城区一中2018-2019学年高二上学期第二次月考试卷数学

合集下载

城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学

城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学

城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( ) A .{x|x <﹣2或x >4} B .{x|x <0或x >4} C .{x|x <0或x >6} D .{x|0<x <4}2. 如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=+x +y ,则( )A .x=﹣B .x=C .x=﹣D .x=3. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣14. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .2405. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβ C .若,//m m βα⊥,则αβ⊥ D .若,αγαβ⊥⊥,则βγ⊥6. 命题“∀x ∈R ,2x 2+1>0”的否定是( )A .∀x ∈R ,2x 2+1≤0B .C .D .7. 若复数(a ∈R ,i 为虚数单位位)是纯虚数,则实数a 的值为( ) A .﹣2 B .4C .﹣6D .68.已知在R上可导的函数f(x)的图象如图所示,则不等式f(x)•f′(x)<0的解集为()A.(﹣2,0)B.(﹣∞,﹣2)∪(﹣1,0)C.(﹣∞,﹣2)∪(0,+∞)D.(﹣2,﹣1)∪(0,+∞)9.若函数f(x)=﹣2x3+ax2+1存在唯一的零点,则实数a的取值范围为()A.[0,+∞)B.[0,3] C.(﹣3,0] D.(﹣3,+∞)10.若偶函数y=f(x),x∈R,满足f(x+2)=﹣f(x),且x∈[0,2]时,f(x)=1﹣x,则方程f(x)=log8|x|在[﹣10,10]内的根的个数为()A.12 B.10 C.9 D.811.已知集合A,B,C中,A⊆B,A⊆C,若B={0,1,2,3},C={0,2,4},则A的子集最多有()A.2个B.4个C.6个D.8个12.如图可能是下列哪个函数的图象()A.y=2x﹣x2﹣1 B.y=C.y=(x2﹣2x)e x D.y=二、填空题13.已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=a x g(x)(a>0,a≠1);②g(x)≠0;③f(x)g'(x)>f'(x)g(x);若,则a= .14.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号).15.已知(ax+1)5的展开式中x 2的系数与的展开式中x 3的系数相等,则a= .16.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .17.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .18.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .三、解答题19.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.20.已知函数f(x)=.(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值.21.(本小题满分12分)已知函数21()(3)ln 2f x x a x x =+-+. (1)若函数()f x 在定义域上是单调增函数,求的最小值;(2)若方程21()()(4)02f x a x a x -+--=在区间1[,]e e上有两个不同的实根,求的取值范围.22.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) ABC D23.已知函数.(1)求f(x)的周期和及其图象的对称中心;(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.24.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽100(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象关于y轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0),故f(x﹣2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f(x﹣2)<0,可得0<x<4,故选:D.【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.2.【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x+y,∴x=﹣,y=,故选:A.【点评】本题考查了空间向量的应用问题,是基础题目.3. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0, ∴a=2×0+1=1. 故选:B .4. 【答案】B 【解析】 试题分析:8058631=⨯⨯⨯=V ,故选B. 考点:1.三视图;2.几何体的体积. 5. 【答案】C 【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A 不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D 不正确;根据面面垂直的判定定理知C 正确.故选C . 考点:空间直线、平面间的位置关系.6. 【答案】C【解析】解:∵命题∀x ∈R ,2x 2+1>0是全称命题, ∴根据全称命题的否定是特称命题得命题的否定是:“”,.故选:C . 【点评】本题主要考查含有量词的命题的否定,要求掌握特称命题的否定是全称命题,全称命题的否定是特称命题,比较基础.7. 【答案】C【解析】解:复数=,它是纯虚数,则a=﹣6.故选C .【点评】本题考查复数代数形式的乘除运算,复数的分类,是基础题.8. 【答案】B【解析】解:由f (x )图象单调性可得f ′(x )在(﹣∞,﹣1)∪(0,+∞)大于0, 在(﹣1,0)上小于0,∴f(x)f′(x)<0的解集为(﹣∞,﹣2)∪(﹣1,0).故选B.9.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.10.【答案】D【解析】解:∵函数y=f(x)为偶函数,且满足f(x+2)=﹣f(x),∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),∴偶函数y=f(x)为周期为4的函数,由x∈[0,2]时,f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.数形结合可得交点个为8,故选:D.11.【答案】B【解析】解:因为B={0,1,2,3},C={0,2,4},且A⊆B,A⊆C;∴A⊆B∩C={0,2}∴集合A可能为{0,2},即最多有2个元素,故最多有4个子集.故选:B.12.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.二、填空题13.【答案】.【解析】解:由得,所以.又由f(x)g'(x)>f'(x)g(x),即f(x)g'(x)﹣f'(x)g(x)>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.14.【答案】②④【解析】解:根据题意得:圆心(k﹣1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k:圆心(k﹣1,3k),半径为k2,圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R﹣r=(k+1)2﹣k2=2k+,任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.则真命题的代号是②④.故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.15.【答案】.【解析】解:(ax+1)5的展开式中x2的项为=10a2x2,x2的系数为10a2,与的展开式中x3的项为=5x3,x3的系数为5,∴10a2=5,即a2=,解得a=.故答案为:.【点评】本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键.16.【答案】2.【解析】解:∵一组数据2,x,4,6,10的平均值是5,∴2+x+4+6+10=5×5,解得x=3,∴此组数据的方差[(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8,∴此组数据的标准差S==2.故答案为:2.【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.17.【答案】30x y -+= 【解析】试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.考点:直线与圆的位置关系的应用.18.【答案】 {x|﹣1<x <1} .【解析】解:∵A={x|﹣1<x <3},B={x|x <1}, ∴A ∩B={x|﹣1<x <1}, 故答案为:{x|﹣1<x <1}【点评】本题主要考查集合的基本运算,比较基础.三、解答题19.【答案】【解析】解:(Ⅰ)因为“数学与逻辑”科目中成绩等级为B 的考生有10人, 所以该考场有10÷0.25=40人,所以该考场考生中“阅读与表达”科目中成绩等级为A 的人数为: 40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;(Ⅱ)该考场考生“数学与逻辑”科目的平均分为:×=2.9;(Ⅲ)因为两科考试中,共有6人得分等级为A ,又恰有两人的两科成绩等级均为A , 所以还有2人只有一个科目得分为A ,设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A 的同学,则在至少一科成绩等级为A 的考生中,随机抽取两人进行访谈,基本事件空间为:Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件.设“随机抽取两人进行访谈,这两人的两科成绩等级均为A ”为事件B ,所以事件B 中包含的基本事件有1个,则P (B )=.【点评】本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容.20.【答案】【解析】解:(1)f (x )=﹣=sin 2x+sinxcosx ﹣=+sin2x ﹣ =sin (2x ﹣)…3分周期T=π,因为cosx ≠0,所以{x|x ≠+k π,k ∈Z}…5分当2x ﹣∈,即+k π≤x ≤+k π,x ≠+k π,k ∈Z 时函数f (x )单调递减,所以函数f (x )的单调递减区间为,,k ∈Z …7分 (2)当,2x ﹣∈,…9分sin (2x ﹣)∈(﹣,1),当x=时取最大值,故当x=时函数f (x )取最大值为1…12分【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.21.【答案】(1);(2)01a <<.1111] 【解析】则'()0f x ≥对0x >恒成立,即1()3a x x≥-++对0x >恒成立,而当0x >时,1()3231x x-++≤-+=,∴1a ≥.若函数()f x 在(0,)+∞上递减,则'()0f x ≤对0x >恒成立,即1()3a x x≤-++对0x >恒成立, 这是不可能的. 综上,1a ≥. 的最小值为1. 1(2)由21()()(2)2ln 02f x a x a x x =-+-+=, 得21()(2)2ln 2a x a x x -+-=,即2ln x x a x +=,令2ln ()x x r x x +=,2331(1)2(ln )12ln '()x x x x x x x r x x x+-+--==, 得12ln 0x x --=的根为1,考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用①求得的最小值的.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 22.【答案】C【解析】23.【答案】【解析】解:(1)由,∴f(x)的周期为4π.由,故f(x)图象的对称中心为.(2)由(2a﹣c)cosB=bcosC,得(2sinA﹣sinC)cosB=sinBcosC,∴2sinAcosB﹣cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,∴.∴,故函数f(A)的取值范围是.24.【答案】【解析】解:(Ⅰ)元件A为正品的概率约为.元件B为正品的概率约为.(Ⅱ)(ⅰ)∵生产1件元件A和1件元件B可以分为以下四种情况:两件正品,A次B正,A正B次,A 次B次.∴随机变量X的所有取值为90,45,30,﹣15.∵P(X=90)==;P(X=45)==;P(X=30)==;P(X=﹣15)==.∴随机变量X的分布列为:EX=.(ⅱ)设生产的5件元件B中正品有n件,则次品有5﹣n件.依题意得50n﹣10(5﹣n)≥140,解得.所以n=4或n=5.设“生产5件元件B所获得的利润不少于140元”为事件A,则P(A)==.。

城区高中2018-2019学年高二上学期第二次月考试卷数学

城区高中2018-2019学年高二上学期第二次月考试卷数学

城区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .35 2. 若函数f (x )=2sin (ωx+φ)对任意x 都有f(+x )=f (﹣x ),则f()=( )A .2或0B .0C .﹣2或0D .﹣2或23. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 4. 下列命题中正确的是( ) (A )若p q ∨为真命题,则p q ∧为真命题( B ) “0a >,0b >”是“2b aa b+≥”的充分必要条件 (C ) 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”(D ) 命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥5. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( ) A. B.C.D6. “a >b ,c >0”是“ac >bc ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}8. 某程序框图如图所示,该程序运行后输出的S 的值是( )A .﹣3B .﹣C .D .29. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[] B[]C[]D[] 10.从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15C.310D.2511.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个12.设,,a b c R ∈,且a b >,则( ) A .ac bc > B .11a b< C .22a b > D .33a b > 二、填空题13.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 14.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________.【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.15.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)16.已知函数f (x )=sinx ﹣cosx ,则= .17.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.18.函数f (x )=的定义域是 .三、解答题19.(本小题满分10分)选修4-1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;(2)若CE=1,AB=2,求DE的长.20.已知函数f(x)=ax2+2x﹣lnx(a∈R).(Ⅰ)若a=4,求函数f(x)的极值;(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.21.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1xxe -.(a ∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.23.已知:函数f (x )=log 2,g (x )=2ax+1﹣a ,又h (x )=f (x )+g (x ).(1)当a=1时,求证:h (x )在x ∈(1,+∞)上单调递增,并证明函数h (x )有两个零点;(2)若关于x 的方程f (x )=log 2g (x )有两个不相等实数根,求a 的取值范围.24.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)城区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】【知识点】算法和程序框图 【试题解析】否,否,否,是,则输出S=24. 故答案为:C 2. 【答案】D 【解析】解:由题意:函数f (x )=2sin (ωx+φ),∵f (+x )=f (﹣x ),可知函数的对称轴为x==,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值.∴f ()=2或﹣2故选D .3. 【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]4. 【答案】D【解析】对选项A ,因为p q ∨为真命题,所以,p q 中至少有一个真命题,若一真一假,则p q ∧为假命题,故选项A 错误;对于选项B ,2baab+≥的充分必要条件是,a b 同号,故选项B 错误;命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠且2x ≠,则2320x x -+≠”,故选项C 错误;故选D .5. 【答案】B 【解析】考点:正弦定理的应用. 6. 【答案】A【解析】解:由“a >b ,c >0”能推出“ac >bc ”,是充分条件,由“ac >bc ”推不出“a >b ,c >0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac >bc ,但是a <b ,c <0, 故选:A .【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题7. 【答案】B【解析】解:由Venn 图可知,阴影部分的元素为属于A 当不属于B 的元素构成,所以用集合表示为A ∩(∁U B ). A={x|x 2﹣x ﹣2<0}={x|﹣1<x <2},B={x|y=ln (1﹣x )}={x|1﹣x >0}={x|x <1}, 则∁U B={x|x ≥1},则A ∩(∁U B )={x|1≤x <2}. 故选:B .【点评】本题主要考查Venn 图表达 集合的关系和运算,比较基础.8. 【答案】 B【解析】解:由程序框图得:第一次运行S==﹣3,i=2;第二次运行S==﹣,i=3;第三次运行S==,i=4;第四次运行S==2,i=5;第五次运行S==﹣3,i=6,…S的值是成周期变化的,且周期为4,当i=2015时,程序运行了2014次,2014=4×503+2,∴输出S=﹣.故选:B.【点评】本题考查了循环结构的程序框图,根据程序的运行功能判断输出S值的周期性变化规律是关键.9.【答案】B【解析】当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。

