最新人教版高考数学一轮复习11.3算法案例公开课教学设计
2022届高考数学统考一轮复习第11章算法初步推理与证明第1节算法与程序框图教师用书教案理新人教版
学习资料2022届高考数学统考一轮复习第11章算法初步推理与证明第1节算法与程序框图教师用书教案理新人教版班级:科目:算法初步、推理与证明全国卷五年考情图解高考命题规律把握1。
考查形式高考在本章一般命制1~2道小题,分值点5~10分。
2。
考查内容(1)算法中的循环结构和条件结构是高考考查的热点,题型以选择题为主,属容易题.(2)推理题偶有考查,属容易题.算法与程序框图[考试要求]1。
了解算法的含义,了解算法的思想。
2。
理解程序框图的三种基本逻辑结构:顺序、条件、循环。
3.了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.1.常用程序框图及其功能2.三种基本逻辑结构及相应语句一、易错易误辨析(正确的打“√”,错误的打“×”)(1)一个程序框图一定包含顺序结构,但不一定包含条件结构和循环结构. ( )(2)条件结构的出口有两个,但在执行时,只有一个出口是有效的.( ) (3)输入框只能紧接开始框,输出框只能紧接结束框.( ) (4)在赋值语句中,x =x +1是错误的.( )[答案] (1)√ (2)√ (3)× (4)×二、教材习题衍生1.如图所示的程序框图的运行结果为( )A .2B .2。
5C .3D .3。
5B [因为a =2,b =4,所以输出S =错误!+错误!=2。
5.故选B .]第1题图 第2题图 2.执行如图所示的算法框图,若输出的S 为4,则输入的x 应为( )A .-2B .16C .-2或8D .-2或16D [算法框图是求函数S =⎩⎪⎨⎪⎧log 2x x >1,2-x ,x ≤1 的函数值,S =4时,x =-2或16。
故选D .]3.阅读如图所示的程序框图,运行相应的程序,则输出S 的值为( )A.-10 B.6 C.14 D.18B[由题意知:i=2,S=20-2=18;i=4,S=18-4=14;i=8,S=14-8=6,满足i>5的条件,结束循环,输出S的值为6,故选B.]考点一程序框图的执行问题解决“输入、输出型”问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构.注意区分当型循环和直到型循环,循环结构中要正确控制循环次数,要注意各个框的顺序.(2)要识别运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.A.输出的a是原来的c,输出的b是原来的a,输出的c是原来的bB.输出的a是原来的c,输出的b是原来的b,输出的c是原来的bC.输出的a,b,c均等于aD.输出的a,b,c均等于xA[结合框图的含义及赋值语句可知选项A正确.]2.(2019·全国卷Ⅲ)执行如图所示的程序框图,如果输入的ε为0。
高中数学《算法初步复习课》教案新人教版必修
高中数学《算法初步复习课》教案新人教版必修一、教学目标1. 理解算法的基本概念,掌握算法的特点和描述方法。
2. 复习常见算法,如排序、查找、函数复合、递归等,并能够应用到实际问题中。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 算法的概念和特点2. 算法的描述方法:流程图、伪代码3. 常见算法的复习:排序、查找、函数复合、递归4. 算法应用实例分析三、教学重点与难点1. 教学重点:算法的概念和特点算法的描述方法:流程图、伪代码常见算法的复习:排序、查找、函数复合、递归2. 教学难点:算法的描述方法:流程图、伪代码递归算法的理解和应用四、教学方法与手段1. 教学方法:讲授法:讲解算法的概念、特点和描述方法案例分析法:分析实际问题,引导学生运用算法解决问题小组讨论法:分组讨论,共同探索算法的应用和优化2. 教学手段:投影仪:展示算法流程图、伪代码和实例分析计算机软件:利用编程软件或在线工具,进行算法实现和验证五、教学过程1. 导入:利用生活中的实例,引导学生思考算法的作用和意义。
简要回顾上节课的内容,为新课的学习做好铺垫。
2. 讲解算法概念和特点:介绍算法的定义和特点,如输入、输出、有穷性、确定性等。
通过举例,让学生理解算法与程序的区别。
3. 讲解算法描述方法:介绍流程图和伪代码的表示方法,以及它们的优缺点。
结合实例,讲解如何用流程图和伪代码表示算法。
4. 复习常见算法:复习排序、查找、函数复合、递归等常见算法。
通过例题,讲解这些算法的应用和实现。
5. 算法应用实例分析:给出实际问题,引导学生运用所学算法解决问题。
分析算法的时间复杂度和空间复杂度,探讨算法的优化。
6. 课堂练习:布置练习题,让学生巩固所学算法。
引导学生互相讨论,共同解决问题。
7. 总结与反思:回顾本节课所学内容,总结算法的概念、特点和描述方法。
反思自己在解决问题时,如何运用算法和程序设计。
8. 作业布置:布置课后作业,巩固算法初步知识。
高三理科数学一轮总复习第十一章 算法初步(教师用书).doc
第十一章算法初步高考导航知识网络11.1 算法的含义与程序框图典例精析题型一 算法的含义【例1】已知球的表面积是16π,要求球的体积,写出解决该问题的一个算法. 【解析】算法如下: 第一步,s =16π. 第二步,计算R =s 4π. 第三步,计算V =4πR 33.第四步,输出V .【点拨】给出一个问题,设计算法应该注意:(1)认真分析问题,联系解决此问题的一般数学方法,此问题涉及到的各种情况; (2)将此问题分成若干个步骤; (3)用简练的语句将各步表述出来.【变式训练1】设计一个计算1×3×5×7×9×11×13的算法.图中给出程序的一部分,则在横线①上不能填入的数是( )A.13B.13.5C.14D.14.5【解析】当I <13成立时,只能运算 1×3×5×7×9×11.故选A.题型二 程序框图【例2】图一是某县参加高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1,A 2,…,A 10(如A 2表示身高(单位:cm)在[150,155)内的学生人数).图二是统计图一中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A.i <6?B.i <7?C.i <8?D.i <9?图一【解析】根据题意可知,i 的初始值为4,输出结果应该是A 4+A 5+A 6+A 7,因此判断框中应填写i <8?,选C.【点拨】本题的命题角度较为新颖,信息量较大,以条形统计图为知识点进行铺垫,介绍了算法流程图中各个数据的引入来源,其考查点集中于循环结构的终止条件的判断,考查了学生合理地进行推理与迅速作出判断的解题能力,解本题的过程中不少考生误选A ,实质上本题中的数据并不大,考生完全可以直接从头开始限次按流程图循环观察,依次写出每次循环后的变量的赋值,即可得解.【变式训练2】(辽宁)某店一个月的收入和支出,总共记录了N 个数据a 1,a 2,…,a N .其中收入记为正数,支出记为负数,该店用如图所示的程序框图计算月总收入S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A.A >0?,V =S -TB.A <0?,V =S -TC.A >0?,V =S +TD.A <0?,V =S +T 【解析】选C.题型三 算法的条件结构【例3】某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算: f =⎩⎨⎧⨯-+⨯).50>(85.0)50(53.050),50≤<0(53.0ωωωω 其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出一个计算费用f 的算法,并画出相应的程序框图.【解析】算法如下:第一步,输入物品重量ω.第二步,如果ω≤50,那么f=0.53ω,否则,f=50×0.53+(ω-50)×0.85.