《空间向量与立体几何》本章综述
选修2-1第三章空间向量与立体几何归纳整合
→ →
→ →
网络构建
专题归纳
高考真题
【例3】 在棱长为1的正方体ABCD-A1B1C1D1中,E为棱BC的 中点,点F是棱CD上的动点,试确定点F的位置,使得
D1E⊥平面AB1F.
解 如图建立空间直角坐标系: 则 A(1,0,0), B1(1, 1, 1), 1 D1(0, 0, 1), E( , 1, 0). 2 设 F(0,y,0),则AB1=(0, 1, 1), 1 AF= (-1,y,0),D1E= ( ,1,-1), 2
→
→
→
网络构建
专题归纳
高考真题
要使 D1E⊥平面 AB1F,
→ → 1- 1= 0, D1E·AB1=0, 1 只需 即 即 y= . 1 2 → → - +y=0, D1E·AF= 0, 2
∴当 F 为 CD 中点时,有 D1E⊥平面 AB1F.
网络构建
专题归纳
→
→
→
解
如图所示, 用 a, b, c 分别代表棱OA、
→
OB、OC上的三个单位向量, 则f1=a,f2=2b,f3=3c,
→
→
则f=f1+f2+f3=a+2b+3c,
∴|f|2=(a+2b+3c)(a+2b+3c)
=|a|2+4|b|2+9|c|2+4a· b+6a· c+12b· c =14+4cos 60°+6cos 60°+12cos 60° =14+2+3+6=25, ∴|f|=5,即所求合力的大小为5.
算类似,是平面向量的拓展,主要考查空间向量的共线与
共面以及数量积运算,是用向量法求解立体几何问题的基
础.
网络构建
专题归纳
高考真题
【例1】沿着正四面体 O-ABC 的三条棱OA、OB、OC的方向有大
高中数学选修2-1《空间向量与立体几何》知识点讲义
第三章 空间向量与立体几何一、坐标运算()()111222,,,,,a x y z b x y z ==()()()()121212121212111121212,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=⋅=⋅⋅⋅则二、共线向量定理(),0,=.a b b a b a b λλ≠←−−→∃充要对于使三、共面向量定理,,.a b p a b x y p xa yb ←−−→∃=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←−−−→+=充要条件四、对空间任意一点,若则三点共线,1.P A B C O OP xOA yOB zOC P A B C x y z =++←−−→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点()()()11,1.P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性、、、四点共面,,,,令()()() 1,1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理{},,a b c p x y z p xa yb zc a b c a b c ∃若,,不共面,对于任意,使=++,称,,做空间的一个基底,,,都叫做基向量.七、立体几何中的向量方法121212,,.n n l l v v αβ设平面和的法向量为和直线和的方向向量为11121111121212121212n v l l l n v l l l v v l l v v n n n n αααβαβ⊥⇒⊂⇒⊥⇒⊥⇒⊥⇔⊥⇔⊥①或②若③④⑤⑥八、角、距离()1θ异面直线的夹角,cos cos ,AB CD AB CD AB CD θ⋅==⋅则()2,θ线与面的夹角sin cos a n a n θα⋅==⋅则()3,θ二面角1212cos cos n n n n θα⋅==⋅则θ说明:只能由已知图观察锐钝.()4,d 点到平面的距离cos PA n d PA n θ⋅=⋅=则cos cos d PA n PA n PA nd PA n θθ⋅=⋅⋅⋅∴=⋅=说明:由图可知为在方向上的投影的绝对值,。
立体几何与空间向量知识梳理
立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。
下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。
2. 立体图形的性质:体积、表面积、对称性、切割等。
3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。
4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。
二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。
2. 空间向量的运算:加、减、数乘、点乘、叉乘等。
3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。
4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。
总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。
在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。
在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。
高中数学空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何教材分析
空间向量与立体几何
教学指导意见解读
空间向量章首语
一、内容与要求
• 本章共分两节: • 3.1 空间向量及其运算 • 3.2 立体几何中的向量方法
二、地位与作用
• 1.本章是必修数学4“平面向量”在空间的推 广,又是必修数学2“立体几何初步”的延续。
• 2.空间向量为处理立体几何问题提供了新的 视角(“立体几何初步”侧重于定性研究,本 章则侧重于定量研究)。
五、教学要求
1. 注重联系
本章从数量表示和几何意义两方面, 把对向量及其运算的认识从二维情形提 升到三维情形。这是“由此及彼,由浅 入深” 的认识发展过程。
2.体现思想
• 本章以立体几何问题为载体,体现向量的 工具作用和向量方法的基本步骤和原理, 再次渗透符号化、模型化、运算化和程序 化的数学思想。主要要思想方法是:
课时分配(12课时)
3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算 3.1.3 空间向量的数量积运算 3.1.4空间向量的正交分解及其坐标表示 3.1.5 空间向量运算的坐标表示 复习小结 3.2 立体几何中的向量方法 复习小结
1课时 1课时 1课时 1课时 1课时 1课时 5课时 1课时
• 3.进一步体会向量方法在研究几何问题中的 作用。
三、主要内容
• 3.1空间向量及其运算 • 空间向量及其加减法运算 • 空间向量数乘运算(直线的方向向量,共面
向量定理) • 空间向量的数量积运算 • 空间向量的正交分解及其坐标表示(空间
向量基本定理) • 空间向量运算的坐标表示
三、主要内容
• 3.2 立体几何中的向量方法 • 平面的法向量 • 空间线面关系的判定 • 空间角的计算 • 立体几何中的向量方法(三部曲) • 1. 向量表示 • 2. 向量运算 • 3. 回归几何
第一章空间向量与立体几何知识点总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何的知识点总结
空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。
空间向量与立体几何知识点
