《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)古典概型

合集下载

《三维设计》2014届高考数学一轮复习教学案(+解题训练)平面向量的概念及其线性运算(含解析)

《三维设计》2014届高考数学一轮复习教学案(+解题训练)平面向量的概念及其线性运算(含解析)

Go the distance
准确理解向量的基本概念是解决该类问题的关键, 特别是对相等向量、 零向量等概念的 理解要到位,充分利用反例进行否定也是行之有效的方法. 2.几个重要结论 (1)向量相等具有传递性,非零向量的平行具有传递性; (2)向量可以平移,平移后的向量与原向量是相等向量; (3)向量平行与起点的位置无关. 以题试法 1.设 a0 为单位向量,①若 a 为平面内的某个向量,则 a=|a|a0;②若 a 与 a0 平行,则 a=|a|a0;③若 a 与 a0 平行且|a|=1,则 a=a0.上述命题中,假命题的个数是( A.0 C.2 B.1 D.3 )
[自主解答] ①不正确.当起点不在同一直线上时,虽然终点相同,但向量不共线. ②正确.∵ AB = DC ,∴| AB |=| DC |且 AB ∥ DC . 又∵A,B,C,D 是不共线的四点, ∴四边形 ABCD 是平行四边形. 反之,若四边形 ABCD 是平行四边形,则 AB 綊 DC 且 AB 与 DC 方向相同,因此 AB = DC . ③不正确.两向量不能比较大小. ④不正确. 当 λ=μ=0 时, a 与 b 可以为任意向量, 满足 λa=μb, 但 a 与 b 不一定共线. [答案] C 由题悟法 1.平面向量的概念辨析题的解题方法
向量的有关概念 典题导入 [例 1] 给出下列命题: ①两个具有共同终点的向量,一定是共线向量; ②若 A,B,C,D 是不共线的四点,则 AB = DC 是四边形 ABCD 为平行四边形的充 要条件; ③若 a 与 b 同向,且|a|>|b|,则 a>b; ④λ,μ 为实数,若 λa=μb,则 a 与 b 共线. 其中假命题的个数为( A.1 C.3 ) B.2 D.4
Go the distance

《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)函数的图象(含解析)

《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)函数的图象(含解析)

Go the distance
D. 答案:(1)2 (2)D
函数图象的应用
典题导入 [例 3] (2011· 新课标全国卷)已知函数 y=f(x)的周期为 2,当 x∈[-1,1]时 f(x)=x2,那 么函数 y=f(x)的图象与函数 y=|lg x|的图象的交点共有( A.10 个 C.8 个 B.9 个 D.1 个 )
10≤x≤1, 所以 f(2-x)= 2-x1<x≤2,
Go the distance -10≤x≤1, 故 y=-f(2-x)= x-21<x≤2.
法二:当 x=0 时,-f(2-x)=-f(2)=-1;当 x=1 时,-f(2-x)=-f(1)=-1.观察各 选项,可知应选 B. [答案] B
a,a-b≤1, 6.(2011· 天津高考)对实数 a 和 b,定义运算“⊗”:a⊗b= 设函数 f(x) b,a-b>1.
=(x2-2)⊗(x-x2),x∈R.若函数 y=f(x)-c 的图象与 x 轴恰有两个公共点,则实数 c 的取值 范围是( )
3 A.(-∞,-2]∪ -1,2 3 B.(-∞,-2]∪ -1,-4
2 x -2x-1,x≥0, (3)y= 2 图象如图 3. x +2x-1,x<0.
由题悟法 画函数图象的一般方法 (1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数 的特征直接作出. (2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可 利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应 注意平移变换与伸缩变换的顺序对变换单位及解析式的影响. 以题试法 1.作出下列函数的图象: (1)y=|x-x2|; x+2 (2)y= . x-1

