高考数学试题(理科)

合集下载

2020年全国统一高考数学试卷(理科)(全国新课标II)【含答案】

2020年全国统一高考数学试卷(理科)(全国新课标II)【含答案】

2020年全国统一高考数学试卷(理科)(全国新课标II)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

ð1.已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则(A∪B)=UA.{-2,3}B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-10,2,3}2.若α为第四象限角,则A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05。

志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为6.数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k =A.2B.3C.4D.57.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A.EB.FC.GD.H8.设O 为坐标原点,直线x =a 与双曲线C :的两条渐近线分别交22221(0,0)x y a b a b-=>>于D ,E 两点。

2023年全国统一高考数学试卷(理科甲卷)

2023年全国统一高考数学试卷(理科甲卷)

2023年全国统一高考数学试卷(理科甲卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A ={x |x =3k +1,k ∈Z },B ={x |x =3k +2,k ∈Z },U 为整数集,∁U (A ⋃B )=( ) A .{x |x =3k ,k ∈Z } B .{x |x =3k ﹣1,k ∈Z } C .{x |x =3k ﹣2,k ∈Z }D .∅2.若复数(a +i )(1﹣ai )=2,则a =( ) A .﹣1B .0C .1D .23.执行下面的程序框遇,输出的B =( )A .21B .34C .55D .894.向量|a →|=|b →|=﹣1,|c →|=√2,且a →+b →+c →=0→,则cos 〈a →−c →,b →−c →〉=( ) A .−15B .−25C .25D .455.已知等比数列{a n }中,a 1=1,S n 为{a n }前n 项和,S 5=5S 3﹣4,则S 4=( ) A .7B .9C .15D .306.有5加人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( ) A .0.8B .0.4C .0.2D .0.17.“sin 2α+sin 2β=1”是“sin α+cos β=0”的( ) A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .既不是充分条件也不是必要条件 8.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的离心率为√5,其中一条渐近线与圆(x ﹣2)2+(y ﹣3)2=1交于A ,B 两点,则|AB |=( ) A .15B .√55C .2√55D .4√559.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为( ) A .120B .60C .40D .3010.已知f (x )为函数y =cos(2x +π6)向左平移π6个单位所得函数,则y =f (x )与y =12x −12的交点个数为( ) A .1B .2C .3D .411.在四棱锥P ﹣ABCD 中,底面ABCD 为正方形,AB =4,PC =PD =3,∠PCA =45°,则△PBC 的面积为( ) A .2√2 B .3√2C .4√2D .5√212.已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos∠F 1PF 2=35,则|PO |=( ) A .25B .√302C .35D .√352二、填空题:本题共4小题,每小题5分,共20分。

高考数学试题及答案(理科)及解析

高考数学试题及答案(理科)及解析

陕西省高考数学试卷(理科)一、选择题,共12小题,每小题5分,共60分1.(5分)(2020?陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]2.(5分)(2020?陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.1673.(5分)(2020?陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.104.(5分)(2020?陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7B.6C.5D.45.(5分)(2020?陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+46.(5分)(2020?陕西)“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)(2020?陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()?()=2﹣28.(5分)(2020?陕西)根据如图框图,当输入x为2006时,输出的y=()A.2B.4C.10 D.289.(5分)(2020?陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q10.(5分)(2020?陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元11.(5分)(2020?陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣12.(5分)(2020?陕西)对二次函数f(x)=ax 2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.﹣1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上二、填空题,共4小题,每小题5分,共20分13.(5分)(2020?陕西)中位数为1010的一组数构成等差数列,其末项为2020,则该数列的首项为.14.(5分)(2020?陕西)若抛物线y2=2px(p>0)的准线经过双曲线x2﹣y2=1的一个焦点,则p=.15.(5分)(2020?陕西)设曲线y=e x在点(0,1)处的切线与曲线y=(x>0)上点P 的切线垂直,则P的坐标为.16.(5分)(2020?陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为.三、解答题,共5小题,共70分17.(12分)(2020?陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.18.(12分)(2020?陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE的位置,如图2.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.19.(12分)(2020?陕西)某校新、老校区之间开车单程所需时间为T,T只与道路通畅状况有关,对其容量为100的样本进行统计,结果如下:T(分钟)25 30 35 40频数(次)20 30 40 10(Ⅰ)求T的分布列与数学期望ET;(Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.20.(12分)(2020?陕西)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(Ⅰ)求椭圆E的离心率;(Ⅱ)如图,AB是圆M:(x+2)2+(y﹣1)2=的一条直径,若椭圆E经过A、B两点,求椭圆E的方程.21.(12分)(2020?陕西)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(Ⅰ)证明:函数F n(x)=f n(x)﹣2在(,1)内有且仅有一个零点(记为x n),且x n=+x;(Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n(x)和g n(x)的大小,并加以证明.四、选修题,请在22、23、24中任选一题作答,如果多做则按第一题计分.选修4-1:几何证明选讲22.(10分)(2020?陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.五、选修4-4:坐标系与参数方程23.(2020?陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.六、选修4-5:不等式选讲24.(2020?陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4} (Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.2020年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题,共12小题,每小题5分,共60分1.(5分)考点:并集及其运算.专题:集合.分析:求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.解答:解:由M={x|x2=x}={0,1},N={x|lgx≤0}=(0,1],得M∪N={0,1}∪(0,1]=[0,1].故选:A.点评:本题考查了并集及其运算,考查了对数不等式的解法,是基础题.2.(5分)考点:收集数据的方法.专题:计算题;概率与统计.分析:利用百分比,可得该校女教师的人数.解答:解:初中部女教师的人数为110×70%=77;高中部女教师的人数为40×150%=60,∴该校女教师的人数为77+60=137,故选:C.点评:本题考查该校女教师的人数,考查收集数据的方法,考查学生的计算能力,比较基础.3.(5分)考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由题意和最小值易得k的值,进而可得最大值.解答:解:由题意可得当sin(x+φ)取最小值﹣1时,函数取最小值y min=﹣3+k=2,解得k=5,∴y=3sin(x+φ)+5,∴当当sin(x+φ)取最大值1时,函数取最大值y max=3+5=8,故选:C.点评:本题考查三角函数的图象和性质,涉及三角函数的最值,属基础题.4.(5分)考点:二项式定理的应用.专题:二项式定理.分析:由题意可得==15,解关于n的方程可得.解答:解:∵二项式(x+1)n(n∈N+)的展开式中x2的系数为15,∴=15,即=15,解得n=6,故选:B.点评:本题考查二项式定理,属基础题.5.(5分)考点:由三视图求面积、体积.专计算题;空间位置关系与距离.题:分析:根据几何体的三视图,得出该几何体是圆柱体的一部分,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是圆柱体的一半,∴该几何体的表面积为S几何体=π?12+π×1×2+2×2=3π+4.故选:D.点评:本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.6.(5分)考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:由cos2α=cos2α﹣sin2α,即可判断出.解答:解:由cos2α=cos2α﹣sin2α,∴“sinα=cosα”是“cos2α=0”的充分不必要条件.故选:A.点评:本题考查了倍角公式、简易逻辑的判定方法,考查了推理能力,属于基础题.7.(5分)考点:平面向量数量积的运算.专题:平面向量及应用.分析:由向量数量积的运算和性质逐个选项验证可得.解答:解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()?()=2﹣2.故选:B点评:本题考查平面向量的数量积,属基础题.8.(5分)考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x的值,当x=﹣2时不满足条件x≥0,计算并输出y的值为10.解答:解:模拟执行程序框图,可得x=2006,x=2004满足条件x≥0,x=2002满足条件x≥0,x=2000…满足条件x≥0,x=0满足条件x≥0,x=﹣2不满足条件x≥0,y=10输出y的值为10.故选:C.点评:本题主要考查了循环结构的程序框图,属于基础题.9.(5分)考点:不等关系与不等式.专题:不等式的解法及应用.分析:由题意可得p=(lna+lnb),q=ln()≥ln()=p,r=(lna+lnb),可得大小关系.解答:解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B点评:本题考查不等式与不等关系,涉及基本不等式和对数的运算,属基础题.10.(5分)考点:简单线性规划的应用.专题:不等式的解法及应用.分析:设每天生产甲乙两种产品分别为x,y顿,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.解答:解:设每天生产甲乙两种产品分别为x,y顿,利润为z元,则,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z max=3x+4y=6+12=18.即每天生产甲乙两种产品分别为2,3顿,能够产生最大的利润,最大的利润是18万元,故选:D.点评:本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.11.(5分)考点:几何概型.专题:概率与统计.分析:由题意易得所求概率为弓形的面积与圆的面积之比,分别求面积可得.解答:解:∵复数z=(x﹣1)+yi(x,y∈R)且|z|≤1,∴|z|=≤1,即(x﹣1)2+y2≤1,∴点(x,y)在(1,0)为圆心1为半径的圆及其内部,而y≥x表示直线y=x左上方的部分,(图中阴影弓形)∴所求概率为弓形的面积与圆的面积之比,∴所求概率P==故选:D.点评:本题考查几何概型,涉及复数以及圆的知识,属基础题.12.(5分)考点:二次函数的性质.专题:创新题型;函数的性质及应用;导数的综合应用.分析:可采取排除法.分别考虑A,B,C,D中有一个错误,通过解方程求得a,判断是否为非零整数,即可得到结论.解答:解:可采取排除法.若A错,则B,C,D正确.即有f(x)=ax2+bx+c的导数为f′(x)=2ax+b,即有f′(1)=0,即2a+b=0,①又f(1)=3,即a+b+c=3②,又f(2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=﹣10,c=8.符合a为非零整数.若B错,则A,C,D正确,则有a﹣b+c=0,且4a+2b+c=8,且=3,解得a∈?,不成立;若C错,则A,B,D正确,则有a﹣b+c=0,且2a+b=0,且4a+2b+c=8,解得a=﹣不为非零整数,不成立;若D错,则A,B,C正确,则有a﹣b+c=0,且2a+b=0,且=3,解得a=﹣不为非零整数,不成立.故选:A.点评:本题考查二次函数的极值、零点等概念,主要考查解方程的能力和判断分析的能力,属于中档题.二、填空题,共4小题,每小题5分,共20分13.(5分)考点:等差数列.专题:等差数列与等比数列.分析:由题意可得首项的方程,解方程可得.解答:解:设该等差数列的首项为a,由题意和等差数列的性质可得2020+a=1010×2解得a=5故答案为: 5点评:本题考查等差数列的基本性质,涉及中位数,属基础题.14.(5分)考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先求出x2﹣y2=1的左焦点,得到抛物线y2=2px的准线,依据p的意义求出它的值.解答:解:双曲线x2﹣y2=1的左焦点为(﹣,0),故抛物线y2=2px的准线为x=﹣,∴=,∴p=2,故答案为:2.点评:本题考查抛物线和双曲线的简单性质,以及抛物线方程y2=2px中p的意义.15.(5分)考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:利用y=e x在某点处的切屑斜率与另一曲线的切线斜率垂直求得另一曲线的斜率,进而求得切点坐标.解答:解:∵f'(x)=e x,∴f'(0)=e0=1.∵y=e x在(0,1)处的切线与y=(x>0)上点P的切线垂直∴点P处的切线斜率为﹣1.又y'=﹣,设点P(x0,y0)∴∴x0=±1,∵x>0,∴x0=1∴y0=1∴点P(1,1)故答案为:(1,1)点评:本题考查导数在曲线切线中的应用,在高考中属基础题型,常出现在选择填空中.16.(5分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线的定义、性质与方程.分析:建立直角坐标系,求出抛物线方程,然后利用定积分求出泥沙沉积的横截面面积,求出梯形面积,即可推出结果.解答:解:如图:建立平面直角坐标系,设抛物线方程为:y=ax2,因为抛物线经过(5,2),可得a=,所以抛物线方程:y=,横截面为等腰梯形的水渠,泥沙沉积的横截面的面积为:2×=2()=,等腰梯形的面积为:=16,当前最大流量的横截面的面积16﹣,原始的最大流量与当前最大流量的比值为:=1.2.故答案为: 1.2.点评:本题考查抛物线的求法,定积分的应用,考查分析问题解决问题的能力,合理建系是解题的关键.三、解答题,共5小题,共70分17.(12分)考点:余弦定理的应用;平面向量共线(平行)的坐标表示.专题:解三角形.分析:(Ⅰ)利用向量的平行,列出方程,通过正弦定理求解A;(Ⅱ)利用A,以及a=,b=2,通过余弦定理求出c,然后求解△ABC的面积.解答:解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.点评:本题考查余弦定理以及宰相肚里的应用,三角形的面积的求法,考查计算能力.18.(12分)考点:二面角的平面角及求法;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)根据线面垂直的判定定理即可证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,建立空间坐标系,利用向量法即可求平面A1BC与平面A1CD夹角的余弦值.解答:证明:(Ⅰ)在图1中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD=,∴BE⊥AC,即在图2中,BE⊥OA1,BE⊥OC,则BE⊥平面A1OC;∵CD∥BE,∴CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,由(Ⅰ)知BE⊥OA1,BE⊥OC,∴∠A1OC为二面角A1﹣BE﹣C的平面角,∴∠A1OC=,如图,建立空间坐标系,∵A1B=A1E=BC=ED=1.BC∥ED∴B(,0,0),E(﹣,0,0),A1(0,0,),C(0,,0),=(﹣,,0),=(0,,﹣),设平面A1BC的法向量为=(x,y,z),平面A1CD的法向量为=(a,b,c),则得,令x=1,则y=1,z=1,即=(1,1,1),由得,取=(0,1,1),则cos<>===,∵平面A1BC与平面A1CD为钝二面角,∴平面A1BC与平面A1CD夹角的余弦值为﹣.点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.19.(12分)考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)求T的分布列即求出相应时间的频率,频率=频数÷样本容量,数学期望ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟);(Ⅱ)设T1,T2分别表示往、返所需时间,事件A对应于“刘教授在路途中的时间不超过70分钟”,先求出P()=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.09,即P(A)=1﹣P()=0.91.解答:解(Ⅰ)由统计结果可得T的频率分布为T(分钟)25 30 35 40频率0.2 0.3 0.4 0.1以频率估计概率得T的分布列为T 25 30 35 40P 0.2 0.3 0.4 0.1从而数学期望ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟)(Ⅱ)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立,且与T 的分布列相同,设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”P()=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09故P(A)=1﹣P()=0.91故答案为:(Ⅰ)分布列如上表,数学期望ET=32(分钟)(Ⅱ)0.91点评:本题考查了频率=频数÷样本容量,数学期望,对学生的理解事情的能力有一定的要求,属于中档题.20.(12分)考点:直线与圆锥曲线的综合问题;曲线与方程.专题:创新题型;直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出经过点(0,b)和(c,0)的直线方程,运用点到直线的距离公式,结合离心率公式计算即可得到所求值;(Ⅱ)由(Ⅰ)知,椭圆E的方程为x2+4y2=4b2,①设出直线AB的方程,代入椭圆方程,运用韦达定理和弦长公式,结合圆的直径和中点坐标公式,解方程可得b2=3,即可得到椭圆方程.解答:解:(Ⅰ)经过点(0,b)和(c,0)的直线方程为bx+cy﹣bc=0,则原点到直线的距离为d==c,即为a=2b,e===;(Ⅱ)由(Ⅰ)知,椭圆E的方程为x2+4y2=4b2,①由题意可得圆心M(﹣2,1)是线段AB的中点,则|AB|=,易知AB与x轴不垂直,记其方程为y=k(x+2)+1,代入①可得(1+4k2)x2+8k(1+2k)x+4(1+2k)2﹣4b2=0,设A(x1,y1),B(x2,y2),则x1+x2=.x1x2=,由x1+x2=﹣4,得=﹣4,解得k=,从而x1x2=8﹣2b2,于是|AB|=?|x1﹣x2|=?==,解得b2=3,则有椭圆E的方程为+=1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的求法和椭圆方程的运用,联立直线方程和椭圆方程,运用韦达定理和弦长公式,同时考查直线和圆的位置关系,以及中点坐标公式和点到直线的距离公式的运用,属于中档题.21.(12分)考点:数列的求和;等差数列与等比数列的综合.专题:综合题;创新题型;导数的综合应用;等差数列与等比数列.分析:(Ⅰ)由F n(x)=f n(x)﹣2=1+x+x2+…++x n﹣2,求得F n(1)>0,F n()<0.再由导数判断出函数F n(x)在(,1)内单调递增,得到F n(x)在(,1)内有且仅有一个零点x n,由F n(x n)=0,得到;(Ⅱ)先求出,构造函数h(x)=f n(x)﹣g n(x)=1+x+x2+…++x n﹣,当x=1时,f n(x)=g n(x).当x≠1时,利用导数求得h(x)在(0,1)内递增,在(1,+∞)内递减,得到f n(x)<g n(x).解答:证明:(Ⅰ)由F n(x)=f n(x)﹣2=1+x+x2+…++x n﹣2,则F n(1)=n﹣1>0,F n()=1+.∴F n(x)在(,1)内至少存在一个零点,又,∴F n(x)在(,1)内单调递增,∴F n(x)在(,1)内有且仅有一个零点x n,∵x n是F n(x)的一个零点,∴F n(x n)=0,即,故;(Ⅱ)由题设,,设h(x)=f n(x)﹣g n(x)=1+x+x2+…++x n﹣,x>0.当x=1时,f n(x)=g n(x).当x≠1时,.若0<x<1,h′(x)>=.若x>1,h′(x)<=.∴h(x)在(0,1)内递增,在(1,+∞)内递减,∴h(x)<h(1)=0,即f n(x)<g n(x).综上,当x=1时,f n(x)=g n(x);当x≠1时,f n(x)<g n(x).点评:本题考查了函数零点的判定方法,考查了等比数列的前n项和,训练了利用导数研究函数的单调性,考查了数学转化与化归等思想方法,是中档题.四、选修题,请在22、23、24中任选一题作答,如果多做则按第一题计分.选修4-1:几何证明选讲22.(10分)考点:直线与圆的位置关系.专题:直线与圆.分析:(Ⅰ)根据直径的性质即可证明:∠CBD=∠DBA;(Ⅱ)结合割线定理进行求解即可求⊙O的直径.解答:证明:(Ⅰ)∵DE是⊙O的直径,则∠BED+∠EDB=90°,∵BC⊥DE,∴∠CBD+∠EDB=90°,即∠CBD=∠BED,∵AB切⊙O于点B,∴∠DBA=∠BED,即∠CBD=∠DBA;(Ⅱ)由(Ⅰ)知BD平分∠CBA,则=3,∵BC=,∴AB=3,AC=,则AD=3,由切割线定理得AB2=AD?AE,即AE=,故DE=AE﹣AD=3,即可⊙O的直径为3.点评:本题主要考查直线和圆的位置关系的应用和证明,根据相应的定理是解决本题的关键.六、选修4-5:不等式选讲24.(2020?陕西)考点:不等关系与不等式.专题:不等式的解法及应用.分析:(Ⅰ)由不等式的解集可得ab的方程组,解方程组可得;(Ⅱ)原式=+=+,由柯西不等式可得最大值.解答:解:(Ⅰ)关于x的不等式|x+a|<b可化为﹣b﹣a<x<b﹣a,又∵原不等式的解集为{x|2<x<4},∴,解方程组可得;(Ⅱ)由(Ⅰ)可得+=+=+≤=2=4,当且仅当=即t=1时取等号,∴所求最大值为 4点评:本题考查不等关系与不等式,涉及柯西不等式求最值,属基础题.五、选修4-4:坐标系与参数方程23.(2020?陕西)考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:(I)由⊙C的极坐标方程为ρ=2sinθ.化为ρ2=2,把代入即可得出;.(II)设P,又C.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).点评:本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.。