立体几何空间向量知识点总结知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.2、当a 、b 为非零向量时.0a b a b ⋅=⇔⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题.3、公式cos ,a b a b a b⋅<>=⋅是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角但要注意两异面直线所成角与两向量的夹角在取值范围上的区别,再结合平面的法向量,可以求直线与平面所成的角和二面角等.4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题.5、用空间向量判断空间中的位置关系的常用方法 1线线平行证明两条直线平行,只需证明两条直线的方向向量是共线向量.2线线垂直证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ⋅=⇔⊥.3线面平行用向量证明线面平行的方法主要有:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线方向向量是共线向量;③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量.4线面垂直用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.5面面平行①证明两个平面的法向量平行即是共线向量; ②转化为线面平行、线线平行问题.6面面垂直①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 1求两异面直线所成角利用公式cos,a ba ba b⋅<>=⋅,但务必注意两异面直线所成角θ的范围是0,2π⎛⎤ ⎥⎝⎦,故实质上应有:cos cos,a bθ=<>.2求线面角求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.3求二面角用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.1点与点的距离点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模.2点与面的距离点面距离的求解步骤是:①求出该平面的一个法向量;②求出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.备考建议:1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力.2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用.因此,应熟练掌握平面法向量的求法和用法.4、加强运算能力的培养,提高运算的速度和准确性.第一讲空间向量及运算一、空间向量的有关概念1、空间向量的定义在空间中,既有大小又有方向的量叫做空间向量.注意空间向量和数量的区别.数量是只有大小而没有方向的量.2、空间向量的表示方法空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大小,用有向线段的方向表示向量的方向.若向量a对应的有向线段的起点是A,终点是B,则向量a可以记为AB,其模长为a或AB.3、零向量长度为零的向量称为零向量,记为0.零向量的方向不确定,是任意的.由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”. 4、单位向量模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学习中还要经常用到. 5、相等向量长度相等且方向相同的空间向量叫做相等向量.若向量a 与向量b 相等,记为a =b .零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关.6、相反向量长度相等但方向相反的两个向量叫做相反向量.a 的相反向量记为-a 二、共面向量 1、定义平行于同一平面的向量叫做共面向量. 2、共面向量定理若两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对x 、y,使得p =xa yb +;3、空间平面的表达式空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y 使MP xMA yMB =+或对空间任一定点O,有或OP xOA yOB zOM =++其中1x y z ++=这几个式子是M,A,B,P 四点共面的充要条件.三、空间向量基本定理 1、定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组x 、y 、z,使p =xa yb +zc +2、注意以下问题1空间任意三个不共面的向量都可以作为空间向量的一个基底.2由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0;3一个基底是指一个向量组,一个基向量是指基底中的某一个向量,两者是相关联的不同概念.由空间向量的基本定理知,若三个向量a 、b 、c 不共面;那么所有空间向量所组成的集合就是{}|,,,p p xa yb zc x y z R =++∈,这个集合可看做是由向量a 、b 、c 生成的,所以我们把{},,a b c 称为空间的一个基底;a 、b 、c 叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底. 3、向量的坐标表示 1单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{},,i j k 表示.2空间直角坐标系在空间选定一点O 和一个单位正交基底{},,i j k 以点O 为原点,分别以i 、j 、k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.则建立了一个空间直角坐标系O -xyz,点O 叫原点,向量i 、j 、k 都叫坐标向量. 3空间向量的坐标给定一个空间直角坐标系和向量a ,且设i 、j 、k 为坐标向量,存在唯一有序数组x,y,z 使a xi y j zk =++,有序数组x,y,z 叫做a 在空间直角坐标系O -xyz 中的坐标,记为a =(),,x y z ;对坐标系中任一点A,对应一个向量OA ,则OA =a xi y j zk =++;在单位正交基底i 、j 、k 中与向量OA 对应的有序实数组x,y,z,叫做点A 在此空间直角坐标系中的坐标,记为Ax,y,z. 四、空间向量的运算 1、空间向量的加法三角形法则注意首尾相连、平行四边形法则, 加法的运算律:交换律 a b b a +=+ 结合律()()a b c a b c ++=++2、空间向量的减法及几何作法几何作法:在平面内任取一点O,作,OA a OB b ==,则BA a b =-,即从b 的终点指向a 的终点的向量,这就是向量减法的几何意义. 3、空间向量的数乘运算 1定义实数λ与a 的积是一个向量,记为a λ,它的模与方向规定如下: ①a aλλ=⋅② 当0λ>时,a λ与a 同向;当0λ<时,a λ与a 异向;当0λ=时.0a λ=注意:① 关于实数与空间向量的积a λ的理解:我们可以把a 的模扩大当λ>1时,也可以缩小λ< 1 时,同时,我们可以不改变向量a 的方向当0λ>时,也可以改变向量a 的方向当0λ<时; .② 注意实数与向量的积的特殊情况,当0λ=时,0a λ=;当0λ≠,若0a =时,有0a λ=;③ 注意实数与向量可以求积,但是不能进行加减运算.比如a λ+,a λ-无法运算; 2实数与空间向量的积满足的运算律 设λ、μ是实数,则有()()a aλμλμ= 结合律()a a a λμλμ+=+ 第一分配律()a b a bλλλ+=+ 第二分配律实数与向量的积也叫数乘向量.4、共线向量 1共线向量定义若表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量,也叫做平行向量;若a 与b 是共线向量,则记为a b a b b 0a b a b a =+OP OA ta a AB a=(),(1)OP OA t AB OP OA t OB OA t OA tOB=+∴=+-=-+12t =1122OP OA OB =+AB λ111OP OA OB λλλ=+++11112222(,,),(,,)P x y z P x y z 12PP =222z y x |OP |++=→→→→><b a b ,a 与为性质若→→b a 、是非零向量,→e 是与→b 方向相同的单位向量,θ是→→e a 与的夹角,则 1θcos |a |e a a e →→→→→=⋅=⋅ 20b a b a =⋅⇔⊥→→→→3若→→b a 与同向,则|b ||a |b a →→→→⋅=⋅; 若→→b a 与反向,则|b ||a |b a →→→→⋅-=⋅;特别地:→→→→→→⋅==⋅a a |a ||a |a a 2或4若θ为|b ||a |ba cosb a →→→→→→⋅⋅=θ的夹角,则、5|b ||a ||b a |→→→→≤⋅2. 