城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(3)

城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(3)

城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )A .B .C .D .22. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .15 B .16 C .314 D .133. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )A .﹣B .﹣5C .5D .4. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是( ) A .α∥β,l ⊂α,n ⊂β⇒l ∥n B .α∥β,l ⊂α⇒l ⊥β C .l ⊥n ,m ⊥n ⇒l ∥m D .l ⊥α,l ∥β⇒α⊥β5. 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A )∩(∁U B )=( ) A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}6. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )A .B .1C .D .7. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .58. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z <<9. 已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C . tan35°D .tan35°10.已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .11.已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅ 12.在△ABC 中,a=1,b=4,C=60°,则边长c=( )A .13B .C .D .21二、填空题13.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .14.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.15.已知||=1,||=2,与的夹角为,那么|+||﹣|= .16.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.17.二面角α﹣l ﹣β内一点P 到平面α,β和棱l 的距离之比为1::2,则这个二面角的平面角是度.18.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.三、解答题19.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.20.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.21.已知函数f (x )=xlnx ,求函数f (x )的最小值.22.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.23.已知函数f (x )=lnx ﹣kx+1(k ∈R ).(Ⅰ)若x 轴是曲线f (x )=lnx ﹣kx+1一条切线,求k 的值; (Ⅱ)若f (x )≤0恒成立,试确定实数k 的取值范围.24.在直角坐标系xOy 中,曲线C 1的参数方程为C 1:为参数),曲线C 2:=1.(Ⅰ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求C 1,C 2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C 1的异于极点的交点为A ,与C 2的交点为B ,求|AB|.城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x﹣2)2+y2=2的圆心(2,0),半径为,双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,可得:,可得a2=b2,c=a,e==.故选:B.【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.2.【答案】D【解析】考点:等差数列.3.【答案】B【解析】解:∵数列{a n}满足log3a n+1=log3a n+1(n∈N*),∴a n+1=3a n>0,∴数列{a n}是等比数列,公比q=3.又a2+a4+a6=9,∴=a5+a7+a9=33×9=35,则log(a5+a7+a9)==﹣5.故选;B.4.【答案】D【解析】解:对于A,α∥β,l⊂α,n⊂β,l,n平行或异面,所以错误;对于B,α∥β,l⊂α,l 与β可能相交可能平行,所以错误;对于C,l⊥n,m⊥n,在空间,l与m还可能异面或相交,所以错误.故选D.5.【答案】B【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},所以(C U A)∩(C U B)={7,9}故选B6.【答案】D【解析】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D.7.【答案】C【解析】解:函数f(x)=+6x﹣1,可得f′(x)=x2﹣8x+6,∵a2014,a2016是函数f(x)=+6x﹣1的极值点,∴a2014,a2016是方程x2﹣8x+6=0的两实数根,则a2014+a2016=8.数列{a n}中,满足a n+2=2a n+1﹣a n,可知{a n}为等差数列,∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,从而log2(a2000+a2012+a2018+a2030)=log216=4.故选:C.【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.8.【答案】A【解析】考点:对数函数,指数函数性质.9.【答案】B【解析】解:∵向量=(1,),=(,x)共线,∴x====,故选:B.【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.10.【答案】D【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,该直线的倾斜角为:.故选:D.【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.11.【答案】A【解析】解:∵A={x|a﹣1≤x≤a+2}B={x|3<x<5}∵A∩B=B∴A⊇B∴解得:3≤a≤4故选A【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.12.【答案】B【解析】解:∵a=1,b=4,C=60°,∴由余弦定理可得:c===.故选:B .二、填空题13.【答案】 a ≤0或a ≥3 .【解析】解:∵A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},且A ∩B=B , ∴B ⊆A ,则有a+1≤1或a ≥3, 解得:a ≤0或a ≥3, 故答案为:a ≤0或a ≥3.14.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.15.【答案】 .【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====.故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.16.1 【解析】17.【答案】75度.【解析】解:点P可能在二面角α﹣l﹣β内部,也可能在外部,应区别处理.当点P在二面角α﹣l﹣β的内部时,如图,A、C、B、P四点共面,∠ACB为二面角的平面角,由题设条件,点P到α,β和棱l的距离之比为1::2可求∠ACP=30°,∠BCP=45°,∴∠ACB=75°.故答案为:75.【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键.18.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:三、解答题19.【答案】【解析】解:(1)当m=0时,f (x )=﹣1<0恒成立,当m ≠0时,若f (x )<0恒成立,则解得﹣4<m <0综上所述m 的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x ∈[1,3],f (x )<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当 m >0时,g (x )是增函数, 所以g (x )max =g (3)=7m ﹣6<0,解得.所以当m=0时,﹣6<0恒成立. 当m <0时,g (x )是减函数. 所以g (x )max =g (1)=m ﹣6<0,解得m <6. 所以m <0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.20.【答案】⑴2a =⑵11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭⑶2【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =()在点11f (,())处的切线方程,代入点211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;(3)由题意得,2min max f x g x +≥()(),分析可得必有()()215218f x ax a x lnx +--≥= ,对f x ()求导,对a 分类讨论即可得答案. 试题解析:⑵()()()211'ax x f x x-+=,∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,410{ 610a a -≥∴-≥,得14a ≥;若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,410{ 610a a -≤∴-≤,得16a ≤,综上,实数a 的取值范围为11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;⑶由题意得,()()min max 2f x g x +≥,()max 128g x g π⎛⎫== ⎪⎝⎭,()min 158f x ∴≥,即()()21521ln 8f x ax a x x =+--≥,由()()()()()222112111'221ax a x ax x f x ax a x x x+---+=+--==, 当0a ≤时,()10f <,则不合题意;当0a >时,由()'0f x =,得12x a=或1x =-(舍去), 当102x a<<时,()'0f x <,()f x 单调递减,当12x a>时,()'0f x >,()f x 单调递增. ()min 11528f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥, 整理得,()117ln 2228a a -⋅≥, 设()1ln 2h x x x =-,()21102h x x x∴=+>',()h x ∴单调递增,a Z ∈,2a ∴为偶数,又()172ln248h =-<,()174ln488h =->,24a ∴≥,故整数a 的最小值为2。

城区第一中学校2018-2019学年高二上学期第二次月考试卷数学(1)

城区第一中学校2018-2019学年高二上学期第二次月考试卷数学(1)

城区第一中学校2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设a ,b ∈R 且a+b=3,b >0,则当+取得最小值时,实数a 的值是( )A .B .C .或 D .32. 如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135°3. 设函数f (x )满足f (x+π)=f (x )+cosx ,当0≤x ≤π时,f (x )=0,则f ()=( )A .B .C .0D .﹣4. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A )13 ( B ) 49 (C ) 23 (D ) 895. 点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A .B .C .D .6. 若,则等于( )A .B .C .D .7. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=( )A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4)8. “1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34 C. 2D .34-10.在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于( )A .B .5C .3D .11.设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .12.设直线x=t 与函数f (x )=x 2,g (x )=lnx 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为( )A .1B .C .D .二、填空题13.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .14.图中的三个直角三角形是一个体积为20的几何体的三视图,则h __________.15.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .16.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.17.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .18.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .三、解答题19.(本小题满分12分)已知椭圆C A 、B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆C 上异于A 、B 的 动点,且PA PB 的最小值为-2. (1)求椭圆C 的标准方程;(2)若过左焦点1F 的直线交椭圆C 于M N 、两点,求22F M F N 的取值范围.20.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.21.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求θ的最小值.(3)对任意的x∈[,]时,方程f(x)=m有两个不等根,求m的取值范围.22.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.236(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.24.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.城区第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵a+b=3,b>0,∴b=3﹣a>0,∴a<3,且a≠0.①当0<a<3时,+==+=f(a),f′(a)=+=,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=时,+取得最小值.②当a<0时,+=﹣()=﹣(+)=f(a),f′(a)=﹣=﹣,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=﹣时,+取得最小值.综上可得:当a=或时,+取得最小值.故选:C.【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.2.【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.3. 【答案】D【解析】解:∵函数f (x )(x ∈R )满足f (x+π)=f (x )+cosx , 当0≤x <π时,f (x )=1, ∴f()=f()=f()+cos =f()+cos+cos =f()+cos+cos =f()+cos+cos=f()+cos+cos+cos=0+cos﹣cos+cos=﹣.故选:D .【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.4. 【答案】C【解析】由1(),21(2),2AD AB AC BE AB AC ⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩ 22422()()33333AB AC AD BE AD BE ⋅=-⋅+=.5. 【答案】A【解析】解:点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,关于x ,y 轴对称,如图所示.由图可得面积S==+=+2.故选:A .【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.6. 【答案】B【解析】解:∵,∴,∴(﹣1,2)=m (1,1)+n (1,﹣1)=(m+n ,m ﹣n )∴m+n=﹣1,m ﹣n=2,∴m=,n=﹣,∴故选B .【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等.7. 【答案】A【解析】解:由已知点A (0,1),B (3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A .【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.8. 【答案】A【解析】解:设A={x|1<x <2},B={x|x <2}, ∵A ⊊B ,故“1<x <2”是“x <2”成立的充分不必要条件. 故选A .【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.9. 【答案】B 【解析】试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x解得4x =,即菱形1BED F 44=,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为34,故选B. 考点:平面图形的投影及其作法. 10.【答案】D【解析】解:由题意可知三角形的面积为S===AC•BCsin60°,∴AC•BC=.由余弦定理AB2=AC2+BC2﹣2AC•BCcos60°=(AC+BC)2﹣3AC•BC,∴(AC+BC)2﹣3AC•BC=3,∴(AC+BC)2=11.∴AC+BC=故选:D【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题.11.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A12.【答案】D【解析】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.二、填空题13.【答案】.【解析】解:因为y=(a﹣3)x3+lnx存在垂直于y轴的切线,即y'=0有解,即y'=在x>0时有解,所以3(a﹣3)x3+1=0,即a﹣3<0,所以此时a<3.函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则f'(x)≤0恒成立,即f'(x)=3x2﹣2ax﹣3≤0恒成立,即,因为函数在[1,2]上单调递增,所以函数的最大值为,所以,所以.综上.故答案为:.【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.14.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA⊥底面ABC,且ABC∆为直角三角形,且5,,6AB VA h AC===,所以三棱锥的体积为115652032V h h=⨯⨯⨯==,解得4h=.考点:几何体的三视图与体积.15.【答案】(﹣4,0].【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,则满足,即,∴解得﹣4<a<0,综上:a的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.16.【答案】60°°.【解析】解:连结BC1、A1C1,∵在正方体ABCD﹣A1B1C1D1中,A1A平行且等于C1C,∴四边形AA1C1C为平行四边形,可得A1C1∥AC,因此∠BA1C1(或其补角)是异面直线A1B与AC所成的角,设正方体的棱长为a,则△AB1C中A1B=BC1=C1A1=a,1∴△A1B1C是等边三角形,可得∠BA1C1=60°,即异面直线A1B与AC所成的角等于60°.故答案为:60°.【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.17.【答案】y=cosx.【解析】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;故答案为:y=cosx.18.【答案】 a ≤﹣1 .【解析】解:由x 2﹣2x ﹣3≥0得x ≥3或x ≤﹣1,若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a ≤﹣1, 故答案为:a ≤﹣1.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.三、解答题19.【答案】(1)22142x y +=;(2)22[2,7)F M F N ∈-. 【解析】试题解析:(1)根据题意知2c a =,即2212c a =,∴22212a b a -=,则222a b =, 设(,)P x y ,∵(,)(,)PA PB a x y a x y =-----,2222222221()222a x x a y x a x a =-+=-+-=-,∵a x a -≤≤,∴当0x =时,2min ()22a PA PB =-=-, ∴24a =,则22b =.∴椭圆C 的方程为22142x y +=. 1111]设11(,)M x y ,22(,)N x y ,则12x x +=,21224(1)12k x x k -=+,∵211(2,)F M x y =-,222()F N x y =,∴222121212)2(F M F N x x x x k x x =+++2221212(1))22k x x x x k =+++++ 2222224(1)42(1)2(1)2212k k k k k k --=++-+++ 29712k =-+.∵2121k +≥,∴210112k<≤+. ∴297[2,7)12k-∈-+. 综上知,22[2,7)F M F N ∈-.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.20.【答案】【解析】解:(1)设h(x)=f(x)﹣g(x)=lg(2016+x)﹣lg(2016﹣x),h(x)的定义域为(﹣2016,2016);h(﹣x)=lg(2016﹣x)﹣lg(2016+x)=﹣h(x);∴f(x)﹣g(x)为奇函数;(2)由f(x)﹣g(x)<0得,f(x)<g(x);即lg(2016+x)<lg(2016﹣x);∴;解得﹣2016<x<0;∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.21.【答案】【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,故θ的最小正值为.(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.22.【答案】【解析】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题.23.【答案】【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为.则,∴年推销金额y 关于工作年限x的线性回归方程为=0.5x+0.4.(3)由(2)可知,当x=11时, =0.5x+0.4=0.5×11+0.4=5.9(万元). ∴可以估计第6名推销员的年推销金额为5.9万元.24.【答案】【解析】解:(Ⅰ)事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,∴所求概率为2244225516125C C P C C =-⋅=(6分)(Ⅱ)0,1,2,ξ= 23253(0)10C P C ξ===,1123253(1)5C C P C ξ⋅===,22251(2)10C P C ξ===,(9分) 故的分布列为:(10分)∴3314012105105E ξ=⨯+⨯+⨯= (12分)。