新课标全国高考理科数学试题(Word版)

新课标全国高考理科数学试题(Word版)

普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第(22)-(24)题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。

3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持卷面清洁,不折叠,不破损。

5、做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

参考公式:样本数据n x x x ,,21的标准差 锥体体积公式222121[()()()]n s x x x x x x n =-+-++- 13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 24S R π= 343V R π=其中S 为底面面积,h 为高 其中R 为球的半径第I 卷 一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 已知集合{||2,}A x x R =≤∈},{|4,}B x x x Z =≤∈,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2}(2)已知复数23(13)iz i +=-z 是z 的共轭复数,则z z •=A.14 B.12C.1D.2 (3)曲线2xy x =+在点(-1,-1)处的切线方程为(A )y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-2(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为(A )100 (B )200 (C )300 (D )400 (7)如果执行右面的框图,输入5N =,则输出的数等于(A )54 (B )45(C )65(D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥,则{|(2)0}x f x ->= (A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或(D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2 (D) -2(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B) 273a π(C)2113a π (D) 25a π(11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的取值范围是 (A) (1,10)(B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B)22145x y -=(C) 22163x y -= (D)22154x y -= 第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。

2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。

高考全国卷数学理科试题及答案详解

高考全国卷数学理科试题及答案详解

2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。

高考理科数学真题试卷-(附答案)

高考理科数学真题试卷-(附答案)

普通高等学校招生全国统一考试(附答案)理科数学注意事项:1.答题前, 考生先将自己的姓名、准考证号填写清楚, 将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整, 笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答, 超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出, 确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁, 不要折叠、不要弄破、弄皱, 不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题, 每小题5分, 共60分。

在每小题给出的四个选项中, 只有一项是符合题目要求的。

8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果, 哥德巴赫猜想是“每如30=7+23.在不超过30的素数中,随机选取两个个大于2的偶数可以表示为两个素数的和”,不同的数,其和等于30的概率是()(1)18.下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折现图。

威武不屈舍死忘生肝胆相照克己奉公一丝不苟两袖清风见礼忘义永垂不朽顶天立地豁达大度兢兢业业卖国求荣恬不知耻贪生怕死厚颜无耻描写人物神态的成语神采奕奕眉飞色舞昂首挺胸惊慌失措漫不经心垂头丧气没精打采愁眉苦脸大惊失色炯炯有神含有夸张成分的成语怒发冲冠一目十行一日千里一字千金百发百中——一日三秋一步登天千钧一发不毛之地不计其数胆大包天寸步难行含——比喻成分的成语观者如云挥金如土铁证如山爱财如命稳如泰山门庭若市骨瘦如柴冷若冰霜如雷贯耳守口如瓶浩如烟海高手如林春天阳春三月春光明媚春回大地春暖花开春意盎然春意正浓风和日丽春花烂漫春天的景色鸟语花香百鸟鸣春百花齐放莺, 歌燕舞夏天的热赤日炎炎烈日炎炎骄阳似火挥汗如雨大汗淋漓夏天的景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天——天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪, 地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万, 物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳绚丽多彩五彩缤纷草绿草如茵一碧千里杂草丛生生机勃勃绿油油树苍翠挺拔郁郁葱葱枯木逢春秀丽多姿青翠欲滴林海雪原耸入云天瓜果蔬菜清香鲜嫩青翠欲滴果园飘香果实累累果实饱满鲜嫩水灵鸽子、燕子象征和平乳燕初飞婉转悦耳莺歌燕舞翩然归来麻雀、喜鹊枝头嬉戏灰不溜秋叽叽喳喳鹦鹉鹦鹉学舌婉转悦耳笨嘴学舌啄木鸟利嘴如铁钢爪如钉鸡鸭鹅神气活现昂首挺胸肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰膘肥体壮昂首嘶鸣牛瘦骨嶙峋行动迟缓俯首帖耳膘肥体壮车川流不息呼啸而过穿梭往来缓缓驶离船一叶扁舟扬帆远航乘风破浪雾海夜航追波逐浪飞机划破云层直冲云霄穿云而过银鹰展翅学习用品美观实用小巧玲珑造型优美设计独特玩具栩栩如生活泼可爱惹人喜爱爱不释手彩虹雨后彩虹彩桥横空若隐若现光芒万丈雪大雪纷飞大雪封山鹅毛大雪漫天飞雪瑞雪纷飞林海雪原风雪交加霜雪上加霜寒霜袭人霜林尽染露垂露欲滴朝露晶莹日出露干雷电电光石火雷电大作惊天动地春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密, 布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发, 威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿, 出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的, 景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳, 绚丽多彩五彩缤纷草绿草如, 标准答案一、填空题。