运算律 1结合律)b a (b )a (→→→→⋅=⋅λλ 2交换律→→→→⋅=⋅a b b a3分配律→→→→→→→⋅+⋅=+⋅c a b a )c b (a不满足消去律和结合律即:典型例题例1. 已知P 是平面四边形ABCD 所在平面外一点,连结PA 、PB 、PC 、PD,点E 、F 、G 、H 分别为△PAB 、△PBC 、△PCD 、△PDA 的重心;求证:E 、F 、G 、H 四点共面; 证明:分别延长PE 、PF 、PG 、PH 交对边于M 、N 、Q 、R ∵E 、F 、G 、H 分别是所在三角形的重心∴M 、N 、Q 、R 为所在边的中点,顺次连结MNQR 所得四边形为平行四边形,且有 ∵MNQR 为平行四边形,则∴由共面向量定理得E 、F 、G 、H 四点共面;例2. 如图所示,在平行六面体'D 'C 'B 'A ABCD -中,→=→a AB ,→=→b AD ,→=→c AA ,P 是CA'的中点,M 是CD'的中点,N 是C'D'的中点,点Q 是CA'上的点,且CQ :QA'=4:1,用基底}c b a {→→→,,表示以下向量: 1→AP ;2→AM ;3→AN ;4→AQ ;解:连结AC 、AD'1)c b a (21)'AA AD AB (21)'AA AC (21AP →+→+→=→+→+→=→+→=→;2→+→+→=→+→+→=→+→=→c21b a 21)'AA AD 2AB (21)AD AC (21AM ;3)'AD AC (21AN →+→=→4)AC 'AA (54AC CQ AC AQ →-→+→=→+→=→点评:本例是空间向量基本定理的推论的应用.此推论意在用分解定理确定点的位置,它对于以后用向量方法解几何问题很有用,选定空间不共面的三个向量作基向量.并用它们表示出指定的向量,是用向量解决几何问题的一项基本功.例3. 已知空间四边形OABC 中,∠AOB=∠BOC=∠AOC,且OA=OB=OC;M 、N 分别是OA 、BC 的中点,G 是MN 的中点;求证:OG ⊥BC;证明:连结ON,设∠AOB=∠BOC=∠AOC=θ又设→=→a OA ,→=→b OB ,→=→c OC ,则|c ||b ||a |→=→=→;又)ON OM (21OG →+→=→∴)b c ()c b a (41BC OG →-→⋅→+→+→=→⋅→∴OG ⊥BC例4. 已知空间三点A0,2,3,B -2,1,6,C1,-1,5; 1求以→→AC AB 和为邻边的平行四边形面积;2若3|a |=→,且→→→AC AB a 、分别与垂直,求向量→a 的坐标;解:1由题中条件可知∴23AC AB sin >=→→<, ∴以→→AC AB 、为邻边的平行四边形面积:2设),,(z y x a =→由题意得解得⎪⎩⎪⎨⎧-=-=-=⎪⎩⎪⎨⎧===1z 1y 1x 1z 1y 1x 或∴),,=()或,,(111a 111a ---→=→第二讲 直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用 1、直线的方向向量直线的方向向量就是指和这条直线所对应向量平行或共线的向量,显然一条直线的方向向量可以有无数个.2、直线方向向量的应用利用直线的方向向量,可以确定空间中的直线和平面.1若有直线l , 点A 是直线l 上一点,向量a 是l 的方向向量,在直线l 上取AB a =,则对于直线l 上任意一点P,一定存在实数t,使得AP t AB =,这样,点A 和向量a 不仅可以确定l 的位置,还可具体表示出l 上的任意点.2空间中平面α的位置可以由α上两条相交直线确定,若设这两条直线交于点O,它们的方向向量分别是a 和b ,P 为平面α上任意一点,由平面向量基本定理可知,存在有序实数对x ,y ,使得OP =xa yb +,这样,点O 与方向向量a 、b 不仅可以确定平面α的位置,还可以具体表示出α上的任意点.二、平面的法向量1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.2、在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的. 三、直线方向向量与平面法向量在确定直线、平面位置关系中的应用 1、若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1⇔1u 2u ⇔1u 2u 1v 2v ⇔1v 2v ⇔1v 2v u v ⇔u v ⇔u v (,,)n x y z =111222(,,),(,,)a a b c b a b c ==00n a n b ⎧⋅=⎪⎨⋅=⎪⎩a b a b ()a kbk R =∈a αn //l α⊥a n 0⋅=a n2根据线面平行的判定定理:“如果直线平面外与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.3根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可. 3、面面平行1由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可. 2若能求出平面α、β的法向量u 、v ,则要证明αu v a b a b 0a b ⋅=a u a u ////,//a a b b /a /b02πθ<≤a b ϕcos |cos |a b a bθϕ⋅==⋅02πθ≤≤a u a u ϕsin |cos |cos sin a u a uθϕθϕ⋅===⋅或[0,]πl αβ--AB CD 1n 2n l αβ--1n 2n BO BA =cos cos BA BO ABOABO BO⋅⋅∠∠=nAB n BO n⋅=n n n=0d AB n =⋅nCD n d AB n⋅==设→→b a 、分别是直线l 1、l 2的方向向量,根据下列条件判断l 1与l 2的位置关系; 1→a =2,3,-1,→b =-6,-9,3; 2→a =5,0,2,→b =0,4,0;3→a =-2,1,4,→b =6,3,3解:1∵),,(132a -=→,→b =-6,-9,3∴→→-=b31a ,∴→→b //a ,∴l 1→a →b 0b a =⋅→→→→⊥b a =→a →b →→b a 与设→→v u 、分别是平面α、β的法向量,根据下列条件判断α、β的位置关系:1→u =1,-1,2,→v =3,2,21-;2→u =0,3,0,→v =0,-5,0;3→u =2,-3,4,→v =4,-2,1;解:1∵→u =1,-1,2,→v =3,2,21-∴0v u =⋅→→ →→⊥∴v u∴α⊥β2∵→u =0,3,0,→v =0,-5,0∴βα//v//u v53u ∴∴-=→→→→3∵→u =2,-3,4,→v =4,-2,1∴→→v u 与既不共线、也不垂直,∴α与β相交点评:应熟练掌握利用向量共线、垂直的条件;例3. 已知点A3,0,0,B0,4,0,C0,0,5,求平面ABC 的一个单位法向量; 解:由于A3,0,0,B0,4,0,C0,0,5,∴→AB =-3,4,0,→AC =-3,0,5设平面ABC 的法向量为→n x,y,z则有0AC n 0AB n =→⋅→=→⋅→且即⎩⎨⎧=+-=+-0z 5x 30y 4x 3 取z=1,得35x =,45y =于是→n =14535,,,又12769|n |=→∴平面α的单位法向量是)769127691576920(n ,,=→例4. 