【三维设计】2014届高考数学一轮复习 (基础知识+高频考点+解题训练)直接证明和间接证明教学案

【三维设计】2014届高考数学一轮复习 (基础知识+高频考点+解题训练)直接证明和间接证明教学案

第六节直接证明和间接证明[知识能否忆起]一、直接证明内容综合法分析法定义利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.实质由因导果(顺推证法)执果索因框图表示P⇒Q1Q1⇒Q2…Q n⇒Q Q⇐P1P1⇐P2…得到一个明显成立的条件文字语言因为…所以…或由…得…要证…只需证…即证…反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫反证法.[小题能否全取]1.(教材习题改编)用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设( )A.三个内角都不大于60°B.三个内角都大于60°C.三个内角至多有一个大于60°D.三个内角至多有两个大于60°解析:选B 假设为“三个内角都大于60°”.2.设a=lg 2+lg 5,b=e x(x<0),则a与b大小关系为( )A.a>b B.a<bC.a=b D.a≤b解析:选A a =lg 2+lg 5=lg 10=1,b =e x<1,则a >b .3.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证明法解析:选B 因为证明过程是“从左往右”,即由条件⇒结论.4.用反证法证明命题“如果a >b ,那么3a >3b ”时,假设的内容是________. 解析:“如果a >b ,那么3a >3b ”若用反证法证明,其假设为3a ≤ 3b . 答案:3a ≤ 3b5.如果a a +b b >a b +b a ,则a 、b 应满足的条件是________.解析:∵a a +b b >a b +b a ⇔(a -b )2(a +b )>0⇔a ≥0,b ≥0且a ≠b . 答案:a ≥0,b ≥0且a ≠b 1.证明方法的合理选择(1)当题目条件较多,且都很明确时,由因导果较容易,一般用综合法.(2)当题目条件较少 ,可逆向思考时,执果索因,使用分析法解决.但在证明过程中,注意文字语言的准确表述.2.使用反证法的注意点(1)用反证法证明问题的第一步是“反设”,这一步一定要准确,否则后面的部分毫无意义;(2)应用反证法证明问题时必须导出矛盾.综 合 法典题导入[例1] (2011·大纲全国卷)设数列{a n }满足a 1=0且11-a n +1-11-a n=1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n,记S n = k =1nb k ,证明:S n <1.[自主解答] (1)由题设11-a n +1-11-a n=1,得⎩⎨⎧⎭⎬⎫11-a n 是公差为1的等差数列. 又11-a 1=1,故11-a n =n .所以a n =1-1n. (2)证明:由(1)得b n =1-a n +1n=n +1-n n +1·n =1n -1n +1,S n =∑k =1nb k =∑k =1n⎝⎛⎭⎪⎫1k -1k +1=1-1n +1<1. 由题悟法综合法是一种由因导果的证明方法,即由已知条件出发,推导出所要证明的等式或不等式成立.因此,综合法又叫做顺推证法或由因导果法.其逻辑依据是三段论式的演绎推理方法,这就要保证前提正确,推理合乎规律,才能保证结论的正确性.以题试法1.(理)(2012·东北三校模拟)已知函数f (x )=ln(1+x ),g (x )=a +bx -12x 2+13x 3,函数y =f (x )与函数y =g (x )的图象在交点(0,0)处有公共切线.(1)求a ,b ;(2)证明:f (x )≤g (x ). 解:(1)f ′(x )=11+x,g ′(x )=b -x +x 2,由题意得⎩⎪⎨⎪⎧g 0=f 0,f ′0=g ′0,解得a =0,b =1.(2)证明:令h (x )=f (x )-g (x ) =ln(x +1)-13x 3+12x 2-x (x >-1).h ′(x )=1x +1-x 2+x -1=-x 3x +1.h (x )在(-1,0)上为增函数,在(0,+∞)上为减函数. h (x )max =h (0)=0,h (x )≤h (0)=0,即f (x )≤g (x ).(文)设f (x )=e x-1,当x >-1时,证明: f (x )>2x 2+x -1x +1.证明:当x >-1时,要使f (x )>2x 2+x -1x +1,即e x-1>2x 2+x -1x +1=2x -1,当且仅当e x>2x ,即e x-2x >0,令g (x )=e x-2x ,则g ′(x )=e x-2, 令g ′(x )=0,得x =ln 2.当x ∈(-1,ln 2)时,g ′(x )=e x-2<0,故函数g (x )在(-1,ln 2)上单调递减;当x ∈(ln 2,+∞)时,g ′(x )=e x -2>0,故函数g (x )在(ln 2,+∞)上单调递增.所以g (x )在(-1,+∞)上的最小值为g (ln 2)=eln 2-2ln 2=2(1-ln 2)>0.所以在(-1,+∞)上有g (x )≥g (ln 2)>0.即e x>2x . 故当x ∈(-1,+∞)时,有f (x )>2x 2+x -1x +1.分 析 法典题导入[例2] △ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c . 求证:1a +b +1b +c =3a +b +c. [自主解答] 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3也就是c a +b +ab +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°, 由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立. 于是原等式成立.由题悟法分析法的特点与思路分析法的特点是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”(或定理、性质或已经证明成立的结论等).通常采用“欲证——只需证——已知”的格式,在表达中要注意叙述形式的规X .以题试法2.已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m .证明:∵m >0,∴1+m >0. 所以要证原不等式成立,只需证明(a +mb )2≤(1+m )(a 2+mb 2), 即证m (a 2-2ab +b 2)≥0, 即证(a -b )2≥0, 而(a -b )2≥0显然成立, 故原不等式得证.反 证 法典题导入[例3] 设{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?[自主解答] (1)证明:若{S n }是等比数列,则S 22=S 1·S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2),∵a 1≠0,∴(1+q )2=1+q +q 2,解得q =0,这与q ≠0相矛盾,故数列{S n }不是等比数列.(2)当q =1时,{S n }是等差数列.当q ≠1时,{S n }不是等差数列.假设q ≠1时,S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3, 2a 1(1+q )=a 1+a 1(1+q +q 2).由于a 1≠0,∴2(1+q )=2+q +q 2,即q =q 2, ∵q ≠1,∴q =0,这与q ≠0相矛盾.综上可知,当q =1时,{S n }是等差数列;当q ≠1时,{S n }不是等差数列.由题悟法反证法证明问题的一般步骤(1)反设:假定所要证的结论不成立,而设结论的反面(否定命题)成立;(否定结论) (2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾——与已知条件、已知的定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)以题试法3.实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个为负数.证明:假设a ,b ,c ,d 都是非负数,则由a +b =c +d =1,得 1=(a +b )(c +d )=ac +bd +ad +bc ≥ac +bd ,即ac +bd ≤1,这与ac +bd >1矛盾,故假设不成立.即a ,b ,c ,d 中至少有一个为负数.1.(2012·某某模拟)命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .能断定解析:选B ∵S n =2n 2-3n ,∴S n -1=2(n -1)2-3(n -1)(n ≥2),∴a n =S n -S n -1=4n -5(当n =1时,a 1=S 1=-1符合上式).∴a n +1-a n =4(n ≥1),∴{a n }是等差数列. 2.要证:a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.a +b22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0解析:选D 因为a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.3.(2012·山师大附中模拟)用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数解析:选B “恰有一个偶数”的对立面是“没有偶数或至少有两个偶数”. 4.(2013·某某模拟)设a ,b ,c 是不全相等的正数,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0;②a >b ,a <b 及a =b 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立, 其中正确判断的个数为( ) A .0 B .1 C .2 D .3解析:选C ①②正确;③中,a ≠b ,b ≠c ,a ≠c 可以同时成立,如a =1,b =2,c =3,故正确的判断有2个.5.(2012·某某模拟)分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0 解析:选Cb 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0.6.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析:选B 由已知条件,可得⎩⎪⎨⎪⎧a +c =2b , ①x 2=ab , ②y 2=bc . ③由②③得⎩⎪⎨⎪⎧a =x 2b,c =y2b .代入①,得x 2b +y 2b=2b ,即x 2+y 2=2b 2.故x 2,b 2,y 2成等差数列.7.设a =3+22,b =2+7,则a ,b 的大小关系为________.解析:a =3+22,b =2+7两式的两边分别平方,可得a 2=11+46,b 2=11+47,显然,6<7.∴a<b.答案:a<b8.(2012·黄冈质检)在不等边三角形中,a为最大边,要想得到∠A为钝角的结论,则三边a,b,c应满足________.解析:由余弦定理cos A=b2+c2-a22bc<0,所以b2+c2-a2<0,即a2>b2+c2.答案:a2>b2+c29.(2012·某某模拟)已知点A n(n,a n)为函数y=x2+1图象上的点,B n(n,b n)为函数y=x图象上的点,其中n∈N*,设=a n-b n,则与+1的大小关系为________.解析:由条件得=a n-b n=n2+1-n=1n2+1+n,∴随n的增大而减小.∴+1<.答案:+1<10.若a>b>c>d>0且a+d=b+c,求证:d+a<b+c.证明:要证d+a<b+c,只需证(d+a)2<(b+c)2,即a+d+2ad<b+c+2bc,因a+d=b+c,只需证ad<bc,即ad<bc,设a+d=b+c=t,则ad-bc=(t-d)d-(t-c)c=(c-d)(c+d-t)<0,故ad<bc成立,从而d+a<b+c成立.11.求证:a,b,c为正实数的充要条件是a+b+c>0,且ab+bc+ca>0和abc>0. 证明:必要性(直接证法):∵a,b,c为正实数,∴a+b+c>0,ab+bc+ca>0,abc>0,因此必要性成立.充分性(反证法):假设a,b,c是不全为正的实数,由于abc>0,则它们只能是两负一正,不妨设a<0,b<0,c>0.又∵ab+bc+ca>0,∴a(b+c)+bc>0,且bc<0,∴a(b+c)>0.①又∵a<0,∴b+c<0.∴a+b+c<0这与a+b+c>0相矛盾.故假设不成立,原结论成立,即a ,b ,c 均为正实数.12.设f (x )=e x -1.当a >ln 2-1且x >0时,证明:f (x )>x 2-2ax . 证明:欲证f (x ) >x 2-2ax ,即e x -1 >x 2-2ax , 也就是e x -x 2+2ax -1>0.可令u (x )=e x -x 2+2ax -1,则u ′(x )=e x-2x +2a . 令h (x )=e x -2x +2a ,则h ′(x )=e x-2.当x ∈(-∞,ln 2)时,h ′(x )<0,函数h (x )在(-∞,ln 2]上单调递减,当x ∈(ln 2,+∞)时,h ′(x )>0,函数h (x )在[ln 2,+∞)上单调递增.所以h (x )的最小值为h (ln 2)=e ln 2-2ln 2+2a=2-2ln 2+2a .因为a >ln 2-1,所以h (ln 2) >2-2ln 2+2(ln 2-1)=0,即h (ln 2)>0. 所以u ′(x )=h (x )>0,即u (x )在R 上为增函数. 故u (x )在(0,+∞)上为增函数.所以u (x )>u (0). 而u (0)=0,所以u (x )=e x -x 2+2ax -1>0. 即当a >ln 2-1且x >0时,f (x )>x 2-2ax .1.已知函数y =f (x )的定义域为D ,若对于任意的x 1,x 2∈D (x 1≠x 2),都有f ⎝ ⎛⎭⎪⎫x 1+x 22<f x 1+f x 22,则称y =f (x )为D 上的凹函数.由此可得下列函数中的凹函数为( )A .y =log 2xB .y =xC .y =x 2D .y =x 3解析:选C 可以根据图象直观观察;对于C 证明如下: 欲证f ⎝⎛⎭⎪⎫x 1+x 22<f x 1+f x 22,即证⎝ ⎛⎭⎪⎫x 1+x 222<x 21+x 222.即证(x 1+x 2)2<2x 21+2x 22.即证(x 1-x 2)2>0.显然成立.故原不等式得证.2.(2012·某某模拟)设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是______.(填序号) 解析:若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出; 若a =-2,b =-3,则ab >1,故⑤推不出; 对于③,即a +b >2,则a ,b 中至少有一个大于1, 反证法:假设a ≤1且b ≤1, 则a +b ≤2与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1. 答案:③3.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点.若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a 是函数f (x )的一个零点;(2)试比较1a与c 的大小.解:(1)证明:∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2. ∵f (c )=0,∴x 1=c 是f (x )=0的根. 又x 1x 2=c a, ∴x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c ,∴1a 是f (x )=0的一个根.即1a是函数f (x )的一个零点. (2)假设1a <c ,∵1a>0,∴由0<x <c 时,f (x )>0,知f ⎝ ⎛⎭⎪⎫1a>0, 这与f ⎝ ⎛⎭⎪⎫1a =0矛盾,∴1a≥c .又∵1a ≠c ,∴1a>c .1.已知非零向量a ,b 且a ⊥b ,求证:|a |+|b ||a +b |≤ 2.word11 / 11 证明:a ⊥b ⇔a ·b =0,要证|a |+|b ||a +b |≤2, 只需证|a |+|b |≤2|a +b |,只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2), 只需证|a |2+2|a ||b |+|b |2≤2a 2+2b 2,只需证|a |2+|b |2-2|a ||b |≥0,即(|a |-|b |)2≥0, 上式显然成立,故原不等式得证.2.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2n +1.解:(1)由已知得a n +1=a n +1,则a n +1-a n =1,又a 1=1, 所以数列{a n }是以1为首项,1为公差的等差数列. 故a n =1+(n -1)×1=n .(2)证明:由(1)知,a n =n ,从而b n +1-b n =2n . b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=1-2n 1-2=2n -1.因为b n ·b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2 =(22n +2-2n +2-2n +1)-(22n +2-2×2n +1+1) =-2n<0,所以b n ·b n +2<b 2n +1.。