新课标Ⅰ高考数学理科真题试卷(含答案)

新课标Ⅰ高考数学理科真题试卷(含答案)

绝密(juémì)★启封(qǐ fēnɡ)并使用完毕前试题(shìtí)类型:A 2021年普通高等学校招生全国(quán ɡuó)统一考试理科(lǐkē)数学考前须知:1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第一卷一.选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合,,那么〔A〕〔B〕〔C〕〔D〕〔2〕设,其中x,y是实数,那么〔A〕1〔B〕〔C〕〔D〕2〔3〕等差数列前9项的和为27,,那么〔A〕100〔B〕99〔C〕98〔D〕97〔4〕某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是〔A〕〔B〕〔C〕〔D〕〔5〕方程–=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是〔A〕(–1,3) 〔B〕(–1,3) 〔C〕(0,3) 〔D〕(0,3)〔6〕如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是,那么它的外表积是〔A〕17π〔B〕18π〔C〕20π〔D〕28π〔7〕函数y=2x2–e|x|在[–2,2]的图像大致为〔A〕〔B〕〔C〕〔D〕〔8〕假设(jiǎshè),那么(nà me)〔A〕〔B〕〔C〕〔D〕〔9〕执行右面(yòumiàn)的程序图,如果输入的,那么(nà me)输出x,y的值满足(mǎnzú)〔A〕〔B〕〔C〕〔D〕(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.|AB|=,|DE|=,那么C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,a 平面ABA1B1=n,那么m、n所成角的正弦值为(A)(B) (C) (D)12.函数(hánshù)为的零点(línɡ diǎn),为图像(tú xiànɡ)的对称轴,且()f x在单调(dāndiào),那么的最大值为〔A〕11 〔B〕9 〔C〕7 〔D〕5第II卷本卷包括必考题(kǎo tí)和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,那么m=.(14)的展开式中,x3的系数是.〔用数字填写答案〕〔15〕设等比数列满足a1+a3=10,a2+a4=5,那么a1a2…a n的最大值为。

2020年全国统一高考数学理科试卷(附答案解析)

2020年全国统一高考数学理科试卷(附答案解析)
【详解】圆的方程可化为 ,点 到直线 的距离为 ,所以直线 与圆相离.
依圆的知识可知,四点 四点共圆,且 ,所以 ,而 ,
A. 2B. 3C. 6D. 9
【答案】C
【解析】
【分析】
利用抛物线的定义建立方程即可得到答案.
【详解】设抛物线的焦点为F,由抛物线的定义知 ,即 ,解得 .
故选:C.
【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.
5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 得到下面的散点图:
【答案】C
【解析】
【分析】
求得 展开式的通项公式为 ( 且 ),即可求得 与 展开式的乘积为 或 形式,对 分别赋值为3,1即可求得 的系数,问题得解.
【详解】 展开式的通项公式为 ( 且 )
所以 与 展开式的乘积可表示为:

在 中,令 ,可得: ,该项中 的系数为 ,
在 中,令 ,可得: ,该项中 的系数为
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
根据散点图的分布可选择合适的函数模型.
【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率 和温度 的回归方程类型的是 .
【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题
7.设函数 在 的图像大致如下图,则f(x)的最小正周期为( )
A. B.
C. D.
【答案】C

2020年全国统一高考数学试卷(理科)(全国卷新课标1)

2020年全国统一高考数学试卷(理科)(全国卷新课标1)

2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1 D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1 B.+=1C.+=1 D.+=111.(5分)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。

2023年高考全国乙卷理科数学试题(含答案详解)

2023年高考全国乙卷理科数学试题(含答案详解)