若直线l 的方向向量是→a =1,2,2,平面α的法向量是→n =-1,3,0,试求直线l 与平面α所成角的余弦值;分析:如图所示,直线l 与平面α所成的角就是直线l 与它在平面内的射影所成的角,即∠ABO,而在Rt △ABO 中,∠ABO=-2π∠BAO,又∠BAO 可以看作是直线l 与平面α的垂线所成的锐角,这样∠BAO 就与直线l 的方向向量a 与平面α的法向量n 的夹角建立了联系,故可借助向量的运算求出∠BAO,从而求出∠ABO,得到直线与平面所成的角; 解:∵→a =1,2,2,,→n =-1,3,0∴3|a |=→,10|n |=→,5n a =⋅→→∴610|n ||a |na n ,a cos =⋅⋅>=<→→→→→→若设直线l 与平面α所成的角是θ则有><=→→n ,a sin cos θ∵610n ,a cos >=<→→ ∴626n ,a sin >=<→→因此626cos =θ,即直线l 与平面α所成角的余弦值等于626;例5. 如图a 所示,在正方体1111D C B A ABCD -中,M 、N 分别是C C 1、11C B 的中点;求证:1MN BD A 1C D B //BD A 111平面1DD 21211A →MN 2121BD A 1→n 0DB n 0DA n 1=⋅=⋅→→→→且⎩⎨⎧=+=+0y x 0z x 1y -=1z -=→∴n →→⋅n MN 2121→⊥→n MN BDA 1→=→-→=→-→=→-→=→111111111DA 21)D D A D (21C C 21B C 21M C N C MN →→1DA //MN BD A //MN 1平面→-→=→M C N C MN 11→-→=D D 21A D 21111→→→DB DA MN 1与可用→→→DB DA MN 1、与→MN BD A 1→n →m→→n //m 如图,在正方体1111D C B A ABCD -中,O 为AC 与BD 的交点,G 为CC 1的中点;求证:A 1O ⊥平面GBD;证明:设→=→→=→→=→c A A b D A a B A 11111,,,则 而)b a (21c )AD AB (21A A AO A A O A 111→+→+→=→+→+→=→+→=→∴)a b ()b 21a 21c (BD O A 1→-→⋅→+→+→=→⋅→同理0OG O A 1=→⋅→∴BD O A 1⊥,OG O A 1⊥又O OG BD = ,∴⊥O A 1面GBD; 例7. 2004年天津如图a 所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD,PD=DC,E 是PC 的中点;1证明:PA 2a 2a 2a 2a →PA →EG 2a 2a -→=→EG 2PA ⊂⊄2a →FE 2a →FB 2a →DC 0FB FE =→⋅→0DC FE =→⋅→55a 252a |FB ||FE |==→→=55正方体1111D C B A ABCD -中,E 、F 分别是11D A 、11C A 的中点,求:1异面直线AE 与CF 所成角的余弦值;2二面角C —AE —F 的余弦值的大小; 解:不妨设正方体棱长为2,分别取DA 、DC 、1DD 所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A2,0,0,C0,2,0,E1,0,2,F1,1,21由→AE =-1,0,2,→CF =1,-1,2,得5|AE |=→,6|CF |=→∴→⋅→CF AE =-1+0+4=3 又>→→<>=→→<⋅→⋅→=→⋅→CF ,AE cos 30CF ,AE cos |CF ||AE |CF AE∴1030CF ,AE cos >=→→<,∴所求值为10302∵→EF =0,1,0 ∴→⋅→EF AE =-1,0,2·0,1,0=0∴AE ⊥EF,过C 作CM ⊥AE 于M则二面角C —AE —F 的大小等于>→→<MC ,EF∵M 在AE 上,∴→=→AE m AM 设则→AM =-m,0,2m,→-→=→AM AC MC =-2,2,0--m,0,2m=m -2,2,-2m∵MC ⊥AE ∴→⋅→AE MC =m -2,2,-2m ·-1,0,2=0∴52m =,∴)54,2,58(MC --=→,556|MC |=→ ∴→⋅→MC EF =0,1,0·58-,2,54-=0+2+0=2又>→→<>=→→<⋅→⋅→=→⋅→MC ,EF cos 556MC ,EF cos |MC ||EF |MC EF∴35MC ,EF cos >=→→< ∴二面角C —AE —F 的余弦值的大小为35例9. 已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,H 是EF 与AC 的交点,CG ⊥面ABCD,且CG=2;求BD 到面EFG 的距离;分析:因BD//平面EFG,故O 到面EFG 与BD 到面EFG 距离相等,证明OM 垂直于面EFG 即可;解:如图所示,分别以CD 、CB 、CG 所在直线为x 、y 、z 轴建立空间直角坐标系; 易证BD//面EFG,设BD AC =O,EF ⊥面CGH,O 到面EFG 的距离等于BD 到面EFG 的距离,过O 作OM ⊥HG 于M,易证OM ⊥面EFG,可知OM 为所求距离;另易知H3,3,0,G0,0,2,O2,2,0;设→=→GH GM λ,→GH =3,3,-2则)22,23,23()2,2,2()2,3,3(GO GM OM +---=---=→-→=→λλλλ 又0GH OM =→⋅→,∴0)22(2)23(3)23(3=---+-λλλ∴118=λ,∴)116,112,112(OM =→ ∴11112)116()112(2|OM |22=+⨯=→即BD 到平面EFG 的距离等于11112励志故事习惯父子俩住山上,每天都要赶牛车下山卖柴;老父较有经验,坐镇驾车,山路崎岖,弯道特多,儿子眼神较好,总是在要转弯时提醒道:“爹,转弯啦”有一次父亲因病没有下山,儿子一人驾车;到了弯道,牛怎么也不肯转弯,儿子用尽各种方法,下车又推又拉,用青草诱之,牛一动不动;到底是怎么回事 儿子百思不得其解;最后只有一个办法了,他左右看看无人,贴近牛的耳朵大声叫道:“爹,转弯啦”牛应声而动;牛用条件反射的方式活着,而人则以习惯生活;一个成功的人晓得如何培养好的习惯来代替坏的习惯,当好的习惯积累多了,自然会有一个好的人生;。
第一章 空间向量与立体几何(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)
第一章空间向量与立体几何(公式、定理、结论图表)1.空间向量基本概念空间向量:在空间,我们把具有大小和方向的量叫作空间向量.长度(模):空间向量的大小叫作空间向量的长度或模,记为a 或AB.零向量:长度为0的向量叫作零向量,记为0 .单位向量:模为1的向量叫作单位向量.相反向量:与向量a 长度相等而方向相反的向量,叫作a 的相反向量,记为a.共线向量(平行向量):如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫作共线向量或平行向量.规定:零向量与任意向量平行.相等向量:方向相同且模相等的向量叫作相等向量.2.空间向量的线性运算空间向量的线性运算包括加法、减法和数乘,其定义、画法、运算律等均与平面向量相同.3.共线、共面向量基本定理(1)直线l 的方向向量:在直线l 上取非零向量a ,与向量a平行的非零向量称为直线l 的方向向量.(2)共线向量基本定理:对任意两个空间向量=a b λ (0b ≠ ),//a b 的充要条件是存在实数λ,使=a b λ.(3)共面向量:如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a平行于平面α.平行于同一个平面的向量,叫作共面向量.(4)共面向量基本定理:如果两个向量a ,b 不共线,那么向量p与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+ .4.空间向量的数量积(1)向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫作向量a ,b 的夹角,记作,a b <> .如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)数量积定义:已知两个非零向量,a b ,则cos ,a b a b <> 叫作,a b的数量积,记作a b ⋅ .