《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)数列求和(含解析)

《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)数列求和(含解析)

(1)求数列{an}的通项公式; (2)若数列{bn}满足:bn=an+(-1)nln an,求数列{bn}的前 2n 项和 S2n. [自主解答] (1)当 a1=3 时,不合题意; 当 a1=2 时,当且仅当 a2=6,a3=18 时,符合题意; 当 a1=10 时,不合题意. 因此 a1=2,a2=6,a3=18.所以公比 q=3,故 an=2· 3n 1.

(2)因为 bn=an+(-1)nln an=2· 3n 1+(-1)nln(2· 3n 1)=2· 3n 1+(-1)n(ln 2-ln 3)+(-
- - -
1)nnln 3, 所以 S2n=b1+b2+…+b2n=2(1+3+…+32n 1)+[-1+1-1+…+(-1)2n](ln 2-ln 3)
+ + + +1
由题悟法 用错位相减法求和应注意: (1)要善于识别题目类型,特别是等比数列公比为负数的情形; (2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出 “Sn-qSn”的表达式. (3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于 1 和不等于 1 两种情况求解.
Go the distance
以题试法 2.(2012· 济南模拟)已知等比数列{an}的前 n 项和为 Sn,且满足 Sn=3n+k. (1)求 k 的值及数列{an}的通项公式; an+1 (2)若数列{bn}满足 =(4+k)anbn,求数列{bn}的前 n 项和 Tn. 2 解:(1)当 n≥2 时,由 an=Sn-Sn-1=3n+k-3n 1-k=2· 3n 1,得等比数列{an}的公比 q
- -
=3,首项为 2. ∴a1=S1=3+k=2,∴k=-1,∴数列{an}的通项公式为 an=2· 3n 1.

《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)等差数列及其前n项和(含解析)

《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)等差数列及其前n项和(含解析)