第三步,输出托运费f.程序框图如图所示.【点拨】求分段函数值的算法应用到条件结构,因此在程序框图的画法中需要引入判断框,要根据题目的要求引入判断框的个数,而判断框内的条件不同,对应的框图中的内容或操作就相应地进行变化.【变式训练3】(天津)阅读如图的程序框图,若输出s的值为-7,则判断框内可填写()A.i<3?B.i<4?C.i<5?D.i<6?【解析】i=1,s=2-1=1;i=3,s=1-3=-2;i=5,s=-2-5=-7.所以选D.题型四算法的循环结构【例4】设计一个计算10个数的平均数的算法,并画出程序框图.【解析】算法步骤如下:第一步,令S=0.第二步,令I=1.第三步,输入一个数G.第四步,令S=S+G.第五步,令I=I+1.第六步,若I>10,转到第七步,若I≤10,转到第三步.第七步,令A=S/10.第八步,输出A.据上述算法步骤,程序框图如图.【点拨】(1)引入变量S作为累加变量,引入I为计数变量,对于这种多个数据的处理问题,可通过循环结构来达到;(2)计数变量用于记录循环次数,同时它的取值还用于判断循环是否终止,累加变量用于输出结果.【变式训练4】设计一个求1×2×3×…×10的程序框图.【解析】程序框图如下面的图一或图二.图一图二总结提高1.给出一个问题,设计算法时应注意:(1)认真分析问题,联系解决此问题的一般数学方法;(2)综合考虑此类问题中可能涉及的各种情况;(3)借助有关的变量或参数对算法加以表述;(4)将解决问题的过程划分为若干个步骤;(5)用简练的语言将各个步骤表示出来.2.循环结构有两种形式,即当型和直到型,这两种形式的循环结构在执行流程上有所不同,当型循环是当条件满足时执行循环体,不满足时退出循环体;而直到型循环则是当条件不满足时执行循环体,满足时退出循环体.所以判断框内的条件,是由两种循环语句确定的,不得随便更改.3.条件结构主要用在一些需要依据条件进行判断的算法中.如分段函数的求值,数据的大小关系等问题的算法设计.11.2 基本算法语句典例精析题型一 输入、输出与赋值语句的应用【例1】阅读程序框图(如下图),若输入m =4,n =6,则输出a = ,i = .【解析】a =12,i =3.【点拨】赋值语句是一种重要的基本语句,也是程序必不可少的重要组成部分,使用赋值语句,要注意其格式要求.【变式训练1】(陕西)如图是求样本x 1,x 2,…,x 10的平均数x 的程序框图,则图中空白框中应填入的内容为( )A.S =S +x nB.S =S +x nnC.S =S +nD.S =S +1n【解析】因为此步为求和,显然为S =S +x n ,故选A. 题型二 循环语句的应用【例2】设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,写出用基本语句编写的程序.【解析】这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示:程序如下:语句编写程序解决问题时,一定要注意格式和条件的表述方法,WHILE语句是当条件满足时执行循环体,UNTIL语句是当条件不满足时执行循环体.(2)在解决一些需要反复执行的运算任务,如累加求和、累乘求积等问题中应注意考虑利用循环语句来实现.(3)在循环语句中,也可以嵌套条件语句,甚至是循环语句,此时需要注意嵌套的这些语句,保证语句的完整性,否则就会造成程序无法执行.【变式训练2】下图是输出某个有限数列各项的程序框图,则该框图所输出的最后一个数据是 .【解析】由程序框图可知,当N =1时,A =1;N =2时,A =13;N =3时,A =15,…,即输出各个A值的分母是以1为首项以2为公差的等差数列,故当N =50时,A =11+(50-1)×2=199,即为框图最后输出的一个数据.故填199.题型三 算法语句的实际应用【例3】某电信部门规定:拨打市内电话时,如果通话时间3分钟以内,收取通话费0.2元,如果通话时间超过3分钟,则超过部分以每分钟0.1元收取通话费(通话不足1分钟时按1分钟计算).试设计一个计算通话费用的算法,要求写出算法,编写程序.【解析】我们用c (单位:元)表示通话费,t (单位:分钟)表示通话时间, 则依题意有⎩⎨⎧⨯+=,3>2],[0.10.23,≤<0,2.0t t-t c算法步骤如下: 第一步,输入通话时间t .第二步,如果t ≤3,那么c =0.2;否则c =0.2+0.1×[t -2]. 第三步,输出通话费用c . 程序如下:【点拨】法步骤,画出程序框图,最后准确地编写出程序,同时要注意结合题意加深对算法的理解.【变式训练3】(江苏)下图是一个算法流程图,则输出S 的值是 .【解析】n=1时,S=3;n=2时,S=3+4=7;n=3时,S=7+8=15;n=4时,S=15+24=31;n =5时,S=31+25=63.因为63≥33,所以输出的S值为63.总结提高1.输入、输出语句可以设计提示信息,加引号表示出来,与变量之间用分号隔开.2.赋值语句的赋值号左边只能是变量而不能是表达式;赋值号左右两边不能对换,不能利用赋值语句进行代数式计算,利用赋值语句可以实现两个变量值的互换,方法是引进第三个变量,用三个赋值语句完成.3.在某些算法中,根据需要,在条件语句的THEN分支或ELSE分支中又可以包含条件语句.遇到这样的问题,要分清内外条件结构,保证结构的完整性.4.分清WHILE语句和UNTIL语句的格式,在解决一些需要反复执行的运算任务,如累加求和,累乘求积等问题中应主要考虑利用循环语句来实现,但也要结合其他语句如条件语句.5.编程的一般步骤:(1)算法分析;(2)画出程序框图;(3)写出程序.11.3 算法案例典例精析题型一求最大公约数【例1】(1)用辗转相除法求840与1 764的最大公约数;(2)用更相减损术求440与556的最大公约数.【解析】(1)用辗转相除法求840与1 764的最大公约数:1 764=840×2+84,840=84×10+0.所以840与1 764的最大公约数是84.(2)用更相减损术求440与556的最大公约数:556-440=116,440-116=324,324-116=116=92,116-92=24,92-24=68,68-24=44,44-24=24-,=16,16-4=12,12-4=8,8-4=4.所以440与556的最大公约数是4.【点拨】(1)辗转相除法与更相减损术是求两个正整数的最大公约数的方法,辗转相除法用较大的数除以较小的数,直到大数被小数除尽结束运算,较小的数就是最大公约数;更相减损术是用两数中较大的数减去较小的数,直到所得的差和较小数相等为止,这个较小数就是这两个数的最大公约数.一般情况下,辗转相除法步骤较少,而更相减损术步骤较多,但运算简易,解题时要灵活运用.(2)两个以上的数求最大公约数,先求其中两个数的最大公约数,再用所得的公约数与其他各数求最大公约数即可.【变式训练1】求147,343,133的最大公约数.【解析】先求147与343的最大公约数.343-147=196,196-147=49,147-49=98,98-49=49,所以147与343的最大公约数为49.再求49与133的最大公约数.133-49=84,84-49=35,49-35=14,35-14=21,21-14=7,14-7=7.所以147,343,133的最大公约数为7.题型二秦九韶算法的应用【例2】用秦九韶算法写出求多项式f(x)=1+x+0.5x2+0.016 67x3+0.041 67x4+0.008 33x5在x=-0.2时的值的过程.【解析】先把函数整理成f(x)=((((0.008 33x+0.041 67)x+0.166 67)x+0.5)x+1)x+1,按照从内向外的顺序依次进行.x=-0.2,a5=0.008 33,v0=a5=0.008 33;a4=0.041 67,v1=v0x+a4=0.04;a3=0.016 67,v2=v1x+a3=0.008 67;a2=0.5,v3=v2x+a2=0.498 27;a1=1,v4=v3x+a1=0.900 35;a0=1,v5=v4x+a0=0.819 93;所以f(-0.2)=0.819 93.