2023年普通高等学校招生全国统一考试(全国乙卷)理科数学一、选择题1. 设252i1i iz +=++,则z =( ) A. 12i −B. 12i +C. 2i −D. 2i +2. 设集合U =R ,集合{}1M x x =<,{}12N x x =−<<,则{}2x x ≥=( ) A. ∁U (M ∪N ) B. N ∪∁U M C. ∁U (M ∩N )D. M ∪∁U N3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 25. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18 B.16C.14D.126. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.7. 甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A. 30种B. 60种C. 120种D. 240种8. 已知圆锥PO O 为底面圆心,P A ,PB 为圆锥的母线,120AOB ∠=︒,若PAB 的面积等于)A.πB.C. 3πD.9. 已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( ) A.15B.5C.D.2510. 已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A. -1B. 12−C. 0D.1211. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−12. 已知O 的半径为1,直线P A 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC的中点,若PO =PA PD ⋅的最大值为( )A.12B.12+C. 1+D. 2二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.14. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.15. 已知{}n a 为等比数列,24536a a a a a =,9108a a =−,则7a =______.16. 设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18. 在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.19. 如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ; (2)证明:平面ADO ⊥平面BEF ; (3)求二面角D AO C −−的正弦值.20. 已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.21. 已知函数1()ln(1)f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)是否存在a ,b ,使得曲线1y f x ⎛⎫=⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由. (3)若()f x 在()0,∞+存在极值,求a 的取值范围.四、选做题【选修4-4】(10分)22. 在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23. 已知()22f x x x =+−. (1)求不等式()6f x x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ≤⎧⎨+−≤⎩所确定的平面区域的面积.(2023·全国乙卷·理·1·★)设252i1i i z +=++,则z =( )(A )12i −(B )12i +(C )2i −(D )2i+答案:B解析:由题意,2252222i 2i 2i (2i)ii 2i 12i 1i i 11(i )i i iz ++++=====−−=−++−+,所以12i z =+. (2023·全国乙卷·理·2·★)设全集U =R ,集合{|1}M x x =<,{|12}N x x =−<<,则{|2}x x ≥=( ) (A )∁U (M ∪N ) (B )N ∪∁U M (C )∁U (M ∩N ) (D )M ∪∁U N 答案:A解析:正面求解不易,直接验证选项,A 项,由题意,{|2}MN x x =<,所以(){|2}U MN x x =≥ð,故选A.(2023·全国乙卷·理·3·★)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )(A )24(B )26(C )28(D )30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.答案详解(2023·全国乙卷·理·4·★★)已知e ()e 1xax x f x =−是偶函数,则a =( )(A )2− (B )1− (C )1 (D )2 答案:D解法1:要求a ,可结合偶函数的性质取特值建立方程,由()f x 为偶函数得(1)(1)f f −=,故1e ee 1e 1a a −−−=−− ①, 又111e e e e 11e e 1a a aa −−−−−−==−−−,代入①得1e e e 1e 1a a a −=−−, 所以1e e a −=,从而11a −=,故2a =, 经检验,满足()f x 为偶函数.解法2:也可直接用偶函数的定义来分析,因为()f x 为偶函数,所以()()f x f x −=恒成立,从而e e e 1e 1x x ax ax x x −−−=−−,故e e e 1e 1x x ax ax −−−=−−,所以e e e 1e e 1x ax x axax −−⋅=−−,从而e e e 1e 1ax x xax ax −=−−,故e e ax x x −=, 所以ax x x −=,故(2)0a x −=,此式要对定义域内任意的x 都成立,只能20a −=,所以2a =.(2023·全国乙卷·理·5·★)设O 为平面坐标系的原点,在区域22{(,)|14}x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于 π4 的概率为( )( ) (A )18(B )16(C )14(D )12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·理·6·★★)已知函数()sin()f x x ωϕ=+在区间2(,)63ππ单调递增,直线6x π=和23x π=为函数()y f x =的图象的两条对称轴,则5()12f π−=( ) (A) (B )12− (C )12(D答案:D解析:条件中有两条对称轴,以及它们之间的单调性,据此可画出草图来分析, 如图,2362T T πππ−=⇒=,所以22Tπω==,故2ω=±, 不妨取2ω=,则()sin(2)f x x ϕ=+, 再求ϕ,代一个最值点即可,由图可知,()sin(2)sin()1663f πππϕϕ=⨯+=+=−,所以232k ππϕπ+=−,从而52()6k k πϕπ=−∈Z , 故55()sin(22)sin(2)66f x x k x πππ=+−=−,所以5555()sin[2()]sin()sin 1212633f πππππ−=⨯−−=−==.(2023·全国乙卷·理·7·★★)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )(A )30种 (B )60种 (C )120种 (D )240种 答案:C解析:恰有1种课外读物相同,可先把相同的课外读物选出来,再选不同的, 由题意,先从6种课外读物中选1种,作为甲乙两人相同的课外读物,有16C 种选法,再从余下5种课外读物中选2种,分别安排给甲乙两人,有25A 种选法, 由分步乘法计数原理,满足题意的选法共1265C A 120=种.(2023·全国乙卷· 理· 8·★★★)已知圆锥PO O 为底面圆心,P A ,PB 为圆锥的母线,o 120AOB ∠=,若PAB ∆,则该圆锥的体积为( ) (A )π (B (C )3π (D ) 答案:B解析:求圆锥的体积只差高,我们先翻译条件中的PAB S ∆,由于P A ,PB 和APB ∠都未知,所以不易通过1sin 2PAB S PA PB APB ∆=⋅⋅∠求P A ,再求PO ,故选择AB 为底边来算PAB S ∆,需作高PQ ,而AB 可在AOB ∆中求得,在AOB ∆中,由余弦定理,222AB OA OB =+−2cos 9OA OB AOB ⋅⋅∠=,所以3AB =,取AB 中点Q ,连接PQ ,OQ ,则OQ AB ⊥,PQ AB ⊥, 所以1133222PAB S AB PQ PQ PQ ∆=⋅=⨯⨯=,又PAB S ∆=,所以32PQ =PQ =,在AOQ ∆中,o 1602AOQ AOB ∠=∠=,所以cos OQ OA AOQ =⋅∠=,故OP ==所以圆柱PO 的体积213V π=⨯.PO ABQ(2023·全国乙卷·理·9·★★★)已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角C ABD −−为o 150,则直线CD 与平面ABC 所成角的正切值为( )(A )15(B (C (D )25答案:C解析:两个等腰三角形有公共的底边,这种情况常取底边中点构造线面垂直, 如图,取AB 中点E ,连接DE ,CE ,由题意,DA DB =,AC BC =,所以AB DE ⊥,AB CE ⊥,故DEC ∠即为二面角C AB D −−的平面角, 且AB ⊥平面CDE ,所以o 150DEC ∠=, 作DO CE ⊥的延长线于O ,则DO ⊂平面CDE , 所以DO AB ⊥,故DO ⊥平面ABC ,所以DCO ∠即为直线CD 与平面ABC 所成的角,不妨设2AB =,则1CE =,DE = 因为o 150DEC ∠=,所以o 30DEO ∠=,故3cos 2OE DE DEO =⋅∠=,sin OD DE DEO =⋅∠=,52OC OE CE =+=,所以tan OD DCO OC ∠==. DACBEO【反思】两个等腰三角形有公共底边这类图形,常取底边中点,构造两个线线垂直,进而得出线面垂直.(2023·全国乙卷·理·10·★★★★)已知等差数列{}n a 的公差为23π,集合*{cos |}n S a n =∈N ,若{,}S a b =,则ab =( )(A )1− (B )12− (C )0 (D )12答案:B解析:由题意,S 中的元素为1cos a ,2cos a ,3cos a ,…,由于cos y x =周期为2π,恰为公差的3倍,所以cos n a 必以3为周期重复出现,故只需考虑前三个值. 但题干却说{,}S a b =,只有两个元素,为什么呢?这说明前三个值中恰有两个相等,若讨论是哪两个相等来求1a ,则较繁琐,我们直接画单位圆,用余弦函数的定义来看,如图,由三角函数定义可知,在终边不重合的前提下,余弦值相等的两个角终边关于x 轴对称,所以要使1cos a ,2cos a ,3cos a 中有两个相等,则1a ,2a ,3a 的终边只能是如图所示的两种情况,至于三个终边哪个是1a ,不影响答案,只要它们逆时针排列即可, 若为图1,则131cos cos 2a a ==,2cos 1a =−,所以S 中的元素是12和1−,故12ab =−;若为图2,则1cos 1a =,231cos cos 2a a ==−,所以S 中的元素是1和12−,故12ab =−.1图2图(2023·全国乙卷·理·11·★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可能为线段AB 中点的是( )(A )(1,1) (B )(1,2)− (C )(1,3) (D )(1,4)−− 答案:D解析:涉及弦中点,考虑中点弦斜率积结论,A 项,记(1,1)M ,由中点弦斜率积结论,9AB OM k k ⋅=,因为1OM k =,所以9AB k =,又直线AB 过点M , 所以AB 的方程为19(1)y x −=−,即98y x =− ①,只要该直线与双曲线有2个交点,那么A 项就正确,可将直线的方程代入双曲线方程,算判别式,将①代入2219y x −=整理得:272144730x x −+=, 21(144)47273144(144273)2880∆=−−⨯⨯=⨯−⨯=−<,所以该直线与双曲线没有两个交点,故A 项错误,同理可判断B 、C 也错误,此处不再赘述; D 项,记(1,4)N −−,则4ON k =,由中点弦斜率积结论,9AB OM k k ⋅=,所以94AB k =, 又直线AB 过点N ,所以AB 的方程为91(1)4y x −=−,整理得:9544y x =− ②, 将②代入2219y x −=整理得:263901690x x +−=, 判别式2290463(169)0∆=−⨯⨯−>,所以该直线与双曲线有两个交点,故D 项正确.(2023·全国乙卷·理·12·★★★★)已知⊙O 半径为1,直线P A 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO PA PD ⋅的最大值为( )(A (B (C )1 (D )2+答案:A解析:1OA =,1PO PA ===,所以cos cos PA PD PA PD APD PD APD ⋅=⋅∠=∠ ①, 且PAO ∆是等腰直角三角形,所以4APO π∠=,因为D 是BC 的中点,所以OD BC ⊥,求PA PD ⋅要用APD ∠,故可设角为变量,引入CPO ∠为变量,可与直角PDO ∆联系起来,更便于分析, 设CPO θ∠=,则04πθ≤<,有图1和图2两种情况,要讨论吗?观察发现图2的每一种PD ,在图1中都有一个对称的位置,二者PD 相同,但图2的夹角APD ∠更大,所以cos APD ∠更小,数量积也就更小,从而PA PD ⋅的最大值不会在图2取得,故可只考虑图1, 如图1,4APD APO CPO πθ∠=∠−∠=−,代入①得cos()4PA PD PD πθ⋅=− ①,注意到PD 与θ有关,故将它也用θ表示,统一变量, 由图可知,cos PD PO DPC θ=∠=, 代入①得:2cos cos()4PA PDπθθ⋅=−2)cos sin cos θθθθθθ==+ 1)1cos 214sin 2222πθθθ+++=+=,故当8πθ=时,sin(2)14πθ+=,PA PD ⋅取得最大值12+.A PODB C A PODBC1图2图θθ(2023·全国乙卷·理·13·★)已知点A 在抛物线2:2C y px=上,则点A 到C 的准线的距离为_____. 答案:94解析:点A 在抛物线上25212p p ⇒=⋅⇒=, 所以抛物线的准线为54x =−, 故A 到该准线的距离591()44d =−−=.(2023·全国乙卷·理·14·★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z ,联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8(2023·全国乙卷·理·15·★★)已知{}n a 为等比数列,24536a a a a a =,9108a a =−,则7a =_____. 答案:2−解析:已知和要求的都容易用通项公式翻译,故直接翻译它们,34252453611111a a a a a a qa q a q a q a q =⇒=,化简得:11a q = ①, 8921791011188a a a q a q a q =−⇒==− ②,由①可得11a q=,代入②得:158q =−,所以52q =− ③, 结合①③可得6557112a a q a q q q ==⋅==−.(2023·全国乙卷·理·16·★★★★)设(0,1)a ∈若函数()(1)x x f x a a =++在(0,)+∞上单调递增,则a 的取值范围是_____.答案: 解析:直接分析()f x 的单调性不易,可求导来看, 由题意,()ln (1)ln(1)x x f x a a a a '=+++,因为()f x 在(0,)+∞上,所以()0f x '≥在(0,)+∞上恒成立,即ln (1)ln(1)0x x a a a a +++≥,参数a 较多,没法集中,但x 只有两处,且观察发现可同除以x a 把含x 的部分集中起来,所以(1)ln ln(1)0x xa a a a+++≥,故1ln (1)ln(1)0x a a a +++≥ ①, 想让式①恒成立,只需左侧最小值0≥,故分析其单调性, 因为111a+>,11a +>,所以ln(1)0a +>,从而1ln (1)ln(1)x y a a a=+++在(0,)+∞上,故011ln (1)ln(1)ln (1)ln(1)ln ln(1)x a a a a a a a a+++>+++=++,所以①恒成立ln ln(1)0a a ⇔++≥,从而ln[(1)]0a a +≥,故(1)1a a +≥,结合01a <<1a ≤<.