考研数学知识体系总结

考研数学知识体系总结
考研数学知识体系总结

考研数学知识体系总结: 一 函数极限及连续 1函数概念

如何判断两个函数相等:定义域 对应法则都相同 2函数的几何性质:

奇偶性 f (-x )=f (x )为偶函数,f (-x )=-f (x )为奇函数。 周期性f (x+t )=f (x )为以t 为周期的周期函数。

有界性 y= f (x )在数集X 上有定义即 x 属于X ,有| f (x )|< m ,则有上界。 3常见初等函数 幂指对三反

4隐函数 分段函数 反函数 5 极限的性质

唯一性 保号性 有界性 6 极限存在的判别法则

夹逼定理 g(x)≤f(x)≤h(x) 且g(x), h(x)极限等于A 则f (x )极限等于A 。 单调有界数列必有极限 (归纳法) 7计算极限的方法 等价无穷小:

当x→0,且x≠0,则

x~sinx~tanx~arcsinx~arctanx; x~ln(1+x)~(e^x-1); (1-cosx)~x*x/2; [(1+x)^n-1]~nx; loga(1+x)~x/lna; a 的x 次方~xlna;

(1+x)的1/n 次方~1/nx(n 为正整数); 注:^ 是乘方 洛必达法则 泰勒公式

两个重要极限: 多项式: 8连续

闭区间上左极限等于右极限等于函数值 9间断点

(1)第一类间断点:左右界限存在不相等,跳跃;左右极限存在且相等,可去 (2)第二类间断点:无穷间断地;震荡间断点 10无穷大无穷小的比较

11闭区间上连续函数的性质 最大值最小值 零点定理 介值定理 二导数与微分

1导数定义式:题中已知在某点处导数,用定义式做 2求导法则()

/

x

μ=1x μμ- ()/

x a =ln x a a ()/

x e =x e

()

/

log a x =

1ln x a ()/ln x =1x

()/

sin x =cos x

()

/

cos x =sin x - ()/tan x =2sec x ()/

cot x =2csc x -

()

/

sec x =sec tan x x ()/csc x =csc cot x x - ()/

arcsin x

=

()/

arccos x

= ()/

arctan x =

211x + ()/

arccot x =2

11x

-+ ()/

uv =//

u v uv + /

u v ??= ???

//

2

u v uv v - 3复合函数 隐函数求导

4高阶导数:莱布尼兹公式:)()(0

)(k k n n

k k

n

v u C

v u -=∑=

?

)

0(ln )()1()(>?=a a a a n x n x )

2

sin()(sin )2()(π

?+=n kx k kx n n

)2

cos()(cos )3()(π

?+=n kx k kx n n n n x n x -+--=ααααα)1()1()()4()(

n

n n x n x )!

1()1()(ln )5(1

)(--=- 5函数的微分公式:

1d()d x x x μμμ-= d(sin )cos d x x x = d(cos )sin d x x x =- 2d(tan )sec d x x x = 2d(cot )csc d x x x =- d(sec )sec tan d x x x x =

d(csc )csc cot d x x x x =- d()ln d x x a a a x = d(e )e d x x x =

1d(log )d ln a x x x a = 1d(ln )d x x x =

d(arcsin )x x =

d(arccos )x x

=

21d(arctan )d 1x x x =

+ 21

d(arccot )d 1x x x =-+

三微分中值定理

(1)罗尔定理罗尔(Rolle )定理 如果函数f (x )在 闭区间[a,b]上连续, 在开区间(a,b)内可导, 且在区间端点的函数值相等,即f(a)=f(b),那末在(a,b)内至少有一点§(a <§<b),使得函数f (x )在该点的导数等于零, 即f ’(§)=0

(2)拉格朗日拉格朗日(Lagrange )中值定理 如果函数f(x)在

闭区间],[b a 上连续, 在开区间(a,b)内可导,那末在(a,b)内至少有一点)(b a <<ξξ,使等式

))(()()('a b f a f b f -=-ξ 成立.

(3)柯西中值柯西(Cauchy )中值定理 如果函数)(x f 及)(x F

在闭区间],[b a 上连续,在开区间),(b a 内可导,且)('

x F 在),(b a 内每一点处均不为零,那末在),(b a 内至少有一点)(b a <<ξξ,使等式

)

()

()()()()(''ξξF f a F b F a f b f =--成立.

(4)洛必达法则 基本型 0/0 ∞/∞ 型

(5)泰勒公式: Taylor 中值定理:如果函数)(x f 在0x 的某区间),(b a 内具有直到)1(+n 阶的导数,则当),(b a x ∈时,)(x f 可表示为)(0x x -的一个多项式)(x P n 和一个余项

)(x R n 之和:

)()(!

)()(!2)())(()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=

6函数的单调性与极值 f (x )一阶导数>0 函数单调增加 f (x )一阶导数<0 函数单调

减少 左增右减的点是极大值点 左减右增的点是极小值点

7函数图像的凹凸性及拐点:f (x )二阶导数=0 是驻点,f (x )二阶导数>0 图像为凹 极小值 f (x )二阶导数<0 图像为凸极大值 只有当驻点左右凹凸性改变了 才是拐点 8函数的渐近线

斜渐近线: k =()

lim

x f x x

→∞

水平 垂直 b =()lim x f x kx →∞-???

? 9图像描述

10 最大值最小值

极值点与端点值比较 最大的为最大值 最小的为最小值 四不定积分 1不定积分公式

kdx =?kx x dx μ

=?11x μμ++ dx

x

=?ln x

2

1dx

x =+?arctan x =arcsin x cos xdx =?sin x sin xdx =?cos x - 2sec xdx =?tan x 2

c cs xdx =?cot x -

sec tan x xdx =?sec x csc cot x xdx =?csc x - x e dx =?x

e

x

a dx =? ln x

a a tan xdx =?ln cos x - cot xdx =?ln sin x

sec xdx =?ln sec tan x x + csc xdx =?ln csc cot x x - 22

1dx x a =+?

