计得出在每层楼之间电梯的平均运行时间、最底层平均停留时间、其他各层若停留的平均停留时间,电梯在各层的相应的停留时间内乘梯人员能够完成出入电梯。

假设在一个时间点到达底层需要乘电梯的各楼层的人数与各楼层的总人数成比例,建立非线性规划方程进行求解。

数学建模 电梯调度问题14

数学建模 电梯调度问题14

电梯优化方案摘要商用写字楼的电梯拥挤情况给公司及个人都带来了严重的不便。

所以,对于一个商用写字楼,对电梯进行合理的调度是至关重要的。

本文的目的就是建立合理的电梯调度方案,以解决某写字楼的电梯拥挤情况。

对于问题一:尽快把乘客送到目的地,是考察电梯调度优劣的主要方面。

因此我们把乘客的等待时间作为主要评价指标。

对于问题二:首先确定采用分区调度的方法建立模型。

第一步根据宗群《基基于排队论的上班高峰电梯群调度的研究》确定电梯平均运行时间的公式。

第二步利用用matlab软件,利用Newton迭代方法,可以具体算出在所有的分区情况下的电梯运行时间,从而求出电梯平均载客量,从而确定合理的分区。

第三步,进一步优化,确定分区的具体楼层。

用matlab软件,利用Newton迭代方法,可以具体算出在所有的分区情况下的电梯运行时间,从而求出电梯平均载客量。

用MATLAB软件编程,对分区个数进行讨论,逐步搜索最佳分区。

并在最佳分区的前提下,综合价格因素,寻找各个区域所需最佳类型电梯及其数目。

关键词:排队论动态规划等待时间 matlab模拟1问题重述1.1问题背景商业中心某写字楼有二十二层地上建筑楼层和两层地下停车场,设有6部电梯,每部电梯最大载重是20个正常成人的体重总和。

工作日里每天早晚高峰时期均非常拥挤,而且等待电梯的时间明显增加,电梯显得供不应求,乘客极度不满,电梯运行效率亟待提高。

在电梯运行速度既定的情况下,合理安排电梯调度是解决这一问题的唯一出路。

本文针对早晚高峰期的电梯调度问题建立数学模型,以期获得合理的优化方案。

1.2问题(1)从乘客的满意度、电梯运行效率角度,分析确定合理的模型评价指标体系。

(2)根据第2问给出的条件,针对经简化的情况,建立分区调度的数学模型,设计出合理的电梯调运方案,使得在早晚高峰期尽可能的把各层乘客快速送达各自目标楼层,以缓解电梯前的拥挤现状,尽量减少各层乘客的候梯时间。

(3)将第2问中所建立的数学模型进一步实际化,以期能够尽量适用于实际情况,用于解决现实的电梯调度问题。

数学建模电梯调度问题

数学建模电梯调度问题

数学建模电梯调度问题电梯调度是一项重要的技术,它涉及到人们日常生活中频繁使用的交通工具。

在大型建筑物中,如住宅楼、商业大厦、医院等,电梯的高效运行对于人们的出行体验至关重要。

因此,数学建模电梯调度问题成为了一个备受关注的课题。

1. 问题描述电梯调度问题主要解决的是如何高效地调度电梯的运行,以提高乘客的服务质量。

在一个大型建筑物中,一般会有多台电梯,每台电梯有多个楼层。

当有多位乘客在不同楼层需要搭乘电梯时,应该如何安排电梯的运行,以最大程度地减少乘客等待的时间,并保证电梯的平稳运行?2. 解决方法为了解决电梯调度问题,我们可以运用数学建模的方法。