城区第一中学2018-2019学年高二上学期第二次月考试卷数学(2)

城区第一中学2018-2019学年高二上学期第二次月考试卷数学(2)

城区第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )A .点A 处B .线段AD 的中点处C .线段AB 的中点处D .点D 处2. 已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞) 3. 设集合,,则( )A BCD4. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅ 5. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2-6. 设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .∅B .NC .[1,+∞)D .M7. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )A .259B .2516C .6116D .31158. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .9. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.10.已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-5411.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 212.已知函数f (x )=2x ﹣2,则函数y=|f (x )|的图象可能是( )A .B .C .D .二、填空题13.△ABC 中,,BC=3,,则∠C=.14.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.15.设不等式组表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 .16.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 .17.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

新城区第一中学2018-2019学年高二上学期第二次月考试卷数学

新城区第一中学2018-2019学年高二上学期第二次月考试卷数学

新城区第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A .B .C .D .2. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-23. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .05. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对6. 如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有( )111]A .2对B .3对C .4对D .6对7. 设a >0,b >0,若是5a 与5b的等比中项,则+的最小值为( )A .8B .4C .1D .8. 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,99. 直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心10.已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞--C .),3[]1,35[+∞-- D .),3()1,2(+∞-- 11.已知集合A={4,5,6,8},B={3,5,7,8},则集合A ∪B=( ) A .{5,8}B .{4,5,6,7,8}C .{3,4,5,6,7,8}D .{4,5,6,7,8}12.在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( ) A .x=1 B .x= C .x=﹣1 D .x=﹣二、填空题13.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .14.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、、C (1,0),函数y=xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为 .15.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0). 正确命题的个数是 .16.设不等式组表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 .17.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .18.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .三、解答题19.已知等差数列{a n }满足a 1+a 2=3,a 4﹣a 3=1.设等比数列{b n }且b 2=a 4,b 3=a 8 (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)设c n =a n +b n ,求数列{c n }前n 项的和S n .20.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数. (1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.21.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.22.已知椭圆+=1(a>b>0)的离心率为,且a2=2b.(1)求椭圆的方程;(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.23.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=3,S5=35.(1)求{a n}和{B n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.24.已知函数f(x)=2cos2ωx+2sinωxcosωx﹣1,且f(x)的周期为2.(Ⅰ)当时,求f(x)的最值;(Ⅱ)若,求的值.新城区第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D2.【答案】B【解析】考点:向量共线定理.3.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.4.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.5.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.6.【答案】B【解析】中,则PA与BC、PC与AB、PB与AC都是异面直线,所以共有三对,故选试题分析:三棱锥P ABCB.考点:异面直线的判定.7.【答案】B【解析】解:∵是5a与5b的等比中项,∴5a•5b=()2=5,即5a+b=5,则a+b=1,则+=(+)(a+b)=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换.8. 【答案】B【解析】 1从甲校抽取110× 1 2001 200+1 000=60人,从乙校抽取110× 1 0001 200+1 000=50人,故x =10,y =7.9. 【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化 【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2. 圆心到直线的距离为:,所以直线与圆相交。

城区第一中学2018-2019学年高二上学期第二次月考试卷数学(1)

城区第一中学2018-2019学年高二上学期第二次月考试卷数学(1)

城区第一中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有()A.a>b B.a<bC.a=b D.a,b的大小与m,n的值有关2.在△ABC中,b=,c=3,B=30°,则a=()A.B.2C.或2D.23.在等差数列{a n}中,a3=5,a4+a8=22,则{}的前20项和为()A.B.C.D.4.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42 B.0.28 C.0.3 D.0.75.为了得到函数y=sin3x的图象,可以将函数y=sin(3x+)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位6.设0<a<1,实数x,y满足,则y关于x的函数的图象形状大致是()A. B. C.D.7. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π9. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .310.函数f (x )=tan (2x+),则( )A .函数最小正周期为π,且在(﹣,)是增函数B .函数最小正周期为,且在(﹣,)是减函数C .函数最小正周期为π,且在(,)是减函数D .函数最小正周期为,且在(,)是增函数 11.i 是虚数单位,i 2015等于( )A .1B .﹣1C .iD .﹣i12.如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=二、填空题13.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .14.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.15.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .16.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .17.已知数列的前项和是, 则数列的通项__________ 18.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .三、解答题19.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.20.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.21.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.22.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1xxe -.(a ∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.23.已知数列{a n}共有2k(k≥2,k∈Z)项,a1=1,前n项和为S n,前n项乘积为T n,且a n+1=(a﹣1)S n+2(n=1,2,…,2k﹣1),其中a=2,数列{b n}满足b n=log2,(Ⅰ)求数列{b n}的通项公式;(Ⅱ)若|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|≤,求k的值.24.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.城区第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.2.【答案】C【解析】解:∵b=,c=3,B=30°,∴由余弦定理b2=a2+c2﹣2accosB,可得:3=9+a2﹣3,整理可得:a2﹣3a+6=0,∴解得:a=或2.故选:C.3.【答案】B【解析】解:在等差数列{a n}中,由a4+a8=22,得2a6=22,a6=11.又a3=5,得d=,∴a1=a3﹣2d=5﹣4=1.{}的前20项和为:==.故选:B.4.【答案】C【解析】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的摸出红球的概率是0.42,摸出白球的概率是0.28,∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1﹣0.42﹣0.28=0.3,故选C.【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.5.【答案】A【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.6.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.7.【答案】A【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A.【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.8.【答案】A【解析】考点:三角函数的图象性质.9.【答案】B【解析】111]试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B.考点:几何体的结构特征.10.【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+∈(,),函数f(x)=tan(2x+)单调递增,故选:D.11.【答案】D【解析】解:i2015=i503×4+3=i3=﹣i,故选:D【点评】本题主要考查复数的基本运算,比较基础.12.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D 中,y=的定义域是(0,1)∪(1,+∞),且在x ∈(0,1)时,lnx <0,∴y=<0,∴D 中函数不满足条件.故选:C .【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.二、填空题13.【答案】 4 .【解析】解:由题意知,满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 有: {2,3},{2,3,1},{2,3,4},{2,3,1,4}, 故共有4个, 故答案为:4.14.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键. 15.【答案】 6 .【解析】解:根据题意可知:f (x )﹣2x是一个固定的数,记为a ,则f (a )=6,∴f (x )﹣2x =a ,即f (x )=a+2x,∴当x=a 时,又∵a+2a=6,∴a=2,∴f (x )=2+2x,∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4≥2+4=6,当且仅当x=0时成立,∴f(x)+f(﹣x)的最小值等于6,故答案为:6.【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.16.【答案】(0,)∪(64,+∞).【解析】解:∵f(x)是定义在R上的偶函数,∴f(log8x)>0,等价为:f(|log8x|)>f(2),又f(x)在[0,+∞)上为增函数,∴|log8x|>2,∴log8x>2或log8x<﹣2,∴x>64或0<x<.即不等式的解集为{x|x>64或0<x<}故答案为:(0,)∪(64,+∞)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.17.【答案】【解析】当时,当时,,两式相减得:令得,所以答案:18.【答案】{x|﹣1<x<1}.【解析】解:∵A={x|﹣1<x <3},B={x|x <1}, ∴A ∩B={x|﹣1<x <1}, 故答案为:{x|﹣1<x <1}【点评】本题主要考查集合的基本运算,比较基础.三、解答题19.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围. 试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.20.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+,∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN =,∴直线MN 的方程为y ﹣t=(x ﹣3),∴B 的横坐标为x=3﹣, 直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3), ∴点B 横坐标的取值范围是(﹣3,3).【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.21.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)证明见解析. 【解析】试题解析:(2)当2a =-时,()2ln ,0f x x x x x =++>,由()()12120f x f x x x ++=可得22121122ln 0x x x x x x ++++=, 即()()212121212ln x x x x x x x x +++=-,令()12,ln t x x t t t ϕ==-,则()111t t t tϕ-'=-=,则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,所以()()11t ϕϕ≥=,所以()()212121x x x x +++≥,又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 22.【答案】(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在10,2⎛⎫ ⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦. 【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间; (Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,12)上无零点,只需要对x ∈(0,12)时f (x )>0恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;试题解析:(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,由f ′(x )>0,得x >2; 由f ′(x )<0,得0<x <2.故f (x )的单调减区间为(0,2],单调增区间为[2,+∞); (2)因为f (x )<0在区间上恒成立不可能,故要使函数上无零点,只要对任意的,f (x )>0恒成立,即对恒成立.令,则,再令,则,故m (x )在上为减函数,于是,从而,l (x )>0,于是l (x )在上为增函数,所以,故要使恒成立,只要a ∈[2﹣4ln2,+∞),综上,若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2; (3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; 当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减. 又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0, 所以,函数g (x )在(0,e]上的值域为(0,1]. 当a=2时,不合题意;当a ≠2时,f ′(x )=,x ∈(0,e]当x=时,f ′(x )=0.由题意得,f (x )在(0,e]上不单调,故,即①又因为,当x →0时,2﹣a >0,f (x )→+∞,,所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2), 使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:即令h (a )=,则h,令h ′(a )=0,得a=0或a=2,故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增;当时,h ′(a )<0,函数h (a )单调递减.所以,对任意,有h (a )≤h (0)=0, 即②对任意恒成立. 由③式解得:.④综合①④可知,当a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使f (x i )=g (x 0)成立. 23.【答案】【解析】(本小题满分13分)解:(1)当n=1时,a 2=2a ,则;当2≤n ≤2k ﹣1时,a n+1=(a ﹣1)S n +2,a n =(a ﹣1)S n ﹣1+2,所以a n+1﹣a n =(a ﹣1)a n ,故=a ,即数列{a n }是等比数列,,∴T n =a 1×a 2×…×a n =2n a1+2+…+(n ﹣1)=,b n ==.…(2)令,则n ≤k+,又n ∈N *,故当n ≤k 时,,当n≥k+1时,.…|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|=+()+…+()…=(k+1+…+b2k)﹣(b1+…+b k)=[+k]﹣[]=,由,得2k2﹣6k+3≤0,解得,…又k≥2,且k∈N*,所以k=2.…【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.24.【答案】【解析】解:(1)当时,,;对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,∴,.(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,∵1)若,令p′(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0,此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,从而p(x)在区间(1,+∞)上是减函数;要使p(x)<0在此区间上恒成立,只须满足,所以≤a≤.又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,h(x)<h(1)=+2a≤0,所以a≤综合可知a的范围是[,].【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.。