1arctan x

a a

221dx x a =-?1ln 2x a a x a -+ =ln x

dx =arcsin

x

a

2积分方法:

(1)第一类换元定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则

C x F C u F du u f dx x x f +?=+==?'???)]([)()()()]([

第一换元法是复合函数求导法则的逆运算,

)]([)(x d dx x ??='也是微分运算的逆运算,目的是将dx x )(?'凑成中间变量u 的微分,转化成对中间变量的积分。 (2)第二类换元 第二换元法中的三角代换及根式代换

1:被积函数中含有22x a -(0>a ),可令t a x sin =(并约定]2

,2[π

π-

∈t )则

t a x a cos 22=-;tdx a dx cos =可将原积分化作三角有理函数的积分分部积分

2被积函数中含有

)0(2

2>+a x a 可令 t a x t a n = 并约定)2

,2(π

π-∈t ,则

t a x a s e c 22=+;tdt a dx 2sec = ;可将原积分化为三角有理函数的积分,

3不定积分的性质

1 ?

?=dx x f k dx x kf )()( 2 ???±=

±dx x g dx x f dx x g x f )()()]()([

3 被积分函数中含有22a x - )0(>a ,当a x ≥时,可令t a x sec =,并约定)2,

0(π

∈t ,

则t a a x tan 22=-,t t a dx tan sec =,当a x -≤时,可令x u -=,则a u ≥,可将原积

分化为三角有理函数的积分。

(3)分部积分法是另一个基本的不定积分法,它是由乘积的微分公式得 ?

?-=vdu uv udv

此公式就是分部积分公式。若求udv 较难,而求vdu 较易,可用分部积分公式。使用分部积分法的关键是正确选择u 和v 。

五定积分

1定积分性质:性质 1 函数的和(差)的定积分等于它们的定积分的和(差),

性质2 被积函数的常数因子可以提到积分号外面,

性质3 如果将积分区间分成两部分,则在整个区间上的定积分等于这两部分区间上定积分之和,

性质4 如果在区间[a ,b]上 f (x)≡1,则

性质5 如果在区间[a ,b]上,f (x)≥0,则

性质6 设M 及m 分别是函数f(x)在外[a ,b]上的最大值及最 小值,则

性质7 (定积分中值定理) 如果函数f(x)在闭区间[a, b]上连续, 则在积分区间[a, b]

上至少存在一个点x , 使下式成立: f (x)dx = f (x )(b -a)

2反常积分(1)无穷限的反常积分

()()()()()()()lim lim b a b

a

a

b

b

a

c

c

f x dx f x dx

f x dx f x dx

f x dx f x dx f x dx

→+∞

→-∞

+∞

∞+∞

+∞-∞

===+?

????

?

?

--

(2)无界函数的反常积分(瑕积分)

()()()()()()()()()000

lim lim lim lim b

b a a b

b

a a b

c

b

a

c

c b

a

c x b x a x c f x dx f x dx f x dx f x dx

f x dx f x dx f x dx

f x dx f x dx

εεεηε

ε

ε

η

++

++→→→→-+-+======+=+?

?

??

????

?

a

是无穷间断点: 是无穷间断点:

是无穷间断点:

3变上限积分求导:当x 在],[b a 上变动时,对应于每一个x 值,积分?

x

a

t t f d )(就有一个确

定的值,

?

x

a

t t f d )(因此是变上限的一个函数,记作

b

a

f (x ) dx =?c

a

f (x ) dx + ?b

c

f (x ) dx .?

b

a

f (x ) dx =?

c a f (x ) dx +

b

c

f (x ) dx .b

a

k f (x ) dx =k ?

b a f (x ) dx .?b a

k f (x ) dx =k b

a f (x ) dx .

b

a

[f (x ) ± g (x )]dx =?b

a

f (x ) dx ± ?b

a

g (x ) dx .?

b

a

[f (x ) ± g (x )]dx =?b a f (x ) dx ± b

a

g (x ) dx . m (b -a ) ≤

?

b

a

f (x )dx ≤ M (b -a ) (a

?b

a

f (x ) dx ≥0 (a < b ).

?b

a 1 dx =

?

b

a

dx = b -a .

?

b

a

?≤≤=x

a

b x a t t f x )( d )()(Φ,

称函数)(x Φ为变上限的定积分. 4奇偶函数的积分性质 5周期函数的积分性质

6 牛顿莱布尼茨公式:设函数)(x f 在闭区间],[b a 上连续,如果)(x F 是)(x f 的任意一个原函数,则

)()()(d )(a F b F x F x x f b

a

b

a -==?

以上公式称为微积分基本定理,又称牛顿–莱布尼茨公式. 六多元函数微分法及应用 (一)偏导和全微分 1二元连续函数性质

(1) 二元连续函数和差积仍为连续函数 (2) 二元连续函数复合函数也是连续函数

(3) 在闭区间d 上的连续函数,在区域d 是必有最大值最小值

(4) 在闭区间d 上的连续函数,在区域d 上必取得介于最大值最小值间的任何值

2偏导数:函数 z = f ( x , y ) 的两个偏导数

3全微分:如果二元函数 z = f (x , y ) 在点 (x 0 , y 0) 处的两个偏导数存在且连续,称

为函数z = f (x , y ) 在点 (x 0 , y 0)的全微分,

4多元复合函数的导数:

设函数),(v u f z =,),(y x u u =,),(y x v v =则

x

v

v z x u u z x z ????+

????=?? y v v z y u u z y z ????+????=?? 这个公式称为求复合函数偏导的链式法则。

5隐函数微分法

6高阶偏导:

),()(22y x f x

z

x z x xx =??=????,),()(2y x f x y z x z y xy =???=???? ),()(22y x f y

z

y z y yy =??=????,),()(2y x f y x z y z x yx =???=

???? 7二阶连续偏导:x y z ???2y

x z

???=2 对一元函数,可微与可导是等价的,即:可微?可导。但对二元函数,可微与偏导存在并

),,(y x f x z x '=??),,(y x f y z y '=??=d z dy y

z dx x z ??+??