(2023·全国乙卷·理·17·★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验,选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,(1,2,,10)i y i =⋅⋅⋅,试验结果如下:记(1,2,,10)i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ,(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 解:(1)由题意,i z 的数据依次为9,6,8,8−,15,11,19,18,20,12, 所以10111()(9688151119182012)111010i i i z x y ==−=++−++++++=∑,10222222222111()[(911)(611)(811)(811)(1511)(1111)(1911)1010i i s z z ==−=−+−+−+−−+−+−+−+∑222(1811)(2011)(1211)]61−+−+−=.(2)由(1)可得z <,所以甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·理·18·★★★)在ABC ∆中,已知o 120BAC ∠=,2AB =,1AC =. (1)求sin ABC ∠;(2)若D为BC 上一点,且o 90BAD ∠=,求ADC ∆的面积.解:(1)(已知两边及夹角,可先用余弦定理求第三边,再用正弦定理求角)由余弦定理,22222o 2cos 21221cos1207BC AB AC AB AC BAC =+−⋅⋅∠=+−⨯⨯⨯=,所以BC =,由正弦定理,sin sin AC BC ABC BAC =∠∠,所以o sinsin AC BAC ABC BC ⋅∠∠===(2)如图,因为o 120BAC ∠=,o 90BAD ∠=,所以o 30CAD ∠=,(求ADC S ∆还差AD ,只要求出ABC ∠,就能在ABD ∆中求AD ,ABC ∠可放到ABC ∆中来求)由余弦定理推论,222cos 2AB BC AC ABC AB BC +−∠===⋅,所以cos AB BD ABC ==∠,AD ==,故o 11sin 1sin 3022ADC S AC AD CAD ∆=⋅⋅∠=⨯=.(2023·全国乙卷·理·19·★★★★)在三棱锥P ABC −中,AB BC ⊥,2AB =,BC =PB PC ==,BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥. (1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ; (3)求二面角D AO C −−的大小.PDBAFCOE解:(1)证法1:(由图可猜想DEFO 是平行四边形,故尝试证DE 平行且等于OF . 注意到D ,E ,O 都是所在棱的中点,故若能证出F 是中点,则DE ,OF 都平行且等于AB 的一半,问题就解决了. 那F 的位置由哪个条件决定呢?显然是BF AO ⊥,我们可以设AF AC λ=,利用向量来翻译BF AO ⊥,求出λ) 设AF AC λ=,则()(1)BF BA AF BA AC BA BC BA BA BC λλλλ=+=+=+−=−+, 12AO AB BO BA BC =+=−+,因为BF AO ⊥,所以1((1))()2BF AO BA BC BA BC λλ⋅=−+⋅−+ 22(1)4(1)402BA BC λλλλ=−+=−+=,解得:12λ=,所以F 是AC 的中点, 又D ,E ,O 分别是BP ,AP ,BC 的中点,所以DE 和OF 都平行且等于AB 的一半,故DE 平行且等于OF , 所以四边形DOFE 是平行四边形,故EF ∥OD ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ∥平面ADO . 证法2:(分析方法同解法1,证明F 为AC 中点的过程,也可用平面几何的方法)如图1,在ABC ∆中,因为BF AO ⊥,所以o 2190AOB AOB ∠+∠=∠+∠=,故12∠=∠①, 又2AB =,BC =O 为BC 中点,所以BO =tan 1BO AB∠==,tan 3AB BC ∠==所以tan 1tan 3∠=∠,故13∠=∠,结合①可得23∠=∠,所以BF CF =, 连接OF ,因为O 是BC 中点,所以OF BC ⊥,又AB BC ⊥,所以OF ∥AB , 结合O 为BC 中点可得F 为AC 的中点,接下来同证法1.(2)(要证面面垂直,先找线面垂直,条件中有AO BF ⊥,于是不外乎考虑证AO ⊥面BEF 或证BF ⊥面AOD,怎样选择呢?此时我们再看其他条件,还没用过的条件就是一些长度,长度类条件用于证垂直,想到勾股定理,我们先分析有关线段的长度) 由题意,12DO PC ==,AD ==,AO ,所以222152AO DO AD +==,故AO OD ⊥,(此时结合OD ∥EF 我们发现可以证明AO ⊥面BEF ) 由(1)可得EF ∥OD ,所以AO EF ⊥,又AO BF ⊥,且BF ,EF 是平面BEF 内的相交直线, 所以AO ⊥平面BEF ,因为AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .(3)解法1:(此图让我们感觉面PBC ⊥面ABC ,若这一感觉正确,那建系处理就很方便. 我们先分析看是不是这样的. 假设面PBC ⊥面ABC ,由于AB BC ⊥,于是AB ⊥面PBC ,故AB BD ⊥,但我们只要稍加计算,就会发现222AB BD AD +≠,矛盾,所以我们的感觉是不对的,也就不方便建系. 怎么办呢?那就在两个半平面内找与棱垂直的射线,它们的夹角等于二面角的大小. 事实上,这样的射线已经有了)由题意,AO BF ⊥,由前面的过程可知AO OD ⊥,所以射线OD 与BF 的夹角与所求二面角相等, (OD 与BF 异面,直接求射线OD 和BF 的夹角不易,故考虑通过平移使其共面,到三角形中分析) 因为OD ∥EF ,所以EFB ∠的补角等于射线OD 和BF 的夹角,由题意,AC ==12BF AC ==,12EF PC ==(只要求出BE ,问题就解决了,BE 是ABP ∆的中线,可用向量来算,先到ABD ∆中求cos ABP ∠) 在ABD ∆中,222cos 2AB BD AD ABP AB BD +−∠==⋅,因为1()2BE BA BP =+,所以222113(2)[4622(442BE BA BP BA BP =++⋅=⨯++⨯=,故BE =,在BEF ∆中,222cos 2BF EF BE BFE BF EF +−∠==⋅,所以o 45BFE ∠=,故二面角D AO C −−的大小为o 135.解法2:(得出所求二面角等于射线OD 与BF 夹角的过程同解法1. 要计算此夹角,也可用向量法. 观察图形可发现OA ,OB ,OD 的长度都已知或易求,两两夹角也好求,故选它们为基底,用基底法算OD 和BF 的夹角) 1113122()2()22222BF BC CF OB CA OB CB BA OB OB OA OB OB OA =+=−+=−++=−++−=−+,所以31313()cos 22222OD BF OD OB OA OD OB OD OA DOB BOD ⋅=⋅−+=−⋅+⋅=−∠=∠,又222cos 2OB OD BD BOD OB OD +−∠==⋅,所以3322OD BF ⋅=−=−,从而3cos ,6OD BF OD BF OD BF−⋅<>===⋅,故o ,135OD BF <>=,所以二面角D AO C −−为o 135. 解法3:(本题之所以不便建系,是因为点P 在面ABC 的射影不好找,不易写坐标.那有没有办法突破这一难点呢?有的,我们可以设P 的坐标,用已知条件来建立方程组,直接求解P 的坐标)以B 为原点建立如图2所示的空间直角坐标系,则(0,0,0)B ,(2,0,0)A ,C ,O ,设(,,)(0)P x yz z >,则(,,)222x y z D,由PB PC ⎧⎪⎨=⎪⎩2222226(6x y z x y z ⎧++=⎪⎨+−+=⎪⎩,解得:y =, 代回两方程中的任意一个可得224x z += ②,(此时发现还有AD =这个条件没用,故翻译它)又AD =,所以222222(2)5[(]244424x y z x y z −++=+−+,将y =代入整理得:22220xz x ++−= ③,联立②③结合0z >解得:1x =−,z =,(到此本题的主要难点就攻克了,接下来是流程化的计算)所以1(2D −,故1(2DO =−,(AO =−, 设平面AOD 的法向量为(,,)xy z =m ,则1022220DO x y z AO x ⎧⋅=+−=⎪⎨⎪⋅=−=⎩m m ,令1x =,则y z ⎧=⎪⎨=⎪⎩=m 是平面AOD 的一个法向量,由图可知(0,0,1)=n 是平面AOC的一个法向量,所以cos ,⋅<>==⋅m n m n m n , 由图可知二面角D AO C −−为钝角,故其大小为o 135.BAFC1图2图123O【反思】当建系后有点的坐标不好找时,直接设其坐标,结合已知条件建立方程组,求解坐标,这也是一种好的处理思路.(2023·全国乙卷·理·20·★★★)已知椭圆2222:1(0)C b b x a a y +>>=的离心率是3,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x+= (2)证明见详解解析:(1)由题意可得22223b a b c c ea ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++,因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++ ()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.(2023·全国乙卷·理·21·★★★★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)是否存在a ,b ,使得曲线1()y f x=关于直线x b =对称?若存在,求a ,b 的值;弱不存在,说明理由;(3)若()f x 在(0,)+∞上存在极值,求a 的取值范围.解:(1)当1a =−时,1()(1)ln(1)f x x x =−+,2111()ln(1)(1)1f x x x x x'=−++−⋅+,所以(1)0f =,(1)ln 2f '=−,故所求切线方程为0ln 2(1)y x −=−−,整理得:(ln 2)ln 20x y +−=. (2)由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭, 函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,−∞−⋃+∞, 定义域关于直线12x =−对称,由题意可得12b =−,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫−+=−−> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =−, 即()()11ln 22ln 2a a +=−,则12a a +=−,解得12a =,经检验11,22a b ==−满足题意,故11,22a b ==−.即存在11,22a b ==−满足题意.(3)由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=−+'++ ⎪ ⎪+⎝⎭⎝⎭, 由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点; 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++=, 令()()()2=1ln 1g x ax x x x +−++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,21g x ax x g x a x '=''=−+−+ 当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意; 当12a ≥,21a ≥时,由于111x <+,所以()()''0,g x g x >'在区间()0,∞+上单调递增, 所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=, 所以()g x 在区间()0,∞+上无零点,不符合题意; 当102a <<时,由()''1201g x a x =−=+可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()0g x ''<,()g x '单调递减, 当11,2x a ⎛⎫∈−+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫−=−+⎪⎝⎭', 令()()1ln 01m x x x x =−+<<,则()10x m x x−+'=>, 函数()m x 在定义域内单调递增,()()10m x m <=, 据此可得1ln 0x x −+<恒成立,则1112ln 202g a a a ⎛⎫−=−+<⎪'⎝⎭, 令()()2ln 0h x x x x x =−+>,则()221x x h x x−++'=,当()0,1x ∈时,()()0,h x h x '>单调递增, 当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤−(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=−+>−+−+=−+⎣⎦',()()()()22122121210g a a a a a ⎡⎤−>−−−+−=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '在区间()0,∞+上存在唯一零点0x . 当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增, 所以()()000g x g <=.令()11ln 2n x x x x ⎛⎫=−− ⎪⎝⎭,则()()22211111022x n x x x x−−⎛⎫=−+=≤ ⎪⎝⎭', 则()n x 单调递减,注意到()10n =, 故当()1,x ∈+∞时,11ln 02x x x ⎛⎫−−< ⎪⎝⎭,从而有11ln 2x x x ⎛⎫<− ⎪⎝⎭, 所以()()()2=1ln 1g x ax x x x +−++()()211>1121ax x x x x ⎡⎤+−+⨯+−⎢⎥+⎣⎦21122a x ⎛⎫=−+ ⎪⎝⎭,令211022a x ⎛⎫−+= ⎪⎝⎭得2x =0g >, 所以函数()g x 在区间()0,∞+上存在变号零点,符合题意. 综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =若直线y x m =+与12,C C均没有公共点,则m >0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x=+−(1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ⎧≤⎨+−≤⎩所确定的平面区域的面积. 答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩, 解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<, 因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x y x y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y x x y =−+⎧⎨+=⎩,解得(2,8)A −,由26y x x y =+⎧⎨+=⎩, 解得(2,4)C ,又(0,2),(0,6)B D , 所以ABC 的面积11|||62||2(2)|822ABC C A SBD x x =⨯−=−⨯−−=.。