【点拨】秦九韶算法是多项式求值的最优算法,特点是:(1)将高次多项式的求值化为一次多项式求值;(2)减少运算次数,提高效率;(3)步骤重复实施,能用计算机操作.【变式训练2】用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1当x=2时的值为.【解析】1 397.题型三进位制之间的转换【例3】(1)将101 111 011(2)转化为十进制的数;(2)将53(8)转化为二进制的数.【解析】(1)101 111 011(2)=1×28+0×27+1×26+1×25+1×24+1×23+0×22+1×21+1=379.(2)53(8)=5×81+3=43.所以53(8)=101 011(2).【点拨】将k进制数转换为十进制数,关键是先写成幂的积的形式再求和,将十进制数转换为k进制数,用“除k取余法”,余数的书写是由下往上,顺序不能颠倒,k进制化为m进制(k,m≠10),可以用十进制过渡.【变式训练3】把十进制数89化为三进制数.【解析】具体的计算方法如下:89=3×29+2,29=3×9+2,9=3×3+0,3=3×1+0,1=3×0+1,所以89(10)=10 022(3).总结提高1.辗转相除法和更相减损术都是用来求两个数的最大公约数的方法.其算法不同,但二者的原理却是相似的,主要区别是一个是除法运算,一个是减法运算,实质都是一个递推的过程.用秦九韶算法计算多项式的值,关键是正确的将多项式改写,然后由内向外,依次计算求解.2.将k进制数转化为十进制数的算法和将十进制数转化为k进制数的算法操作性很强,要掌握算法步骤,并熟练转化;要熟练应用“除基数,倒取余,一直除到商为0”.。
高考数学一轮总复习 11.3 算法案例教案 理 新人教a版
11.3 算法案例典例精析题型一求最大公约数【例1】(1)用辗转相除法求840与1 764的最大公约数;(2)用更相减损术求440与556的最大公约数.【解析】(1)用辗转相除法求840与1 764的最大公约数:1 764=840×2+84,840=84×10+0.所以840与1 764的最大公约数是84.(2)用更相减损术求440与556的最大公约数:556-440=116,440-116=324,324-116=208,208-116=92,116-92=24,92-24=68,68-24=44,44-24=20,24-20=4,20-4=16,16-4=12,12-4=8,8-4=4.所以440与556的最大公约数是4.【点拨】(1)辗转相除法与更相减损术是求两个正整数的最大公约数的方法,辗转相除法用较大的数除以较小的数,直到大数被小数除尽结束运算,较小的数就是最大公约数;更相减损术是用两数中较大的数减去较小的数,直到所得的差和较小数相等为止,这个较小数就是这两个数的最大公约数.一般情况下,辗转相除法步骤较少,而更相减损术步骤较多,但运算简易,解题时要灵活运用.(2)两个以上的数求最大公约数,先求其中两个数的最大公约数,再用所得的公约数与其他各数求最大公约数即可.【变式训练1】求147,343,133的最大公约数.【解析】先求147与343的最大公约数.343-147=196,196-147=49,147-49=98,98-49=49,所以147与343的最大公约数为49.再求49与133的最大公约数.133-49=84,84-49=35,49-35=14,35-14=21,21-14=7,14-7=7.所以147,343,133的最大公约数为7.题型二秦九韶算法的应用【例2】用秦九韶算法写出求多项式f(x)=1+x+0.5x2+0.016 67x3+0.041 67x4+0.008 33x5在x=-0.2时的值的过程.【解析】先把函数整理成f(x)=((((0.008 33x+0.041 67)x+0.166 67)x+0.5)x+1)x+1,按照从内向外的顺序依次进行.x=-0.2,a5=0.008 33,v0=a5=0.008 33;a4=0.041 67,v1=v0x+a4=0.04;a3=0.016 67,v2=v1x+a3=0.008 67;a2=0.5,v3=v2x+a2=0.498 27;a1=1,v4=v3x+a1=0.900 35;a0=1,v5=v4x+a0=0.819 93;所以f(-0.2)=0.819 93.【点拨】秦九韶算法是多项式求值的最优算法,特点是:(1)将高次多项式的求值化为一次多项式求值;(2)减少运算次数,提高效率;(3)步骤重复实施,能用计算机操作.【变式训练2】用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1当x=2时的值为.【解析】1 397.题型三进位制之间的转换【例3】(1)将101 111 011(2)转化为十进制的数;(2)将53(8)转化为二进制的数.【解析】(1)101 111 011(2)=1×28+0×27+1×26+1×25+1×24+1×23+0×22+1×21+1=379.(2)53(8)=5×81+3=43.所以53(8)=101 011(2).【点拨】将k进制数转换为十进制数,关键是先写成幂的积的形式再求和,将十进制数转换为k进制数,用“除k取余法”,余数的书写是由下往上,顺序不能颠倒, k进制化为m进制(k,m≠10),可以用十进制过渡.【变式训练3】把十进制数89化为三进制数.【解析】具体的计算方法如下:89=3×29+2,29=3×9+2,9=3×3+0,3=3×1+0,1=3×0+1,所以89(10)=10 022(3).总结提高1.辗转相除法和更相减损术都是用来求两个数的最大公约数的方法.其算法不同,但二者的原理却是相似的,主要区别是一个是除法运算,一个是减法运算,实质都是一个递推的过程.用秦九韶算法计算多项式的值,关键是正确的将多项式改写,然后由内向外,依次计算求解.2.将k进制数转化为十进制数的算法和将十进制数转化为k进制数的算法操作性很强,要掌握算法步骤,并熟练转化;要熟练应用“除基数,倒取余,一直除到商为0”.。
高中数学 第一章算法初步111算法的概念教案 新人教A版必修3 教案
第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
高中数学《算法初步复习课》教案新人教版必修
高中数学《算法初步复习课》教案新人教版必修一、教学目标1. 理解算法的基本概念和性质。
2. 掌握算法的步骤和算法的表示方法。
3. 能够分析算法的效率和应用。
4. 培养学生的逻辑思维和解决问题的能力。
二、教学内容1. 算法的基本概念:算法、输入、输出、有穷性、确定性。
2. 算法的步骤:顺序结构、选择结构、循环结构。
3. 算法的表示方法:流程图、伪代码。
4. 算法的效率:时间复杂度、空间复杂度。
5. 算法的应用:排序算法、查找算法。
三、教学重点与难点1. 教学重点:算法的基本概念、算法的步骤、算法的表示方法、算法的效率。
2. 教学难点:算法的效率分析、排序算法和查找算法的应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过问题解决来学习算法。
2. 使用案例分析和实例演示,帮助学生理解算法的概念和应用。
3. 利用流程图和伪代码,培养学生表达和设计算法的能力。
4. 组织学生进行小组讨论和合作学习,促进学生之间的交流和思考。
五、教学过程1. 导入:通过引入生活中的算法问题,激发学生的兴趣和思考。
2. 讲解算法的基本概念,引导学生理解算法的定义和性质。
3. 演示算法的步骤,通过实例讲解顺序结构、选择结构和循环结构的应用。
4. 介绍算法的表示方法,讲解流程图和伪代码的绘制和理解。
5. 分析算法的效率,讲解时间复杂度和空间复杂度的概念和计算方法。
6. 应用实例:讲解排序算法和查找算法的原理和实现。
7. 练习与讨论:学生独立完成练习题,并进行小组讨论和解答。
8. 总结与评价:总结本节课的重点内容,进行课堂评价和反馈。