城区第一中学校2018-2019学年高二上学期第二次月考试卷数学

城区第一中学校2018-2019学年高二上学期第二次月考试卷数学

城区第一中学校2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)2. 若多项式 x 2+x 10=a 0+a 1(x+1)+…+a 8(x+1)8+a 9(x+1)9+a 10(x+1)10,则 a 8=( )A .45B .9C .﹣45D .﹣93. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .4. 若函数y=|x|(1﹣x )在区间A 上是增函数,那么区间A 最大为( )A .(﹣∞,0)B .C .[0,+∞)D .5. 若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6. 已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65BC .5D 7. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0B .1C .2D .以上都不对8. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]9. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .310.如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1,=﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .3111.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( ) A .1B.C.D.12.△ABC 的内角A ,B ,C所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4πB .4π或34πC .3π或23πD .3π二、填空题13.在中,角、、所对应的边分别为、、,若,则_________14.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________. 15.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= . 16.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.17.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .18.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.三、解答题19.(本题满分13分)已知圆1C 的圆心在坐标原点O ,且与直线1l :062=+-y x 相切,设点A 为圆上 一动点,⊥AM x 轴于点M ,且动点N 满足OM OA ON )2133(21-+=,设动点N 的轨迹为曲线C . (1)求曲线C 的方程;(2)若动直线2l :m kx y +=与曲线C 有且仅有一个公共点,过)0,1(1-F ,)0,1(2F 两点分别作21l P F ⊥,21l Q F ⊥,垂足分别为P ,Q ,且记1d 为点1F 到直线2l 的距离,2d 为点2F 到直线2l 的距离,3d 为点P到点Q 的距离,试探索321)(d d d ⋅+是否存在最值?若存在,请求出最值.20.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.21.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.22.(本小题满分12分)求下列函数的定义域:(1)()f x=;(2)()f x=.23.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.24.设点P的坐标为(x﹣3,y﹣2).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率.城区第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】 B【解析】解:由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2lnx ,即<在[1,e]上有解,令h (x )=,则h ′(x )=,∵1≤x ≤e ,∴h ′(x )≥0,∴h (x )max =h (e )=,∴<h (e )=,∴m <.∴m 的取值范围是(﹣∞,). 故选:B .【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.2. 【答案】A【解析】解:a 8 是 x 10=[﹣1+(x+1)]10的展开式中第九项(x+1)8的系数,∴a 8==45,故选:A .【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题.3. 【答案】C【解析】【知识点】样本的数据特征茎叶图 【试题解析】由题知:所以m 可以取:0,1,2. 故答案为:C 4. 【答案】B【解析】解:y=|x|(1﹣x)=,再结合二次函数图象可知函数y=|x|(1﹣x)的单调递增区间是:.故选:B.5.【答案】B【解析】解:若f(x)的图象关于x=对称,则2×+θ=+kπ,解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,反之成立,即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.6.【答案】B考点:双曲线的性质.7.【答案】B【解析】解:∵a=3,,A=60°,∴由正弦定理可得:sinB===1,∴B=90°,即满足条件的三角形个数为1个.故选:B.【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.8.【答案】B【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},∴f(x1)=f(f(x1))=0,∴f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x))=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n≠0时,0,﹣n不是x2+nx+n=0的根,故△=n2﹣4n<0,故0<n<4;综上所述,0≤n+m<4;故选B.【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.9.【答案】D【解析】考点:简单线性规划.10.【答案】D【解析】解:由=﹣(2x n+1),得+(2x n+1)=,设,以线段P n A、P n D作出图形如图,则,∴,∴,∵,∴,则,即x n+1=2x n+1,∴x n+1+1=2(x n+1),则{x n+1}构成以2为首项,以2为公比的等比数列,∴x5+1=2•24=32,则x5=31.故选:D.【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.11.【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A,B,D皆有可能,而<1,故C不可能.故选C.【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.12.【答案】B【解析】试题分析:由正弦定理可得()sin0,,24sin6B B Bππ=∴=∈∴=或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数.二、填空题13.【答案】【解析】因为,所以,所以,所以答案:14.【答案】()0,1【解析】15.【答案】35.【解析】解:∵2a n=a n﹣1+a n+1,(n∈N*,n>1),∴数列{a n}为等差数列,又a2+a8=6,∴2a5=6,解得:a5=3,又a 4a 6=(a 5﹣d )(a 5+d )=9﹣d 2=8, ∴d 2=1,解得:d=1或d=﹣1(舍去) ∴a n =a 5+(n ﹣5)×1=3+(n ﹣5)=n ﹣2. ∴a 1=﹣1, ∴S 10=10a 1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n }为等差数列,并求得a n =2n ﹣1是关键,考查理解与运算能力,属于中档题.16.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++.17.【答案】【解析】解:由题意可得三棱锥B 1﹣AA 1D 1的体积是=,三角形AB1D 1的面积为4,设点A 1到平面AB 1D 1的距离等于h ,则,则h=故点A 1到平面AB 1D 1的距离为.故答案为:.18.【答案】±.【解析】分析题意得,问题等价于264x ax ++≤只有一解,即220x ax ++≤只有一解,∴280a a ∆=-=⇒=±,故填:±.三、解答题19.【答案】【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.(2)由(1)中知曲线C 是椭圆,将直线2l :m kx y +=代入 椭圆C 的方程124322=+y x 中,得01248)34(222=-+++m kmx x k由直线2l 与椭圆C 有且仅有一个公共点知, 0)124)(34(4642222=-+-=∆m k m k ,整理得3422+=k m …………7分且211||k k m d +-=,221||kk m d ++=1当0≠k 时,设直线2l 的倾斜角为θ,则|||tan |213d d d -=⋅θ,即||213kd d d -= ∴2222121213211||4||||)()(km k d d k d d d d d d d +=-=-+=+||||16143||42m m m m +=+-=…………10分∵3422+=k m ∴当0≠k 时,3||>m ∴334313||1||=+>+m m ,∴34)(321<+d d d ……11分 2当0=k 时,四边形PQ F F 21为矩形,此时321==d d ,23=d∴34232)(321=⨯=+d d d …………12分综上1、2可知,321)(d d d ⋅+存在最大值,最大值为34 ……13分20.【答案】【解析】解:(1)∵y=x 2在区间[0,1]上单调递增.又f (0)=0,f (1)=1, ∴值域为[0,1],∴区间[0,1]是y=f (x )=x 2的一个“和谐区间”.(2)设[m ,n]是已知函数定义域的子集.∵x ≠0,[m ,n]⊆(﹣∞,0)或[m ,n]⊆(0,+∞),故函数在[m ,n]上单调递增.若[m ,n]是已知函数的“和谐区间”,则故m 、n是方程的同号的相异实数根.∵x 2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m ,n]是已知函数定义域的子集.∵x ≠0,[m ,n]⊆(﹣∞,0)或[m ,n]⊆(0,+∞),故函数在[m ,n]上单调递增.若[m ,n]是已知函数的“和谐区间”,则故m 、n是方程,即a 2x 2﹣(a 2+a )x+1=0的同号的相异实数根.∵,∴m ,n 同号,只须△=a 2(a+3)(a ﹣1)>0,即a >1或a <﹣3时,已知函数有“和谐区间”[m ,n],∵,∴当a=3时,n ﹣m 取最大值21.【答案】【解析】(Ⅰ)解:∵BD ∥AE ,AE ⊥AC ,∴BD ⊥AC ,可知A (),故,m=2;(Ⅱ)证明:由对称性可知B (﹣x 0,y 0),C (﹣x 0,﹣y 0),D (x 0,﹣y 0),四边形ABCD 为矩形, 设E (x 1,y 1),由于A ,E 均在椭圆T 上,则,由②﹣①得:(x 1+x 0)(x 1﹣x 0)+(m+1)(y 1+y 0)(y 1﹣y 0)=0,显然x 1≠x 0,从而=,∵AE ⊥AC ,∴k AE •k AC =﹣1,∴,解得,代入椭圆方程,知.【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.22.【答案】(1)()[),11,-∞-+∞;(2)[)(]1,23,4-.【解析】考点:函数的定义域. 1【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环.23.【答案】【解析】解:(Ⅰ)由题意得,2c=2,=1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2≠k1矛盾.当k1≠0时,直线PM:y=k1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M (,),同理N (,),由直线MN 与y 轴垂直,则=;∴(k 2﹣k 1)(4k 2k 1﹣1)=0,∴k 2k 1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.24.【答案】【解析】解:(1)由已知得,基本事件(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣1,﹣1),(﹣1,0),(﹣1,1),(0,﹣1),(0,0)(0,1)共9种…4(分)设“点P 在第二象限”为事件A ,事件A 有(﹣2,1),(﹣1,1)共2种则P (A )=…6(分)(2)设“点P 在第三象限”为事件B ,则事件B 满足…8(分)∴,作出不等式组对应的平面区域如图:则P (B )==…12(分)。