不等价,即:可微?偏导存在,反之未必。

(二)多元函数微分方法的应用 1无条件极值:

2条件极值—拉格朗日函数 3计算方法: (三)二重积分

1几何意义:二重积分的值等于以区域d 为底,一曲面z=f(x,y)为顶的曲顶直柱体的体积。 2性质:(1).被积函数中的常数因子可以提到二重积分符号外面去.

(2).有限个函数代数和的二重积分等于各函数二重积分的代数和.

(3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末: (4).如果在(σ)上有f(x,y)≤g(x,y),那末:

(5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使

其中σ是区域(σ)的面积.

3计算:

(1) 交换积分次序

(2) 交换直角坐标与极坐标: (3) 二重积分的对称性:奇偶性 (4) 分段二重积分 七 无穷级数 (一)数项级数 1正项级数

比较判别法:定理1(比较判别法) 两个正项级数

1

n n u ¥

=?

和1

n n v ¥

=?,且n n u v £,则

⑴若级数1

n n v ¥

=?

收敛,则级数1

n n u ¥

=?也收敛;⑵若级数1

n n u ¥

=?发散,则级数1

n n v ¥

=?也发散.

极限比较判别法:设1n n u ¥=?和1n n v ¥

=?都是正项级数,若lim n

n n u l v =,则级数1n n u ¥=?和1

n n v ¥

=?的敛散性相同.

????=D

D

r r r r f y x f .

d d )sin ,cos (d ),(θθθσ?

??==θ

θ

sin cos r y r x

比值判别法:设

1

n n a ¥

=?

为正项级数,且存在某正整数0N 及常数()01l l <<()i 若对一切

0n N >,成立不等式1

n n a l a +£,则级数1n n a ¥

=?收敛.()ii 若对一切0n N >,成立不等式1

1n n a a +3,则级数1

n n a ¥

=?发散. 2调和级数 3 P 级数

4绝对收敛和条件收敛 (二)幂级数

1收敛半径和区间: 2性质:

3收敛域求法: (1) 缺项 (2) 不缺项

函数展 幂级数—泰勒级数 八常微分方程和差分方程 1一阶微分方程

(1) 可分离变量:分离变量,两边求积分,根据已知求出常数c (2) 齐次微分方程:设 U=y/x (3) 一阶线性微分方程:

(4) 一阶线性微分方程解的结构:非齐次通解=齐次通解+非齐次特解 2二阶常系数微分方程

(1) 是二阶线性齐次方程

也是该方程的解.

特征方程 有两个相异实根r1 r2因此方程的通解为 特征方程有两个相等实根r1 =r2因此原方程的通解为 特征方程有一对共轭复根,因此原方程的通解为 (2) 二阶常系数线性非齐次: Y (x ) 是相应齐次方程的通解,则非

齐次方程通解为: 3差分方程:

(1)一阶常系数线性差分方程的一般形式为

)(1t f Py y t t =-+ 其中, P 为非零常数, )(t f 为已知函数. 如果,0)(=t f 则方程变为

01=-+t t Py y

(2) 二阶常系数线性差分方程的一般形式:

)(12t f by ay y t t t =++++

042<-q p 042=-q p )(),(21x y x y 若函数0=+'+''qy y p y )()(2211x y C x y C y +=则02=++q r p r 042>-q p x

r x r e C e C y 2121+=x

r e x C C y 1

)(21+=)

sin cos (21x C x C e y x ββα+=)(x f qy y p y =+'+'')

(*)(x y x Y y +=

其中b a ,均为常数, 且,0≠b )(x f 是已知函数. 当0)(=x f 时, 方程变为

012=++++t t t by ay y

(3)二阶常系数线性齐次差分方程的通解

特征方程 02=++b a λλ

考研数学二公式高数线代(费了好大的劲)技巧归纳

一、常用的等价无穷小 当x →0时 x ~sin x ~tan x ~arcsin x ~arctan x ~ln (1+x ) ~ e x -1 a x -1~x ln a (1+x )α-1 ~ αx (α为任意实数,不一定是整数) 1-cos x ~ 2 1x 2 增加 x -sin x ~ 61x 3 对应 arcsin x –x ~ 61x 3 tan x –x ~ 31x 3 对应 x - arctan x ~ 31 x 3 二、利用泰勒公式

e x = 1 + x + +!22x o (2 x ) ) (33 o !3sin x x x x +-= cos x = 1 – +!22x o (2 x ) ln (1+x )=x – +2 2x o (2x ) a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学考研知识点总结

高等数学考研知识点总结 一、考试要求 1、理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形,了解初等函数的概念。 5、理解(了解)极限的概念,理解(了解)函数左、右极限的概念以及函数极限存在与左、右极限之间的关系。 6、掌握(了解)极限的性质,掌握四则运算法则。 7、掌握(了解)极限存在的两个准则,并会利用它们求极限,掌握(会)利用两个重要极限求极限的方法。 8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。1