2020年高考全国II卷理科数学试题(含解析)

2020年高考全国II卷理科数学试题(含解析)

2020年全国统一高考数学试卷(理科)(全国新课标Ⅱ)一、选择题1.已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}-C.{2,1,0,3}--D.{2,1,0,2,3}--【答案】A 【解析】∵{1,0,1,2}AB =-,∴ (){2,3}UC A B ⋃=-.2.若α为第四象限角,则( ) A.cos20α> B.cos20α<C.sin 20α>D.sin 20α<【答案】D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名 B.18名 C.24名 D.32名 【答案】B【解析】因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)( ) A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022n S S a ⨯==+⨯=块. 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.【答案】B【解析】设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是5d =. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.5【答案】C【解析】取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a ++++++-+++==-=--,得4k =.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H【答案】A【解析】该几何体是两个长方体拼接而成,如图所示,显然选A.8.设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为( ) A.4 B.8 C.16 D.32 【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==号成立,所以min 4c =,焦距min (2)8c =.9.设函数()ln |21|ln |21|f x x x =+--,则()f x ( )A. 是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)lnln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确.10.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( )B.32C.1【答案】C【解析】设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则2ABC S ∆==,可得3a =,于是r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1.11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【解析】2323x x y y---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m的01-序列12......n a a a ,11()(1,2,...,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A. 11010... B.11011... C. 10001... D.11001... 【答案】C【解析】对于A 选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a +===++++=>∑,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;对于C 选项,511111(1)(00001)555i i i C a a +===++++=∑,52111(2)(00000)055i i i C a a +===++++=∑,53111(3)(00000)055i i i C a a +===++++=∑,541111(4)(10000)555i i i C a a +===++++=∑,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。

2020年全国卷数学(理科)高考试题及答案

2020年全国卷数学(理科)高考试题及答案

2020年全国卷数学(理科)高考试题及答案2020年普通高等学校招生全国统一考试-理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若 $z=1+i$,则 $z^2-2z=$A。

0B。

1C。

2D。

22.设集合 $A=\{x|x^2-4\leq 0\}$,$B=\{x|x^2+ax\leq 0\}$,且 $AB=\{x|-2\leq x\leq 1\}$,则 $a=$A。

$-4$B。

$-2$C。

2D。

43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A。

$\frac{5-\sqrt{5}}{4}$B。

$\frac{5+\sqrt{5}}{4}$C。

$\frac{5-\sqrt{5}}{2}$D。

$\frac{5+\sqrt{5}}{2}$4.已知 $A$ 为抛物线 $C:y^2=2px(p>0)$ 上一点,点$A$ 到 $C$ 的焦点的距离为 $12$,到 $y$ 轴的距离为 $9$,则 $p=$A。

2B。

3C。

6D。

95.某校一个课外研究小组为研究某作物种子的发芽率$y$ 和温度 $x$(单位:℃)的关系,在 $20$ 个不同的温度条件下进行种子发芽实验,由实验数据 $(x_i,y_i)(i=1,2.20)$ 得到下面的散点图:由此散点图,在 $10℃$ 至 $40℃$ 之间,下面四个回归方程类型中最适宜作为发芽率 $y$ 和温度 $x$ 的回归方程类型的是A。

$y=a+bx$B。

$y=a+bx^2$C。

$y=a+be^x$D。

$y=a+b\ln x$6.函数 $f(x)=x^4-2x^3$ 的图像在点 $(1,f(1))$ 处的切线方程为A。

$y=-2x-1$B。

$y=-2x+1$C。

$y=2x-3$D。

2020年全国统一高考数学试题(理科)(新课标Ⅲ卷)(带解析)

2020年全国统一高考数学试题(理科)(新课标Ⅲ卷)(带解析)

2020年全国统一高考数学试题(理科)(新课标Ⅲ卷)(带解析)一、单选题1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .62.复数113i-的虚部是( ) A .310-B .110-C .110D .3103.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A .14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1et I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A .60B .63C .66D .695.设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)6.已知向量 a ,b 满足||5a =, ||6b =,6a b ⋅=-,则cos ,=a a b <+>( ) A .3135-B .1935-C .1735D .19357.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .238.下图为某几何体的三视图,则该几何体的表面积是( )A .2B .2C .3D .39.已知2tan θ–tan(θ+π4)=7,则tan θ=( )A .–2B .–1C .1D .210.若直线l 与曲线y x x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +1211.设双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,5P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A .1B .2C .4D .812.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b二、填空题13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.14.262()x x+的展开式中常数项是__________(用数字作答).15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________.三、解答题17.设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,19.如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.20.已知椭圆222:1(05)25x y C m m +=<<15A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积. 21.设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 23.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c 34.参考答案1.C 【分析】采用列举法列举出A B 中元素的即可. 【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故A B 中元素的个数为4. 故选:C. 【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.D 【分析】利用复数的除法运算求出z 即可. 【详解】 因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D. 【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 3.B 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65As =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85Bs =-⨯+-⨯+-⨯+-⨯=; 对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05Cs =-⨯+-⨯+-⨯+-⨯=; 对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45Ds =-⨯+-⨯+-⨯+-⨯=. 因此,B 选项这一组的标准差最大. 故选:B. 【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题. 4.C 【分析】将t t *=代入函数()()0.23531t K I t e--=+结合()0.95I tK *=求得t*即可得解.【详解】 ()()0.23531t K I t e--=+,所以()()0.23530.951t K I tK e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C. 【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.B 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果. 【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B. 【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 6.D 【分析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos ,a a b <+>的值. 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D. 【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 7.A 【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅ 2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A. 【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题. 8.C 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:22AB AD DB ===∴ADB △是边长为22根据三角形面积公式可得: 2113sin 60(22)322ADB S AB AD =⋅⋅︒==△∴该几何体的表面积是:36332=⨯++故选:C. 【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题. 9.D 【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D. 【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题. 10.D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x -,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+. 故选:D. 【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 11.A 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca =,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A. 【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题. 12.A 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系. 【详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<. 故选:A. 【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题. 13.7 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图 因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A ,所以max 31227z =⨯+⨯=. 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题. 14.240 【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.【详解】622xx ⎛⎫+ ⎪⎝⎭其二项式展开通项: ()62612rrr r C xx T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r r r r x C x --⋅=⋅1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240. 【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C rn rr r n T a b -+=,考查了分析能力和计算能力,属于基础题.15.23π 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于223122AM -1222222S =⨯⨯△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=解得:22r,其体积:343V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 16.②③ 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③. 【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.17.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【详解】 (1)[方法一]【最优解】通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; [方法二]构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]累加法由题意可得2134945a a =-=-=,32381587a a =-=-=.由134n n a a n +=-得1114333n n n n n a a n+++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n n n n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n n n a n ⋅=+⋅[方法一]错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以()()()()231232132431112222n n n n n n S a a a a b b b b b b b b b b ++=++++=-+-+-++-=-1(21)22n n +=-+. [方法三]构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n n x x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)nn n n x x nx n x f x x x nx x x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以21112122322(2)12(1)2n n n n b b b n f n n -+++'+=+⋅+⋅++⋅==+⋅-+.故()23112124(2)2222412(1)2(21)2212n n n nn n S f n n n ++-⎡⎤=+++++=+⋅-++=-'+⎣⎦-.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解; 方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n +++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠-的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.18.(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=; (2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题. 19.(1)证明见解析;(2)427. 【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内; (2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG =,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =, 1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-, 设平面AEF 的法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的法向量为()222,,n x y z =,由110n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,37cos ,321m n m n m n⋅<>===⨯⋅设二面角1A EF A --的平面角为θ,则cos θ=sin θ∴=因此,二面角1A EF A --. 【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.(1)221612525x y +=;(2)52. 【分析】(1)因为222:1(05)25x y C m m+=<<,可得 5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =, BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得 PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】 (1)222:1(05)25x y C m m +=<< ∴5a =,b m =,根据离心率c e a ==,解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=; (2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且 ||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为 N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥, 90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒, 90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y+=,可得:21612525P x +=, 解得:3P x =或3P x =-,∴P 点为(3,1)或 (3,1)-,①当P 点为(3,1)时, 故532MB =-=, PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -, (6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=, 根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:15555252⨯⨯=;②当P 点为(3,1)-时, 故5+38MB ==, PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -, (6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+=+ 根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1522=, 综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于难题. 21.(1)34b =-;(2)证明见解析【分析】(1)利用导数的几何意义得到'1()02f =,解方程即可;(2)由(1)可得'2311()32()()422f x x x x =-=+-,易知()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,采用反证法,推出矛盾即可. 【详解】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭则34b =-;(2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-, 令'()0f x >,得12x >或12x <-;令'()0f x <,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <, 即14c >或14c <-.当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x , 即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0'x , 即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1. 【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.22.(1)2)3cos sin 120ρθρθ-+= 【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可. 【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴=(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=. 【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题. 23.(1)证明见解析(2)证明见解析.【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明; (2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a aa bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。