即a b ⋅= cos ,a b a b <> .(3)数量积的性质:0a b a b ⊥⇔⋅= 2cos ,a a a a a a a ⋅=⋅<>= .(4)空间向量的数量积满足如下的运算律:()()a b a bλλ⋅=⋅ a b b a⋅=⋅ (交换律):()a b c a c b c +⋅=⋅+⋅(分配律).推论:()2222a ba ab b +=+⋅+,()()22a b a b a b+⋅-=- .(5)向量的投影向量:向量a 在向量b 上的投影向量c :cos ,b c a a b b=<>向量a 在平面α内的投影向量与向量a 的夹角就是向量a所在直线与平面α所成的角.5.空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任意一个空间向量p.存在唯一的有序实数组(),,x y z .使得p xa yb zc =++ .6.基底与正交分解(1)基底:如果三个向量,,a b c 不共面,那么我们把{},,a b c 叫作空间的一个基底,,,a b c都叫作基向量.(2)正交分解:如果空间的一个基底中的三个基向量两两垂直.且长度都为1.那么这个基底叫作单位正交基底,常用{},,i j k表示.把一个空间向量分解为三个两两垂直的向量,叫作把空间向量进行正交分解.7.空间直角坐标系在空间选定点O 和一个单位正交基底{},,i j k.以点O 为原点,分别以,,i j k的方向为正方向、以它们的长为单位长度建立三条数轴:x 轴.y 轴、z 轴,它们都叫作坐标轴.这时我们就建立了一个空间直角坐标系Oxyz ,O 叫作原点,,,i j k都叫作坐标向量,通过每两个坐标轴的平面叫作坐标平面.空间直角坐标系通常使用的都是右手直角坐标系.8.空间向量的坐标在空间直角坐标系Oxyz 中,,i j k为坐标向量.给定任一向量OA ,存在唯一的有序实数组(),,x y z ,使OA xa yb zc =++.有序实数组(),,x y z 叫作向量OA 在空间直角坐标系Oxyz 中的坐标.记作(),,OA x y z =.(),,x y z 也叫点A 在空间直角坐标系中的坐标.记作(),,A x y z .9.空间向量运算的坐标表示设()()111222,,,,,a x y z b x y z ==,则:(1)()121212,,a b x x y y z z +=+++,(2)()121212,,a b x x y y z z -=---,(3)()111,,a x y z λλλλ=.10.空间向量平行、垂直、模长、夹角的坐标表示(1)121212//,,a b a b x x y y z z λλλλ⇔=⇔===,(2)121212=0++0a b a b x x y y z z ⊥⇔⋅⇔=,(3)a == ,(4)cos ,a ba b a b ⋅== .11.空间两点间的距离公式设()()11112222,,,,,P x y z P xy z ,则12PP =.12.平面的法向量:直线l α⊥,取直线l 的方向向量a ,称a为平面的法向量.13.空间中直线、平面的平行(1)线线平行:若12,u u 分别为直线12,l l 的方向向量,则1212////,l l u u R λ⇔⇔∃∈ 使得12u u λ=.(2)线面平行:设u 直线l 的方向向量,n 是平面α的法向量,l α⊄,则//0l u n u n α⇔⊥⇔⋅=.法2:在平面α内取一个非零向量a ,若存在实数x ,使得u xa =,且l α⊄,则//l α.法3:在平面α内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l α⊄,则//l α(3)面面平行:设12,n n 分别是平面,αβ的法向量,则12////n n R αβλ⇔⇔∃∈ ,使得12n n λ=.14.空间中直线、平面的垂直(1)线线垂直:若12,u u 分别为直线12,l l 的方向向量,则1212120l l u u u u ⊥⇔⊥⇔⋅=.(2)线面垂直:设u 直线l 的方向向量,n 是平面α的法向量,则//l u n R αλ⊥⇔⇔∃∈ ,使得u n λ=.法2:在平面α内取两个不共线向量,a b,若0a u b u ⋅=⋅= .则l α⊥.(3)面面垂直:设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔⋅=.15.用空间向量研究距离、夹角问题(1)点到直线的距离:已知,A B 是直线l 上任意两点,P 是l 外一点,PQ l ⊥,则点P 到直线l 的距离为PQ =(2)求点到平面的距离已知平面α的法向量为n,A 是平面α内的任一点,P 是平面α外一点,过点P 作则平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为AP nPQ n⋅= .(3)直线与直线的夹角若12,n n 分别为直线12,l l 的方向向量,θ为直线12,l l 的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.(4)直线与平面的夹角设1n 是直线l 的方向向量,2n是平面α的法向量,直线与平面的夹角为θ.则121212sin cos ,n n n n n n θ⋅=<>=.(5)平面与平面的夹角平面与平面的夹角:两个平面相交形成四个二面角,我们把这四个二面角中不大于90 的二面角称为这两个平面的夹角.若12,n n 分别为平面,αβ的法向量,θ为平面,αβ的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.<解题方法与技巧>1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.3.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积.3根据向量的方向,正确求出向量的夹角及向量的模.4代入公式a·b =|a ||b |cos〈a ,b 〉求解.4.利用空间向量证明或求解立体几何问题时,首先要选择基底或建立空间直角坐标系转化为其坐标运算,再借助于向量的有关性质求解(证).5.求点到平面的距离的四步骤6.用坐标法求异面直线所成角的一般步骤(1)建立空间直角坐标系;(2)分别求出两条异面直线的方向向量的坐标;(3)利用向量的夹角公式计算两条直线的方向向量的夹角;7.利用向量法求两平面夹角的步骤(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量;(3)求两个法向量的夹角;(4)法向量夹角或其补角就是两平面的夹角(不大于90°的角)典例1:多选题(2023·全国·高三专题练习)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P,使得1A P BP⊥D.当12μ=时,有且仅有一个点P,使得1A B⊥平面1AB P【详解】P在矩形11BCC B内部(含边界)典例2:如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c = ,则n BD n BC ⎧⋅⎨⋅⎩可取()0,1,1n =-r,则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --的正弦值为213122⎛⎫-= ⎪⎝⎭.典例3:已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,()()(0,0,0,2,0,0,0,2,0B A C ∴由题设(),0,2D a (02a ≤≤因为()(0,2,1,1BF DE ==- 所以()012BF DE a ⋅=⨯-+ [方法三]:因为1BF A B ⊥(1BF ED BF EB BB B ⋅=⋅++ 1122BF BA BC BF ⎛⎫=--+ ⎪⎝⎭1cos 2BF BC FBC =-⋅∠+作1BH F T ⊥,垂足为H ,因为面角的平面角.设1,B D t =[0,2],t ∈1B T =典例4:如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.。