1、掌握(会)用洛必达法则求未定式极限的方法。 二、内容提要 1、函数(1)函数的概念: y=f(x),重点:要求会建立函数关系、(2)复合函数: y=f(u), u=,重点:确定复合关系并会求复合函数的定义域、(3)分段函数: 注意,为分段函数、(4)初等函数:通过有限次的四则运算和复合运算且用一个数学式子表示的函数。(5)函数的特性:单调性、有界性、奇偶性和周期性* 注: 1、可导奇(偶)函数的导函数为偶(奇)函数。特别:若为偶函数且存在,则 2、若为偶函数,则为奇函数;若为奇函数,则为偶函数; 3、可导周期函数的导函数为周期函数。特别:设以为周期且存在,则。 4、若f(x+T)=f(x), 且,则仍为以T为周期的周期函数、 5、设是以为周期的连续函数,则, 6、若为奇函数,则;若为偶函数,则 7、设在内连续且存在,则在内有界。 2、极限 (1) 数列的极限: (2) 函数在一点的极限的定义: (3)

考研数学知识点总结

考研数学考点与题型归类分析总结 1高数部分 1.1高数第一章《函数、极限、连续》 求极限题最常用的解题方向: 1.利用等价无穷小; 2.利用洛必达法则 型和 ∞ ∞ 型直接用洛必达法则 ∞ 0、0∞、∞1型先转化为 型或 ∞ ∞ 型,再使用洛比达法则; 3.利用重要极限,包括1 sin lim = → x x x 、e x x x = + → 1 ) 1( lim、e x x x = + ∞ → ) 1(1 lim; 4.夹逼定理。 1.2高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》 第三章《不定积分》提醒:不定积分?+ =C x F dx x f) ( ) (中的积分常数C容易被忽略,而考试时如果在答案中少写这个C会失一分。所以可以这样加深印象:定积分?dx x f) (的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是?+ =C x F dx x f) ( ) (中的那个C,漏掉了C也就漏掉了这1分。 第四章《定积分及广义积分》解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章: 对于?-a a dx x f) (型定积分,若f(x)是奇函数则有?-a a dx x f) (=0; 若f(x)为偶函数则有?-a a dx x f) (=2?a dx x f ) (; 对于?20)( π dx x f型积分,f(x)一般含三角函数,此时用x t- = 2 π 的代换是常用方法。 所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利用性质0 = ?-a a奇函数、? ?= - a a a0 2偶函数 偶函数。在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1.3高数第五章《中值定理的证明技巧》 用以下逻辑公式来作模型:假如有逻辑推导公式A?E、(A B)?C、(C D E)?F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A、B、D,求证F。 为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。 正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以从中找出有用的一个。如对于证明F成立必备逻辑公式中的A?E就可能有A?H、A?(I K)、(A B) ?M等等公式同时存在,

考研数学知识点总结(不看后悔)

考研英语作文万能模板考研英语作文万能模板函数 极限数列的极限特殊——函数的极限一般 极限的本质是通过已知某一个量自变量的变化趋势去研究和探索另外一个量因变量的变化趋势 由极限可以推得的一些性质局部有界性、局部保号性……应当注意到由极限所得到的性质通常都是只在局部范围内成立 在提出极限概念的时候并未涉及到函数在该点的具体情况所以函数在某点的极限与函数在该点的取值并无必然联系连续函数在某点的极限等于函数在该点的取值 连续的本质自变量无限接近因变量无限接近导数的概念 本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限更简单的说法是变化率 微分的概念函数增量的线性主要部分这个说法有两层意思一、微分是一个线性近似二、这个线性近似带来的误差是足够小的实际上任何函数的增量我们都可以线性关系去近似它但是当误差不够小时近似的程度就不够好这时就不能说该函数可微分了不定积分导数的逆运算什么样的函数有不定积分 定积分由具体例子引出本质是先分割、再综合其中分割的作用是把不规则的整体划作规则的许多个小的部分然后再综合最后求极限当极限存在时近似成为精确 什么样的函数有定积分 求不定积分定积分的若干典型方法换元、分部分部积分中考虑放到积分号后面的部分不同类型的函数有不同的优先级别按反对幂三指的顺序来记忆 定积分的几何应用和物理应用高等数学里最重要的数学思想方法微元法 微分和导数的应用判断函数的单调性和凹凸性 微分中值定理可从几何意义去加深理解 泰勒定理本质是用多项式来逼近连续函数。要学好这部分内容需要考虑两个问题一、这些多项式的系数如何求二、即使求出了这些多项式的系数如何去评估这个多项式逼近连续函数的精确程度即还需要求出误差余项当余项随着项数的增多趋向于零时这种近似的精确度就是足够好的考研英语作文万能模板考研英语作文万能模板多元函数的微积分将上册的一元函数微积分的概念拓展到多元函数 最典型的是二元函数 极限二元函数与一元函数要注意的区别二元函数中两点无限接近的方式有无限多种一元函数只能沿直线接近所以二元函数存在的要求更高即自变量无论以任何方式接近于一定点函数值都要有确定的变化趋势 连续二元函数和一元函数一样同样是考虑在某点的极限和在某点的函数值是否相等导数上册中已经说过导数反映的是函数在某点处的变化率变化情况在二元函数中一点处函数的变化情况与从该点出发所选择的方向有关有可能沿不同方向会有不同的变化率这样引出方向导数的概念 沿坐标轴方向的导数若存?诔浦际?通过研究发现方向导数与偏导数存在一定关系可用偏导数和所选定的方向来表示即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况高阶偏导数若连续则求导次序可交换 微分微分是函数增量的线性主要部分这一本质对一元函数或多元函数来说都一样。只不过若是二元函数所选取的线性近似部分应该是两个方向自变量增量的线性组合然后再考虑误差是否是自变量增量的高阶无穷小若是则微分存在 仅仅有偏导数存在不能推出用线性关系近似表示函数增量后带来的误差足够小即偏导数存在不一定有微分存在若偏导数存在且连续则微分一定存在 极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂 极值若函数在一点取极值且在该点导数偏导数存在则此导数偏导数必为零