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第二节等差数列及其前n 项和[知识能否忆起]一、等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.二、等差数列的有关公式 1.通项公式:a n =a 1+(n -1)d . 2.前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 三、等差数列的性质1.若m ,n ,p ,q ∈N *,且m +n =p +q ,{a n }为等差数列,则a m +a n =a p +a q . 2.在等差数列{a n }中,a k ,a 2k ,a 3k ,a 4k ,…仍为等差数列,公差为kd . 3.若{a n }为等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…仍为等差数列,公差为n 2d . 4.等差数列的增减性:d >0时为递增数列,且当a 1<0时前n 项和S n 有最小值.d <0时为递减数列,且当a 1>0时前n 项和S n 有最大值.5.等差数列{a n }的首项是a 1,公差为d .若其前n 项之和可以写成S n =An 2+Bn ,则A =d 2,B =a 1-d2,当d ≠0时它表示二次函数,数列{a n }的前n 项和S n =An 2+Bn 是{a n }成等差数列的充要条件.[小题能否全取]1.(2012·福建高考)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:选B 法一:设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.故d =2.法二:∵在等差数列{a n }中,a 1+a 5=2a 3=10,∴a 3=5. 又a 4=7,∴公差d =7-5=2.2.(教材习题改编)在等差数列{a n }中,a 2+a 6=3π2,则sin ⎝⎛⎭⎫2a 4-π3=( ) A.32B.12 C .-32D .-12解析:选D ∵a 2+a 6=3π2,∴2a 4=3π2.∴sin ⎝⎛⎭⎫2a 4-π3=sin ⎝⎛⎭⎫3π2-π3=-cos π3=-12. 3.(2012·辽宁高考)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143D .176解析:选B S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 解析:由a n +1=a n +2知{a n }为等差数列其公差为2. 故a n =1+(n -1)×2=2n -1. 答案:2n -15.(2012·北京高考)已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________,S n =________.解析:设{a n }的公差为d ,由S 2=a 3知,a 1+a 2=a 3,即2a 1+d =a 1+2d , 又a 1=12,所以d =12,故a 2=a 1+d =1,S n =na 1+12n (n -1)d =12n +12(n 2-n )×12=14n 2+14n .答案:1 14n 2+14n1.与前n 项和有关的三类问题(1)知三求二:已知a 1、d 、n 、a n 、S n 中的任意三个,即可求得其余两个,这体现了方程思想.(2)S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =An 2+Bn ⇒d =2A . (3)利用二次函数的图象确定S n 的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元.等差数列的判断与证明典题导入[例1] 在数列{a n }中,a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *). (1)求a 2,a 3的值;(2)设b n =a n +32n (n ∈N *),证明:{b n }是等差数列.[自主解答] (1)∵a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *),∴a 2=2a 1+22+3=1,a 3=2a 2+23+3=13.(2)证明:对于任意n ∈N *,∵b n +1-b n =a n +1+32n +1-a n +32n =12n +1[(a n +1-2a n )-3]=12n +1[(2n +1+3)-3]=1,∴数列{b n }是首项为a 1+32=-3+32=0,公差为1的等差数列.由题悟法1.证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列; (4)前n 项和法:S n =An 2+Bn 或S n =n (a 1+a n )2.2.用定义证明等差数列时,常采用的两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.以题试法1.已知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6. (1)求S n ;(2)证明:数列{a n }是等差数列. 解:(1)设S n =An 2+Bn +C (A ≠0), 则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得A =2,B =-4,C =0.故S n =2n 2-4n . (2)证明:∵当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)]=4n -6. ∴a n =4n -6(n ∈N *).a n +1-a n =4, ∴数列{a n }是等差数列.等差数列的基本运算典题导入[例2] (2012·重庆高考)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值. [自主解答] (1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2. 从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去),因此k =6.由题悟法1.等差数列的通项公式a n =a 1+(n -1)d 及前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.以题试法2.(1)在等差数列中,已知a 6=10,S 5=5,则S 8=________.(2)(2012·江西联考)设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析:(1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5. 解方程组得⎩⎪⎨⎪⎧a 1=-5,d =3.则S 8=8a 1+28d =8×(-5)+28×3=44. (2)依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案:(1)44 (2)6等差数列的性质典题导入[例3] (1)等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项和S 9等于( )A .66B .99C .144D .297(2)(2012·天津模拟)设等差数列{a n }的前n 项和S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( )A .18B .17C .16D .15[自主解答] (1)由等差数列的性质及a 1+a 4+a 7=39,可得3a 4=39,所以a 4=13.同理,由a 3+a 6+a 9=27,可得a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.(2)设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.[答案] (1)B (2)A由题悟法1.等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.以题试法3.(1)(2012·江西高考)设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.(2)(2012·海淀期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:(1)设两等差数列组成的和数列为{c n },由题意知新数列仍为等差数列且c 1=7,c 3=21,则c 5=2c 3-c 1=2×21-7=35.(2)∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n-1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,解得193≤k ≤223.∵k ∈N *,∴k =7.故满足条件的n 的值为7.答案:(1)35 (2)B1.(2011·江西高考){a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .24解析:选B 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.2.(2012·广州调研)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则S 10-S 7的值是( )A .24B .48C .60D .72解析:选B 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 5=a 1+4d =8,S 3=3a 1+3d =6,解得⎩⎪⎨⎪⎧a 1=0,d =2,则S 10-S 7=a 8+a 9+a 10=3a 1+24d =48.3.(2013·东北三校联考)等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( ) A .10 B .20 C .40D .2+log 25解析:选B 依题意得,a 1+a 2+a 3+…+a 10=10(a 1+a 10)2=5(a 5+a 6)=20,因此有log 2(2a 1·2a 2·…·2a 10)=a 1+a 2+a 3+…+a 10=20.4.(2012·海淀期末)已知数列{a n }满足:a 1=1,a n >0,a 2n +1-a 2n =1(n ∈N *),那么使a n <5成立的n 的最大值为( )A .4B .5C .24D .25解析:选C ∵a 2n +1-a 2n =1,∴数列{a 2n }是以a 21=1为首项,1为公差的等差数列.∴a 2n =1+(n -1)=n .又a n >0,∴a n =n .∵a n <5,∴n <5.即n <25.故n 的最大值为24.5.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的值为( )A .5B .6C .4D .7解析:选A 由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5.6.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:选B 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.7.(2012·广东高考)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.解析:设等差数列公差为d ,∵由a 3=a 22-4,得1+2d =(1+d )2-4,解得d 2=4,即d=±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1. 答案:2n -18.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 解析:a 7-a 5=2d =4,则d =2.a 1=a 11-10d =21-20=1, S k =k +k (k -1)2×2=k 2=9.又k ∈N *,故k =3.答案:39.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941.答案:194110.(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.11.设数列{a n }的前n 项积为T n ,T n =1-a n ,(1)证明⎩⎨⎧⎭⎬⎫1T n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫a n T n 的前n 项和S n .解:(1)证明:由T n =1-a n 得,当n ≥2时,T n =1-T nT n -1,两边同除以T n 得1T n -1T n -1=1.∵T 1=1-a 1=a 1, 故a 1=12,1T 1=1a 1=2.∴⎩⎨⎧⎭⎬⎫1T n 是首项为2,公差为1的等差数列. (2)由(1)知1T n =n +1,则T n =1n +1,从而a n =1-T n =n n +1.故a nT n=n .∴数列⎩⎨⎧⎭⎬⎫a n T n 是首项为1,公差为1的等差数列.∴S n =n (n +1)2. 12.已知在等差数列{a n }中,a 1=31,S n 是它的前n 项和,S 10=S 22.(1)求S n ;(2)这个数列的前多少项的和最大,并求出这个最大值.解:(1)∵S 10=a 1+a 2+…+a 10,S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0,即12(a 11+a 22)2=0,故a 11+a 22=2a 1+31d =0. 又∵a 1=31,∴d =-2,∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2. (2)法一:由(1)知S n =32n -n 2,故当n =16时,S n 有最大值,S n 的最大值是256.法二:由S n =32n -n 2=n (32-n ),欲使S n 有最大值,应有1<n <32,从而S n ≤⎝ ⎛⎭⎪⎫n +32-n 22=256, 当且仅当n =32-n ,即n =16时,S n 有最大值256.1.等差数列中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( )A .156B .52C .26D .13解析:选C ∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10,∴6(a 4+a 10)=24,故a 4+a 10=4.∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=26. 2.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是( )A .24B .48C .60D .84解析:选C 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,故T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.3.数列{a n }满足a n +1+a n =4n -3(n ∈N *).(1)若{a n }是等差数列,求其通项公式;(2)若{a n }满足a 1=2,S n 为{a n }的前n 项和,求S 2n +1.解:(1)由题意得a n +1+a n =4n -3,①a n +2+a n +1=4n +1,②②-①得a n +2-a n =4,∵{a n }是等差数列,设公差为d ,∴d =2.∵a 1+a 2=1,∴a 1+a 1+d =1,∴a 1=-12, ∴a n =2n -52. (2)∵a 1=2,a 1+a 2=1,∴a 2=-1.又∵a n +2-a n =4,∴数列的奇数项与偶数项分别成等差数列,公差均为4, ∴a 2n -1=4n -2,a 2n =4n -5,S 2n +1=(a 1+a 3+…+a 2n +1)+(a 2+a 4+…+a 2n )=(n +1)×2+(n +1)n 2×4+n ×(-1)+n (n -1)2×4 =4n 2+n +2.1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.解:(1)证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1. ∴n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1 =a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52. ∴数列{b n }是以-52为首项,1为公差的等差数列. (2)由(1)知,b n =n -72, 则a n =1+1b n =1+22n -7, 设函数f (x )=1+22x -7, 易知f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞内为减函数. 故当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.2.已知等差数列{a n }的前n 项和为S n ,且满足:a 2+a 4=14,S 7=70.(1)求数列{a n }的通项公式;(2)设b n =2S n +48n,数列{b n }的最小项是第几项,并求出该项的值. 解:(1)设等差数列{a n }的公差为d ,则有⎩⎪⎨⎪⎧ 2a 1+4d =14,7a 1+21d =70, 即⎩⎪⎨⎪⎧ a 1+2d =7,a 1+3d =10,解得⎩⎪⎨⎪⎧ a 1=1,d =3.所以a n =3n -2.(2)因为S n =n 2[1+(3n -2)]=3n 2-n 2, 所以b n =3n 2-n +48n =3n +48n-1≥2 3n ·48n-1=23, 当且仅当3n =48n,即n =4时取等号, 故数列{b n }的最小项是第4项,该项的值为23.3.已知数列{a n },对于任意n ≥2,在a n -1与a n 之间插入n 个数,构成的新数列{b n }成等差数列,并记在a n -1与a n 之间插入的这n 个数均值为C n -1.(1)若a n =n 2+3n -82,求C 1,C 2,C 3; (2)在(1)的条件下是否存在常数λ,使{C n +1-λC n }是等差数列?如果存在,求出满足条件的λ,如果不存在,请说明理由.解:(1)由题意a 1=-2,a 2=1,a 3=5,a 4=10,∴在a 1与a 2之间插入-1,0,C 1=-12. 在a 2与a 3之间插入2,3,4,C 2=3.在a 3与a 4之间插入6,7,8,9,C 3=152. (2)在a n -1与a n 之间插入n 个数构成等差数列,d =a n -a n -1n +1=1, ∴C n -1=n (a n -1+a n )2n =a n -1+a n 2=n 2+2n -92. 假设存在λ使得{C n +1-λC n }是等差数列. ∴(C n +1-λC n )-(C n -λC n -1)=C n +1-C n -λ(C n -C n -1)=2n +52-λ·2n +32=(1-λ)n +52-32λ=常数,∴λ=1. 即λ=1时,{C n +1-λC n }是等差数列.。

《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)不等关系与不等式(含解析)

《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)不等关系与不等式(含解析)