空间向量与立体几何知识点
空间向量与立体几何知识点第一篇:空间向量1. 空间向量的表示方法空间向量可以用有向线段、坐标和向量分量等多种方式进行表示。
其中,有向线段表示空间向量的长度、方向和起点,坐标表示空间向量的左端点和右端点的坐标,向量分量表示空间向量在三个坐标轴上的投影。
2. 空间向量的加减法空间向量的加减法与二维向量的加减法类似,可以通过将两个向量的分量逐一相加或相减得到结果向量的分量。
也可以通过平移法、三角法、正交分解等方法进行计算。
3. 空间向量的数量积和向量积空间向量的数量积和向量积都具有几何意义和物理意义。
数量积表示两个向量之间的夹角余弦值和向量长度的乘积,通常用于计算向量的投影和求解平面或直线的方程。
向量积表示两个向量所在平行四边形的面积和法向量,通常用于计算向量的叉积、平面或直线的法向量以及计算空间中两个平面的夹角。
4. 空间向量的共线、垂直和平行空间向量的共线、垂直和平行是三种基本关系。
当两个向量共线时,它们所在直线相交或重合;当两个向量垂直时,它们的数量积为0,而向量积为一个与它们垂直的向量;当两个向量平行时,它们的向量积为0,而数量积为它们长度的乘积。
5. 应用举例空间向量广泛应用于物理、工程、计算机图形学等领域。
例如,通过计算物体的重心和质量分布情况,可以求解物体的转动惯量和稳定性问题;通过计算矢量场中的散度和旋度,可以分析流体的运动状态和变化规律;通过计算三维空间中的距离和夹角,可以在计算机图形学中进行三维模型的建模和渲染。
第二篇:立体几何1. 立体几何的基本概念立体几何是研究三维空间中的基本几何对象和它们的性质、关系的数学分支。
它包括点、线、面、体和空间角等多个基本概念,用于描述和分析三维物体的形状、大小和位置关系。
2. 立体几何的基本公理立体几何的基本公理是欧几里得几何的扩展,是指空间中的点、线、面、体和空间角等基本几何对象应满足的性质和约束。
这些公理包括点的唯一性、直线的唯一性、平面的唯一性、线段长度的可加性、平面的无限性、等角推移原理等。
新课标高中数学人教A版选择性必修第一二三册教材解读〖第一章空间向量与立体几何章整体解读〗
第一章空间向量与立体几何在必修课程学习平面向量的基础上,本章将平面向量推广到空间,学习空间向量及其运算、空间向量基本定理及空间向量运算的坐标表示,并运用空间向量研究立体几何中图形的位置关系和度量关系,包括用空间向量描述空间直线、平面间的平行、垂直关系,用空间向量解决空间距离、夹角问题等,本章的研究对象是几何图形,所用的研究方法是向量方法.通过本章学习,侧重提升学生的直观想象、数学运算、逻辑推理和数学抽象等数学学科核心素养.一、本章内容安排本章属于《课程标准(2021年版)》中“几何与代数”主线的内容.学生将在必修(第二册)“平面向量”和“立体几何初步”的基础上学习空间向量及其运算、空间向量基本定理,并利用空间向量解决立体几何问题,对于用空间向量解决立体几何问题,教科书“先分散、后集中”,即在学习空间向量及其运算、空间向量基本定理时“随学随用、学以致用”,同时在解决立体几何问题中巩固空间向量的知识.最后再利用空间向量描述空间直线,平面间的平行,垂直关系,用空间向量解决空间距离、夹角问题,让学生进一步体会用空间向量解决立体几何问题的思想和方法.本章共分为四部分:空间向量及其运算、空间向量基本定理、空间向量及其运算的坐标表示、空间向量的应用.“空间向量及其运算”是本章的基础,主要包括空间向量的基本概念和基本运算.由于空间向量的概念和运算与平面向量的概念和运算具有一致性,因此,教科书注意引导学生与平面向量及其运算作类比.让学生经历向量由平面向空间推广的过程.在展开空间向量及其运算内容时,教科书同步安排了利用空间向量解决相关的简单立体几何问题的实例“空间向量基本定理”揭示出空间任何一个向量都可以用三个不共面的向量唯一表示,因此空间中三个不共面的向量就构成了三维空间的一个“基底”.这为几何问题代数化奠定了基础.为了突出空间向量基本定理的基础地位,教科书将这一内容单设一节,不仅学习空间向量基本定现,还应用向量方法解决立体几何中的一些问题.这种安排不仅可以突出空间向量基本定理在本章内容中承上启下的作用,而且可以使学生更好地掌握用空间向量解决立体几何问题的基本方法—“基底法”,为后续学习空间向量及其运算的坐标表示奠定坚实基础.“空间向量及其运算的坐标表示”主要包括空间直角坐标系和空间向量运算的坐标表示.其中,空间直角坐标系是空间向量运算坐标表示的基础,对于空间直角坐标系的编排,基于使本章内容逻辑主线更加清晰的考虑,教科书选择了利用空间任意给定的一点和一个单位正交基底建立空间直角坐标系的方法,这与原教科书从立体几何知识出发建立空间直角坐标系相比有较大不同.由于空间向量运算的坐标表示与平面向量运算的坐标表示类似,因此,对于空间向量运算的坐标表示的编排,教科书采用类比方法,引导学生经历由平面推广到空间的过程.“空间向量的应用”主要是利用向量方法解决简单的立体几何问题,包括用空间向量描述空间直线、平面间的平行、垂直关系,证明直线、平面位置关系的判定定理,用空间向量解决空间距离、夹角问题等,向量方法是这部分的重点.为了使学生掌握向量方法,教科书注意以典型的立体几何问题为例,让学生体会向量方法在解决立体几何问题中的作用,并引导学生自己归纳用向量方法解决立体几何问题的“三步曲”,同时,教科书还注意引导学生归纳向量法、综合法与坐标法的特点,根据具体问题的特点选择合适的方法.为了拓展学生的知识面,本章还安排了“阅读与思考向量概念的推广与应用”,把二维、三维向量推广为高维向量,并通过例子说明高维向量的应用.学有余力的学生可以学习这个阅读材料,将空间向量的有关性质推广到,维向量空间,并解决一些简单的实际问题.根据以上分析,本章知识结构如下:空间向量及其运算、空间向量基本定理、空间向量及其运算的坐标表示和立体几何中的向量方法是本章的重点.用向量方法解决立体几何中的问题,需要综合运用向量知识和其他数学知识,通过建立立体图形与空间向量之间的联系,把立体几何问题转化为向量问题,这对学生的直观想象、数学运算、逻辑推理等数学学科核心素养要求较高,是教学的难点.对于立体几何中的向量方法,要让学生在解决具体问题的基础上,归纳概括出用空间向量解决立体几何中的问题的一三步曲”,并在解决立体几何中的问题时不断体会、理解进而掌握向量方法,从而突破难点.二、本章编写思考1.关注内容的联系性和整体性,构建本章的研究框架与必修“平面向量及其应用”一样,本章也是《课程标准(2021年版)》中几何与代数主线的内容.空间向量既是代数研究的对象,也是几何研究的对象,是沟通几何与代数的桥梁.本章的内容安排充分考虑空间向量的这种联系性、突出几何直观与代数运算之间的融合,通过形与数的结合.感情数学知识之间的关联,加强对数学整体性的理解,与平面向量一样,空间向量研究的“暗线”也是向量空间理论.空间向量的概念、速度等为背景,抽象空间向量的概念,定义空间向量的加法、数乘等线性运算,并给出线性运算满足的运算性质,这时空间中的向量所组成的集合就构成了一个实数域上的向量空间,进一步地,如果在这个向量空间里定义“数量积”运算并给出其性质,那么这个向量空间就是一个有度量概念的欧氏向量空间,欧氏空间中空间向量的加法、数乘、数量积等运算建立了空间向量与立体几何中的位置关系与度量问题之间的联系.一般地,在构建一个向量空间后,通常会研究这个向量空间的一般规律.具体到空间向量,就是研究空间向量基本定理、根据空间向量基本定理,这个向量空间可以由三个线性无关的向量生成.这为空间向量的运算化归为数的运算奠定了基础.这样,空间任意一个向量都可以表示成三个不共面向量的线性运算,在用空间向量解决立体几何问题的过程中,这种表示发挥了“基本”作用.从空间向量基本定理出发,选定空间中的任意一个定点O,并给定一个单位正交基底{i..},分别过点O作平行于向量i..的数轴,就可以建立由{O:i,,}确定的空间直角坐标系.在解决立体几何问题时,通过建立空间直角坐标系,可以把空间向量及其运算转化为数及其运算,从而可以将几何问题完全“代数化”,得到用空间向量解决立体几何问题的“坐标法”.立体几何中的向量方法表现为如下的“三步曲”:为了用空间向量解决立体几何问题,首先要把点、直线、平面等组成立体图形的要素用向量表示,使其成为可以运算的对象,将几何问题转化为向量问题;进而利用空间向量的运算,研究空间直线,平面间的平行,垂直等位置关系以及距离、夹角等度量问题;最后再利用向量运算的几何意义,将运算结果“翻译”成相应的几何结论,从而得到几何问题的解决.