数学建模电梯调度问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电梯调度问题
电梯调度问题
摘要:
本题为一个电梯调度的优化问题,在一栋特定的写字楼内,利用现有的电梯资源,如何使用电梯能提高它的最大运输量,在人流密度十分大的情况下,如何更快的疏通人流成为一个备受关注的问题。为了评价一个电梯群系统的运作效率,及运载能力,在第一问中,我们用层次分析发,从效益、成本两大方面给出了六个分立的小指标,一同构成电梯群运载效率的指标体系。对第二问,本文根据题目情况的特殊性,定义忙期作为目标函数,对该电梯调度问题建立非线性规划模型,最后用遗传算法对模型求解。第三问中,本文将模型回归实际,分析假设对模型结果的影响,给出改进方案。
对于问题一,本文用评价方法中的层次分析法对电梯群系统的运作效率及运载能力进行分析。经分析,本文最终确定平均候梯时间、最长候车时间、平均行程时间、平均运营人数(服务强度)、平均服务时间及停站次数这六个指标作为电梯调度的指标体系。在这些评价指标的基础上,本文细化评价过程,给出完整的评价方案:首先,采用极差变换法对评价指标做无量纲化处理。然后,采用综合评价法对模型进行评价。在这个过程中,本文采用受人主观影响较小的夹角余弦法来确定权重系数。
对于第二问,本文建立非线性优化模型。借鉴排队论的思想,本文定义忙期,构造了针对本题中特定情形的简单数学表达式,作为目标函数。利用matlab软件,采用遗传算法对模型求解。多次运行可得到多个结果,然后用第一问中的评价模型进行评价,最终选出较优方案。最得到如下方案:
第一个电梯可停层数为:1,2,3,4,5,6,7,10,14,15,16,19,20,22
第二个电梯可停层数:1,4,5,7,10,13,16,18,19,20,21
第三个电梯可停层数:1,2,3,4,6,8,10,11,12,15,16,20,22
第四个电梯可停层数:1,2,3,4,7,10,11,17,18,19,21,22
第五个电梯可停层数:1,2,4,7,8,9,17,18,19,20,21
第六个电梯可停层数:1,4,5,6,7,8,9,11,13,18,19,20
此方案平均忙期为:15.3分钟。
对于第三问,本文是从每分钟到达人群数的分布角度改进模型的。第二问中假设在忙期,每分到达人数服从均匀分布,而在实际中,我们可以首先对此进行调查统计,跟据统计数据可以拟合出更符合实际分布函数,可以改进结果。
关键字:电梯调度;层次分析;非线性规划;神经网络;极差法;夹角余弦
一、问题重述
随着社会经济的持续发展,高层建筑的数量不断增加,其建设高度更令人瞩目,电梯也开始为高层建筑的垂直交通提供保障。然而建筑高度的提升使电梯交通系统需求变得越来越复杂,有效的电梯垂直交通系统面临许多挑战。其中,人们在要求减少电梯设备占用建筑物的核心空间的同时,要求电梯交通系统的服务数量和质量有大幅度提高。特别在工作日里每天早晚上下班高峰期,电梯是非常拥挤的。如何对现有资源合理利用,缓解电梯的运输压力,缩短人们的等待时间,是高层建筑垂直交通系统所必须解决的问题。由此便产生了电梯的调度问题。我们将针对对早晚高峰期的人流情况,对电梯调度问题建立数学模型,以期获得合理的优化方案。本文考虑解决以下问题:
1.给出若干合理的模型评价指标
2.针对该特定写字楼的简化情况给出一个合理的调度方案
3.在第二问的基础上,将数学模型进一步实际化,以期能够尽量适用于
实际情况,用于解决现实的电梯调度问题。
二、问题分析
(一)问题一的分析
为了实现电梯群系统的优化调度,本文分别从效益和成本两个方向出发,考虑该数学模型的评价指标。效益即电梯的运输强度,成本即电梯运行的耗能量,其中耗能量可用平均行程来反映。效益也可从多方面考虑:从服务质量的角度说,人们总是希望候梯时间与乘梯时间的总和越短越好;从服务数量的角度说,总是希望电梯交通系统具有最经济的电梯配置,同时能够提供较高的运送处理能力。在寻找指标时,需要指标既有代表性,能反映系统的工作情况,又有易衡量性,容易通过调查统计来获得。即使我们在评价模型时可以较为容易的得到评价指标数据便于人们得到评价结果。因此,本文通过层次分析发,提出了多个评价指标,包括:平均候梯时间、最长候车时间、平均行程时间、平均运营人数(服务强度)、平均服务时间及停站次数。
上述个指标的单位不尽相同,为统一评价指标的属性,本文采用极差法对各指标进行无量纲化处理。指标权重的合理确定是综合评价结果是否可信的一个核心问题。为减少主观影响,本文采用客观赋权值法——变异系数发得到权重系数。最终建立了综合评价模型,对电梯调度模型进行评价。
(二)问题二的分析
本题中,已给出每层楼间电梯的平均运行时间,电梯在各层的平均停留时间,各层办公人数,电梯的最大容量。为了提高电梯的使用率,我们通过电梯的分组管理——每组的电梯只可在特定的楼层停留,不同组的可停层数不同来达到对电
梯运行的时间的优化。具体对每种方案,我们要确定如下三组数据:
1.分为几组;
2.每组有多少个电梯;
3.每组分别可达的楼层。
本问题非一般的线性优化模型,因此本题选用遗传算法求解。
第一问提供了多个评价指标,若综合考虑这些指标,则问题归结为一个多目标规划问题,情况就会较为复杂。由于其中许多指标在该特定情况(针对早晚上下班高峰期的电梯运行情况)下的影响甚微,于是可以得到简化的规划模型。如:服务时间。每个人从进入电梯开始至到达目的楼层所需时间的可变行小。从概率角度说,当乘电梯的人较多时,每一时刻电梯内人的目的楼层会基本覆盖所有电梯可达楼层,即可视为:电梯会在每个可达楼层停留。所以,优化模型中可以不考虑此项指标。
平均行程时间。针对早晚高峰期,人流方向是相当固定的。例如:在上班高峰期,几乎所有人都是从一层进入,分别到达个各楼层,而中途只下不上。因此个各电梯的运行路程都是从一层到达该电梯能到达的最高层再下来,如此做往复运动。在特定的电梯分组方案中,该项指标的可变性也不大。
本文通过对各种可能影响因素的细致分析,分析各个指标的可能表达情况及影响因素,考虑考虑增大电梯单位时间的运载量,减少人们的等待时间是大家更为关注的问题,直接的想法为:从每个等待个体角度出发,以等待时间为目标函数。但这种方法表达式复杂,不易在遗传算法里实现。因此我们变换思路,从电梯角度出发,以电梯最大运载能力为目标,针对本题——当人流蜂拥而至时,我们选取将所有人全部运到目的楼层电梯组所需的总时间为目标函数,并作为适应