考研数学公式大全(考研同学必备)

考研数学公式(全) ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边,

·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A

2019考研数学知识点总结

2019考研数学三知识点总结 考研数学复习一定要打好基础,对于重要知识点一定要强化练习,深刻巩固。整合了考研数学三在高数、线性代数及概率各部分的核心知识点、考察题型及重要度。 2019考研数学三考前必看核心知识点 科目大纲章节知识点题型 高等数学函数、极限、 连续 等价无穷小代换、洛必达法则、泰勒展开式求函数的极限 函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型 一元函数微 分学 导数的定义、可导与连续之间的关系 按定义求一点处的导数,可导与连 续的关系 函数的单调性、函数的极值讨论函数的单调性、极值 闭区间上连续函数的性质、罗尔定理、拉格 朗日中值定理、柯西中值定理和泰勒定理 微分中值定理及其应用 一元函数积 分学 积分上限的函数及其导数变限积分求导问题 定积分的应用用定积分计算几何量 多元函数微 积分学 隐函数、偏导数、全微分的存在性以及它们 之间的因果关系 函数在一点处极限的存在性,连续 性,偏导数的存在性,全微分存在 性与偏导数的连续性的讨论与它们 之间的因果关系 二重积分的概念、性质及计算二重积分的计算及应用 无穷级数 级数的基本性质及收敛的必要条件,正项级 数的比较判别法、比值判别法和根式判别 法,交错级数的莱布尼茨判别法 数项级数敛散性的判别 常微分方程 一阶线性微分方程、齐次方程,微分方程的 简单应用 用微分方程解决一些应用问题 线性行列式行列式的运算计算抽象矩阵的行列式

代数 矩阵 矩阵的运算求矩阵高次幂等 矩阵的初等变换、初等矩阵与初等变换有关的命题 向量向量组的线性相关及无关的有关性质及判 别法 向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示 线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通 解 矩阵的特征值和特征向 量实对称矩阵特征值和特征向量的性质,化为 相似对角阵的方法 有关实对称矩阵的问题相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题 二次型 二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵 概率论与数理统计随机事件和 概率 概率的加、减、乘公式事件概率的计算 随机变量及 其分布 常见随机变量的分布及应用常见分布的逆问题 多维随机变 量及其分布 两个随机变量函数的分布二维随机变量函数的分布随机变量的独立性和不相关性随机变量的独立性 随机变量 的数字特征 随机变量的数学期望、方差、标准差及其性 质,常用分布的数字特征 有关数学期望与方差的计算 大数定律和 中心极限定 理 大数定理用大数定理估计、计算概率 数理统计的 基本概念 常用统计量的性质求统计量的数字特征 参数估计点估计、似然估计点估计与似然估计的应用

考研数学知识点总结

2 0 19 考研数学三知识点总结 考研数学复习一定要打好基础,对于重要知识点一定要强化练习,深刻巩固。整合了考研数学三在高数、线性代数及概率各部分的核心知识点、考察题型及重要度。 2019考研数学三考前必看核心知识点

知识点口诀,掌握解题技巧 1、函数概念五要素,定义关系最核心

分段函数分段点,左右运算要先行。 变限积分是函数,遇到之后先求导。 奇偶函数常遇到,对称性质不可忘。 单调增加与减少,先算导数正与负。 正反函数连续用,最后只留原变量。 一步不行接力棒,最终处理见分晓。 极限为零无穷 小,乘有限仍无穷小。 幂指函数最复杂,指数对数一起上。 、待定极限七类型,分层处理洛必达。 、数列极限洛必达,必须转化连续型。 、数列极限逢绝境,转化积分见光明。 、无穷大比无穷大,最高阶项除上下。 、 n 项相加先合并,不行估计上下界。 、变量替换第一宝,由繁化简常找它。 、递推数列求极限,单调有界要先证, 两边极限一 起上,方程之中把值找。 、函数为零要论证,介值定理定乾坤。 、切线斜率是导数,法线斜率负倒数。 、可导可微互等价,它们都比连续强。 、有理函数要运算,最简分式要先行。 、高次三角要运算,降次处理先开路。 、导数为零欲论证,罗尔定理负重任。 23 、函数之差化导数,拉氏定理显神通。 2、 3、 4、 5、 6、 7、 8、 9、 10 11 12 13 14 15 16 17 18 19 20 21 22

24、导数函数合(组合)为零,辅助函数用罗尔。 25、寻找En无约束,柯西拉氏先后上。 26、寻找En有约束,两个区间用拉氏。 27、端点、驻点、非导点,函数值中定最值。 28、凸凹切线在上下,凸凹转化在拐点。 29、数字不等式难证,函数不等式先行。 30、第一换元经常用,微分公式要背透。 31、第二换元去根号,规范模式可依靠。 32、分部积分难变易,弄清u、v是关键。 33、变限积分双变量,先求偏导后求导。 34、定积分化重积分,广阔天地有作为。 35、微分方程要规范,变换,求导,函数反。 36、多元复合求偏导,锁链公式不可忘。 37、多元隐函求偏导,交叉偏导加负号。 38、多重积分的计算,累次积分是关键。 39、交换积分的顺序,先要化为重积分。 40、无穷级数不神秘,部分和后求极限。 41、正项级数判别法,比较、比值和根值。 42、幕级数求和有招,公式、等比、列方程。 2019考研数学各科核心考点梳理

考研数学140分-必背公式大全

全国硕士研究生统一入学考试 数学公式大全 导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

考研数学公式大全(考研必备,免费下载)

高等数学公式篇· 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·si nβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·si nβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tan β·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tan γ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1 -2sin^2(α)