基于以上分析,教科书构建了“空间向量与立体几何”的如下研究框架:背景一空间向量的概念一空间向量的运算及其性质空间向量基本定理、空间直角坐标系一空间向量及其运算的坐标表示一应用2.类比平面向量研究空间向量的概念及其运算,关注其中维数带来的变化平面向量与空间向量都属于向量,平面向量是二维向量,空间向量是三维向量,两者有密切的联系.空间向量是平面向量的推广,两者除维数不同外,在概念,运算及其几何意义,坐标表示等方面具有一致性;平面向量基本定理与空间向量基本定理在形式上也具有一致性;利用空间向量解决立体几何问题,是利用平面向量解决平面几何问题的发展,主要变化是维数的增加,讨论对象由二维图形变为三维图形,基本方法都是将几何问题用向量形式表示,通过向量的运算,得出相应几何结论.由于平面向量和空间向量具有相同的线性运算性质.在构建空间向量及其线性运算的结构体系时,我们把空间向量及其线性运算的内容进行了集中处理,相关概念和线性运算性质通过类比平面向量的方式呈现.这样.即使教科书在局部范围内整体性更强,也使知识的纵向联系更加紧密.同样,空间向量的坐标运算与平面向量的坐标运算具有类似的运算法则.因此,教科书通过问题“有了空间向量的坐标表示,你能类比平面向量的坐标运算,得出空间向量运算的坐标表示并给出证明吗?”引出空间向量运算的坐标表示,空间向量与平面向量的差异主要由其维数引起,对此教科书也给予了充分关注.例如,在证明空间向量线性运算的结合律时,通过问题“证明结合律时,与证明平面向量的结合律有什么不同?”引导学生思考向量从平面推广到空间时,研究对象维数的变化对运算律的证明带来的影响,这样处理,也使学生在平面向量的基础上进一步深入理解空间向量.3.关注空间向量与立体几何知识间的联系空间向量体系的建立需要立体几何的基本知识,反过来,立体几何中的问题可以用向量方法解决.因此,我们说空间向量与立体几何间有着天然的联系.“空间向量与立体几何”属于“几何与代数”内容主线,课程标准设计这条主线的一个基点是:让学生知道如何用代数运算解决几何问题,这是现代数学的重要研究手法.例如,教科书在定义共面向量时,通过画出向量与平面平行的立体图形帮助学生建立概念;在研究如何确定点的坐标和向量的坐标时,注意引导学生借助几何直观进行研究,并根据直线和平面垂直的判定定理解释其中的道理,等等这些安排都凸显教科书在构建向量体系时对立体几何的基本知识的重视.又如,在空间向量的数量积运算后,教科书安排了证明直线与平面垂直的判定定理以及其他一些简单的立体几何问题;在空间向量基本定理后,安排了证明直线与直线垂直或平行以及求两条直线所成角的余弦值等简单立体几何问题;在完成空间向量体系的构建后,安排了运用空间向量研究空间直线、平面的位置关系和距离、夹角等度量的问题,这些安排都体现了“让学生知道如何用代数运算解决几何问题”的设计意图,为学生后续学习打下了基础.4.突出用向量方法解决立体几何问题向量方法是解决几何问题的常用方法.平面几何讨论的是平面上的点、直线等元素,它们可以与平面向量建立联系.由于平面向量可以表示平面上直线之间的平行,垂直关系以及两条直线夹角的大小,因此许多平面几何问题可以转化为平面向量问题,通过平面向量的运算得出几何结论.类似地,立体几何所讨论的是三维空间中的点、直线、平面等元素,由于它们可以与空间向量建立联系,许多立体几何问题可以转化为空间向量问题,通过空间向量的运算得出几何结论,解决这些问题,主要运用向量方法.。
【新教材人教A版数学选择性必修第一册全册知识点总结
【新教材人教A 版数学选择性必修第一册全册知识点总结第一章 空间向量与立体几何要点1 共线、共面向量基本定理 1.共线向量基本定理对任意两个空间向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 推论:若存在实数t ,使OP →=OA →+tAB →=(1-t )OA →+tOB →(O 为空间任意一点),则P ,A ,B 三点共线.2.共面向量基本定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则满足向量关系式OP →=xOA →+yOB →+zOC →(其中x +y +z =1)的点P 与点A ,B ,C 共面.要点2 空间向量数量积的应用(1)a ⊥b ⇔a·b =0,此结论一般用于证明空间中的垂直关系. (2)|a |2=a 2,此结论一般用于求空间中线段的长度. (3)cos 〈a ,b 〉=a·b|a ||b |,此结论一般用于求空间角的问题. (4)|b |cos 〈a ,b 〉=a·b|a |,此结论一般用于求空间中的距离问题. 要点3 空间向量在立体几何中的应用设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则线线平行 l ∥m ⇒a ∥b ⇔a =k b ,k ∈R 线面平行 l ∥α⇒a ⊥u ⇔a ·u =0 面面平行 α∥β⇒u ∥v ⇔u =k v ,k ∈R 线线垂直 l ⊥m ⇔a ⊥b ⇔a·b =0 线面垂直 l ⊥α⇔a ∥u ⇔a =k u ,k ∈R 面面垂直 α⊥β⇔u ⊥v ⇔u ·v =0 线线夹角l ,m 的夹角为θ,cos θ=|a·b ||a ||b |线面夹角l,α的夹角为θ,sin θ=|a·u| |a||u|面面夹角α,β的夹角为θ,cos θ=|u·v| |u||v|注意:①线线夹角、线面夹角、面面夹角的范围都为0≤θ≤π2;②二面角的范围为[0,π],解题时应具体分析二面角是锐角还是钝角.第二章直线和圆的方程要点1直线的方程已知条件方程适用范围点斜式点P0(x0,y0)和斜率k y-y0=k(x-x0)斜率存在,即适用于与x轴不垂直的直线斜截式斜率k和直线在y轴上的截距为by=kx+b两点式点P1(x1,y1)和P2(x2,y2)y-y1y2-y1=x-x1x2-x1斜率存在且不为0,即适用于与两坐标轴均不垂直的直线截距式直线在x轴上的截距为a和直线在y轴上的截距为bxa+yb=1斜率存在且不为0,直线不过原点,即适用于不过原点且与两坐标轴均不垂直的直线一般式Ax+By+C=0(A,B不同时为0)所有直线要点3 平面上的距离公式(1)任意两点间的距离:若P 1(x 1,y 1),P 2(x 2,y 2),则|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2. (2)点到直线的距离:点P 0(x 0,y 0)到直线Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行直线间的距离:直线Ax +By +C 1=0,Ax +By +C 2=0(其中A 与B 不同时为0,且C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2. 要点4 圆的方程 1.圆的标准方程圆心为(a ,b ),半径为r (r >0)的圆的标准方程为(x -a )2+(y -b )2=r 2. 2.圆的一般方程当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程,圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径为D 2+E 2-4F 2.3.求圆的方程的方法(1)几何性质法:利用圆的任意弦的垂直平分线过圆心求出圆心,再求圆的方程.(2)待定系数法:设出圆的标准方程(条件与圆心或半径有关)(x -a )2+(y -b )2=r 2或一般方程x 2+y 2+Dx +Ey +F =0,利用条件求出a ,b ,r 或D ,E ,F 即可.要点5 直线与圆的位置关系 1.直线与圆的位置关系的判定方法关系 相交 相切 相离 几何法 d <r d =r d >r 代数法Δ>0Δ=0Δ<0说明:d 后所得一元二次方程的根的判别式.2.求弦长的方法(1)利用垂径定理:已知半径r 、弦心距d 、弦长l ,则d 2+⎝ ⎛⎭⎪⎫l 22=r 2.(2)利用弦长公式:联立直线与圆的方程,消元得到关于x (或y )的一元二次方程,利用根与系数的关系得到x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2),则弦长为1+k 2|x 1-x 2|⎝⎛⎭⎪⎫或1+1k 2|y 1-y 2|.3.