由题悟法 比较大小的常用方法 (1)作差法: 一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式 分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以 先平方再作差. (2)作商法: 一般步骤是:①作商;②变形;③判断商与 1 的大小;④结论. (3)特值法: 若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用 作差或作商法判断. [注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.
解析:选 D 法一:(取特殊值法)令 m=-3,n=2 分别代入各选项检验即可. 法二:m+n<0⇒m<-n⇒n<-m,又由于 m<0<n,故 m<-n<n<-m 成立. 3.“1≤x≤4”是“1≤x2≤16”的( A.充分不必要条件 C.充要条件 )
B.必要不充分条件 D.既不充分也不必要条件
解析: 选 A 由 1≤x≤4 可得 1≤x2≤16, 但由 1≤x2≤16 可得 1≤x≤4 或-4≤x≤-1, 所以“1≤x≤4”是“1≤x2≤16”的充分不必要条件.
[自主解答] (1)由 a>b+1 得 a>b+1>b, 即 a>b; 且由 a>b 不能得出 a>b+1.因此, 使 a>b 成立的充分不必要条件是 a>b+1. (2)∵a>0>b,c<d<0,∴ad<0,bc>0, ∴ad<bc,故①错误. ∵a>0>b>-a,∴a>-b>0, ∵c<d<0,∴-c>-d>0, ∴a(-c)>(-b)(-d), a b ac+bd ∴ac+bd<0,∴ + = <0, d c cd 故②正确. ∵c<d,∴-c>-d, ∵a>b,∴a+(-c)>b+(-d), a-c>b-d,故③正确.
1.已知 a1,a2∈(0,1),记 M=a1a2,N=a1+a2-1,则 M 与 N 的大小关系是( A.M<N C.M=N B.M >N D.不确定

《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)直线、平面垂直的判定与性质

《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)直线、平面垂直的判定与性质

直线、平面垂直的判定与性质[知识能否忆起]一、直线与平面垂直1.直线和平面垂直的定义直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论3.直线与平面垂直的性质定理二、平面与平面垂直1.平面与平面垂直的判定定理2.平面与平面垂直的性质定理[小题能否全取]1.(教材习题改编)已知平面α,β,直线l,若α⊥β,α∩β=l,则()A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α、β都垂直2.(2012·厦门模拟)如图,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O 垂直的是()A.A1D B.AA1C.A1D1D.A1C13.已知α,β是两个不同的平面,m,n是两条不重合的直线,则下列命题中正确的是() A.若m∥α,α∩β=n,则m∥nB.若m⊥α,m⊥n,则n∥αC.若m⊥α,n⊥β,α⊥β,则m⊥nD.若α⊥β,α∩β=n,m⊥n,则m⊥β.4.如图,已知P A⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.5.(教材习题改编)如图,已知六棱锥P -ABCDEF的底面是正六边形,PA⊥平面ABC,P A =2AB.则下列命题正确的有________.①P A⊥AD;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④直线PD与平面ABC所成角为30°.1.在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件.同时抓住线线、线面、面面垂直的转化关系,即:2.在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决,如有平面垂直时,一般要用性质定理.3.几个常用的结论:(1)过空间任一点有且只有一条直线与已知平面垂直.(2)过空间任一点有且只有一个平面与已知直线垂直.典题导入[例1](2012·襄州模拟)若m,n为两条不重合的直线,α,β为两个不重合的平面,给出下列命题:①若m,n都平行于平面α,则m,n一定不是相交直线;②若m 、n 都垂直于平面α,则m ,n 一定是平行直线;③已知α,β互相垂直,m ,n 互相垂直,若m ⊥α,则n ⊥β;④m ,n 在平面α内的射影互相垂直,则m ,n 互相垂直.其中的假命题的序号是________.由题悟法解决此类问题常用的方法有:①依据定理条件才能得出结论的,可结合符合题意的图形作出判断;②否定命题时只需举一个反例.③寻找恰当的特殊模型(如构造长方体)进行筛选.典题导入[例2] (2012·广东高考)如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH为△P AD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ; (3)证明:EF ⊥平面PAB .由题悟法证明直线和平面垂直的常用方法有: (1)利用判定定理.(2)利用判定定理的推论(a ∥b ,a ⊥α⇒b ⊥α). (3)利用面面平行的性质(a⊥α,α∥β⇒a ⊥β).(4)利用面面垂直的性质.当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.以题试法2.(2012·启东模拟)如图所示,已知P A ⊥矩形ABCD 所在平面,M ,N 分别是AB ,PC 的中点. (1)求证:MN ⊥CD ;(2)若∠PDA =45°,求证:MN⊥平面PCD .典题导入[例3] (2012·江苏高考)如图,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE ..由题悟法1.判定面面垂直的方法: (1)面面垂直的定义.(2)面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β). 2.在已知平面垂直时,一般要用性质定理进行转化,转化为线面垂直或线线垂直.转化方法:在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.以题试法3.(2012·泸州一模)如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,Q 为AD 的中点.(1)若P A =PD ,求证:平面PQB ⊥平面P AD ; (2)若点M 在线段PC 上,且PM =tPC (t >0),试确定实数t 的值,使得P A ∥平面MQB .1.(2012·杭州模拟)设a ,b ,c 是三条不同的直线,α,β是两个不同的平面,则a⊥b的一个充分条件是()A.a⊥c,b⊥c B.α⊥β,a⊂α,b⊂βC.a⊥α,b∥αD.a⊥α,b⊥α.2.设α,β,γ是三个不重合的平面,l是直线,给出下列命题①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l∥α;③若l⊥α,l∥β,则α⊥β;④若α∥β,l⊄β,且l∥α,则l∥β.其中正确的命题是()A.①②B.②③C.②④D.③④3.给出命题:(1)在空间里,垂直于同一平面的两个平面平行;(2)设l,m是不同的直线,α是一个平面,若l ⊥α,l∥m,则m⊥α;(3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;(4)a,b是两条异面直线,P为空间一点,过P 总可以作一个平面与a,b之一垂直,与另一个平行.其中正确命题个数是()A.0 B.1C.2 D.34.(2013·济南模拟)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部.5.(2012·曲阜师大附中质检)如图所示,直线P A 垂直于⊙O所在的平面,△ABC内接于⊙O,且AB 为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC 的距离等于线段BC的长.其中正确的是()A.①②B.①②③C.①D.②③6.(2012·济南名校模拟)如图,在四边形ABCD 中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下面命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDC C.平面ABC⊥平面BDC D.平面ADC⊥平面ABC 7.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)8.(2012·忻州一中月考)正四棱锥S-ABCD的底面边长为2,高为2,E是BC的中点,动点P在四棱锥的表面上运动,并且总保持PE⊥AC,则动点P的轨迹的长为________.10. 如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.11.(2012·北京海淀二模)如图所示,P A⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,P A=AB=2,点E为线段PB的中点,点M在AB上,且OM∥AC. (1)求证:平面MOE∥平面P AC;(2)求证:平面P AC⊥平面PCB.。