9. 作业布置:布置相关的练习题,巩固所学内容。
10. 课后反思:教师进行课后反思,总结教学效果和学生的学习情况,为下一步的教学做好准备。
六、教学评估1. 课堂讲解评估:观察学生对算法概念的理解程度,以及对算法步骤和表示方法的掌握情况。
2. 练习题评估:通过学生完成的练习题,评估学生对算法效率和应用的理解和应用能力。
高中数学 (1.3 算法案例)示范教案 新人教A版必修3
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
高中数学《1.3 算法案例》教案1 新人教A版必修3
1.3 算法案例整体设计教学分析在学生学习了算法的初步知识,理解了表示算法的算法步骤、程序框图和程序三种不同方式以后,再结合典型算法案例,让学生经历设计算法解决问题的全过程,体验算法在解决问题中的重要作用,体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.三维目标1.理解算法案例的算法步骤和程序框图.2.引导学生得出自己设计的算法程序.3. 体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.重点难点教学重点:引导学生得出自己设计的算法步骤、程序框图和算法程序.教学难点:体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力. 课时安排3课时教学过程第1课时案例1 辗转相除法与更相减损术导入新课思路1(情境导入)大家喜欢打乒乓球吧,由于东、西方文化及身体条件的不同,西方人喜欢横握拍打球,东方人喜欢直握拍打球,对于同一个问题,东、西方人处理问题方式是有所不同的.在小学,我们学过求两个正整数的最大公约数的方法:先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来. 当两个数公有的质因数较大时(如与6 105),使用上述方法求最大公约数就比较困难.下面我们介绍两种不同的算法——辗转相除法与更相减损术,由此可以体会东、西方文化的差异.思路2(直接导入)前面我们学习了算法步骤、程序框图和算法语句.今天我们将通过辗转相除法与更相减损术来进一步体会算法的思想.推进新课新知探究提出问题(1)怎样用短除法求最大公约数?(2)怎样用穷举法(也叫枚举法)求最大公约数?(3)怎样用辗转相除法求最大公约数?(4)怎样用更相减损术求最大公约数?讨论结果:(1)短除法求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来.(2)穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数.(3)辗转相除法辗转相除法求两个数的最大公约数,其算法步骤可以描述如下:第一步,给定两个正整数m,n.第二步,求余数r:计算m除以n,将所得余数存放到变量r中.第三步,更新被除数和余数:m=n,n=r.第四步,判断余数r是否为0.若余数为0,则输出结果;否则转向第二步继续循环执行.如此循环,直到得到结果为止. 这种算法是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.(4)更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术. 《九章算术》是中国古代的数学专著,其中的“更相减损术”也可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步.第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.应用示例例1 用辗转相除法求8 251与6 105的最大公约数,写出算法分析,画出程序框图,写出算法程序.解:用两数中较大的数除以较小的数,求得商和余数:8 251=6 105×1+2 146.由此可得,6 105与2 146的公约数也是8 251与6 105的公约数,反过来,8 251与6 105的公约数也是6 105与2 146的公约数,所以它们的最大公约数相等.对6 105与2 146重复上述步骤:6 105=2 146×2+1 813.同理,2 146与1 813的最大公约数也是6 105与2 146的最大公约数.继续重复上述步骤:2 146=1 813×1+333,1 813=333×5+148,333=148×2+37,148=37×4.最后的除数37是148和37的最大公约数,也就是8 251与6 105的最大公约数.这就是辗转相除法.由除法的性质可以知道,对于任意两个正整数,上述除法步骤总可以在有限步之后完成,从而总可以用辗转相除法求出两个正整数的最大公约数.算法分析:从上面的例子可以看出,辗转相除法中包含重复操作的步骤,因此可以用循环结构来构造算法.算法步骤如下:第一步,给定两个正整数m,n.第二步,计算m除以n所得的余数为r.第三步,m=n,n=r.第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.程序框图如下图:程序:INPUT m,nDOr=m MOD nm=nn=rLOOP UNTIL r=0PRINT mEND点评:从教学实践看,有些学生不能理解算法中的转化过程,例如:求8 251与6 105的最大公约数,为什么可以转化为求6 105与2 146的公约数.因为8 251=6 105×1+2 146,可以化为8 251-6 105×1=2 164,所以公约数能够整除等式两边的数,即6 105与2 146的公约数也是8 251与6 105的公约数.变式训练你能用当型循环结构构造算法,求两个正整数的最大公约数吗?试画出程序框图和程序.解:当型循环结构的程序框图如下图:程序:INPUT m,nr=1WHILE r>0r=m MOD nm=nn=rWENDPRINT mEND例2 用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减,如下图所示.98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以,98和63的最大公约数等于7.点评:更相减损术与辗转相除法的比较:尽管两种算法分别于东、西方古代数学名著,但是二者的算理却是相似的,有异曲同工之妙.主要区别在于辗转相除法进行的是除法运算,即辗转相除;而更相减损术进行的是减法运算,即辗转相减,但是实质都是一个不断的递归过程.变式训练用辗转相除法或者更相减损术求三个数324,243,135的最大公约数.解:324=243×1+81,243=81×3+0,则324与243的最大公约数为81.又135=81×1+54,81=54×1+27,54=27×2+0,则 81 与 135的最大公约数为27.所以,三个数324、243、135的最大公约数为27.另法:324-243=81,243-81=162,162-81=81,则324与243的最大公约数为81.135-81=54,81-54=27,54-27=27,则81与135的最大公约数为27.所以,三个数324、243.135的最大公约数为27.例3 (1)用辗转相除法求123和48的最大公约数.(2)用更相减损术求80和36的最大公约数.解:(1)辗转相除法求最大公约数的过程如下:123=2×48+27,48=1×27+21,27=1×21+6,21=3×6+3,6=2×3+0,最后6能被3整除,得123和48的最大公约数为3.(2)我们将80作为大数,36作为小数,因为80和36都是偶数,要除公因数2.80÷2=40,36÷2=18.40和18都是偶数,要除公因数2.40÷2=20,18÷2=9.下面来求20与9的最大公约数,20-9=11,11-9=2,9-2=7,7-2=5,5-2=3,3-2=1,2-1=1,可得80和36的最大公约数为22×1=4.