考研数学备考:概率论各章节知识点梳理.doc

考研数学备考:概率论各章节知识点梳理考研备考时间已然快要过半,还在为了备考方法焦灼?不用担心!老司机带你上车,下面由我为你精心准备了“考研数学备考:概率论各章节知识点梳理”,持续关注本站将可以持续获取更多的考试资讯! 考研数学备考:概率论各章节知识点梳理 众所周知,概率论的知识点又多又杂,需要我们系统的归类并掌握,这样才能获得高分。为此我整理了相关内容,希望对大家有所帮助。 第一部分:随机事件和概率 (1)样本空间与随机事件 (2)概率的定义与性质(含古典概型、几何概型、加法公式) (3)条件概率与概率的乘法公式 (4)事件之间的关系与运算(含事件的独立性) (5)全概公式与贝叶斯公式 (6)伯努利概型 其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,请各位研友务必重视起来。 第二部分:随机变量及其概率分布 (1)随机变量的概念及分类 (2)离散型随机变量概率分布及其性质 (3)连续型随机变量概率密度及其性质 (4)随机变量分布函数及其性质 (5)常见分布 (6)随机变量函数的分布

其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。 第三部分:二维随机变量及其概率分布 (1)多维随机变量的概念及分类 (2)二维离散型随机变量联合概率分布及其性质 (3)二维连续型随机变量联合概率密度及其性质 (4)二维随机变量联合分布函数及其性质 (5)二维随机变量的边缘分布和条件分布 (6)随机变量的独立性 (7)两个随机变量的简单函数的分布 其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视! 第四部分:随机变量的数字特征 (1)随机变量的数字期望的概念与性质 (2)随机变量的方差的概念与性质 (3)常见分布的数字期望与方差 (4)随机变量矩、协方差和相关系数 其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算。 第五部分:大数定律和中心极限定理 (1)切比雪夫不等式 (2)大数定律 (3)中心极限定理

考研数学(一)知识点汇总

1:数列极限 手册P13 1.01:求极限时候,函数中有阶乘且趋近于无穷大,要用级数法,即证明函数是收敛的(可以用根值,比值),故趋近于无穷大为0. 1.02:已知0x lim ()x f x A ->=,则()f x A α=+,0 x lim 0x α->= 1.1:奇+奇=奇,偶+偶=偶, ()==奇偶奇奇,(奇)偶,偶偶偶 1.2:f(x)为周期函数,0x =(t)dt x F f ?(),不一定是周期函数,但是f (x )如果是奇函数,这个就成立了。且为奇函 数时候。00(t)dt (t)dt x x f f -=?? 1.3:判断函数有无上下界,用绝对值放缩或导数最大最小,文登P3 1.305:奇函数的原函数一定是偶函数。 1.31:()lim ()n f x g x ->∞ =,一般把g (x )给分段 1.4:证明连续:00->0 lim[f(x +)-f(x )]x x ?? 1.5: 22sin(1)(1)sin[(1)]n n n n ππ+=-+-这个让原本不是交错级数的变成了交错级数。 1.6: xlny=xln (y-1+1),于是等价无穷小于x (y-1)前提是y 趋近于1

1.7:20f(x)-g(x),0....o x 37 式出现可以对二者使用迈克劳林,然后消去相同项,注意不能消去()文登P 1.8:测试函数: (1)x 大于0,为1,小于0为-1 (有界不收敛) (2)x=sinn ,y=1/n (x 发散,y 收敛,无穷大时xy=0) (3)x (n )在n 为奇数时为n ,为偶数时为0,y (n )反过来,xy 都是无界,但是xy=0 1.9:文登P26.1.55 P23.1.49 1.91:证连续就是要证,左值=右值=等于该点值,证可导是左导数等于右导数即可。 1.92:看到导数大于小于0的时候,不仅有递增递减,还可以写出导数的极限表达式,然后利用保号性可以通过极限分式下半部的正负性决定上半部的正负性。注意在x0的左右两个领域内,0x x -正负不一,而决定 0()()f x f x -的正负, 模拟卷1.1 1.93:对于一阶导数的方程,由一阶导数方程的24b ac -<0知道一阶导数恒大于0或者恒小于0,知原函数恒增或恒减 模拟卷1.4 1.94:不连续点求导用极限求 模拟卷3.9 2:收敛数列三性质(唯一性,有界性,保号性)手册P14 3:函数极限 手册P15

考研高数各章重点总结

一、一元函数微分学 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论; 利用洛比达法则求不定式极限; 讨论函数极值,方程的根,证明函数不等式; 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数; 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间; 利用导数研究函数性态和描绘函数图形,求曲线渐近线。 二、一元函数积分学 计算题:计算不定积分、定积分及广义积分; 关于变上限积分的题:如求导、求极限等; 有关积分中值定理和积分性质的证明题; 定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等; 综合性试题。 三、函数、极限与连续 求分段函数的复合函数; 求极限或已知极限确定原式中的常数; 讨论函数的连续性,判断间断点的类型; 无穷小阶的比较; 讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。 四、向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积; 求直线方程,平面方程; 判定平面与直线间平行、垂直的关系,求夹角; 建立旋转面的方程; 与多元函数微分学在几何上的应用或与线性代数相关联的题目。 五、多元函数的微分学 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续; 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数; 求二元、三元函数的方向导数和梯度; 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习; 多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。 六、多元函数的积分学 二重、三重积分在各种坐标下的计算,累次积分交换次序; 第一型曲线积分、曲面积分计算; 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用; 第二型(对坐标)曲面积分的计算,高斯公式及其应用; 梯度、散度、旋度的综合计算; 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。 七、无穷级数 判定数项级数的收敛、发散、绝对收敛、条件收敛;