城区第一中学校2018-2019学年高二上学期第二次月考试卷数学(4)

城区第一中学校2018-2019学年高二上学期第二次月考试卷数学(4)

城区第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.双曲线4x2+ty2﹣4t=0的虚轴长等于()A. B.﹣2t C.D.42.过点(2,﹣2)且与双曲线﹣y2=1有公共渐近线的双曲线方程是()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=13.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.4.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()ABCD5.已知f(x)是R上的偶函数,且在(﹣∞,0)上是增函数,设,b=f(log43),c=f(0.4﹣1.2)则a,b,c的大小关系为()A.a<c<b B.b<a<c C.c<a<b D.c<b<a6.已知P(x,y)为区域内的任意一点,当该区域的面积为4时,z=2x﹣y的最大值是()A.6 B.0 C.2 D.27.已知f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),当0<x<2时,f(x)=1﹣log2(x+1),则当0<x<4时,不等式(x﹣2)f(x)>0的解集是()A.(0,1)∪(2,3)B.(0,1)∪(3,4)C.(1,2)∪(3,4)D.(1,2)∪(2,3)8.复数i﹣1(i是虚数单位)的虚部是()A.1 B.﹣1 C.i D.﹣i9.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.10.记,那么ABCD11.数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前n项和为S n,则S11+S20=()A.﹣16 B.14 C.28 D.3012.若集合A={x|﹣2<x<1},B={x|0<x<2},则集合A∩B=()A .{x|﹣1<x <1}B .{x|﹣2<x <1}C .{x|﹣2<x <2}D .{x|0<x <1}二、填空题13.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .14.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= .15.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .16.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .17.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .18.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.三、解答题19.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;(2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.20.(本小题满分12分)在多面体ABCDEFG中,四边形ABCD与CDEF均为正方形,CF⊥平面ABCD,==.AB BG BHBG⊥平面ABCD,且24(1)求证:平面AGH⊥平面EFG;--的大小的余弦值.(2)求二面角D FG E21.已知函数f(x)=lnx+ax2+b(a,b∈R).(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;(Ⅲ)若点A(x1,y1),B(x2,y2)(x2>x1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0)?若存在,给予证明;若不存在,说明理由.22.已知向量=(,1),=(cos,),记f(x)=.(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)﹣k在的零点个数.23.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。

城区高级中学2018-2019学年高二上学期第二次月考试卷数学(4)

城区高级中学2018-2019学年高二上学期第二次月考试卷数学(4)

城区高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题1.函数f(x)=的定义域为()A.(﹣∞,﹣2)∪(1,+∞)B.(﹣2,1)C.(﹣∞,﹣1)∪(2,+∞)D.(1,2)2.已知正方体ABCD﹣A1B1C1D1中,点E为上底面A1C1的中心,若+,则x、y的值分别为()A.x=1,y=1 B.x=1,y=C.x=,y=D.x=,y=13.已知函数f(x)=lnx+2x﹣6,则它的零点所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)4.设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12 B.10 C.8 D.25.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x的图象是()A.①B.②C.③D.④6.已知,y满足不等式430,35250,1,x yx yx-+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y=+的最大值为()A.3 B.132C.12 D.157.设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=()A.{1,2,3,4,6} B.{1,2,3,4,5} C.{1,2,5} D.{1,2}8.若动点A,B分别在直线l1:x+y﹣7=0和l2:x+y﹣5=0上移动,则AB的中点M到原点的距离的最小值为()A.3B.2C.3D.49.与﹣463°终边相同的角可以表示为(k∈Z)()A.k360°+463°B.k360°+103°C.k360°+257°D.k360°﹣257°10.已知直线a,b都与平面α相交,则a,b的位置关系是()A.平行 B.相交 C.异面 D.以上都有可能11.“x2﹣4x<0”的一个充分不必要条件为()A.0<x<4 B.0<x<2 C.x>0 D.x<412.如图,在正六边形ABCDEF中,点O为其中心,则下列判断错误的是()A.=B.∥C.D.二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号.(写出所有真命题的序号).①设A,B为两个定点,若|PA|﹣|PB|=2,则动点P的轨迹为双曲线;②设A,B为两个定点,若动点P满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8;③方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率;④双曲线﹣=1与椭圆有相同的焦点.14.定义某种运算⊗,S=a⊗b的运算原理如图;则式子5⊗3+2⊗4=.15.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .16.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.17.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.18.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .三、解答题19.已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程.20.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.21.若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现.(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?(2)试求方程x2+2px﹣q2+1=0有两个实数根的概率.22.双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.23.已知y=f(x)是R上的偶函数,x≥0时,f(x)=x2﹣2x(1)当x<0时,求f(x)的解析式.(2)作出函数f(x)的图象,并指出其单调区间.24.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(Ⅰ)证明:AC⊥D1E;(Ⅱ)求DE与平面AD1E所成角的正弦值;(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.城区高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由题意得:,解得:1<x<2,故选:D.2.【答案】C【解析】解:如图,++().故选C.3.【答案】C【解析】解:易知函数f(x)=lnx+2x﹣6,在定义域R+上单调递增.因为当x→0时,f(x)→﹣∞;f(1)=﹣4<0;f(2)=ln2﹣2<0;f(3)=ln3>0;f(4)=ln4+2>0.可见f(2)•f(3)<0,故函数在(2,3)上有且只有一个零点.故选C.4.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.5.【答案】D【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,只有④符合.故选:D.【点评】本题考查了幂函数的图象与性质,属于基础题.6.【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.7.【答案】D【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5},∴∁U Q={1,2,6},又P={1,2,3,4},∴P∩(C U Q)={1,2}故选D.8.【答案】A【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,∴两直线的距离为=,∴AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题.9.【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)即:k360°+257°,(k∈Z)故选C【点评】本题考查终边相同的角,是基础题.10.【答案】D【解析】解:如图,在正方体ABCD﹣A1B1C1D1中,AA1∩平面ABCD=A,BB1∩平面ABCD=B,AA1∥BB1;AA1∩平面ABCD=A,AB1∩平面ABCD=A,AA1与AB1相交;AA1∩平面ABCD=A,CD1∩平面ABCD=C,AA1与CD1异面.∴直线a,b都与平面α相交,则a,b的位置关系是相交、平行或异面.故选:D.11.【答案】B【解析】解:不等式x2﹣4x<0整理,得x(x﹣4)<0∴不等式的解集为A={x|0<x<4},因此,不等式x2﹣4x<0成立的一个充分不必要条件,对应的x范围应该是集合A的真子集.写出一个使不等式x2﹣4x<0成立的充分不必要条件可以是:0<x<2,故选:B.12.【答案】D【解析】解:由图可知,,但不共线,故,故选D.【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.二、填空题13.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③. 故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.14.【答案】 14 .【解析】解:有框图知S=a ⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14 故答案为14【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.15.【答案】.【解析】解:由题意可得,2a ,2b ,2c 成等差数列 ∴2b=a+c∴4b 2=a 2+2ac+c 2①∵b 2=a 2﹣c 2②①②联立可得,5c 2+2ac ﹣3a 2=0∵∴5e 2+2e ﹣3=0∵0<e <1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题16.【答案】26 【解析】试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和11313713()13262a a S a +===.考点:等差数列的性质和等差数列的和. 17.【答案】【解析】解:∵点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4), ∴向量=(1+1,2﹣1)=(2,1),=(3+2,4+1)=(5,5);∴向量在方向上的投影是==.18.【答案】 38 .【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y 得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A 时,直线y=﹣x+的截距最大,此时z 最大,由,解得,即A (3,8),此时z=2×3+4×8=6+32=32, 故答案为:38三、解答题19.【答案】【解析】解:(Ⅰ)设椭圆的方程为,由题意可得:椭圆C两焦点坐标分别为F1(﹣1,0),F2(1,0).∴.∴a=2,又c=1,b2=4﹣1=3,故椭圆的方程为.(Ⅱ)当直线l⊥x轴,计算得到:,,不符合题意.当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),由,消去y得(3+4k2)x2+8k2x+4k2﹣12=0显然△>0成立,设A(x1,y1),B(x2,y2),则,又即,又圆F2的半径,所以,化简,得17k4+k2﹣18=0,即(k2﹣1)(17k2+18)=0,解得k=±1所以,,故圆F2的方程为:(x﹣1)2+y2=2.【点评】本题主要考查了椭圆的标准方程和椭圆与直线,椭圆与圆的关系.考查了学生综合运用所学知识,创造性地解决问题的能力.20.【答案】【解析】解:不等式|x﹣1|>m﹣1的解集为R,须m﹣1<0,即p是真命题,m<1f(x)=﹣(5﹣2m)x是减函数,须5﹣2m>1即q是真命题,m<2,由于p或q为真命题,p且q为假命题,故p、q中一个真,另一个为假命题因此,1≤m<2.【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.21.【答案】【解析】解:(1)根据题意,点(p,q),在|p|≤3,|q|≤3中,即在如图的正方形区域,其中p、q都是整数的点有6×6=36个,点M(x,y)横、纵坐标分别由掷骰子确定,即x、y都是整数,且1≤x≤3,1≤y≤3,点M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9个点,所以点M(x,y)落在上述区域的概率P1=;(2)|p|≤3,|q|≤3表示如图的正方形区域,易得其面积为36;若方程x2+2px﹣q2+1=0有两个实数根,则有△=(2p)2﹣4(﹣q2+1)>0,解可得p2+q2≥1,为如图所示正方形中圆以外的区域,其面积为36﹣π,即方程x2+2px﹣q2+1=0有两个实数根的概率,P2=.【点评】本题考查几何概型、古典概型的计算,解题时注意区分两种概率的异同点.22.【答案】【解析】解:设双曲线方程为(a>0,b>0)由椭圆+=1,求得两焦点为(﹣2,0),(2,0),∴对于双曲线C:c=2.又y=x为双曲线C的一条渐近线,∴=解得a=1,b=,∴双曲线C的方程为.23.【答案】【解析】解:(1)设x<0,则﹣x>0,∵x>0时,f(x)=x2﹣2x.∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x∵y=f(x)是R上的偶函数∴f(x)=f(﹣x)=x2+2x(2)单增区间(﹣1,0)和(1,+∞);单减区间(﹣∞,﹣1)和(0,1).【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.24.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC…1分在长方形ABCD中,AB=BC,∴BD⊥AC…2分又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分而D1E⊂平面BB1D1D,∴AC⊥D1E…4分(Ⅱ)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),∴…5分设平面AD1E的法向量为,则,即令z=1,则…7分∴…8分∴DE与平面AD1E所成角的正弦值为…9分(Ⅲ)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.设P的坐标为(t,0,0)(0≤t≤1),则∵BP∥平面AD1E∴,即,∴2(t﹣1)+1=0,解得,…12分∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长.…13分.。

城区高级中学2018-2019学年高二上学期第二次月考试卷数学(1)

城区高级中学2018-2019学年高二上学期第二次月考试卷数学(1)