点评:对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等.变式训练分别用辗转相除法和更相减损术求1 734,816的最大公约数.解:辗转相除法:1 734=816×2+102,816=102×8(余0),∴1 734与816的最大公约数是102.更相减损术:因为两数皆为偶数,首先除以2得到867,408,再求867与408的最大公约数.867-408=459,459-408=51,408-51=357,357-51=306,306-51=255,255-51=204,204-51=153,153-51=102,102-51=51.∴1 734与816的最大公约数是51×2=102.利用更相减损术可另解:1 734-816=918,918-816=102,816-102=714,714-102=612,612-102=510,510-102=408,408-102=306,306-102=204,204-102=102.∴1 734与816的最大公约数是102.知能训练求319,377,116的最大公约数.解:377=319×1+58,319=58×5+29,58=29×2.∴377与319的最大公约数为29,再求29与116的最大公约数.116=29×4.∴29与116的最大公约数为29.∴377,319,116的最大公约数为29.拓展提升试写出利用更相减损术求两个正整数的最大公约数的程序.解:更相减损术程序:INPUT “m,n=”;m,nWHILE m<>nIF m>n THENm=m-nELSEm=n-mEND IFWENDPRINT mEND课堂小结(1)用辗转相除法求最大公约数.(2)用更相减损术求最大公约数.思想方法:递归思想.作业分别用辗转相除法和更相减损术求261,319的最大公约数.分析:本题主要考查辗转相除法和更相减损术及其应用.使用辗转相除法可依据m=nq+r,反复执行,直到r=0为止;用更相减损术就是根据m-n=r,反复执行,直到n=r为止.解:辗转相除法:319=261×1+58,261=58×4+29,58=29×2.∴319与261的最大公约数是29.更相减损术:319-261=58,261-58=203,203-58=145,145-58=87,87-58=29,58-29=29,∴319与261的最大公约数是29.设计感想数学不仅是一门科学,也是一种文化,本节的引入从东、西方文化的不同开始,逐步向学生渗透数学文化.从知识方面主要学习用两种方法求两个正整数的最大公约数,从思想方法方面,主要学习递归思想.本节设置精彩例题,不仅让学生学到知识,而且让学生进一步体会算法的思想,培养学生的爱国主义情操.。
专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)
所以 EF∥BC.
又因为 EF⊄平面 PBC,BC⊂平面 PBC,
△PAD 是正三角形,平面 PAD⊥平面 PBD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)设二面角 P﹣BD﹣A 的大小为α,直线 PA 与平面 PBC 所成角的大小为β,求 cos
(α+β)的值.
【解答】(Ⅰ)证明:∵∠BAD=45°,AD=1,�� = 2,
∴由余弦定理,得:
BD=
1 + 2 − 2 × 1 × 2 × ���45° =1,…(2 分)
性质定理
行,则过这条直线的任一
∵l∥α,
平面与此平面的交线与
l⊂β,α∩β
该直线平行(简记为“线面
=b,∴l∥b
平行⇒线线平行”)
2.平面与平面平行的判定定理和性质定理
文字语言
判定定理
图形语言
符号语言
一个平面内的两条相交
∵a∥β,b
直线与另一个平面平行,
∥β,a∩b
则这两个平面平行(简记
=P,a⊂α,
⊥AC,
所以 PA⊥面 ABC,
因为 BC⊂平面 ABC,
所以 PA⊥BC.
又因为 AB⊥BC,且 PA∩AB=A,
所以 BC⊥面 PAB.
….(9 分)
(Ⅲ)解:当点 F 是线段 AB 中点时,过点 D,E,F 的平面内的任一条直线都与平面 PBC
平行.
取 AB 中点 F,连 EF,连 DF.
由(Ⅰ)可知 DE∥平面 PBC.
��
理由.
【解答】(Ⅰ)证明:取 AB 中点 O,连接 EO,DO.
因为 EA=EB,所以 EO⊥AB. …(2 分)
新课标人教版高三数学第一轮复习全套教学案
新课标人教版高三数学第一轮复习全套教学案引言本教学案旨在帮助高三学生进行数学第一轮复,以应对新课标人教版高考数学考试。
以下是教学案的详细内容。
目标1. 复并巩固高三数学的核心知识点。
2. 提供高质量的练题和解析,以帮助学生熟悉考试形式和题型,提高解题能力。
3. 培养学生的数学思维和分析能力,以便他们能够在考试中灵活应用知识。
教学内容教学内容主要包括以下部分:1. 数系与代数- 实数与复数- 集合与命题- 数列与数列极限- 等差数列与等比数列2. 函数与方程- 函数与方程基本概念- 一次函数与二次函数- 指数与对数- 三角函数与三角方程3. 解析几何与向量- 平面与空间几何- 二次曲线与常平面- 直线与平面的位置关系- 向量与向量运算4. 概率与统计- 随机事件与概率- 离散型随机变量与连续型随机变量- 统计与抽样调查- 相关与回归分析教学方法为了最有效地进行数学复,我们将采用以下教学方法:1. 系统性研究:按照教学内容的顺序进行研究,逐步巩固知识点。
2. 理论与实践相结合:注重理论知识的讲解,并提供大量的练题和解析,以帮助学生巩固理论知识并提高解题能力。
3. 互动教学:鼓励学生积极参与课堂讨论和提问,激发学生的研究兴趣和数学思维。
4. 小组合作研究:安排学生进行小组合作研究,提倡彼此讨论和合作解题,培养学生的团队合作精神和交流能力。
教学评估为了评估学生的研究效果和掌握程度,我们将采用以下评估方法:1. 阶段性测试:安排定期的阶段性测试,检验学生对各个知识点的理解和掌握情况。
2. 作业批改:及时批改学生的作业,给予针对性的指导和建议。
3. 课堂互动评估:评估学生在课堂上的积极参与程度和表现。
4. 模拟考试:进行模拟考试,让学生体验真实考试环境,以便他们熟悉考试形式和提高应试能力。
结语通过本教学案的实施,相信学生们在第一轮数学复习中将取得良好的成绩。
希望学生们能够认真学习、勤于练习,并与老师和同学们积极合作,共同进步。
2021年高考数学一轮复习 11.3 相互独立事件同时发生的概率教案
2021年高考数学一轮复习 11.3 相互独立事件同时发生的概率教案●知识梳理1.相互独立事件:事件A是否发生对事件B发生的概率没有影响,这样的两个事件叫相互独立事件.2.独立重复实验:如果在一次试验中某事件发生的概率为p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为P n(k)=C p k(1-p)n-k.3.关于相互独立事件也要抓住以下特征加以理解:第一,相互独立也是研究两个事件的关系;第二,所研究的两个事件是在两次试验中得到的;第三,两个事件相互独立是从“一个事件的发生对另一个事件的发生的概率没有影响”来确定的.4.互斥事件与相互独立事件是有区别的:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生.5.事件A与B的积记作A·B,A·B表示这样一个事件,即A与B同时发生.当A和B是相互独立事件时,事件A·B满足乘法公式P(A·B)=P(A)·P(B),还要弄清·,的区别. ·表示事件与同时发生,因此它们的对立事件A与B同时不发生,也等价于A 与B至少有一个发生的对立事件即,因此有·≠,但·=.●点击双基1.(xx年辽宁,5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是A.p1p2B.p1(1-p2)+p2(1-p1)C.1-p1p2D.1-(1-p1)(1-p2)解析:恰有一人解决就是甲解决乙没有解决或甲没有解决乙解决,故所求概率是p1(1-p2)+p2(1-p1).