我们可以将每个电梯的运行状态看作一个状态机,每个状态对应一个楼层。

当电梯处于等待状态时,它可以接受一个指令,该指令可以是上行或下行。

当电梯接收到指令后,它会进入运行状态,并根据指令的方向运行到指定楼层。

当电梯到达指定楼层后,乘客可以进出电梯,电梯进入停止状态。

在停止状态下,电梯可以接收新的指令,也可以继续等待。

为了合理调度电梯,我们可以根据乘客的上行或下行请求来决定电梯的运行方向。

当有乘客在某一楼层按下上行按钮时,电梯可以接受该请求,并向上运行。

同样地,当有乘客在某一楼层按下下行按钮时,电梯可以接受该请求,并向下运行。

当电梯接收到多个请求时,应该根据当前楼层与每个请求楼层之间的距离来决定电梯的运行顺序。

除了根据乘客的请求来调度电梯外,还有一些其他的因素需要考虑。

比如,电梯的容载量、楼层间的距离以及电梯的运行速度等因素都会对电梯的调度产生影响。

在实际应用中,我们可以通过设置优先级来处理这些因素,以达到最优的电梯调度效果。

3. 实际应用电梯调度问题在现实生活中有广泛应用。

在住宅楼中,电梯调度的目标是尽量减少乘客等待时间,并尽可能均衡地分配电梯的利用率。

在商业大厦中,电梯调度的目标是提供快速、高效的服务,以满足乘客的需求。

在医院中,电梯调度的目标是优先满足急诊患者的需求,保障其能够及时得到救治。

数学建模 电梯调度问题13

数学建模 电梯调度问题13

电梯调度问题优化模型摘要在现代社会,电梯成为高层建筑必不可少的交通工具,每值上下班高峰期时,不合理的电梯调度,会增加乘梯人的等待时间,造成人员聚集拥堵。

因此,合适的电梯调度方案能够缓解上下班人流高峰期电梯的运输压力,减少乘梯人不必要的等待时间。

对于问题一,我们在考虑到在减少乘客等待时间和乘坐时间的条件下的满意度会提高的实际情况下,选择以“最短的运送时间”和“最短的等待时间”为评价指标。

对于问题二,我们从生活实际出发,分别建立“跳跃式模型”和“连续型分阶段模型”。

针对每种模型,我们会给出不同的电梯调度方案,通过对比给出最优调度方案。

对于问题三,在第二问中,我们假设电梯是在乘客在等待条件下进行的运送,而实际中乘客到达时间可看作“泊松分布”。

我们对此模型进一步优化,以期得到更合实际的电梯调度方案。

最后,我们对所得方案进行评价并推广。

关键词:电梯调度连续型分阶段模型跳跃式模型泊松分布一、问题重述1.1 问题背景商用写字楼在早上8:20到9:00这段时间内,上班的人陆续到达,底层等电梯地方人山人海,常常碰到再过几分钟就要迟到但电梯迟迟不来的情况,候梯人焦急万分,抱怨不断。

本文就上班高峰期时段电梯运行情况建立数学模型,对于所设想出的方案进行研究比较,以找出较为合理的调度方案。

1.2 已知条件(1)各层楼办公人数各不相同,具体人数见下表(1):(2)有6部电梯,电梯容量均为20人。

(3)每层楼之间电梯的平均运行时间是3秒,最底层(地上一层)平均停留时间是20秒,其他各层若停留,则平均停留时间为10秒,电梯在各层的相应的停留时间内乘梯人员能够完成出入电梯。

1.3 待解决问题第一问:在既定条件下,根据实际情况给出若干合理的模型评价指标。

第二问:请根据评级指标合理的建立电梯调度模型,使得在这段时间内电梯能尽可能地把各个楼层的人流快速送到,并减少候梯时间。

第三问,对第二问中建立的数学模型进一步实际化,使其更好地用于解决现实的电梯调度问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作者:孟凡宝胡梦露陈立博群控电梯调度方案优化的建模研究摘要随着城市中高层建筑的不断增多, 作为垂直运输工具的电梯得到了越来越广泛的应用。

为满足楼内交通的需要,一座大楼往往安装多台电梯;尽管如此,上下班高峰时期的电梯仍然异常拥挤,且乘梯人员的侯梯时间往往较长;而大楼的物业管理方考虑到自己的成本问题,并不会增加电梯数量。

因此,设计一个合理的最优电梯调配方案,对于改善乘梯人员的乘梯环境,降低物业方的管理成本均具有极其重要的意义。

本文针对某商业中心写字楼早晚上下班高峰期的电梯调度问题建立数学模型,以获得合理的优化方案。

主要分为三个问题解决:第一个问题:确定合理的模型评价指标;第二个问题:在不考虑写字楼地下部分等前提下,建立早晚高峰期的电梯调度的优化模型,并利用所提出的评价指标对各种方案进行比较,找出最优方案;第三个问题:将第二个问题中建立的简化模型进一步实际化,以得到尽量符合实际的电梯调度方案。

对于第一个问题,本文分别从乘梯人群和写字楼物业管理两方面的利益出发,选择每台电梯的平均载客量和电梯的总运行时间作为评价指标,并运用层次分析法确定二者权重,建立了综合的评价函数;很多研究高峰时期电梯调度问题的论文使用乘梯人员的等待时间和乘梯时间作为衡量电梯效率的标准,这样虽然通俗易懂,但他们在计算等待时间时为了简化计算,往往假设乘梯人群同时到达,这与实际不符,且误差较大;本文在假设高峰期内乘梯人群以一定的到达率到达乘梯起点前提下,采用电梯的平均载客量作为衡量标准。