城区高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( ) A .﹣1 B .0C .1D .﹣1或12. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.3. 已知抛物线28y x =与双曲线2221x y a-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为A 、530x y ±=B 、350x y ±=C 、450x y ±=D 、540x y ±=4. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .25. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .122+ D .122+ 6. 若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 27. 已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .8. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<bB .a <b <1C .1<a <bD .b <1<a9. ABC ∆中,“A B >”是“cos2cos2B A >”的( ) A. 充分必要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 10.一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化11.用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( )A .1B .7C .﹣7D .﹣512.下列函数中,既是奇函数又是减函数的为( ) A .y=x+1B .y=﹣x 2C .D .y=﹣x|x|二、填空题13.不等式的解集为R ,则实数m 的范围是.14.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .15.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .16.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .17.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .三、解答题19.已知椭圆x 2+4y 2=4,直线l :y=x+m (1)若l 与椭圆有一个公共点,求m 的值;(2)若l 与椭圆相交于P 、Q 两点,且|PQ|等于椭圆的短轴长,求m 的值.20.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.21.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.22.(本小题满分12分)设椭圆2222:1(0)x y C a b a b +=>>的离心率12e =,圆22127x y +=与直线1x y a b+=相切,O 为坐标原点.(1)求椭圆C 的方程;(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.23.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.24.已知数列{a n}的前n项和为S n,a1=3,且2S n=a n+1+2n.(1)求a2;(2)求数列{a n}的通项公式a n;(3)令b n=(2n﹣1)(a n﹣1),求数列{b n}的前n项和T n.城区高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵(m2﹣1)+(m+1)i为实数,∴m+1=0,解得m=﹣1,故选A.2.【答案】C【解析】考点:几何体的结构特征.3.【答案】A【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|=x0+p2,得5=x0+2.∴x0=3,则y20=24,所以M3,26,又点M在双曲线上,∴32a2-24=1,则a 2=925,a=35,因此渐近线方程为5x±3y=0.4.【答案】B【解析】解:抛物线y2=4x的准线l:x=﹣1.∵|AF|=3,∴点A到准线l:x=﹣1的距离为3∴1+x A=3∴x A=2,∴y A=±2,∴△AOF的面积为=.故选:B.【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键.5. 【答案】B 【解析】试题分析:化简为标准形式()()11122=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,22211=--=d ,半径为1,所以距离的最大值是12+,故选B.考点:直线与圆的位置关系 1 6. 【答案】A 【解析】解:∵a <b <0,∴﹣a >﹣b >0,∴|a|>|b|,a 2>b 2,即,可知:B ,C ,D 都正确, 因此A 不正确. 故选:A .【点评】本题考查了不等式的基本性质,属于基础题.7. 【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣. 故选:C .【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.8. 【答案】A【解析】解:由f (x )=e x +x ﹣2=0得e x =2﹣x , 由g (x )=lnx+x ﹣2=0得lnx=2﹣x ,作出计算y=e x ,y=lnx ,y=2﹣x 的图象如图:∵函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,∴y=e x 与y=2﹣x 的交点的横坐标为a ,y=lnx 与y=2﹣x 交点的横坐标为b ,由图象知a <1<b , 故选:A .【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键.9. 【答案】A.【解析】在ABC ∆中2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>A B ⇔>,故是充分必要条件,故选A.10.【答案】B 【解析】考点:棱柱、棱锥、棱台的体积.11.【答案】C【解析】解:∵f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2 =(((((x ﹣5)x+6)x+0)x+2)x+0.3)x+2, ∴v 0=a 6=1,v 1=v 0x+a 5=1×(﹣2)﹣5=﹣7, 故选C .12.【答案】D【解析】解:y=x+1不是奇函数;y=﹣x2不是奇函数;是奇函数,但不是减函数;y=﹣x|x|既是奇函数又是减函数,故选:D.【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.二、填空题13.【答案】.【解析】解:不等式,x2﹣8x+20>0恒成立可得知:mx2+2(m+1)x+9x+4<0在x∈R上恒成立.显然m<0时只需△=4(m+1)2﹣4m(9m+4)<0,解得:m<﹣或m>所以m<﹣故答案为:14.【答案】锐角三角形【解析】解:∵c=12是最大边,∴角C是最大角根据余弦定理,得cosC==>0∵C∈(0,π),∴角C是锐角,由此可得A、B也是锐角,所以△ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.15.【答案】2016.【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,∴数列{a n}是以e为公差的等差数列,则a1=a3﹣2e=4e﹣2e=2e,∴a2015=a1+2014e=2e+2014e=2016e.故答案为:2016e.【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.16.【答案】(﹣,).【解析】解:∵,,设OC与AB交于D(x,y)点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:∴又∵||=2∴=(﹣,)故答案为:(﹣,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.17.【答案】﹣21.【解析】解:∵等比数列{a n}的公比q=﹣,a6=1,∴a1(﹣)5=1,解得a1=﹣32,∴S6==﹣21故答案为:﹣21π18.【答案】4【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三三角形的三角和是︒角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出现.三、解答题19.【答案】【解析】解:(1)把直线y=x+m代入椭圆方程得:x2+4(x+m)2=4,即:5x2+8mx+4m2﹣4=0,△=(8m)2﹣4×5×(4m2﹣4)=﹣16m2+80=0解得:m=.(2)设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),则x1,x2是方程5x2+8mx+4m2﹣4=0的两根,由韦达定理可得:x1+x2=﹣,x1•x2=,∴|AB|====2;∴m=±.【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.20.【答案】【解析】解:(I)证明:∵平面PAD⊥平面ABCD,AB⊥AD,∴AB⊥平面PAD,∵E、F为PA、PB的中点,∴EF∥AB,∴EF⊥平面PAD;(II)解:过P作AD的垂线,垂足为O,∵平面PAD⊥平面ABCD,则PO⊥平面ABCD.取AO中点M,连OG,EO,EM,∵EF∥AB∥OG,∴OG即为面EFG与面ABCD的交线又EM∥OP,则EM⊥平面ABCD.且OG⊥AO,故OG⊥EO∴∠EOM 即为所求在RT△EOM中,EM=OM=1∴tan∠EOM=,故∠EOM=60°∴平面EFG与平面ABCD所成锐二面角的大小是60°.【点评】本题主要考察直线与平面垂直的判定以及二面角的求法.解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角.21.【答案】【解析】解:(Ⅰ)由频率分布直方图,得:10×(0.005+0.01+0.025+a+0.01)=1,解得a=0.03.(Ⅱ)由频率分布直方图得到平均分:=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.22.【答案】(1)22143x y +=;(2)点R 在定直线1x =-上.【解析】试题解析:(1)由12e =,∴2214e a =,∴2234a b ==,解得2,a b ==,所以椭圆C 的方程为22143x y +=.设点R 的坐标为00(,)x y ,则由MR RN λ=-⋅,得0120()x x x x λ-=--, 解得1121221212011224424()41()814x x x xx x x x x x x x x x x λλ++⋅-+++===+-++++又2212122226412322424()24343434k k x x x x k k k---++=⨯+⨯=+++, 212223224()883434k x x k k -++=+=++,从而121201224()1()8x x x x x x x ++==-++, 故点R 在定直线1x =-上.考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系.23.【答案】(1)2()243f x x x =-+;(2)102a <<;(3)1m <-. 试题解析:(1)由已知,设2()(1)1f x a x =-+,由(0)3f =,得2a =,故2()243f x x x =-+. (2)要使函数不单调,则211a a <<+,则102a <<. (3)由已知,即2243221x x x m -+>++,化简得2310x x m -+->,设2()31g x x x m =-+-,则只要min ()0g x >, 而min ()(1)1g x g m ==--,得1m <-.考点:二次函数图象与性质.【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为()()()20f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为()()()()120f x a x x x x a =--≠.24.【答案】【解析】解:(1)当n=1时,2S1=2a1=a2+2,∴a2=4…1;(2)当n≥2时,2a n=2s n﹣2s n﹣1=a n+1+2n﹣a n﹣2(n﹣1)=a n+1﹣a n+2,∴a n+1=3a n﹣2,∴a n+1﹣1=3(a n﹣1)…4,∴,∴{a n﹣1}从第二项起是公比为3的等比数列…5,∵,∴,∴;(3)∴ (8)∴① (9)∴②①﹣②得:,=,=(2﹣2n)×3n﹣4, (11)∴ (12)【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题.。