答案:B2.将一枚硬币连掷5次,如果出现k次正面的概率等于出现k+1次正面的概率,那么k 的值为A.0B.1C.2D.3解析:由C()k()5-k=C()k+1·()5-k-1,即C=C,k+(k+1)=5,k=2.答案:C3.从应届高中生中选出飞行员,已知这批学生体型合格的概率为,视力合格的概率为,其他几项标准合格的概率为,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)A. B. C. D.解析:P=××=.答案:C4.一道数学竞赛试题,甲生解出它的概率为,乙生解出它的概率为,丙生解出它的概率为,由甲、乙、丙三人独立解答此题只有一人解出的概率为________.解析:P=××+ ××+ ××=.答案:5.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是________.解析:因为这位司机在第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=(1-)(1-)×=.答案:●典例剖析【例1】(xx年广州模拟题)某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?解:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B;记“甲从第一小组的10张票中任抽1张,抽到排球票”为事件,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件,于是P(A)== ,P()=;P(B)== ,P()=.由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A与B 是相互独立事件.(1)甲、乙两人都抽到足球票就是事件A·B发生,根据相互独立事件的概率乘法公式,得到P(A·B)=P(A)·P(B)=·=.答:两人都抽到足球票的概率是.(2)甲、乙两人均未抽到足球票(事件·发生)的概率为P(·)=P()·P()=·=.∴两人中至少有1人抽到足球票的概率为P=1-P(·)=1-=.答:两人中至少有1人抽到足球票的概率是.【例2】有外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一球;若第一次取得标有字母B的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率.解:设事件A:从第一个盒子中取得一个标有字母A的球;事件B:从第一个盒子中取得一个标有字母B的球,则A、B互斥,且P(A)=,P(B)=;事件C:从第二号盒子中取一个红球,事件D:从第三号盒子中取一个红球,则C、D互斥,且P(C)=,P(D)==.显然,事件A·C与事件B·D互斥,且事件A与C是相互独立的,B与D也是相互独立的.所以试验成功的概率为P=P(A·C+B·D)=P(A·C)+P(B·D)=P(A)·P(C)+P(B)·P (D)=.∴本次试验成功的概率为.【例3】(xx年福州模拟题)冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种或乙种饮料,取用甲种或乙种饮料的概率相等.(1)求甲种饮料饮用完毕而乙种饮料还剩下3瓶的概率;(2)求甲种饮料被饮用瓶数比乙种饮料被饮用瓶数至少多4瓶的概率.解:(1)由题意知,甲种已饮用5瓶,乙种已饮用2瓶.记“饮用一次,饮用的是甲种饮料”为事件A,则p=P(A)=.题(1)即求7次独立重复试验中事件A发生5次的概率为P7(5)=C p5(1-p)2=C()7=.(2)有且仅有3种情形满足要求:甲被饮用5瓶,乙被饮用1瓶;甲被饮用5瓶,乙没有被饮用;甲被饮用4瓶,乙没有被饮用.所求概率为P6(5)+P5(5)+P4(4)=C p5(1-p)+C p5+C p4=.答:甲饮料饮用完毕而乙饮料还剩3瓶的概率为,甲饮料被饮用瓶数比乙饮料被饮用瓶数至少多4瓶的概率为.●闯关训练夯实基础1.若A与B相互独立,则下面不相互独立事件有A.A与B.A与C. 与BD. 与解析:由定义知,易选A.答案:A2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是A.0.12B.0.88C.0.28D.0.42解析:P=(1-0.3)(1-0.4)=0.42.答案:D3.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为,若40分为最低分数线,则该生被选中的概率是________.解析:该生被选中,他解对5题或4题.∴P=()5+C×()4×(1-)=.答案:4.某单位订阅大众日报的概率为0.6,订阅齐鲁晚报的概率为0.3,则至少订阅其中一种报纸的概率为________.解析:P=1-(1-0.6)(1-0.3)=0.72.答案:0.72培养能力5.在未来3天中,某气象台预报每天天气的准确率为0.8,则在未来3天中,(1)至少有2天预报准确的概率是多少?(2)至少有一个连续2天预报都准确的概率是多少?解:(1)至少有2天预报准确的概率即为恰有2天和恰有3天预报准确的概率,即C·0.82·0.2+C·0.83=0.896.∴至少有2天预报准确的概率为0.896.(2)至少有一个连续2天预报准确,即为恰有一个连续2天预报准确或3天预报准确的概率为2·0.82·0.2+0.83=0.768.∴至少有一个连续2天预报准确的概率为0.768.6.(xx 年南京模拟题)一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p ,计算在这一时间段内,(1)恰有一套设备能正常工作的概率;(2)能进行通讯的概率.解:记“第一套通讯设备能正常工作”为事件A ,“第二套通讯设备能正常工作”为事件B .由题意知P (A )=p 3,P (B )=p 3,P ()=1-p 3,P ()=1-p 3.(1)恰有一套设备能正常工作的概率为P (A ·+ ·B )=P (A ·)+P (·B )=p 3(1-p 3)+(1-p 3)p 3=2p 3-2p 6.(2)方法一:两套设备都能正常工作的概率为P (A ·B )=P (A )·P (B )=p 6.至少有一套设备能正常工作的概率,即能进行通讯的概率为P (A ·+ ·B )+P (A ·B )=2p 3-2p 6+p 6=2p 3-p 6.方法二:两套设备都不能正常工作的概率为P (·)=P ()·P ()=(1-p 3)2.至少有一套设备能正常工作的概率,即能进行通讯的概率为1-P (·)=1-P ()·P ()=1-(1-p 3)2=2p 3-p 6.答:恰有一套设备能正常工作的概率为2p 3-2p 6,能进行通讯的概率为2p 3-p 6.7.已知甲袋中有3个白球和4个黑球,乙袋中有5个白球和4个黑球.现从两袋中各取两个球,试求取得的4个球中有3个白球和1个黑球的概率.解:从甲袋中取2个白球,从乙袋中取1个黑球和1个白球的概率为×=;从甲袋中取1个黑球和1个白球,从乙袋中取2个白球的概率为×=.所以,取得的4个球中有3个白球和1个黑球的概率为+==.探究创新8.(xx 年湖南)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.解:(1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件, 由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅,92)(,121)(,41)(C A P C B P B A P即⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅.92)()(,121)](1[)(,41)](1[)(C P A P C P B P B P A P 由①③得P (B )=1-P (C ),代入②得27[P (C )]2-51P (C )+22=0.