对于第二个问题,本文采用分区调度的方法,将可能的方案按楼层分区的多少(分区数:1~6)分为六类,综合运用各种规划方法计算出每个分区方案中最优的调度方案,再利用综合评价函数对这六个最优的调度方案进行评价,从而得出最终的最优调度方案;在计算各类分区方案中最优的调度方案时,本文糅合了理想点法、线性加权法和最大最小法,并采用层次分析法计算出的权重将多目标规划问题转化为单目标规划;在逐步分区讨论的过程中,本文采用动态规划的方法,在计算出第k类的最优方案的基础上再计算第k+1类的最优方案;结果发现,在该简化模型的前提下,最优的调度方案是分为六区(具体分区见正文)对于第三个问题,本文去掉了简化模型中“不考虑地下两层”这一假设,并考虑到“应优先满足高层的乘梯人员的乘梯需求”这一实际情况,将简化模型解决的单起点多终点(或多起点单终点)问题扩展为多起点多终点问题,并且在评价指标中加入了“优先满足高层的乘梯人员的乘梯需求”这一标准;为解出这一复杂模型的最优解,本文在简化模型的最优解的基础上,进一步确定各电梯在地下一、二层和地上一层的停靠情况,从而得出更加符合实际情况的最优解;结果发现,最优方案为仍分为六个区,每个电梯在一楼和地下一、二层均停。

最后,本文对该模型进行了评价,并提出了改进方案。

关键词:群控电梯;分区调度;多目标规划;层次分析法;优化模型;遍历搜索;最大最小原则;动态规划;0-1规划目录第一部分问题重述 (3)第二部分问题分析 (4)第三部分模型假设 (7)第四部分定义与符号说明 (7)第五部分模型的建立与求解 (8)1 问题(1) (8)2 问题(2) (9)3 问题(3) (13)第六部分模型的评价与推广 (14)第七部分参考文献 (14)第八部分附录 (15)一、问题重述现代高层商务楼一般都配备多部电梯以满足楼内人员的需要。

但在上下班高峰期,仍会造成电梯使用紧张。

因此,确定一个合理的电梯调度方案,安排好各个电梯的运行方式,是大楼物业管理中的重要内容。

1基本条件:某写字楼有22层上层建筑,2个地下停车场,6部电梯,每个电梯的容量均为20人。

经调查,该楼各层人数分布如表1。

表1:该写字楼各层办公人数楼层人数楼层人数楼层人数1 2 3 4 5 6 7 8无208177222130181191236910111213141516236139272272272270300264171819202l222002002002002072072 问题:问题(1):给出若干合理的模型评价指标来评价电梯调度方案是否合理问题(2):暂不考虑该写字楼的地下部分,假设每层楼之间电梯的平均运行时间是3秒,最底层(地上一层)平均停留时间是20秒,其他各层若停留,则平均停留时间为10秒,电梯在各层的相应的停留时间内乘梯人员能够完成出入电梯。

对此建立数学模型(列明你的假设),给出一个尽量最优的电梯调度方案,并利用所提评价指标进行比较。

问题(3):将在第2问中所建立的数学模型进一步实际化,以期能够尽量适用于实际情况,用于解决现实的电梯调度问题。

二、问题分析及思路流程图(一)问题分析1.问题(1)的分析问题(1)属于模型的评价问题,其意义在于:通过建立一个评价体系,对建模过程中提出的各种方案进行优劣的比较,进而找出最大限度满足各方需求的最优方案。

其步骤一般为:首先找出模型的若干评价指标,并将其量化;其次根据实际情况,选择合适的数学方法确定各评价指标的权重;最后我们要建立一个综合的评价函数,并通过比较各方案对应评价函数值的大小确定其优劣。

寻找评价指标,一般应从各方利益的角度进行分析;本文所讨论的电梯调度问题主要涉及到乘梯人群与写字楼物业管理两方的利益,因此评价指标应从乘客和电梯两方面考虑。

确定各评价指标的权重,一般有统计平均法,便宜系数法,专家打分法,层次分析法等,考虑到可行性,本文采用层次分析法。

建立综合评价函数,在前两步的基础上,将各评价指标先进行标准化,再按权重相加,最后得出综合评价函数。

2.问题(2)的分析问题(2)属于简化条件下的调度问题,在查阅已有资料的基础上,发现分区调度是解决该类问题的基本方法。

针对该题,可以首先采用分类讨论的方法,即将地上21层(不含一楼)分别分为1,2,3,4,5,6个区六种方案;然后针对各种方案分别计算出其目标函数(各个分区电梯平均载客量中的最大值与电梯总运行时间),并计算在其约束条件下目标函数的最小值,从而解出最优调度方案(各区的起始楼层及所用电梯数);最后计算出各分区的最优调度方案的综合评价函数值,并进行比较,找出最终的最优调度方案。

这其实是由6个规划问题组成的最优化问题。

第一,每个小的规划问题,实际上是包含一个最大最小型目标函数的双目标函数规划问题;而多目标规划问题,需要化为单目标规划来解决,主要有理想点法,最大最小法,线性加权法等三种方法,考虑到问题的复杂性,需要综合利用这三种方法。