圆的切线方程(1)经过圆x 2+y 2=r 2上一点P (x 0,y 0)的切线方程为x 0x +y 0y =r 2.(2)经过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)经过圆x 2+y 2+Dx +Ey +F =0上一点P (x 0,y 0)的切线方程为x 0x +y 0y +D ·x +x 02+E ·y +y 02+F =0.4.求切线方程的方法若切线斜率存在,记为k ,且不为0.(1)几何法:利用圆心到直线的距离等于半径,求出k ,即得切线方程. (2)代数法:将切线方程与圆的方程联立,消元得一元二次方程,令Δ=0,求出k ,即得切线方程.注意:过圆外一点的切线有两条,若解出的k 值唯一,则应检验是否有一条与x 轴垂直的切线.要点6 圆与圆的位置关系 位置关系 外离 外切 相交 内切 内含 几何法 d >R +r d =R +r R -r <d <R +rd =R -r d <R -r 代数法Δ<0Δ=0Δ>0Δ=0Δ<0后所得的一元二次方程的根的判别式.由于利用代数法求出Δ<0或Δ=0后两圆的位置关系仍不明确,因此一般利用几何法判断两圆的位置关系.第三章 圆锥曲线的方程要点1 椭圆、双曲线、抛物线的比较 椭圆 双曲线 抛物线 标准方程x 2a 2+y 2b 2=1(a >b >0)x 2a 2-y 2b 2=1(a >0,b >0)y 2=2px (p >0)几何图形集合表示{M ||MF 1|+|MF 2|=2a ,2a >|F 1F 2|>0}{M |||MF 2|-|MF 1||=2a ,0<2a <|F 1F 2|} {M ||MF |=点M 到直线l 的距离} 焦点 F 1(-c ,0),F 2(c ,0) F 1(-c ,0),F 2(c ,0) F ⎝ ⎛⎭⎪⎫p 2,0 范围-a ≤x ≤a ,-b ≤y ≤b|x |≥a ,y ∈Rx ≥0,y ∈R顶点A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )A 1(-a ,0),A 2(a ,0) O (0,0)中心 原点(0,0) 原点(0,0) 无 离心率 0<e =ca <1 e =c a >1 e =1 通径长2b 2a2b 2a2p焦半径|MF 1|=a +ex M ,|MF 2|=a -ex M |MF 1|=a +ex M ,当点M 在右支上时,|MF 2|=-a +ex M ; 当点M 在左支上时,|MF 1|=-a -ex M , |MF 2|=a -ex M|MF |=p2+x M要点2 椭圆、双曲线的焦点三角形的相关结论 1.椭圆设F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,∠PF 1F 2=α,∠PF 2F 1=β,∠F 1PF 2=θ.则(1)当且仅当a 2≥2b 2时,椭圆上存在以P 为直角顶点的直角三角形,其中,当a 2=2b 2时,直角顶点为短轴端点;(2)离心率e =ca =1-b 2a 2,e =sin θsin α+sin β;(3)|PF 1|·|PF 2|=2b 21+cos θ,S △PF 1F 2=b 2tan θ2.2.双曲线设F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上一点,∠PF 1F 2=α,∠PF 2F 1=β,∠F 1PF 2=θ.则(1)离心率e =ca =1+b 2a 2,e =sin θ|sin α-sin β|;(2)|PF 1|·|PF 2|=2b 21-cos θ,S △PF 1F 2=b 2tan θ2.要点3 抛物线焦点弦的相关结论已知F 是抛物线y 2=2px (p >0)的焦点,PQ 为过焦点F 的弦,其中P (x 1,y 1),Q (x 2,y 2),且弦PQ 所在直线的倾斜角为θ.则(1)焦点弦长|PQ |=x 1+x 2+p ,且以焦点弦为直径的圆和准线相切; (2)P ,Q 的横坐标之积、纵坐标之积均为定值:x 1x 2=p 24,y 1y 2=-p 2;(3)|PF|=p1-cos θ,|FQ|=p1+cos θ,从而|PQ|=2psin2θ,1|PF|+1|FQ|=2p,S△OPQ=p22sin θ.。
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与共线的单位向量为a±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点2篇
空间向量与立体几何知识点2篇第一篇:空间向量一、空间向量的定义空间向量是指在空间内有确定的方向和长度的物理量,用有向线段表示。
空间向量与平面向量一样,都可以进行加、减、数乘等运算。
但是因为空间具有三维性,空间向量还可以进行叉乘运算。
二、空间向量的表示方法空间向量通常用字母表示,例如a、b、c,其中a表示一个具有方向和长度的空间向量,因此可以表示为:a = (a1, a2, a3)其中,a1、a2、a3分别表示向量a在x、y、z三个方向上的分量。
除了分量表示法外,还可以使用点表示法表示空间向量。
例如,对于空间中的两个点A和B,它们之间的向量可以表示为:AB = (xB – xA, yB – yA, zB – zA)其中,xA、yA、zA表示点A的坐标,xB、yB、zB表示点B的坐标。
三、空间向量的运算1. 加法两个空间向量a和b的加法就是将它们的分量分别相加,表示为:a +b = (a1 + b1, a2 + b2, a3 + b3)2. 减法两个空间向量a和b的减法就是将它们的分量分别相减,表示为:a -b = (a1 - b1, a2 - b2, a3 - b3)3. 数乘将一个空间向量a乘以一个实数k的结果,即为向量的长度扩大了k倍,方向不变,表示为:ka = (ka1, ka2, ka3)4. 点乘两个空间向量a和b的点乘结果是一个实数,表示为:a·b = a1b1 + a2b2 + a3b3点乘运算满足交换律和结合律。
5. 叉乘两个空间向量a和b的叉乘结果是另一个向量c,表示为:c = a × bc所表示向量的长度等于a和b所夹平行四边形的面积,方向垂直于a和b所在的平面,符合右手定则。
叉乘运算满足反交换律。
四、空间向量的应用空间向量在物理、工程、计算机图形等领域中都有广泛的应用,例如在物理学中,对于刚体的力和力矩的表示就需要用到空间向量。
在计算机图形中,空间向量的叉乘用来计算表面法向量,从而实现渲染效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章空间向量与立体几何
本章综述
本章主要包含了“空间向量及其运算”和“空间向量的应用”这两个方面的内容.本章的重点是空间向量的正交分解及其坐标表示,空间向量的线性运算及其坐标表示,还有空间向量的数量积及其坐标表示.难点是直线的方向向量与平面的法向量和用向量方法解决线线、线面、面面的夹角的计算问题.
用空间向量处理立体几何问题,是解决三维空间中图形的位置关系与度量问题的一个十分有效的工具.在本章中,将在学习平面向量的基础上,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题.在学习本章知识时应了解空间向量的概念,空间向量的基本定理及其意义;理解直线的方向向量与平面的法向量.能用向量语言表述线线、线面、面面的垂直、平行关系.能用向量方法证明有关线、面位置关系的一些定理;并且能通过数学实例体会向量方法在研究几何问题中的作用,能灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.用联系的观点看问题,可以把平面向量与空间向量联系起来类比学习.把现实生活中的三维图形与空间向量联系起来,从中找到知识的挂靠点,这样容易理解新知识,同时也体现联系的观点,为树立辩证唯物主义科学的世界观打下基础.
由于空间模型广泛用于日常生活中,空间想象能力、数形结合思想、转化能力、运算能力在本章学习中都得到了很好的锻炼,在学习过程中要密切联系实际模型,多主动参与想象,充分发挥自己的主体地位,真正调动学习的积极性.。