解得P (C )=或(舍去).将P (C )=分别代入③②可得P (A )=,P (B )=,即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是,,.(2)记D 为从甲、乙、丙加工的零件中各取一个检验至少有一个一等品的事件,则 P (D )=1-P ()=1-[1-P (A )][1-P (B )][1-P (C )]=1-··=.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.●思悟小结1.应用公式时,要注意前提条件,只有对于相互独立事件A 与B 来说,才能运用公式P (A ·B )=P (A )·P (B ).2.在学习过程中,要善于将较复杂的事件分解为互斥事件的和及独立事件的积,或其对立事件.3.善于将具体问题化为某事件在n 次独立重复试验中发生k 次的概率.●教师下载中心教学点睛1.首先要搞清事件间的关系(是否彼此互斥、是否互相独立、是否对立),当且仅当事件A 和事件B 互相独立时,才有P (A ·B )=P (A )·P (B ).2.A 、B 中至少有一个发生:A +B .(1)若A 、B 互斥:P (A +B )=P (A )+P (B ),否则不成立.(2)若A 、B 相互独立(不互斥).法一:P (A +B )=P (A ·B )+P (A ·)+P (·B );法二:P (A +B )=1-P (·);法三:P (A +B )=P (A )+P (B )-P (AB ).3.某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高正确率.要注意“至多”“至少”等题型的转化,如例1.4.n 次独立重复试验中某事件发生k 次的概率P n (k )=C p k (1-p )n -k 正好是二项式[(1-p )+p ]n 的展开式的第k +1项.拓展题例【例1】 把n 个不同的球随机地放入编号为1,2,…,m 的m 个盒子内,求1号盒恰有r 个球的概率.解法一:用独立重复试验的概率公式.把1个球放入m 个不同的盒子内看成一次独立试验,其中放入1号盒的概率为P =.这样n 个球放入m 个不同的盒子内相当于做n 次独立重复试验.由独立重复试验中事件A 恰好发生k 次的概率公式知,1号盒恰有r 个球的概率P n (r )=C p r (1-p )n -r =C ·()r ·(1-)n -r =.解法二:用古典概型.把n 个不同的球任意放入m 个不同的盒子内共有m n 个等可能的结果.其中1号盒内恰有r 个球的结果数为C (m -1)n -r ,故所求概率P (A )=.答:1号盒恰有r 个球的概率为.① ② ③【例2】假设每一架飞机引擎在飞行中故障率为1-P,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P而言,4引擎飞机比2引擎的飞机更为安全?分析:4引擎飞机可以看作4次独立重复试验,要能正常运行,即求发生k次(k≥2)的概率.同理,2引擎飞机正常运行的概率即是2次独立重复试验中发生k次(k≥1)的概率,由此建立不等式求解.解:4引擎飞机成功飞行的概率为C P2(1-P)2+C P3(1-P)+C P4=6P2(1-P)2+4P3(1-P)+P4.2引擎飞机成功飞行的概率为C P(1-P)+C P2=2P(1-P)+P2.要使4引擎飞机比2引擎飞机安全,只要6P2(1-P)2+4P3(1-P)+P4≥2P(1-P)+P2.化简,分解因式得(P-1)2(3P-2)≥0.所以3P-2≥0,即得P≥.答:当引擎不出故障的概率不小于时,4引擎飞机比2引擎飞机安全.。
高中数学《算法初步复习课》教案新人教版必修
高中数学《算法初步复习课》教案新人教版必修一、教学目标1. 理解算法的概念,掌握算法的特点和分类。
2. 熟练运用基本的算法步骤,解决实际问题。
3. 复习基本的算法语句,如输入、输出、赋值、条件判断、循环等。
4. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 算法的概念和特点2. 算法的分类3. 基本算法语句4. 算法案例分析5. 算法在实际问题中的应用三、教学重点与难点1. 重点:算法的概念、特点和分类,基本算法语句的应用。
2. 难点:算法步骤的设计和算法在实际问题中的应用。
四、教学方法与手段1. 采用问题驱动的教学方法,引导学生通过探索和合作解决问题。
2. 使用多媒体教学手段,如PPT、网络资源等,辅助讲解和展示算法案例。
五、教学过程1. 导入:通过一个简单的实际问题,引导学生思考如何通过算法解决问题。
2. 讲解:介绍算法的概念、特点和分类,讲解基本算法语句的使用。
3. 案例分析:分析几个典型的算法案例,让学生理解算法的设计步骤和思路。
4. 练习:让学生通过练习题,巩固所学的算法知识和技能。
5. 总结:总结本节课的主要内容,强调算法的应用和实际意义。
六、教学拓展1. 探讨其他算法设计与分析的方法,如动态规划、贪心算法等。
2. 介绍算法的应用领域,如计算机科学、数据科学、等。
3. 引导学生思考算法与编程的关系,理解算法在解决问题中的重要性。
七、课堂练习1. 编写一个简单的算法,解决一个问题,如计算斐波那契数列、求最大公约数等。
2. 分析一个给定的算法,解释其步骤和思路。
3. 讨论算法的时间复杂度和空间复杂度,分析不同算法在性能上的优劣。
八、课堂小结1. 回顾本节课的主要内容,强调算法的概念、特点和分类。
2. 总结算法的设计步骤和思路,强调算法在解决问题中的应用。
3. 强调算法与编程的关系,鼓励学生深入学习编程,提高解决问题的能力。
九、课后作业1. 复习本节课的内容,整理笔记,巩固算法的基本概念和技能。
高中数学《算法初步复习课》教案新人教版必修
高中数学《算法初步复习课》教案新人教版必修一、教学目标:1. 知识与技能:使学生掌握算法的基本概念和常见的算法思想,能够熟练运用基本的算法解决问题。
2. 过程与方法:通过复习和练习,提高学生运用算法解决问题的能力,培养学生的逻辑思维和抽象思维能力。
3. 情感态度与价值观:激发学生对数学算法的学习兴趣,培养学生的耐心和细心,提高学生解决问题的自信心。
二、教学重难点:1. 教学重点:算法的基本概念,常见的算法思想。
2. 教学难点:算法的设计和分析,运用算法解决问题的能力。
三、教学过程:1. 回顾与导入:教师简要回顾上节课的内容,引导学生复习算法的基本概念和常见的算法思想。
2. 案例讲解:教师通过讲解一些典型的算法案例,让学生加深对算法概念的理解,并学会运用算法解决问题。
3. 自主练习:学生自主完成一些算法题目,巩固所学知识,提高运用算法解决问题的能力。
4. 讨论与交流:学生分组讨论,分享自己的解题思路和经验,互相学习和借鉴。
5. 总结与反思:教师引导学生总结节课的收获和不足,鼓励学生思考如何改进和提高自己的算法能力。
四、教学评价:1. 课堂参与度:观察学生在课堂上的积极参与程度和表现,以及与同学的合作情况。
2. 练习成果:检查学生完成的练习题目,评估学生的算法理解和运用能力。
3. 讨论与交流:评价学生在讨论和交流中的表现,鼓励学生的思考和创新。
五、课后作业:1. 完成教材上的相关练习题目。
2. 选择一些算法题目进行深入研究和尝试,提高自己的算法能力。
3. 思考和总结自己在算法学习中的优点和不足,制定提高算法的计划和目标。
六、教学策略:1. 实例演示:通过具体的算法案例,让学生直观地理解算法的步骤和思想。
2. 问题驱动:设计一些具有挑战性的问题,激发学生的思考和探索欲望。
3. 循序渐进:从简单的算法开始,逐步增加难度,让学生逐步掌握算法的精髓。
4. 互动教学:鼓励学生提问和发表见解,促进师生之间的互动和交流。
人教版高中数学高考一轮复习--离散型随机变量及其分布列
0分,通过对学生甲以往同类模拟考试情况的统计,得到他各题得分的概率
如表所示.