全国高考数学理科(全国I卷)试题及答案

全国高考数学理科(全国I卷)试题及答案

普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:1、设z=, 则∣z∣=()A.0B. 12C.1D.√22、已知集合A={x|x2-x-2>0}, 则C R A =()A、{x|-1<x<2}B、{x|-1≤x≤2}C、{x|x<-1}∪{x|x>2}D、{x|x≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设, 农村的经济收入增加了一倍, 实现翻番, 为更好地了解该地区农村的经济收入变化情况, 统计了该地区新农村建设前后农村的经济收入构成比例, 得到如下饼图:则下面结论中不正确的是()A.新农村建设后, 种植收入减少B.新农村建设后, 其他收入增加了一倍以上C.新农村建设后, 养殖收入增加了一倍D.新农村建设后, 养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn为等差数列{an}的前n项和, 若3S3= S2+ S4, a1=2, 则a5=()A、-12B、-10C、10D、125、设函数f(x)=x³+(a-1)x²+ax .若f(x)为奇函数, 则曲线y= f(x)在点(0, 0)处的切线方程为()A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC中, AD为BC边上的中线, E为AD的中点, 则EB→=()A.34AB→ - 14AC→ B. 14AB→ - 34AC→ C. 34AB→ + 14AC→ D. 14AB→ + 34AC→建设前经济收入构成比例建设后经济收入构成比例7、某圆柱的高为2, 底面周长为16, 其三视图如右图。

圆柱表面上的点M 在正视图上的对应点为A, 圆柱表面上的点N 在左视图上的对应点为B, 则在此圆柱侧面上, 从M 到N 的路径中, 最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F, 过点(-2, 0)且斜率为23的直线与C 交于M, N 两点, 则FM→ ·FN→ =( )A.5B.6C.7D.8 9.已知函数f (x )= g (x )=f (x )+x+a, 若g (x )存在2个零点, 则a 的取值范围是( )A. [-1, 0)B. [0, +∞)C. [-1, +∞)D. [1, +∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。

2022年全国高考数学(理科)真题及答案解析

2022年全国高考数学(理科)真题及答案解析

2022年高考(乙卷)数学(理科)真题及答案解析一、单选题(本大题共12小题,共60.0分)1.设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则( )A. 2∈MB. 3∈MC. 4∉MD. 5∉M2.已知z=1−2i,且z+az+b=0,其中a,b为实数,则( )A. a=1,b=−2B. a=−1,b=2C. a=1,b=2D. a=−1,b=−23.已知向量a,b满足|a⃗|=1,|b⃗ |=√3,|a⃗−2b⃗ |=3,则a⃗·b⃗ =( )A. −2B. −1C. 1D. 24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n}:b1=1+1a1,b2=1+1α1+1a2,31231111bααα=+++,⋯,依此类推,其中a k∈N∗(k=1,2,⋯).则( )A. b1<b5B. b3<b sC. b6<b2D. b4<b75.设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=( )A. 2B. 2√2C. 3D. 3√26.执行右边的程序框图,输出的n=( )A. 3B. 4C. 5三、解答题(本大题共7小题,共80.0分)17. 记ΔABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知sinCsin(A −B)=sinBsin(C −A).(1)证明:2a 2=b 2+c 2;(2)若a =5,cosA =2531,求ΔABC 的周长.18. 如图,四面体ABCD 中AD ⊥CD ,AD =CD ,∠ADB =∠BDC ,E 为AC 中点.(1)证明:平面BED ⊥平面ACD;(2)设AB =BD =2,∠ACB =600,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成角的正弦值.19. 某地经过多年的环填治理,已将就山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种村木,测量每棵村的根部横截而积(心位:m 2)和材积量(m 3),得到如下数据:样本数号i 12345678910 总和根部横截面积x i 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6 材积量y i0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.403.9并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i 10i=1y 1=0.2474.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量: (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01); (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(x i −x )n i=1(y i −y )√∑(x i −x )2ni=1∑(y i −y )2n i=1,√1.896≈1.377.20. 已知椭圆E 的中心为坐标原点,对称轴为x 轴,y 轴,且过A(0,−2),B(32,−1)两点(1)求E 的方程;(2)设过点P(1,−2)的直线交E 于M ,N 两点,过M 且平行于x 的直线与线段AB 交于点T ,点H 满足MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗⃗ ,证明:直线HN 过定点. 21. 已知函数f(x)=ln(1+x)+axe −x .(1)当a =1时,求曲线f(x)在点(0,f(0))处的切线方程:解:由题设,|a⃗−2b⃗ |=3,得|a⃗|−4a⃗⋅b⃗ +4|b⃗ |2=9,代入|a⃗|=1,|b⃗ |=√3,有4a⃗⋅b⃗ =4,故a⃗·b⃗ =14.【答案】D【解析】【分析】本题考查社会生活中的数列的比较大小,考查运算推导能力,属于基础题.利用递推关系进行大小的比较.【解答】解:由已知b1=1+1a1,b2=1+1a1+1a2,1a1>1a1+1a2,故b1>b2;同理可得b2<b3,b1>b3,又因为1a2>1a2+1a3+1a4,故b2<b4,于是得b1>b2>b3>b4>b5>b6>b7>...,排除A.1 a2>1a2+1a3+...1a6,故b2<b6,排除C,而b1>b7>b8,排除B.5.【答案】B【解析】【分析】本题考查抛物线的定义、方程和性质,属基础题.【解答】解:易知抛物线C:y2=4x的焦点为F(1,0),于是有|BF|=2,故|AF|=2,注意到抛物线通径2p=4,通径为抛物线最短的焦点弦,分析知AF必为半焦点弦,于是有AF⊥x轴,于是有|AB|=√22+22=2√2.6.【答案】B【解析】8.【答案】D【解析】 【分析】本题主要考查等比数列前 n 项和中的基本量计算,属于基础题. 根据题干列出等式求得 a 1 与 q ,进而求出 a 6 . 【解答】解: 设等比数列 {a n } 首项 a 1 ,公比 q .由题意, {a 1+a 2+a 3=168a 2−a 5=42 ,即 {a 1(1+q +q 2)=168a 1q(1−q 3)=42 ,即 {a 1(1+q +q 2)=168a 1q(1−q)(1+q +q 2)=42解得, q =12 , a 1=96 ,所以 a 6=a 1q 5=3 .9.【答案】C【解析】 【分析】本题考查圆锥体积,最值计算. 【解答】解: 考虑与四棱锥的底面形状无关,不失一般性,假设底面是 边长为 a 的正方形,底面所在圆面的半径为 r ,则 r =√22a ,所以该四棱锥的高 ℎ=√1−a 22,所以体积V =13a 2√1−a 22,设 a 2=t (0<t <2) ,V =13√t 2−t32 , (t 2−t 32)′=2t −3t 22,当 0<t <43 , (t 2−t 32)′>0 ,单调递增,当 43<t <2 , (t 2−t 32)′<0 ,单调递减,所以当 t =43 时, V 取最大,此时 ℎ=√1−a22=√33,10.【答案】D【解析】【分析】本题考查相互独立事件的概率乘法公式的计算,属于中档题.根据题意计算出P甲,P乙,P丙,然后作差比较大小.【解答】解:设棋手在第二盘与甲比赛连赢两盘的概率为P甲,在第二盘与乙比赛连赢两盘的概率为P乙,在第二盘与丙比赛连赢两盘的概率为P丙由题意P甲=p1[p2(1−p3)+p3(1−p2)]=p1p2+p1p3−2p1p2p3,P乙=p2[p1(1−p3)+p3(1−p1)]=p1p2+p2p3−2p1p2p3,P丙=p3[p1(1−p2)+p2(1−p1)]=p1p3+p2p3−2p1p2p3,所以P丙−P甲=p2(p3−p1)>0,P丙−P乙=p1(p3−p2)>0,所以P丙最大.11.【答案】C【解析】【分析】本题考查双曲线的性质及直线与圆相切的性质,属于中档题.【解答】解:由题意,点N在双曲线右支.记切点为点A,连接AD,则AD⊥MN,|AD|= a,又|DF1||=c,则|AF1|=√c2−a2=b.过点F2作F2B⊥MN交直线MN于点B,连接F2N,则F2B//DA,又点D为F1F2中点,则|F2B|=2|DA|=2a,|F1B|=2|AF1|= 2b.由cos∠F1NF2=35,得sin∠F1NF2=45,tan∠F1NF2=43所以|F2N|=|F2B|sin∠F1NF2=5a2,|BN|=|F2B|tan∠F1NF2=3a2.故|F1N|=|F1B|+|BN|=2b+3a2,由双曲线定义,|F1N|−|F2N|=2a,则2b−a=2a,即ba =32,所以e=√1+b2a2=√1+94=√132.(此题是否有另外一解,待官方公布)12.【答案】D【解析】【分析】本题考查函数的对称性,周期性,属于拔高题.【解答】解:若y=g(x)的图像关于直线x=2对称,则g(2−x)=g(2+x),因为f(x)+g(2−x)=5,所以f(−x)+g(2+x)=5,故f(−x)=f(x),f(x)为偶函数.由g(2)=4,f(0)+g(2)=5,得f(0)=1.由g(x)−f(x−4)=7,得g(2−x)= f(−x−2)+7,代入f(x)+g(2−x)=5,得f(x)+f(−x−2)=−2,f(x)关于点(−1,−1)中心对称,所以由于E 为AC 中点∴EF ⊥AC 当ΔAFC 的面积最小时∴EF ⊥BD在RtΔDEB 中,∵BE =√3,DE =1∴EF =√32,BF =32如图,以点E 为坐标原点,直线AC 、EB 、ED 分别为x 、y 、z 轴建立空间直角坐标系. C(−1,0,0)、A(1,0,0)、B(0,√3,0)、D(0,0,1)、F(0,√34,34)BD⃗⃗⃗⃗⃗⃗ =(0,−√3,1)、AD ⃗⃗⃗⃗⃗⃗ =(−1,0,1)、BC ⃗⃗⃗⃗⃗ =(−1,−√3,0) ∵CF ⃗⃗⃗⃗⃗ =BF ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ =34BD ⃗⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ =(1,√34,34)设平面ABD 的法向量为m⃗⃗⃗ =(x,y,z) 可得{BD ⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =0AD ⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =0设y =1∴m ⃗⃗⃗ =(√3,1,√3)设m⃗⃗⃗ 与CF ⃗⃗⃗⃗⃗ 所成的角为α,CF 与平面ABD 所成角的为θ ∴sinθ=|cosα|=|m ⃗⃗⃗ ·CF ⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |·|CF ⃗⃗⃗⃗⃗ ||=4√37所以CF 与平面ABD 所成角的正弦值为4√37.【解析】本题考查面面垂直的判定,及线面角的求解,属于中档题.19.【答案】解:(1)设这种树木平均一课的根部横截面积为x ,平均一个的材积量为y , 则x =0.610=0.06,y =3.910=0.39.(2)r =∑x i n i=1y i −nx y√(∑x i 2n i=1−nx 2)(∑y i 2n i=1−ny 2)=0.2474−10×0.06×0.39√0.038−10×0.062√1.6158−10×039)2=0.0134√0.002×0.0948=0.01340.01×√1.896=0.01340.01377=0.97; (3)设从根部面积总和为X ,总材积量为Y ,则XY =xy ,故Y =3.90.6×186=1209(m 3). 【解析】本题考查了用样本估计总体,样本的相关系数,属于中档题.20.【答案】解:(1)设E 的方程为x 2a 2+y2b 2=1,将A(0,−2),B(32,−1)两点代入得。