新城区第一中学校2018-2019学年高二上学期第二次月考试卷数学

新城区第一中学校2018-2019学年高二上学期第二次月考试卷数学

新城区第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 双曲线E 与椭圆C :x 29+y 23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=1 2. 某几何体的三视图如图所示,则该几何体的表面积为( )A .8+2B .8+8C .12+4D .16+43. 以的焦点为顶点,顶点为焦点的椭圆方程为( )A .B .C .D .4. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .45. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( )A .B .C .D .6. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18C .24D .367. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( ) A .∀x ≤0,都有x 2﹣x >0 B .∀x >0,都有x 2﹣x ≤0 C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >08. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布. A.B.C.D.9. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6] 10.已知函数f (x )=1+x﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点11.奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)12.设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 2二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.14.已知正四棱锥O ABCD -的体积为2则该正四棱锥的外接球的半径为_________15.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.16. 设函数()x f x e =,()ln g x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-; ③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.17.已知实数x ,y 满足约束条,则z=的最小值为 .18.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ; ②若AC ⊥BD ,则四边形EFGH 是 .三、解答题19.一艘客轮在航海中遇险,发出求救信号.在遇险地点A 南偏西45方向10海里的B 处有一艘海 难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向 一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间; (2)若最短时间内两船在C 处相遇,如图,在ABC ∆中,求角B 的正弦值.20.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.21.已知命题p:x2﹣2x+a≥0在R上恒成立,命题q:若p或q为真,p且q为假,求实数a的取值范围.22.如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q为PD的中点.(Ⅰ)证明:CQ∥平面PAB;(Ⅱ)若平面PAD⊥底面ABCD,求直线PD与平面AQC所成角的正弦值.23.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.24.已知函数f(x)=log a(x2+2),若f(5)=3;(1)求a的值;(2)求的值;(3)解不等式f(x)<f(x+2).新城区第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】【解析】选C.可设双曲线E 的方程为x 2a 2-y 2b2=1,渐近线方程为y =±bax ,即bx ±ay =0,由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即|6b |b 2+a2=1,又a 2+b 2=6,∴b =1,a =5,∴E 的方程为x 25-y 2=1,故选C.2. 【答案】D【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA1=2,AB=2,高为,根据三视图得出侧棱长度为=2,∴该几何体的表面积为2×(2×+2×2+2×2)=16,故选:D【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题.3. 【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D.【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.4.【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差+=(D点是AB的中点),另外,要选好基底OA OB ODOA OB BA-=,这是一个易错点,两个向量的和2AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,何意义等.5.【答案】C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R=故选C.【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).6.【答案】D【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x4﹣2r,令4﹣2r=0,解得r=2,∴展开式的常数项为6=a5,∴a3a7=a52=36,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.7.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.8.【答案】D【解析】解:设从第2天起每天比前一天多织d尺布m则由题意知,解得d=.故选:D.【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.9.【答案】A【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用. 10.【答案】B【解析】解:∵f ′(x )=1﹣x+x 2﹣x 3+…+x 2014=(1﹣x )(1+x 2+…+x 2012)+x 2014; ∴f ′(x )>0在(﹣1,0)上恒成立; 故f (x )在(﹣1,0)上是增函数;又∵f (0)=1,f (﹣1)=1﹣1﹣﹣﹣…﹣<0;故f (x )在(﹣1,0)上恰有一个零点;故选B .【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.11.【答案】A【解析】解:根据题意,可作出函数图象:∴不等式f (x )<0的解集是(﹣∞,﹣1)∪(0,1) 故选A .12.【答案】B【解析】解:根据题意球的半径R 满足(2R )2=6a 2, 所以S 球=4πR 2=6πa 2.故选B二、填空题13.【答案】-3e 【解析】f ′(x )=1x +2m x =2x m x +,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递减,当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;若1<-m ≤e ,即-e ≤m<-1时,f (x )min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3(-e ,-1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-m e ,令1-me=4,得m =-3e ,符合题意.综上所述,m =-3e. 14.【答案】118【解析】因为正四棱锥O ABCD -的体积为22,设外接球的半径为R ,依轴截面的图形可知:22211(2)8R R R =-+∴= 15.【答案】(02x #,02y #)上的点(,)x y 到定点(2,2)2,故MN 的取值范围为.22yxB16.【答案】①②④ 【解析】17.【答案】.【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y,设t=2x+y,则y=﹣2x+t,平移直线y=﹣2x+t,由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,此时t最小.由,解得,即B(﹣3,3),代入t=2x+y得t=2×(﹣3)+3=﹣3.∴t最小为﹣3,z有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.18.【答案】菱形;矩形.【解析】解:如图所示:①∵EF ∥AC ,GH ∥AC 且EF=AC ,GH=AC∴四边形EFGH 是平行四边形又∵AC=BD ∴EF=FG∴四边形EFGH 是菱形.②由①知四边形EFGH 是平行四边形 又∵AC ⊥BD , ∴EF ⊥FG∴四边形EFGH 是矩形. 故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.三、解答题19.【答案】(1)23小时;(2)14. 【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在C 处相遇. 在ABC ∆中,4575120BAC ∠=+=,10AB =,9AC t =,21BC t =. 由余弦定理得:2222cos BC AB AC AB AC BAC =+-∠, 所以2221(21)10(9)2109()2t t t =+-⨯⨯⨯-,化简得2369100t t --=,解得23t =或512t =-(舍去). 所以,海难搜救艇追上客轮所需时间为23小时.(2)由2963AC =⨯=,221143BC =⨯=.在ABC ∆中,由正弦定理得6sin 6sin1202sin 141414AC BAC B BC ⨯∠====. 所以角B . 考点:三角形的实际应用.【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,AC BC ,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键. 20.【答案】【解析】解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.…当直线l 的斜率存在时,设直线l 的方程为y ﹣2=k (x ﹣1),代入C 的方程,并整理得(2﹣k 2)x 2+2(k 2﹣2k )x ﹣k 2+4k ﹣6=0 (*)(ⅰ)当2﹣k 2=0,即k=±时,方程(*)有一个根,l 与C 有一个交点所以l 的方程为…(ⅱ)当2﹣k 2≠0,即k ≠±时△=[2(k 2﹣2k )]2﹣4(2﹣k 2)(﹣k 2+4k ﹣6)=16(3﹣2k ),①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l 与C 有一个交点.所以l 的方程为3x ﹣2y+1=0…综上知:l 的方程为x=1或或3x ﹣2y+1=0…(2)假设以P 为中点的弦存在,设为AB ,且A (x 1,y 1),B (x 2,y 2),则2x 12﹣y 12=2,2x 22﹣y 22=2,两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…又∵x1+x2=2,y1+y2=4,∴2(x1﹣x2)=4(y1﹣y2)即k AB==,…∴直线AB的方程为y﹣2=(x﹣1),…代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,由于判别式为482﹣4×15×34>0,则该直线AB存在.…【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.21.【答案】【解析】解:若P是真命题.则△=4﹣4a≤0∴a≥1;…(3分)若q为真命题,则方程x2+2ax+2﹣a=0有实根,∴△=4a2﹣4(2﹣a)≥0,即,a≥1或a≤﹣2,…(6分)依题意得,当p真q假时,得a∈ϕ;…(8分)当p假q真时,得a≤﹣2.…(10分)综上所述:a的取值范围为a≤﹣2.…(12分)【点评】本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题.22.【答案】【解析】(Ⅰ)证明:取PA的中点N,连接QN,BN.∵Q,N是PD,PA的中点,∴QN∥AD,且QN=AD.∵PA=2,PD=2,PA⊥PD,∴AD=4,∴BC=AD.又BC∥AD,∴QN∥BC,且QN=BC,∴四边形BCQN为平行四边形,∴BN∥CQ.又BN⊂平面PAB,且CQ⊄平面PAB,∴CQ∥平面PAB.(Ⅱ)解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO.由(Ⅰ)知PA=AM=PM=2,∴△APM为等边三角形,∴PO⊥AM.同理:BO⊥AM.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,∴PO⊥平面ABCD.以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,则D(0,3,0),A(0,﹣1,0),P(0,0,),C(,2,0),Q(0,,).∴=(,3,0),=(0,3,﹣),=(0,,).设平面AQC的法向量为=(x,y,z),∴,令y=﹣得=(3,﹣,5).∴cos<,>==﹣.∴直线PD与平面AQC所成角正弦值为.23.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x﹣y﹣2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…则,于是…又直线OM、MN、ON的斜率依次成等比数列.∴…由m≠0得:又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾)…设原点O到直线的距离为d,则∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.24.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…。

新市区一中2018-2019学年高二上学期第二次月考试卷数学

新市区一中2018-2019学年高二上学期第二次月考试卷数学

新市区一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数()x F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A.(-∞ B.(-∞ C. D.)+∞2. 已知抛物线28y x =与双曲线2221x y a-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为A 、530x y ±=B 、350x y ±=C 、450x y ±=D 、540x y ±=3. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.4. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 5. 记,那么ABC D6. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。

问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB=4丈,上棱EF=2丈,EF∥平面ABCD.EF与平面ABCD的距离为1丈,问它的体积是()A.4立方丈B.5立方丈C.6立方丈D.8立方丈7.设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()A.B.C.D.8.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体S﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体S﹣ABC的体积为V,则r=()A.B.C.D.9.数列中,若,,则这个数列的第10项()A.19B.21C.D.10.二项式(x2﹣)6的展开式中不含x3项的系数之和为()A.20 B.24 C.30 D.3611.双曲线的焦点与椭圆的焦点重合,则m 的值等于( )A .12B .20C .D .12.设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .二、填空题13.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的 值是 .14.设x ,y 满足的约束条件,则z=x+2y 的最大值为 .15.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .16.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .17()23k x =-+有两个不等实根,则的取值范围是 .18.若函数f (x )=﹣m 在x=1处取得极值,则实数m 的值是 .三、解答题19.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100]. (1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.20.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.21.设定义在(0,+∞)上的函数f(x)=,g(x)=,其中n∈N*(Ⅰ)求函数f(x)的最大值及函数g(x)的单调区间;(Ⅱ)若存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值.(参考数据:ln4≈1.386,ln5≈1.609)22.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.(1)求证:a>0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.23.已知点(1,)是函数f(x)=a x(a>0且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=+(n≥2).记数列{}前n项和为T n,(1)求数列{a n}和{b n}的通项公式;(2)若对任意正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>T n恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.24.已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=e x,φ(x)=.(Ⅰ)当a=1时,求φ(x)的单调区间;(Ⅱ)求φ(x)在x∈[1,+∞)是递减的,求实数a的取值范围;(Ⅲ)是否存在实数a,使φ(x)的极大值为3?若存在,求a的值;若不存在,请说明理由.新市区一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B 【解析】试题分析:因为函数()x F x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022xxxxe e e ea --+--≥恒成立, ()2222xx xxx x x x e e e e a e e e e -----++∴≤=-- ()2x x x x e e e e--=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,220t e e -∴<≤-, 此时不等式2tt +≥当且仅当2t t=,即t =, 取等号,a ∴≤故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.2. 【答案】A【解析】:依题意,不妨设点M 在第一象限,且Mx 0,y 0,由抛物线定义,|MF |=x 0+p2,得5=x 0+2.∴x 0=3,则y 20=24,所以M 3,26,又点M 在双曲线上, ∴32a 2-24=1,则a 2=925,a =35, 因此渐近线方程为5x ±3y =0.3. 【答案】A【解析】4.【答案】D【解析】解:∵f(x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.5.【答案】B【解析】【解析1】,所以【解析2】,6. 【答案】 【解析】解析:选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E -AGHD 与四棱锥F -MBCN 与直三棱柱EGH -FMN .由题意得GH =MN =AD =3,GM =EF =2,EP =FQ =1,AG +MB =AB -GM =2,所求的体积为V =13(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =13×(2×3)×1+12×3×1×2=5立方丈,故选B.7. 【答案】D【解析】解:根据函数与导数的关系:可知,当f ′(x )≥0时,函数f (x )单调递增;当f ′(x )<0时,函数f (x )单调递减结合函数y=f (x )的图象可知,当x <0时,函数f (x )单调递减,则f ′(x )<0,排除选项A ,C当x >0时,函数f (x )先单调递增,则f ′(x )≥0,排除选项B 故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题8. 【答案】 C【解析】解:设四面体的内切球的球心为O , 则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R= 故选C .【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).9.【答案】C【解析】因为,所以,所以数列构成以为首项,2为公差的等差数列,通项公式为,所以,所以,故选C答案:C10.【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x3项的系数之和为20,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.11.【答案】A【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A.12.【答案】C【解析】解:由于q=2,∴∴;故选:C.二、填空题13.【答案】34 5【解析】考点:点关于直线对称;直线的点斜式方程.14.【答案】7.【解析】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B时,直线y=﹣的截距最大,此时z最大.由,得,即B(3,2),此时z的最大值为z=1+2×3=1+6=7,故答案为:7.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.15.【答案】(0,1).【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1).【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.16.【答案】2:1.【解析】解:设圆锥、圆柱的母线为l,底面半径为r,所以圆锥的侧面积为:=πrl圆柱的侧面积为:2πrl所以圆柱和圆锥的侧面积的比为:2:1故答案为:2:117.【答案】53,124⎛⎤⎥⎝⎦ 【解析】试题分析:作出函数y =()23y k x =-+的图象,如图所示,函数y =的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303224k -==+,当直线()23y k x =-+2=,解得512k =,所以实数的取值范围是53,124⎛⎤⎥⎝⎦.111]考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键. 18.【答案】﹣2【解析】解:函数f (x )=﹣m 的导数为f ′(x )=mx 2+2x ,由函数f (x )=﹣m 在x=1处取得极值,即有f ′(1)=0,即m+2=0,解得m=﹣2,即有f ′(x )=﹣2x 2+2x=﹣2(x ﹣1)x ,可得x=1处附近导数左正右负,为极大值点.故答案为:﹣2.【点评】本题考查导数的运用:求极值,主要考查由极值点求参数的方法,属于基础题.三、解答题19.【答案】【解析】解:(1)依题意,根据频率分布直方图中各个小矩形的面积和等于1得,10(2a+0.02+0.03+0.04)=1,解得a=0.005.∴图中a的值0.005.(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分),【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解20.【答案】【解析】解:(1)当时,,;对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,∴,.(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,∵1)若,令p′(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0,此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,从而p(x)在区间(1,+∞)上是减函数;要使p(x)<0在此区间上恒成立,只须满足,所以≤a≤.又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,h(x)<h(1)=+2a≤0,所以a≤综合可知a的范围是[,].【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.21.【答案】【解析】解:(Ⅰ)函数f(x)在区间(0,+∞)上不是单调函数.证明如下,,令f′(x)=0,解得.x f x f x所以函数f(x)在区间上为单调递增,区间上为单调递减.所以函数f(x)在区间(0,+∞)上的最大值为f()==.g′(x)=,令g′(x)=0,解得x=n.(Ⅱ)由(Ⅰ)知g(x)的最小值为g(n)=,∵存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,∴≥,即e n+1≥n n﹣1,即n+1≥(n﹣1)lnn,当n=1时,成立,当n≥2时,≥lnn,即≥0,设h(n)=,n≥2,则h(n)是减函数,∴继续验证,当n=2时,3﹣ln2>0,当n=3时,2﹣ln3>0,当n=4时,,当n=5时,﹣ln5<﹣1.6<0,则n的最大值是4.【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题.22.【答案】【解析】解:(1)∵f(1)=a+b+c=﹣,∴3a+2b+2c=0.又3a>2c>2b,故3a>0,2b<0,从而a>0,b<0,又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b∵a>0,∴3>﹣3﹣>2,即﹣3<<﹣.(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.下面对c的正负情况进行讨论:①当c>0时,∵a>0,∴f(0)=c>0,f(1)=﹣<0所以函数f(x)在区间(0,1)内至少有一个零点;②当c≤0时,∵a>0,∴f(1)=﹣<0,f(2)=a﹣c>0所以函数f(x)在区间(1,2)内至少有一个零点;综合①②得函数f(x)在区间(0,2)内至少有一个零点;(3).∵x1,x2是函数f(x)的两个零点∴x1,x2是方程ax2+bx+c=0的两根.故x1+x2=﹣,x1x2===从而|x1﹣x2|===.∵﹣3<<﹣,∴|x1﹣x2|.【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.23.【答案】【解析】解:(1)因为f(1)=a=,所以f(x)=,所以,a2=[f(2)﹣c]﹣[f(1)﹣c]=,a3=[f(3)﹣c]﹣[f(2)﹣c]=因为数列{a n}是等比数列,所以,所以c=1.又公比q=,所以;由题意可得:=,又因为b n>0,所以;所以数列{}是以1为首项,以1为公差的等差数列,并且有;当n≥2时,b n=S n﹣S n﹣1=2n﹣1;所以b n=2n﹣1.(2)因为数列前n项和为T n,所以==;因为当m∈[﹣1,1]时,不等式恒成立,所以只要当m∈[﹣1,1]时,不等式t2﹣2mt>0恒成立即可,设g(m)=﹣2tm+t2,m∈[﹣1,1],所以只要一次函数g(m)>0在m∈[﹣1,1]上恒成立即可,所以,解得t<﹣2或t>2,所以实数t的取值范围为(﹣∞,﹣2)∪(2,+∞).(3)T1,T m,T n成等比数列,得T m2=T1T n∴,∴结合1<m<n知,m=2,n=12【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题.24.【答案】【解析】解:(I)当a=1时,φ(x)=(x2+x+1)e﹣x.φ′(x)=e﹣x(﹣x2+x)当φ′(x)>0时,0<x<1;当φ′(x)<0时,x>1或x<0∴φ(x)单调减区间为(﹣∞,0),(1,+∞),单调增区间为(0,1);(II)φ′(x)=e﹣x[﹣x2+(2﹣a)x]∵φ(x)在x∈[1,+∞)是递减的,∴φ′(x)≤0在x∈[1,+∞)恒成立,∴﹣x2+(2﹣a)x≤0在x∈[1,+∞)恒成立,∴2﹣a≤x在x∈[1,+∞)恒成立,∴2﹣a≤1∴a≥1∵a≤2,1≤a≤2;(III)φ′(x)=(2x+a)e﹣x﹣e﹣x(x2+ax+a)=e﹣x[﹣x2+(2﹣a)x]令φ′(x)=0,得x=0或x=2﹣a:由表可知,φ(x)极大=φ(2﹣a)=(4﹣a)e a﹣2设μ(a)=(4﹣a)e a﹣2,μ′(a)=(3﹣a)e a﹣2>0,∴μ(a)在(﹣∞,2)上是增函数,∴μ(a)≤μ(2)=2<3,即(4﹣a)e a﹣2≠3,∴不存在实数a,使φ(x)极大值为3.。