【三维设计】2014届高考数学一轮复习 (基础知识+高频考点+解题训练)等比数列及其前n项和教学案

【三维设计】2014届高考数学一轮复习 (基础知识+高频考点+解题训练)等比数列及其前n项和教学案

等比数列及其前n 项和[知识能否忆起]1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列{a n }的常用性质(1)在等比数列{a n }中,若m +n =p +q =2r (m ,n ,p ,q ,r ∈N *),则a m ·a n =a p ·a q =a 2r .特别地,a 1a n =a 2a n -1=a 3a n -2=….(2)在公比为q 的等比数列{a n }中,数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列,公比为q k;数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时q ≠-1);a n =a m q n -m .[小题能否全取]1.(教材习题改编)等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16D .32解析:选C a 2·a 6=a 24=16.2.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4·⎝ ⎛⎭⎪⎫32nB .4·⎝ ⎛⎭⎪⎫23nC .4·⎝ ⎛⎭⎪⎫32n -1D .4·⎝ ⎛⎭⎪⎫23n -1解析:选C (a +1)2=(a -1)(a +4)⇒a =5,a 1=4,q =32,故a n =4·⎝ ⎛⎭⎪⎫32n -1.3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128D .243解析:选A q =a 2+a 3a 1+a 2=2, 故a 1+a 1q =3⇒a 1=1,a 7=1×27-1=64.4.(2011·北京高考)在等比数列{a n }中,若a 1=12,a 4=4,则公比q =________;a 1+a 2+…+a n =________.解析:a 4=a 1q 3,得4=12q 3,解得q =2,a 1+a 2+…+a n =121-2n 1-2=2n -1-12. 答案:2 2n -1-125.(2012·新课标全国卷)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:∵S 3+3S 2=0,∴a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0. ∵a 1≠0,∴q =-2. 答案:-2 1.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数. (2)由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 2.等比数列的前n 项和S n(1)等比数列的前n 项和S n 是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.典题导入[例1] 已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式.[自主解答] (1)证明:∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12. ∵首项c 1=a 1-1,又a 1+a 1=1, ∴a 1=12,c 1=-12.又c n =a n -1,故{c n }是以-12为首项,12为公比的等比数列.(2)由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n,∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n.在本例条件下,若数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2),证明{b n }是等比数列.证明:∵由(2)知a n =1-⎝ ⎛⎭⎪⎫12n,∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1 =⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n . 又b 1=a 1=12也符合上式,∴b n =⎝ ⎛⎭⎪⎫12n .∵b n +1b n =12,∴数列{b n }是等比数列.由题悟法等比数列的判定方法 (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.以题试法1. (2012·沈阳模拟)已知函数f (x )=log a x ,且所有项为正数的无穷数列{a n }满足log a a n +1-log a a n =2,则数列{a n }( )A .一定是等比数列B .一定是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列 解析:选A 由log a a n +1-log a a n =2,得log aa n +1a n =2=log a a 2,故a n +1a n=a 2.又a >0且a ≠1,所以数列{a n }为等比数列.典题导入[例2] (2011·全国高考)设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n .[自主解答] 设{a n }的公比为q ,由题设得⎩⎪⎨⎪⎧a 1q =6,6a 1+a 1q 2=30.解得⎩⎪⎨⎪⎧a 1=3,q =2或⎩⎪⎨⎪⎧a 1=2,q =3.当a 1=3,q =2时,a n =3×2n -1,S n =3×(2n-1); 当a 1=2,q =3时,a n =2×3n -1,S n =3n-1.由题悟法1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.2.在使用等比数列的前n 项和公式时,应根据公比q 的情况进行分类讨论,切不可忽视q 的取值而盲目用求和公式.以题试法2.(2012·山西适应性训练)已知数列{a n }是公差不为零的等差数列,a 1=2,且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式; (2)求数列{3a n }的前n 项和.解:(1)设等差数列{a n }的公差为d (d ≠0). 因为a 2,a 4,a 8成等比数列, 所以(2+3d )2=(2+d )·(2+7d ), 解得d =2.所以a n =2n (n ∈N *).(2)由(1)知3a n =32n ,设数列{3a n }的前n 项和为S n , 则S n =32+34+…+32n =91-9n1-9=98(9n-1).典题导入[例3] (1)(2012·威海模拟)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12B.32 C .1D .-32(2)设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4D .1∶3[自主解答] (1)因为a 3a 4a 5=3π=a 34,所以a 4=3π3.log 3a 1+log 3a 2+…+log 3a 7 =log 3(a 1a 2…a 7)=log 3a 74 =7log 33π3=7π3,故sin(log 3a 1+log 3a 2+…+log 3a 7)=32. (2)由等比数列的性质:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.[答案] (1)B (2)C由题悟法等比数列与等差数列在定义上只有“一字之差”,它们的通项公式和性质有许多相似之处,其中等差数列中的“和”“倍数”可以与等比数列中的“积”“幂”相类比.关注它们之间的异同有助于我们从整体上把握,同时也有利于类比思想的推广.对于等差数列项的和或等比数列项的积的运算,若能关注通项公式a n =f (n )的下标n 的大小关系,可简化题目的运算.以题试法3.(1)(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7(2)(2012·成都模拟)已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n) B .16(1-2-n) C.323(1-4-n)D.323(1-2-n) 解析:(1)选D 法一:由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8,解得⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7. 法二:由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.则⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7.(2)选C ∵a 2=2,a 5=14,∴a 1=4,q =12,a n a n +1=⎝ ⎛⎭⎪⎫122n -5.故a 1a 2+a 2a 3+…+a n a n +1=8⎝ ⎛⎭⎪⎫1-14n 1-14=323(1-4-n).1.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q 为( ) A .-12 B .1C .-12或1D.14解析:选C 当q =1时,满足S 3=3a 1=3a 3.当q ≠1时,S 3=a 11-q 31-q=a 1(1+q +q 2)=3a 1q 2,解得q =-12,综上q =-12或q =1.2.(2012·东城模拟)设数列{a n }满足:2a n =a n +1(a n ≠0)(n ∈N *),且前n 项和为S n ,则S 4a 2的值为( ) A.152B.154 C .4D .2解析:选A 由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2=a 11-241-2a 1×2=152. 3.(2012·安徽高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .7解析:选B ∵a 3·a 11=16,∴a 27=16. 又∵等比数列{a n }的各项都是正数,∴a 7=4. 又∵a 10=a 7q 3=4×23=25,∴log 2a 10=5.4.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 显然,n ∈N *,a n ,a n +1,a n +2成等比数列,则a 2n +1=a n a n +2,反之,则不一定成立,举反例,如数列为1,0,0,0,…5.(2013·太原模拟)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .16解析:选B 设S 2n =a ,S 4n =b ,由等比数列的性质知: 2(14-a )=(a -2)2,解得a =6或a =-4(舍去), 同理(6-2)(b -14)=(14-6)2,所以b =S 4n =30.6.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则m n =( )A.32 B.32或23 C.23D .以上都不对解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b=92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23. 7.已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:由题意可知,b 6b 8=b 27=a 27=2(a 3+a 11)=4a 7, ∵a 7≠0,∴a 7=4,∴b 6b 8=16. 答案:168.(2012·江西高考)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.解析:由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 11-q 51-q =1--253=11.答案:119.(2012·西城期末)已知{a n }是公比为2的等比数列,若a 3-a 1=6,则a 1=________;1a 21+1a 22+…+1a 2n=________.解析:∵{a n }是公比为2的等比数列,且a 3-a 1=6,∴4a 1-a 1=6,即a 1=2,故a n =a 12n -1=2n ,∴1a n =⎝ ⎛⎭⎪⎫12n ,1a 2n =⎝ ⎛⎭⎪⎫14n ,即数列⎩⎨⎧⎭⎬⎫1a 2n 是首项为14,公比为14的等比数列,∴1a 21+1a 22+…+1a 2n =14⎝ ⎛⎭⎪⎫1-14n 1-14=13⎝ ⎛⎭⎪⎫1-14n . 