高考全国卷理科数学试题及答案

高考全国卷理科数学试题及答案

普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A)21(B )23 (C)1 (D )3(2)复数3)2321(i +的值是 (A)i - (B )i (C)1- (D)1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B)N M ⊂ (C )N M ⊃ (D)∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A)0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C)53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A)0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据 3月5日九届人大五次会议《政府工作报告》:“ 国内生产总值达到95933亿元,比上年增长7。

2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2021 年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设2(z +z) + 3(z -z) = 4 + 6i ,则z =( )A.1 - 2iB.1 + 2iC.1 +iD.1 -i答案:C解析:设z =a +bi ,则 z =a -bi ,2(z +z) + 3(z -z) = 4a + 6bi = 4 + 6i ,所以 a = 1 ,b = 1,所以 z = 1 +i .2.已知集合S = {s | s = 2n +1, n ∈Z} ,T = {t | t = 4n +1,n ∈Z},则S T =()A. ∅B. SC. TD. Z答案:C解析:s = 2n +1,n ∈Z ;当n = 2k ,k ∈Z 时,S = {s | s = 4k +1, k ∈Z} ;当n = 2k +1,k ∈Z 时,T =TS = {s | s = 4k + 3, k ∈Z}.所以T Ü S ,S.故选 C.3.已知命题p : ∃x ∈R ﹐sin x < 1 ;命题q : ∀x ∈R,e|x| ≥1 ,则下列命题中为真命题的是()A.p ∧qB.⌝p ∧qC.p ∧⌝qD.⌝( p ∨q)答案:A解析:根据正弦函数的值域sin x ∈[-1,1] ,故∃x ∈R ,sin x < 1 ,p 为真命题,而函数 y =y =e|x|为偶函数,且x ≥ 0 时,y =e|x| ≥1,故∀x ∈R ,y =e|x| ≥1恒成立.,则q 也为真命题,所以p ∧q 为真,选 A.4.设函数f ( x) =1-x,则下列函数中为奇函数的是()1+xA.f ( x -1) -1B.f ( x -1) +1C.f ( x +1) -1D.f ( x +1) +1答案:B解析:1-x 2 2f (x) ==-1+1+x1+x ,f (x) 向右平移一个单位,向上平移一个单位得到g(x) =为奇x函数.5.在正方体ABCD -A1B1C1D1中,P为B1D1 的中点,则直线PB 与AD1所成的角为()A. π2 B. π3 C. π4 D. π65 4答案:D解析:如图, ∠PBC 1 为直线 PB 与 AD 1 所成角的平面角.易知∆A 1BC 1 为正三角形,又 P 为 A 1C 1 中点,所以∠PBC=π.166. 将5 名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4 个项目进行培训,每名志愿者只分配到1 个项目,每个项目至少分配1 名志愿者,则不同的分配方案共有( ) A. 60 种B. 120 种C. 240 种D. 480 种 答案:C解析:所求分配方案数为C2A 4 = 240 .7. 把函数 y = f ( x ) 图像上所有点的横坐标缩短到原来的1倍,纵坐标不变,再把所得曲 2线向右平移 π 个单位长度,得到函数 y = sin( x - π) 的图像,则 f ( x ) = ()3 4 A. sin( x - 7π )2 12 B. sin( x + π )2 12C. sin(2x - 7π)12 D. sin(2x +π) 12答案:B解析:逆向:y= sin(x -π左移ππ) −−−3→y=sin(x +) −横−坐−标变−为原−来的−2倍−→y = sin(1x +π) .4 12 2 12故选 B.8.在区间(0,1) 与(1, 2) 中各随机取1 个数,则两数之和大于7的概率为()4A.79B.2332 C.932 D.29答案:B解析:由题意记x ∈ (0,1),y ∈ (1, 2) ,题目即求x +y >7的概率,绘图如下所示. 4S 1⨯1-1AM ⋅AN 1-1⨯3⨯3故P =阴= 2 = 2 4 4 =23.S正ABCD1⨯1 1 329.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点E, H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”. GC 与EH 的差称为“表目距的差”,则海岛的高AB =()A.表高⨯表距+表高表目距的差B.表高⨯表距-表高表目距的差C.表高⨯表距+表距表目距的差D.表高⨯表距-表距表目距的差答案:A解析:连接 DF 交 AB 于M ,则 AB =AM +BM .记∠BDM =α,∠BFM =β,则MBtan βMBtanα=MF -MD =DF .而tan β=FG,tanα=ED.所以GC EHMB-MB=MB(1-1) =MB ⋅(GC-EH) =MB ⋅GC -EH. tan β tanα tan β tanα FG ED ED故MB = ED ⋅DF =表高⨯表距,所以高AB =表高⨯表距+表高.GC -EH 表目距的差表目距的差-10.设a≠0 ,若x =a 为函数f(x)=a(x -a)2 (x -b)的极大值点,则A.a <bB.a >bC.ab <a2D.ab >a2答案:D解析:若a > 0 ,其图像如图(1),此时,0 <a <b ;若a < 0 ,时图像如图(2),此时,b <a < 0 . 综上, ab <a2.x2 +y2=>>11.设B 是椭圆C :a2 b2 1(a b 0) 的上顶点,若C 上的任意一点P 都满足,PB ≤ 2b ,则C 的离心率的取值范围是()A.[2,1) 21[ ,1)2 B.2 1.04 C.(0, 2] 21 (0, ]2答案:C解析:x 2y2y 2由题意,点 B (0, b ) ,设 P (x , y ) ,则 0 + 0 = 1⇒ x 2 = a 2 (1- 0 ) ,故 0a 2b 22y 2b 2c 2 PB = x 2 + ( y - b )2 = a 2(1- 0) + y 2 - 2by + b 2 = - y 2 - 2by + a 2 + b 2 ,0 0y 0 ∈[-b ,b ] .b 2 0 0 b 3b 2 0c由题意,当 y = -b 时,PB 2最大,则- ≤ -b ,b 2 ≥ c 2 ,a 2 - c 2 ≥ c 2 ,c = ≤ ,c ∈(0, 0c 2a 22].212. 设a = 2 ln1.01,b = ln1.02 ,c = 1,则()A. a < b < cB. b < c < aC. b < a < cD. c < a < b答案:B解析:设 f (x ) = ln(1+ x ) -+1,则b - c = f (0.02) ,易得f '(x ) =1 -1+ x当 x ≥ 0 时,1+ x =≥ ,故 f '(x ) ≤ 0 .所以 f (x ) 在[0, +∞) 上单调递减,所以 f (0.02) < f (0) = 0 ,故b < c .1+ 2x 2 1+ 2x = 1+ 2x - (1+ x ) (1+ x ) 1+ 2x(1+ x )2 1+ 2x D.1+ 4x 42 1+ 4x 1+ 4x - (1- x ) (1+ x ) 1+ 4x3y 再设 g (x ) = 2 l n(1+ x ) -+1,则a - c = g (0.01) ,易得g '(x ) =2 1+ x - = 2 ⋅.当0 ≤ x < 2 时, ≥ = 1+ x ,所以 g '(x ) 在[0.2) 上≥ 0 . 故 g (x ) 在[0.2) 上单调递增,所以 g (0.01) > g (0) = 0 ,故 a > c . 综上, a > c > b .二、填空题13. 已知双曲线 C :x 2 - 2m= 1(m > 0) 的一条渐近线为 3x + my = 0 , 则 C 的焦距为.答案:4解析:易知双曲线渐近线方程为 y = ± bx ,由题意得 a 2 = m , b 2 = 1 ,且一条渐近线方程为 ay =- mx ,则有m = 0 (舍去), m = 3 ,故焦距为 2c = 4 .14. 已知向量a = (1,3) , b = (3, 4) ,若(a - λb ) ⊥ b ,则λ =.答案:3 5解析:由题意得(a - λb ) ⋅ b = 0 ,即15 - 25λ = 0 ,解得λ = 3.515. 记 ∆ABC 的内角 A , B , C 的对边分别为 a , b , c,面积为a 2 + c 2 = 3ac ,则b =., B = 60︒ ,答案:2解析:1+ 4x 1+ 2x + x 2 3 23 2 5 S= 1 ac sin B = 3ac = ,所以 ac = 4 ,∆ABC2 4由余弦定理, b 2 = a 2 + c 2 - ac = 3ac - ac = 2ac = 8 ,所以b = 2 .16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面 PAC ⊥ 平面 ABC ,PA = PC =2 ,BA = BC =,AC = 2 ,俯视图为⑤.俯视图为③,如图(2), PA ⊥ 平面 ABC , PA = 1, AC = AB =5 , BC = 2 ,俯视图为④.1三、解答题17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10 件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和 y , 样本方差分别己为 s 2 和 S 2. 1 2(1)求x , y , s 2, s 2:12( 2 ) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高 ( 如果y - x ≥ 2 , 否则不认为有显著提高 ) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省高考数学试题(理)1.i 为虚数单位, 607i 的共轭复数....为 A .i B .i - C .1 D .1- 2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮, 有人送来米1534 石, 验得米内夹谷, 抽样取米一把, 数得254粒内夹谷28粒, 则这批米内夹谷约为A .134石B .169石C .338石D .1365石3.已知(1)n x +的展开式中第4项与第8项的二项式系数相等, 则奇数项二项式系数和为 A .122 B .112 C .102 D .924.设211(,)X N μσ:, 222(,)Y N μσ:, 这两个正态分布密度曲线如图所示.下列结论中正确的是A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t , ()()P X t P Y t ≤≥≤D .对任意正数t , ()()P X t P Y t ≥≥≥5.设12,,,n a a a ∈R L , 3n ≥. 若p :12,,,n a a a L 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L , 则A .p 是q 的充分条件, 但不是q 的必要条件B .p 是q 的必要条件, 但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件, 也不是q 的必要条件 6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数, ()()()(1)g x f x f ax a =->,则 A .sgn[()]sgn g x x = B .sgn[()]sgn g x x =- C .sgn[()]sgn[()]g x f x = D .sgn[()]sgn[()]g x f x =- 7.在区间[0,1]上随机取两个数,x y , 记1p 为事件“12x y +≥”的概率, 2p 为事件“1||2x y -≤”的概率, 3p 为事件“12xy ≤”的概率, 则 A .123p p p << B .231p p p << C .312p p p << D .321p p p <<8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度, 得到离心率为2e 的双曲线2C , 则 A .对任意的,a b , 12e e > B .当a b >时, 12e e >;当a b <时,12e e <第4题图C .对任意的,a b , 12e e <D .当a b >时, 12e e <;当a b <时,12e e >9.已知集合22{(,)1,,}A x y x y x y =+≤∈Z , {(,)||2,||2,,}B x y x y x y =≤≤∈Z , 定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈, 则A B ⊕中元素的个数为 A .77 B .49 C .45 D .3010.设x ∈R , []x 表示不超过x 的最大整数. 若存在实数t , 使得[]1t =, 2[]2t =, …,[]n t n =同时成立...., 则正整数n 的最大值是 A .3 B .4 C .5 D .6 11.已知向量OA AB ⊥u u u r u u u r, ||3OA =u u u r , 则OA OB ⋅=u u u r u u u r .12.函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 .13.如图, 一辆汽车在一条水平的公路上向正西行驶, 到A 处时测得公路北侧一山顶D在西偏北30o 的方向上, 行驶600m 后到达B 处, 测得此山顶在西偏北75o 的方向上, 仰角为30o , 则此山的高度CD = m.14.如图, 圆C 与x 轴相切于点(1,0)T , 与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =.(Ⅰ)圆C 的标准..方程为 ;(Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点, 下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=;③NB MA NAMB+=其中正确结论的序号是 . (写出所有正确结论的序号)15.如图, P A 是圆的切线, A 为切点, PBC 是圆的割线, 且3BC PB =, 则ABAC= . 16在直角坐标系xOy 中, 以O 为极点, x 轴的正半轴为极轴建立极坐标系. 已知直线l 的第13题图第14题图AB第15题图 APBC极坐标方程为(sin 3cos )0ρθθ-=, 曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) , l 与C相交于A ,B 两点, 则||AB = .17.某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时, 列表并填入了部分数据, 如下表:(Ⅰ)请将上表数据补充完整, 填.写.在答题卡上相应位置........., 并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度, 得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12, 求θ的最小值. 18.设等差数列{}n a 的公差为d , 前n 项和为n S , 等比数列{}n b 的公比为q .已知11b a =, 22b =,q d =, 10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时, 记nn na cb =, 求数列{}nc 前n 项和n T .19.《九章算术》中, 将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马, 将四个面都为直角三角形的四面体称之为鳖臑.如图, 在阳马P ABCD -中, 侧棱PD ⊥底面ABCD , 且PD CD =, 过棱PC 的中点E , 作EF PB ⊥交PB 于点F , 连接,,,.DE DF BD BE (Ⅰ)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑, 若是, 写出其每个面的直角(只需写出结论);若不是, 说明理由;(Ⅱ)若面DEF 与面ABCD 所成二面角的大小为π3, 求DCBC的值.第19题图20.某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨, 使用设备1小时, 获利1000元;生产1吨B 产品需鲜牛奶1.5吨, 使用设备1.5小时, 获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍, 设备每天生产,A B 两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量, 其分布列为该厂每天根据获取的鲜牛奶数量安排生产, 使其获利最大, 因此每天的最大获利Z (单位:元)是一个随机变量.(Ⅰ)求Z 的分布列和均值;(Ⅱ) 若每天可获取的鲜牛奶数量相互独立, 求3天中至少有1天的最大获利超过10000元的概率.21.一种作图工具如图1所示.O 是滑槽AB 的中点, 短杆ON 可绕O 转动, 长杆MN 通过N 处铰链与ON 连接, MN 上的栓子D 可沿滑槽AB 滑动, 且1DN ON ==, 3MN =.当栓子D 在滑槽AB 内作往复运动时, 带动..N 绕O 转动一周(D 不动时, N 也不动), M 处的笔尖画出的曲线记为C .以O 为原点, AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与曲线C 有且只有一个公共点, 试探究:△OPQ 的面积是否存在最小值?若 存在, 求出该最小值;若不存在, 说明理由.22.已知数列{}n a 的各项均为正数, 1(1)()n n n b n a n n+=+∈N , e 为自然对数的底数.(Ⅰ)求函数()1e x f x x =+-的单调区间, 并比较1(1)n n+与e 的大小;(Ⅱ)计算11b a , 1212b b a a , 123123b b b a a a , 由此推测计算1212nn b b b a a a L L 的公式, 并给出证明;(Ⅲ)令112()nn n c aa a =L , 数列{}n a , {}n c 的前n 项和分别记为n S ,n T ,证明:e n n T S <.第21题图1参考答案:1.A 2.B 3.D 4.C 5.A 6.B 7.B 8.D 9.C 10.B11.9 12.2 13.14.(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③ 15.1216.17.(Ⅰ)根据表中已知数据, 解得π5,2,6A ωϕ===-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-(Ⅱ)由(Ⅰ)知 π()5sin(2)6f x x =-, 得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k , k ∈Z . 令π22π6x k θ+-=,解得ππ212k x θ=+-, k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称, 令ππ5π21212k θ+-=解得ππ23k θ=-, k ∈Z . 由0θ>可知, 当1k =时, θ取得最小值π6. 18.(Ⅰ)由题意有, 111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n na nb -⎧=+⎪⎪⎨⎪=⋅⎪⎩(Ⅱ)由1d >, 知21n a n =-, 12n n b -=, 故1212n n n c --=, 于是 2341357921122222n n n T --=++++++L , ① 2345113579212222222n n n T -=++++++L . ② ①-②可得221111212323222222n n n nn n T --+=++++-=-L , 故n T 12362n n -+=-. 19.(解法1)(Ⅰ)因为PD ⊥底面ABCD , 所以PD BC ⊥, 由底面ABCD 为长方形, 有BC CD ⊥, 而PD CD D =I , 所以BC PCD ⊥平面. 而DE PCD ⊂平面, 所以BC DE ⊥.又因为PD CD =, 点E 是PC 的中点, 所以DE PC ⊥. 而PC BC C =I , 所以DE ⊥平面第19题解答图2 第19题解答图1 PBC . 而PB PBC ⊂平面, 所以PB DE ⊥.又PB EF ⊥, DE EF E =I , 所以PB ⊥平面DEF . 由DE ⊥平面PBC , PB ⊥平面DEF , 可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑, 其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (Ⅱ)如图1, 在面PBC 内, 延长BC 与FE 交于点G , 则DG 是平面DEF 与平面ABCD的交线. (Ⅰ)知, PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD , 所以PD DG ⊥. 而PD PB P =I , 所以DG PBD ⊥平面. 故BDF ∠是面DEF 与面ABCD 所成二面角的平面角, 设1PD DC ==, BC λ=, 有BD在Rt △PDB 中, 由DF PB ⊥,得π3DPF FDB ∠=∠=, 则πtantan 3BDDPF PD=∠==, 解得λ=. 所以1DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时, 2DC BC =(解法2)(Ⅰ)如图2, 以D 为原点, 射线,,DA DC DP 分别为,,x y z 轴的正半轴, 建立空间直角坐标系. 设1PD DC ==, BC λ=, 则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ, (,1,1)PB λ=-u u u r , 点E 是PC 的中点, 所以11(0,,)22E , 11(0,,)22DE =u u u r , 于是0PB DE ⋅=u u u r u u u r ,即PB DE ⊥. 又已知EF PB ⊥, 而DE EF E =I , 所以PB DEF ⊥平面. 因(0,1,1)PC =-u u u r, 0DE PC ⋅=u u u r u u u r, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面PBC ,PB ⊥平面DEF , 可知四面体的四个面都是直角三角形, 即四面体是一个鳖臑, 其四个面的直角分别为(Ⅱ)由PD ABCD ⊥平面, 所以(0,0,1)DP =u uu r是平面ABCD 的一个法向量;由(Ⅰ)知,PB DEF ⊥平面, 所以(,1,1)BP λ=--u u u r是平面DEF 的一个法向量. 若面DEF 与面ABCD 所成二面角的大小为π3,则π1cos 32||||BP DP BP DP ⋅===⋅u u u r u u u r u u ur u u u r , 解得λ=. 所以1DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =21.(Ⅰ)设点依题意, 2MD DN =u u u u r u u u r , 且||||1DN ON ==u u u r u u u r,所以00(,)2(,)t x y x t y --=-, 且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时, 点N 也不动, 所以t 不恒等于0, 于是02t x =, 故00,42x yx y ==-, 代入2201x y +=, 可得221164x y +=, 即所求的曲线C 的方程为221.164x y +=(Ⅱ)(1)当直线l 的斜率不存在时, 直线l 为4x =或4x =-, 都有14482OPQ S ∆=⨯⨯=.(2)当直线l 的斜率存在时, 设直线1:()2l y kx m k =+≠±, 由22,416,y kx m x y =+⎧⎨+=⎩消去y , 可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点, 所以2222644(14)(416)0k m k m ∆=-+-=, 即22164m k =+. ①又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m mQ k k -++.由原点O 到直线PQ 的距离为d 和|||P Q PQ x x -, 可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQk S k k ∆+==+>--;当2104k ≤<时, 2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<, 则20141k <-≤, 22214k ≥-, 所以228(1)814OPQ S k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时, OPQ S ∆的最小值为8.综合(1)(2)可知, 当直线l 与椭圆C 在四个顶点处相切时, △OPQ 的面积取得最小值8. 22.(Ⅰ)()f x 的定义域为(,)-∞+∞, ()1e x f x '=-.当()0f x '>, 即0x <时, ()f x 单调递增;当()0f x '<, 即0x >时, ()f x 单调递减. 故()f x 的单调递增区间为(,0)-∞, 单调递减区间为(0,)+∞. 当0x >时, ()(0)0f x f <=, 即1e x x +<.第21题解答图令1x n=, 得111e n n +<, 即1(1)e n n +<. ①(Ⅱ)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=; 2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=.由此推测: 1212(1).n nnb b b n a a a =+L L②下面用数学归纳法证明②. (1)当1n =时, 左边=右边2=, ②成立. (2)假设当n k =时, ②成立, 即1212(1)k kkb b b k a a a =+L L .当1n k =+时, 1111(1)(1)1k k k b k a k +++=+++, 由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++L L L L .所以当1n k =+时, ②也成立.根据(1)(2), 可知②对一切正整数n 都成立. (Ⅲ)由n c 的定义, ②, 算术-几何平均不等式, n b 的定义及①得123n n T c c c c =++++=L 111131211212312()()()()nn a a a a a a a a a ++++L L111131212312112()()()()2341nn b b b b b b b b b n =+++++L L 12312112122334(1)n b b bb b b b b b n n ++++++≤++++⨯⨯⨯+L L 121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++L L L 1211111(1)()()1211n b b b n n n n =-+-++-+++L 1212n b b b n <+++L 1212111(1)(1)(1)12n n a a a n=++++++L 12e e e n a a a <+++L =e n S .即e n n T S <.20.(Ⅰ)设每天,A B 两种产品的生产数量分别为,x y , 相应的获利为z , 则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.第20题解答图1 第20题解答图2第20题解答图33311(1)10.30.973.p p =--=-=当12W =时, (1)表示的平面区域如图1, 三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C . 将10001200z x y =+变形为561200zy x =-+, 当 2.4, 4.8x y ==时, 直线l :561200zy x =-+在y 轴上的截距最大, 最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时, (1)表示的平面区域如图2, 三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+, 当3, 6x y ==时, 直线l :561200zy x =-+在y 轴上的截距最大, 最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时, (1)表示的平面区域如图3, 四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200z y x =-+, 当6,4x y ==时, 直线l :561200zy x =-+在y 轴上的截距最大, 最大获利max 610004120010800Z z ==⨯+⨯=. 故最大获利Z 的分布列为因此, ()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯= (Ⅱ)由(Ⅰ)知, 一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=, 由二项分布, 3天中至少有1天最大获利超过10000元的概率为。

相关文档
最新文档