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

考研数学数列极限内容概括及考点总结

考研数学数列极限内容概括及考点总结 来源:文都教育 数列极限的概念和判断极限存在的夹逼准则和单调有界准则也是考研数学的重要考点,下面文都考研数学教研室老师为大家总结了数列极限部分的知识和考点题型,希望对同学们有帮助。 一、数列极限 1. 数列极限的定义 设{}n a 为一数列,若存在常数A ,对任意的0>ε,总存在0>N ,当N n >时,有ε<-||A a n ,称A 为数列{}n a 的极限,或称数列 {}n a 收敛于A ,记为A a n n =∞ →lim 。 2. 收敛数列的性质 (1)收敛数列极限存在且唯一. (2)收敛数列必为有界数列. (3)收敛数列的保号性. 3. 极限存在准则 (1)夹逼准则 如果数列{}{}{},,n n n a b c 满足下列条件: 从某项起,即0n N ?∈,当0n n >时有,n n n c b a ≤≤,且A c a n n n n ==∞ →∞ →lim lim , 则A b n n =∞ →lim 。 (2)单调有界准则 单调增加(或单调减少)且有上界(或有下界)的数列{}n x 必有极限。 【注】此准则只给出了极限的存在性,并未给出极限是多少。此时一般是在判定了“极限存在”以后通过数列的递推表示,在等式两边取极限得到。 4. 重要结论

(1)若lim lim n n n n a a a a →∞ →∞ =?=. (2)lim 0lim 0 n n n n a a →∞ →∞ =?=. (3)221lim lim ,lim n n n n n n a a a a a a -→∞ →∞ →∞ =?==. 【考点一】数列极限的概念与性质 例1设 ().lim 0,n n n n n x a y y x a →∞ ≤≤-=且为常数,则数列 {}n x 和{}n y ( ) 。 (A )都收敛于a (B )都收敛,但不一定收敛于a (C )可能收敛,也可能发散 (D )都发散 例2设 (){}{} .lim 0,,n n n n n n n n x a y y x x y →∞ ≤≤-=且和 {}n a 均为数列,则lim n n a →∞ ( )。 (A )存在且等于0 (B )存在但不一定等于0 (C )一定不存在 (D )不一定存在 【考点二】(1)单调有界数列必有极限. (2)单调递增且有上界的数列必有极限,单调递增且无上界的数列的极限为+∞. (3)单调递减且有下界的数列必有极限,单调递减且无下界的数列的极限为-∞. 例1 设()()1103,31,2, n n n x x x x n +<<=-=,证明:数列{}n x 极限存在,并求此极限 例2 设 ()2 0110,20,1,2, n n n x x x x n +-<<=+=,证明:数列{}n x 极限存在,并求此极限 【考点三】夹逼准则 【思路提示】在使用夹逼准则时,需要对通项进行“缩小”和“放大”,要注意:“缩小”应该是尽可能的大,而“放大”应该是尽可能的小,在这种情况下,如果仍然“夹不住”那么就说明夹逼准则不适用,改方法。 【考点四】数列连加和的极限 例1. 求极限 111 lim 1111212n n →∞ ? ?+++ ?++++ +??

考研数学公式大全

高等数学公式篇 ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 ·三角函数恒等变形公式·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·倍角公式:si n(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三角函数的有理式积分: 22 2212211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  一些初等函数: 两个重要极限: 和差角公式: ·和差化积公式: ·正弦定理:R C c B b A a 2sin sin sin ===·余弦定理: C ab b a c cos 2222 -+= 反三角函数性质: arcctgx arctgx x x -= -= 2 arccos 2 arcsin π π 高阶导数公式——莱布尼兹(Leibniz )公式: ) () ()()2()1()(0)()() (!)1()1(!2)1() (n k k n n n n n k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+ '+==---=-∑ a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arc c os 11 )(arc sin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '2 sin 2sin 2cos cos 2cos 2cos 2cos cos 2sin 2cos 2sin sin 2cos 2sin 2sin sin β αβαβαβ αβαβαβ αβαβαβ αβ αβα-+=--+=+-+=--+=+α ββαβαβαβ αβαβ αβαβαβ αβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?= ±?±= ±=±±=±1 )(1)(sin sin cos cos )cos(sin cos cos sin )sin( x x arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x -+= -+±=++=+-==+= -= ----11ln 21) 1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)1 1(lim 1sin lim 0==+=∞→→e x x x x x x