答案:2 13⎝ ⎛⎭⎪⎫1-14n10.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列,∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -2(2-1)=2n -2.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=21-4n 1-4=24n-13.∴a 1+a 3+…+a 2n +1=1+24n-13=22n +1+13. 11.设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列. (1)求{a n }的通项公式;(2)设b n =1-S n ,问:是否存在a 1,使数列{b n }为等比数列?若存在,求出a 1的值;若不存在,请说明理由.解:(1)依题意,得2S n =a n +1-a 1.当n ≥2时,有⎩⎪⎨⎪⎧2S n =a n +1-a 1,2S n -1=a n -a 1.两式相减,得a n +1=3a n (n ≥2). 又因为a 2=2S 1+a 1=3a 1,a n ≠0,所以数列{a n }是首项为a 1,公比为3的等比数列. 因此,a n =a 1·3n -1(n ∈N *).(2)因为S n =a 11-3n 1-3=12a 1·3n-12a 1,b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2.所以存在a 1=-2,使数列{b n }为等比数列.12. (2012·山东高考)已知等差数列{a n }的前5项和为105,且a 10=2a 5. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m的项的个数记为b m .求数列{b m }的前m 项和S m . 解:(1)设数列{a n }的公差为d ,前n 项和为T n , 由T 5=105,a 10=2a 5, 得⎩⎪⎨⎪⎧5a 1+5×5-12d =105,a 1+9d =2a 1+4d ,解得a 1=7,d =7.因此a n =a 1+(n -1)d =7+7(n -1)=7n (n ∈N *). (2)对m ∈N *,若a n =7n ≤72m,则n ≤72m -1.因此b m =72m -1.所以数列{b m }是首项为7,公比为49的等比数列,故S m =b 11-q m 1-q =7×1-49m 1-49=7×72m -148=72m +1-748.1.若数列{a n }满足a 2n +1a 2n=p (p 为正常数,n ∈N *),则称数列{a n }为“等方比数列”.甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若a 2n +1a 2n =p ,则a n +1a n =±p ,不是定值;若a n +1a n =q ,则a 2n +1a 2n=q 2,且q 2为正常数,故甲是乙的必要不充分条件.2.(2012·浙江高考)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析:法一:S 4=S 2+a 3+a 4=3a 2+2+a 3+a 4=3a 4+2,将a 3=a 2q ,a 4=a 2q 2代入得, 3a 2+2+a 2q +a 2q 2=3a 2q 2+2,化简得2q 2-q -3=0,解得q =32(q =-1不合题意,舍去).法二:设等比数列{a n }的首项为a 1,由S 2=3a 2+2,得 a 1(1+q )=3a 1q +2.①由S 4=3a 4+2,得a 1(1+q )(1+q 2)=3a 1q 3+2.② 由②-①得a 1q 2(1+q )=3a 1q (q 2-1).∵q >0,∴q =32.答案:323.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *).(1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式.解:(1)证明:依题意S n =4a n -3(n ∈N *), n =1时,a 1=4a 1-3,解得a 1=1.因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列.(2)因为a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3·⎝ ⎛⎭⎪⎫43n -1-1(n ≥2),当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝ ⎛⎭⎪⎫43n -1-1.1.(2012·大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝ ⎛⎭⎪⎫32n -1C.⎝ ⎛⎭⎪⎫23n -1D.12n -1解析:选B ∵S n =2a n +1,∴当n ≥2时,S n -1=2a n ,∴a n =S n -S n -1=2a n +1-2a n ,∴3a n =2a n +1,∴a n +1a n =32. 又∵S 1=2a 2,∴a 2=12,∴a 2a 1=12, ∴{a n }从第二项起是以32为公比的等比数列, ∴S n =a 1+a 2+a 3+…+a n =1+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n -11-32=⎝ ⎛⎭⎪⎫32n -1. ( 也可以先求出n ≥2时,a n =3n -22n -1,再利用S n =2a n +1,求得S n =⎝ ⎛⎭⎪⎫32n -1 ) 2.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0,又q ≠0,从而q =-12. (2)由(1)可得a 1-a 1⎝ ⎛⎭⎪⎫-122=3. 故a 1=4,从而S n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=83⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n . 3.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c n b n =a n +1成立,求c 1+c 2+c 3+…+c 2 013. 解:(1)∵a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ).∵d >0,故解得d =2.∴a n =1+(n -1)·2=2n -1. 又b 2=a 2=3,b 3=a 5=9,∴数列{b n }的公比为3,∴b n =3·3n -2=3n -1.(2)由c 1b 1+c 2b 2+…+c nb n=a n +1得 当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n .两式相减得:n ≥2时,c nb n=a n +1-a n =2. ∴c n =2b n =2·3n -1(n ≥2). 又当n =1时,c 1b 1=a 2,∴c 1=3. ∴c n =⎩⎪⎨⎪⎧ 3,n =1,2·3n -1,n ≥2. ∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古_典_概_型[知识能否忆起]一、基本事件的特点1.任何两个基本事件是互斥的.2.任何事件(除不可能事件)都可以表示成基本事件的和. 二、古典概型的两个特点1.试验中所有可能出现的基本事件只有有限个,即有限性. 2.每个基本事件出现的可能性相等,即等可能性.[提示] 确定一个试验为古典概型应抓住两个特征:有限性和等可能性. 三、古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.[小题能否全取]1.(教材习题改编)从甲、乙、丙三人中任选两名代表,甲被选中的概率为( ) A.12 B.13 C.23D .1解析:选C 基本事件总数为(甲、乙)、(甲、丙)、(乙、丙)共三种,甲被选中共2种.则P =23.2.(教材习题改编)从1,2,3,4,5,6六个数中任取2个数,则取出的两个数不是连续自然数的概率是( )A.35B.25C.13D.23解析:选D 从六个数中任取2个数有15种方法,取出的两个数是连续自然数有5种情况,则取出的两个数不是连续自然数的概率P =1-515=23. 3.甲、乙两同学每人有两本书,把四本书混放在一起,每人随机拿回两本,则甲同学拿到一本自己书一本乙同学书的概率是( )A.13B.23C.12D.14解析:选B 记甲同学的两本书为A ,B ,乙同学的两本书为C ,D ,则甲同学取书的情况有AB ,AC ,AD ,BC ,BD ,CD 共6种,有一本自己的书,一本乙同学的书的取法有AC ,AD ,BC ,BD 共4种,所求概率P =23.4.(2012·南通一调)将甲、乙两球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有一个球的概率为________.解析:依题意得,甲、乙两球各有3种不同的放法,共9种放法,其中有1,2号盒子中各有一个球的放法有2种,故有1,2号盒子中各有一个球的概率为29.答案:295.(教材习题改编)从3台甲型彩电和2台乙型彩电中任选两台,其中两种品牌的彩电齐全的概率是________.解析:P =3×210=35.答案:351.古典概型的判断:一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概率模型才是古典概型.2.对于复杂的古典概型问题要注意转化为几个互斥事件的概率问题去求.典题导入[例1] (2012·安徽高考)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45[自主解答] (文)设袋中红球用a 表示,2个白球分别用b 1,b 2表示,3个黑球分别用c 1,c 2,c 3表示,则从袋中任取两球所含基本事件为(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 1,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3)共15个.两球颜色为一白一黑的基本事件有(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3)共6个.因此其概率为615=25.(理)从6个球中任取两球有C 26=15种取法,颜色一黑一白的取法有C 12C 13=6种,故概率P =615=25.[答案] B在本例条件下,求两球不同色的概率.解:两球不同色可分三类:一红一白,一红一黑,一白一黑. 故P =1×2+1×3+2×315=1115.由题悟法计算古典概型事件的概率可分三步:(1)算出基本事件的总个数n ;(2)求出事件A 所包含的基本事件个数m ;(3)代入公式求出概率P .以题试法1.“≺数”是指每个数字比其左边的数字大的自然数(如1 469),在两位的“≺数”中任取一个数比36大的概率是( )A.12 B.23 C.34D.45解析:选A 在两位数中,十位是1的“≺数”有8个;十位是2的“≺数”有7个;……;十位是8的“≺数”有1个.则两位数中,“≺数”共有8+7+6+5+4+3+2+1=36个,比36大的“≺数”共有3+5+4+3+2+1=18个.故在两位的“≺数”中任取一个数比36大的概率是1836=12.典题导入[例2] (2012·江西高考)如图所示,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率; (2)求这3点与原点O 共面的概率.[自主解答] (文)从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,共4种; y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,共4种; z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共4种.所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种.因此,从这6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有:A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P 1=220=110.(2)法一:选取的这3个点与原点O 共面的所有可能结果有:A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为P 2=1220=35.