首先,借助理想点法的思想,分别独立地算出两个目标函数的最优解;其次,在计算第一个目标函数(各个分区电梯平均载客量中的最大值)的最优解时,需要采用最大最小法;最后,借助理想点法和线性加权法的思想,选择将综合评价函数作为第三个目标函数计算其在约束条件下的最优值,解出此最优值对应的各区的起始楼层及所用电梯数即为该分区方案的最优调度方案。

第二,对于不同的分区方案,为简化计算方法,提高运算效率,可以采取动态规划的方法,即先计算出只分为1个区时的最优方案,在此基础上计算2个分区的最优方案,依次类推,得出6种分区方案各自的最优调度方案。

第三,比较6种分区方案各自的最优调度方案对应的综合评价函数值,得出最终的最优调度方案3.问题(3)的分析问题(3)要求将问题(2)中建立的数学模型进一步实际化,以期能够尽量适用于实际情况,用于解决现实的调度问题;这属于模型的修改完善问题。

解决这类问题的主要思路是,将简化模型中比较理想的,与现实相差较大的假设条件放宽或去掉以尽量接近实际情况,并据此对已建立的模型进行修改完善。

问题(2)建立的简化模型中与实际最不相符的假设是不考虑地下两层,实际情况是(对于上班高峰)乘梯人群并不全在一楼乘梯,而是以一定的比例分散在地上1层与地下1,2层;考虑到这一点我们需要将(对于上班高峰)单起点多终点的调度模型修改为多起点多终点的调度模型,并借助0—1规划的思想建立0—1函数决定某台电梯在3个起点(1层,-1层及-2层)的停靠情况;在这个基础上修改原模型,得出最优解。

问题(2)建立的简化模型中与实际不相符的假设还有写字楼所有人员均乘坐电梯上楼,而实际情况是低层的工作人员在等待电梯时间过长时,往往选择通过楼梯上下楼,因此,在评价最优方案时,要优先考虑更能满足高层人员乘梯需求的调度方案。

(二)思路流程图图(1)总体思路流程图图(2)建立评价指标的思路流程图寻找评价指标建立模型评价体系 确定各评价指标的权重电梯运行总时平均载客量建立综合评价函数建立模型评价体系在若干较理想的假设前提下建立优化模型找到最有调度方案 将模型进一步实际化,找到更符合实际情况的最优调度方案图(3)建立简化模型的思路流程图图(4)将模型进一步实际化的思路流程图重新考量简化模型的假设并去除不符实际的部分将模型进一步实际化解修正后的模型,得出更符合实际的最优调配方案修正简化模型修正原评价标准综合评价函数不变,优先考虑高层乘梯人员的乘梯需求低层人员可以走楼梯,不必全部坐电梯考虑地下两层提出模型假设建立简化模型建立简化模型求解模型并评价按分区数分为6类分别讨论计算出各类的最优方案利用综合评价函数选择最优三、模型假设1 假设电梯上行过程中只考虑一楼门口乘客情况,其他楼层的请求暂不考虑。

而电梯下行过程中只考虑所控制楼层需下行的乘客情况,上行请求暂不考虑。

2电梯满载时电梯即自动关门,不考虑认为因素造成关门延时3电梯在这段时间的服务是连续的不考虑因故障停电等因素暂停运营的情况4同一区的电梯是均匀分布在该区所服务的楼层5 假设办公楼里的工作人员都乘坐电梯,不考虑低层人员步行的情况6 假设上班高峰期间,电梯上行只用来将乘客往上层运,电梯下行时空载;下班高峰期间,电梯上行时空载,下行时只用来将乘客往下层运7 电梯单位时间内功耗一定8 其他假设在需要时在文中补充说明四、符号定义及说明I 楼层分区数i 第i区x第i区电梯控制楼层的最低层in第i区电梯控制楼层数il第i区电梯数iN写字楼总人数N第i区办公人数iP第i区乘客平均到达率iP第i区乘客平均到达率最大值m第i区乘客到达率it第i区电梯运行周期ik 第k层M k第k层人数()C 电梯容量五、模型的建立与求解问题(1):请给出若干合理的模型评价指标一个合理的电梯调度方案应该既能够满足大楼内人员使用需要,又要降低成本,因此可以从乘客和电梯组两个角度考虑来评价调度方案是否合理。

1乘客角度对于乘客来说,到达目标层用时是影响其满意度的主要因素。

而到达目标层需要经历两个阶段,等待时间和乘坐电梯时间。

这两个指标越小越好。

2电梯角度对于电梯来说,一方面电梯利用率应尽可能高,最好每次都达到满载,这样也可避免电梯运转次数,另一方面,考虑成本问题,电梯的运行成本应由电梯需载人数及其到达楼层,电梯运行速度等决定,由于这两点给定,电梯的单位时间功耗一定,因此电梯运行总时间越短越好。

相关文档
最新文档