题目
第1题
第2题
代数
0.6
0.5
几何
0.8
0.7
数论
0.7
0.7
组合
0.7
0.6
第3题
第4题
0.4
0.2
0.5
0.3
0.5
0.3
0.3
0.2
假设学生甲考试中各题的得分相互独立.
(1)理解X的意义,写出X的所有可能取值;
(2)求X取每个值的概率;
(3)写出X的分布列.
3.求离散型随机变量分布列的关键是求随机变量取每个值的概率,在求解
时,要注意应用计数原理、古典概型等知识.
对点训练2
(1)已知一批100件的待出厂产品中,有1件不合格品,现从中任意抽取2件
进行检查,设抽取的2件产品中不合格品数为X,求X的分布列.
2
1 2 2
1 1 2
2
P(X=1)=3,P(X=2)=3 × 3 = 9,P(X=3)=3 × 3 × 3 = 27.
故 X 的分布列为
X
1
2
3
P
2
3
2
9
2
27
出现这种错误解法的原因是没有明确随机变量X的意义,X=1表示第一次
试验成功;X=2表示第一次试验失败,第二次试验成功;X=3表示前两次试验
X
P
40
0.147
80
0.343
100
0.126
140
0.294
160
0.027
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.3 算法案例
典例精析
题型一求最大公约
【例1】(1)用辗转相除法求840与1 764的最大公约;
(2)用更相减损术求440与556的最大公约.
【解析】(1)用辗转相除法求840与1 764的最大公约:
1 764=840×2+84,
840=84×10+0.[]
所以840与1 764的最大公约是84.
(2)用更相减损术求440与556的最大公约:[]
556-440=116,[]
440-116=324,
324-116=208,
208-116=92,[]
116-92=24,[
92-24=68,
68-24=44,
44-24=20,
24-20=4,
20-4=16,
16-4=12,
12-4=8,
8-4=4.
所以440与556的最大公约是4.
【点拨】(1)辗转相除法与更相减损术是求两个正整的最大公约的方法,辗转相除法用较大的除以较小的,直到大被小除尽结束运算,较小的就是最大公约;更相减损术是用两中较大的减去较小的,直到所得的差和较小相等为止,这个
较小就是这两个的最大公约.一般情况下,辗转相除法步骤较少,而更相减损术步骤较多,但运算简易,解题时要灵活运用.
(2)两个以上的求最大公约,先求其中两个的最大公约,再用所得的公约与其他各求最大公约即可.
【变式训练1】求147,343,133的最大公约.
【解析】先求147与343的最大公约.
343-147=196,
196-147=49,
147-49=98,
98-49=49,
所以147与343的最大公约为49.
再求49与133的最大公约.
133-49=84,
84-49=35,
49-35=14,
35-14=21,
21-14=7,
14-7=7.
所以147,343,133的最大公约为7.
题型二秦九韶算法的应用
【例2】用秦九韶算法写出求多项式f(x)=1+x+0.5x2+0.016 67x3+0.041 67x4+0.008 33x5在x=-0.2时的值的过程.
【解析】先把函整成f(x)=((((0.008 33x+0.041 67)x+0.166 67)x+0.5)x+1)x+1,
按照从内向外的顺序依次进行.
x=-0.2,
a
=0.008 33,v0=a5=0.008 33;
5
a
=0.041 67,v1=v0x+a4=0.04;
4
a
=0.016 67,v2=v1x+a3=0.008 67;[]
3
a
2
=0.5,v3=v2x+a2=0.498 27;
a
1
=1,v4=v3x+a1=0.900 35;
a
=1,v5=v4x+a0=0.819 93;
所以f(-0.2)=0.819 93.
【点拨】秦九韶算法是多项式求值的最优算法,特点是:
(1)将高次多项式的求值为一次多项式求值;
(2)减少运算次,提高效率;
(3)步骤重复实施,能用计算机操作.
【变式训练2】用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1当x=2时的值为.
【解析】1 397.
题型三进位制之间的转换
【例3】(1)将101 111 011
(2)
转为十进制的;
(2)将53
(8)
转为二进制的.
【解析】(1)101 111 011
(2)
=1×28+0×27+1×26+1×25+1×24+1×23+0×22+1×21+1=379.
(2)53
(8)
=5×81+3=43.
所以53
(8)=101 011
(2)
.
【点拨】将k进制转换为十进制,关键是先写成幂的积的形式再求和,将十进制转换为k进制,用“除k取余法”,余的书写是由下往上,顺序不能颠倒,k进制为m进制(k,m≠10),可以用十进制过渡.
【变式训练3】把十进制89为三进制.[]
【解析】具体的计算方法如下:
89=3×29+2,
29=3×9+2,
9=3×3+0,
3=3×1+0,
1=3×0+1,
所以89
(10)=10 022
(3)
.
总结提高
1.辗转相除法和更相减损术都是用求两个的最大公约的方法.其算法不同,但二者的原却是相似的,主要区别是一个是除法运算,一个是减法运算,实质都是一个递推的过程.用秦九韶算法计算多项式的值,关键是正确的将多项式改写,然后由内向外,依次计算求解.
2.将k进制转为十进制的算法和将十进制转为k进制的算法操作性很强,要掌握算法步骤,并熟练转;要熟练应用“除基,倒取余,一直除到商为0”.。