考研高数知识总结

考研数学讲座(1) 考好数学的基点“木桶原理”已经广为人所知晓。但真要在做件事时找到自身的短处,下意识地有针对性地采取措施,以求得满意的结果。实在是一件不容易的事。 非数学专业的本科学生与数学专业的学生的最基本差别,在于概念意识。数学科学从最严密的定义出发,在准确的概念与严密的逻辑基础上层层叠叠,不断在深度与广度上发展。形成一棵参天大树。 在《高等数学》中,出发点处就有函数,极限,连续,可导,可微等重要概念。 在《线性代数》的第一知识板块中,最核心的概念是矩阵的秩。而第二知识板块中,则是矩阵的特征值与特征向量。 在《概率统计》中,第一重要的概念是分布函数。不过,《概率》不是第一层次基础课程。学习《概率》需要学生有较好的《高等数学》基础。 非数学专业的本科学生大多没有概念意识,记不住概念。更不会从概念出发分析解决问题。基础层次的概念不熟,下一层次就云里雾里了。这是感到数学难学的关键。 大学数学教学目的,通常只是为了满足相关本科专业的需要。教师们在授课时往往不会太重视,而且也没时间来进行概念训练。 考研数学目的在于选拔,考题中基本概念与基本方法并重。这正好击中考生的软肋。在考研指导课上,往往会有学生莫名惊诧,“大一那会儿学的不一样。”原因就在于学过的概念早忘完了。 做考研数学复习,首先要在基本概念与基本运算上下足功夫。 按考试时间与分值来匹配,一个4分的选择题平均只有5分钟时间。而这些选择题却分别来自三门数学课程,每个题又至少有两个概念。你可以由此体验选拔考试要求你对概念的熟悉程度。 从牛顿在硕士生二年级的第一篇论文算起,微积分有近四百年历史。文献浩如烟海,知识千锤百炼。非数学专业的本科生们所接触的,只是初等微积分的一少部分。方法十分经典,概念非常重要。学生们要做的是接受,理解,记忆,学会简单推理。当你面对一个题目时,你的自然反应是,“这个题目涉及的概念是 - - -”,而非“在哪儿做过这道题”,才能算是有点入门了。 你要考得满意吗?基点不在于你看了多少难题,关键在于你是否对基本概念与基本运算非常熟悉。 阳春三月风光好,抓好基础正当时。 考研数学讲座(2)笔下生花花自红 在爱搞运动的那些年代里,数学工作者们经常受到这样的指责,“一支笔,一张纸,一杯茶,鬼画桃符,脱离实际。” 发难者不懂基础研究的特点,不懂得考虑数学问题时“写”与“思”同步的重要性。 也许是计算机广泛应用的影响,今天的学生们学习数学时,也不太懂得“写”的重要性。 考研的学生们,往往拿着一本厚厚的考研数学指导资料,看题看解看答案或看题想解翻答案。 动笔的时间很少。数学书不比小说。看数学书和照镜子差不多,镜子一拿走,印象就模糊。 科学的思维是分层次的思维。求解一个数学问题时,你不能企图一眼看清全路程。你只能踏踏实实地考虑 如何迈出第一步。 或“依据已知条件,我首先能得到什么?”(分析法); 或“要证明这个结论,就是要证明什么?”(综合法)。 在很多情形下,写出第一步与不写的感觉是完全不同的。下面是一个简单的例。 “连续函数与不连续函数的和会怎样?” 写成“连续A + 不连续B = ?”后就可能想到,只有两个答案,分别填出来再说。(穷尽法)。

考研高数知识总结1

考研数学讲座(17)论证不能凭感觉 一元微分学概念众多,非常讲究条件。讨论问题时,要努力从概念出发,积极运用规范的算法与烂熟的基本素材。绝不能凭感觉凭想象就下结论。 1. x趋于∞时,求极限 lim xsin(2x∕(x平方+1) ,你敢不敢作等价无穷小替换? 分析只凭感觉,多半不敢。依据定义与规则,能换就换。 x 趋于∞时,α = 2x∕(x平方+1)是无穷小,sinα是无穷小, sinα(x)~α(x)且sinα处于“因式”地位。可以换。 等价无穷小替换后,有理分式求极限,是“化零项法”处理的标准∞∕∞型,答案为 2 2.设f(x)可导,若f(x)是奇(偶)函数(周期函数,单调函数,有界函数),它的导函数fˊ(x)有什么样的奇偶性(周期性,单调性,有界性)? 分析有定义数学式的概念,一定要先写出其定义式。简单一点也行。比如 奇函数 f(-x)= -f(x) 周期为T的函数 f(x+T)= f(x) 等式两端分别求导,得 fˊ(-x) = fˊ(x) fˊ(x+T)= fˊ(x) (实际上,由复合函数求导法则,(f(-x))ˊ= fˊ(-x) (-x)ˊ= -fˊ(-x)) 所以,奇函数的导数是偶函数;偶函数的导数是奇函数。(如果高阶可导,还可以逐阶说下去。)周期函数的导数也是周期函数。很有趣的是,因为 (x)ˊ= 1 ,有的非周期函数,比如y = x + sinx ,的导数却是周期函数。 (潜台词:周期函数的原函数不一定是周期函数。) 单调函数定义中没有等式的概念,可以先在基本初等函数中举例观察。 如y = x单增,yˊ = 1不是单调函数。y = sinx在(0,π/2)单增,yˊ = conx 单减,没有确定的结论。 有界性讨论相对较为困难。如果注意到导数的几何意义是函数图形的切线斜率。即切线倾角的正切。就可以想到,在x趋于x0时,要是导数值无限增大,相应的图形切线就趋向于与x轴垂直。显然,圆周上就有具竖直切线的点。 取 y =√(1-x的平方),它在[0,1]有界,但是 x 趋于 1 时,其导数的绝对值趋于正无穷。 这个反例说明有界函数的导数不一定有界。 (画外音:写出来很吓人啊。 x → 1 时,lim f (x) = 0 ,而 lim fˊ(x)= -∞) 3.连续函数的复合函数一定连续。有间断点的函数的复合函数就一定间断吗? 分析连续函数的复合,花样更多。原因在于复合函数f(g(x))的定义域,是f(x)的定义域与g(x)值域的交。有“病”的点可能恰好不在“交”内。因而,有间断点的函数的复合函数不一定间断。比如: 取分段函数g(x)为,x > 0 时 g =1 , x ≤ 0 时 g = -1,0是其间断点。 取f(u)=√u ,则f(g(x))= 1 在 x > 0 时有定义且连续。 还有一些原因让“病态点”消失。 如果只图简单,你可以取f(u)为常函数。以不变应万变。 取f(u)= u的平方,则f(g(x))= 1 ,显然是个连续函数。 4.设 f (x)可导,若x趋于 +∞时,lim f (x) = +∞ ,是否必有lim fˊ(x)= +∞ 分析稍为一想,就知为否。例如 y = x 更复杂但颇为有趣的是 y = ln x ,x 趋于 +∞时,它是无穷大。但是 yˊ = 1∕x 趋于0 ,这就是对数函数异常缓慢增长的原因。

相关文档
最新文档