法二:选取的这3个点与原点不共面的所有可能的结果有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种,因此这3个点与原点O 共面的概率为P 2=1-820=35.(理)从这6个点中任取3个点可分三类:在x 轴上取2个点、1个点、0个点,共有C 22C 14+C 12C 24+C 34=20种取法.(1)选取的3个点与原点O 恰好是正三棱锥项点的取法有2种,概率P 1=220=110.(2)法一:选取的3个点与原点O 共面的取法有C 22·C 14·3=12种,所求概率P 2=1220=35. 法二:选取的3个点与原点不共面的取法有C 12·C 12·C 12=8种,因此这3个点与原点O 共面的概率P 2=1-820=35.由题悟法求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型.必要时将所求事件转化成彼此互斥的事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.以题试法2.一个小朋友任意敲击电脑键盘上的0到9十个键,则他敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( )A.425 B .215 C.25D.29解析:选A 任意敲击两次有10×10=100种方法,两次都是3的倍数有4×4=16种方法,故所求概率为P =16100=425.1.(2013·惠州调研)一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( )A.12B.13C.14D.25解析:选A 把红球标记为红1、红2,白球标记为白1、白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,白1、白1,白1、白2,白2、白1,白2、白2,故所求概率为P =816=12.2.(2012·鸡西模拟)在40根纤维中,有12根的长度超过30 mm ,从中任取一根,取到长度超过30 mm 的纤维的概率是( )A.34B.310C.25D .以上都不对解析:选B 在40根纤维中,有12根的长度超过30 mm ,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为310.3.(2013·宿州质检)一颗质地均匀的正方体骰子,其六个面上的点数分别为1、2、3、4、5、6,将这一颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为( )A.112B.118C.136D.7108解析:选A 基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P =186×6×6=112.4.已知某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件,n 件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过.则第一天通过检查的概率为( )A.25B.35C.23D.67解析:选B 因为随意抽取4件产品检查是随机事件,而第一天有1件次品,所以第一天通过检查的概率P =C 49C 410=35.5.(2012·宁波模拟)设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( )A.12B.58C.1116D.34解析:选C 因为f (x )=x 3+ax -b ,所以f ′(x )=3x 2+a .因为a ∈{1,2,3,4},因此f ′(x )>0,所以函数f (x )在区间[1,2]上为增函数.若存在零点,则⎩⎪⎨⎪⎧f (1)≤0,f (2)≥0,解得a +1≤b ≤8+2a .因此可使函数在区间[1,2]上有零点的有a =1,2≤b ≤10,故b =2,b =4,b =8;a =2,3≤b ≤12,故b =4,b =8,b =12;a =3,4≤b ≤14,故b =4,b =8,b =12;a =4,5≤b ≤16,故b =8,b =12.根据古典概型可得有零点的概率为1116.6.某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.115 B.35 C.815D.1415解析:选B 从“6听饮料中任取2听饮料”这一随机试验中所有可能出现的基本事件共有15个,而“抽到不合格饮料”含有9个基本事件,所以检测到不合格饮料的概率为P=915=35. 7.(2012·南京模拟)从分别写有0,1,2,3,4的五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.则两次取出的卡片上的数字之和恰好等于4的概率是________.解析:从0,1,2,3,4五张卡片中取出两张卡片的结果有25种,数字之和恰好等于4的结果有(0,4),(1,3),(2,2),(3,1),(4,0),所以数字和恰好等于4的概率是P =15.答案:158.(2012·重庆高考)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答).解析:基本事件是对这6门课排列,故基本事件的个数为A 66.“课表上的相邻两节文化课之间至少间隔1节艺术课”就是“任何两节文化课不能相邻”,利用“插空法”,可得其排列方法种数为A 33A 34.根据古典概型的概率计算公式可得事件“课表上的相邻两节文化课之间至少间隔1节艺术课”发生的概率为A 33A 34A 66=15.答案:159.(2012·江苏高考)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.解析:由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P =610=35.答案:3510.暑假期间,甲、乙两个学生准备以问卷的方式对某城市市民的出行方式进行调查.如图是这个城市的地铁二号线路图(部分),甲、乙分别从太平街站(用A 表示)、南市场站(用B 表示)、青年大街站(用C 表示)这三站中,随机选取一站作为调查的站点.(1)求甲选取问卷调查的站点是太平街站的概率;(2)求乙选取问卷调查的站点与甲选取问卷调查的站点相邻的概率.解:(1)由题知,所有的基本事件有3个,甲选取问卷调查的站点是太平街站的基本事件有1个,所以所求事件的概率P =13.(2)由题知,甲、乙两人选取问卷调查的所有情况见下表:由表格可知,共有9种可能结果,其中甲、乙在相邻的两站进行问卷调查的结果有4种,分别为(A ,B ),(B ,A ),(B ,C ),(C ,B ).因此乙选取问卷调查的站点与甲选取问卷调查的站点相邻的概率为49.11.(2012·济南模拟)将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a ,正四面体的三个侧面上的数字之和为b ”.设复数为z =a +b i.(1)若集合A ={z |z 为纯虚数},用列举法表示集合A ;(2)求事件“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的概率. 解:(1)A ={6i,7i,8i,9i}.(2)满足条件的基本事件的个数为24.设满足“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的事件为B . 当a =0时,b =6,7,8,9满足a 2+(b -6)2≤9; 当a =1时,b =6,7,8满足a 2+(b -6)2≤9; 当a =2时,b =6,7,8满足a 2+(b -6)2≤9; 当a =3时,b =6满足a 2+(b -6)2≤9.即B 为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个.所以所求概率P =1124.12.(2012·福州模拟)已知A 、B 、C 三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A 、B 、C 三个箱子中各摸出1个球.(1)若用数组(x ,y ,z )中的x ,y ,z 分别表示从A 、B 、C 三个箱子中摸出的球的号码,请写出数组(x ,y ,z )的所有情形,并回答一共有多少种;(2)如果请您猜测摸出的这三个球的号码之和,猜中有奖,那么猜什么数获奖的可能性最大?请说明理由.解:(1)数组(x ,y ,z )的所有情形为(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8种.(2)记“所摸出的三个球号码之和为i ”为事件A i (i =3,4,5,6),易知,事件A 3包含有1个基本事件,事件A 4包含有3个基本事件,事件A 5包含有3个基本事件,事件A 6包含有1个基本事件,所以,P (A 3)=18,P (A 4)=38,P (A 5)=38,P (A 6)=18.故所摸出的两球号码之和为4或5的概率相等且最大.故猜4或5获奖的可能性最大.1.(2012·温州十校联考)从x 2m -y 2n =1(其中m ,n ∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为( )A.12B.47C.23D.34解析:选B 当方程x 2m -y 2n =1表示椭圆、双曲线、抛物线等圆锥曲线时,不能有m <0,n >0,所以方程x 2m -y 2n =1表示椭圆双曲线、抛物线等圆锥曲线的(m ,n )有(2,-1),(3,-1),(2,2),(3,2),(2,3),(3,3),(-1,-1)共7种,其中表示焦点在x 轴上的双曲线时,则m >0,n >0,有(2,2),(3,2),(2,3),(3,3)共4种,所以所求概率P =47.2.设连续掷两次骰子得到的点数分别为m 、n 则直线y =mn x 与圆(x -3)2+y 2=1相交的概率为________.解析:由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的取法共36种.由直线与圆的位置关系得,d =|3m |m 2+n 2<1,即m n <24,共有13,14,15,16,26,5种,所以直线y =m n x 与圆(x -3)2+y 2=1相交的概率为536.答案:5363. (2012·天津高考)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果; ②求抽取的2所学校均为小学的概率.解:(1)由分层抽样定义知,从小学中抽取的学校数目为6×2121+14+7=3;从中学中抽取的学校数目为6×1421+14+7=2;从大学中抽取的学校数目为6×721+14+7=1.因此,从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6}共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3}共3种.所以P (B )=315=15.1.已知A ={1,2,3},B ={x ∈R |x 2-ax +b =0},a ∈A ,b ∈A ,则A ∩B =B 的概率是( ) A.29 B.13 C.89D .1解析:选C ∵A ∩B =B ,∴B 可能为∅,{1},{2},{3},{1,2},{2,3},{1,3}.当B =∅时,a 2-4b <0,满足条件的a ,b 为a =1,b =1,2,3;a =2,b =2,3;a =3,b =3.当B ={1}时,满足条件的a ,b 为a =2,b =1.当B ={2},{3}时,没有满足条件的a ,b .当B ={1,2}时,满足条件的a ,b 为a =3,b =2.当B ={2,3},{1,3}时,没有满足条件的a ,b .∴A ∩B =B 的概率为83×3=89.2.将一颗骰子投掷两次分别得到点数a 、b ,则直线ax -by =0与圆(x -2)2+y 2=2相交的概率为________.解析:圆心(2,0)到直线ax -by =0的距离d =|2a |a 2+b 2,当d <2时,直线与圆相交,则有d =|2a |a 2+b 2<2,得b >a ,满足题意的b >a ,共有15种情况,因此直线ax -by =0与圆(x -2)2+y 2=2相交的概率为1536=512.答案:5123.(2012·福建高考)在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2,所以a n =n ,b n =2n -1. (2)分别从{a n }和{b n }的前3项中各随机抽取一项,得到的基本事件有9个(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个(1,1),(2,2).故所求的概率P =29.。

相关文档
最新文档