城区高中2018-2019学年高二上学期第二次月考试卷数学

城区高中2018-2019学年高二上学期第二次月考试卷数学

城区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .132. 函数f (x )=的定义域为( )A .(﹣∞,﹣2)∪(1,+∞)B .(﹣2,1)C .(﹣∞,﹣1)∪(2,+∞)D .(1,2)3. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .π B .π或3π C .3π或23π D .3π则几何体的体积为( )34意在考查学生空间想象能力和计算能 ) ” ”D .命题“∀x ∈R ,2x >0”的否定是“”7. 不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1} 8. 已知α∈(0,π),且sin α+cos α=,则tan α=( ) A.B.C .D.9. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( ) A .[0,+∞) B .[0,3] C .(﹣3,0] D .(﹣3,+∞)10.设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( )A .{x|x <﹣2或x >4}B .{x|x <0或x >4}C .{x|x <0或x >6}D .{x|0<x <4}11.如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )A .54B .162C .54+18 D .162+1812.曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+1二、填空题13.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.14.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 . 15.△ABC 中,,BC=3,,则∠C=.1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623816.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.17.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .18.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 . 三、解答题19.已知二次函数f (x )=x 2+bx+c ,其中常数b ,c ∈R .(Ⅰ)若任意的x ∈[﹣1,1],f (x )≥0,f (2+x )≤0,试求实数c 的取值范围;(Ⅱ)若对任意的x 1,x 2∈[﹣1,1],有|f (x 1)﹣f (x 2)|≤4,试求实数b 的取值范围.20.已知数列{a n }的前n 项和S n =2n 2﹣19n+1,记T n =|a 1|+|a 2|+…+|a n |.(1)求S n 的最小值及相应n 的值;(2)求T n .21.设函数f (x )=lnx+,k ∈R .(Ⅰ)若曲线y=f (x )在点(e ,f (e ))处的切线与直线x ﹣2=0垂直,求k 值; (Ⅱ)若对任意x 1>x 2>0,f (x 1)﹣f (x 2)<x 1﹣x 2恒成立,求k 的取值范围;(Ⅲ)已知函数f (x )在x=e 处取得极小值,不等式f (x )<的解集为P ,若M={x|e ≤x ≤3},且M ∩P ≠∅,求实数m 的取值范围.22.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABD -的体积V =,求A 到平面PBC 的距离.111]23.已知函数f (x )=lnx 的反函数为g (x ).(Ⅰ)若直线l :y=k 1x 是函数y=f (﹣x )的图象的切线,直线m :y=k 2x 是函数y=g (x )图象的切线,求证:l ⊥m ;(Ⅱ)设a,b∈R,且a≠b,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由.24.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.0246.6357.879 10.83城区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,∴|PF2|=2×13﹣|PF1|=26﹣4=22.故选:A.【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.2.【答案】D【解析】解:由题意得:,解得:1<x<2,故选:D.3.【答案】B 【解析】试题分析:由正弦定理可得:(),sin0,,sin24sin6B B BBπππ=∴=∈∴=或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数.4.【答案】D【解析】5.【答案】D【解析】解:∵等比数列{a n}中a4=2,a5=5,∴a4•a5=2×5=10,∴数列{lga n}的前8项和S=lga1+lga2+…+lga8=lg(a1•a2…a8)=lg(a4•a5)4=4lg(a4•a5)=4lg10=4故选:D.【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.6.【答案】D【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;“”⇒“+2kπ,或,k∈Z”,“”⇒“”,故“”是“”的必要不充分条件,故C不正确;命题“∀x∈R,2x>0”的否定是“”,故D正确.故选D.【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.7.【答案】B【解析】解:∵x(x﹣1)<2,∴x2﹣x﹣2<0,即(x﹣2)(x+1)<0,∴﹣1<x<2,即不等式的解集为{x|﹣1<x<2}.故选:B8.【答案】D【解析】解:将sinα+cosα=①两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=﹣<0,∵0<α<π,∴<α<π,∴sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②解得:sinα=,cosα=﹣,则tanα=﹣.故选:D.9.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.10.【答案】D【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象关于y轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0),故f(x﹣2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f(x﹣2)<0,可得0<x<4,故选:D.【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.11.【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D12.【答案】D【解析】解:y′=()′=,∴k=y′|x=1=﹣2.l:y+1=﹣2(x﹣1),则y=﹣2x+1.故选:D二、填空题13.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.14.【答案】(3,1).【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得即(2x+y﹣7)m+(x+y﹣4)=0,∴2x+y﹣7=0,①且x+y﹣4=0,②∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.由①②,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)15.【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.16.【答案】2【解析】结合函数的解析式可得:()311211f =-⨯=-,对函数求导可得:()2'32f x x =-,故切线的斜率为()2'13121k f ==⨯-=,则切线方程为:()111y x +=⨯-,即2y x =-,圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.17.【答案】 .【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P 1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P 2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P 2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.18.【答案】 .【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.三、解答题19.【答案】【解析】解:(Ⅰ)因为x ∈[﹣1,1],则2+x ∈[1,3], 由已知,有对任意的x ∈[﹣1,1],f (x )≥0恒成立,任意的x∈[1,3],f(x)≤0恒成立,故f(1)=0,即1为函数函数f(x)的一个零点.由韦达定理,可得函数f(x)的另一个零点,又由任意的x∈[1,3],f(x)≤0恒成立,∴[1,3]⊆[1,c],即c≥3(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4恒成立,即f(x)max﹣f(x)min≤4,记f(x)max﹣f(x)min=M,则M≤4.当||>1,即|b|>2时,M=|f(1)﹣f(﹣1)|=|2b|>4,与M≤4矛盾;当||≤1,即|b|≤2时,M=max{f(1),f(﹣1)}﹣f()=﹣f()=(1+)2≤4,解得:|b|≤2,即﹣2≤b≤2,综上,b的取值范围为﹣2≤b≤2.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.20.【答案】【解析】解:(1)S n=2n2﹣19n+1=2﹣,∴n=5时,S n取得最小值=﹣44.(2)由S n=2n2﹣19n+1,∴n=1时,a1=2﹣19+1=﹣16.n≥2时,a n=S n﹣S n﹣1=2n2﹣19n+1﹣[2(n﹣1)2﹣19(n﹣1)+1]=4n﹣21.由a n≤0,解得n≤5.n≥6时,a n>0.∴n≤5时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣2n2+19n﹣1.n≥6时,T n=﹣(a1+a2+…+a5)+a6+…+a n=﹣2S5+S n=2n2﹣19n+89.∴T n=.【点评】本题考查了等差数列的通项公式及其前n项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.21.【答案】【解析】解:(Ⅰ)由条件得f′(x)=﹣(x>0),∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,∴此切线的斜率为0,即f′(e)=0,有﹣=0,得k=e;(Ⅱ)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2恒成立…(*)设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h′(x)=﹣﹣1≤00在(0,+∞)上恒成立,得k≥﹣x2+x=(﹣x﹣)2+(x>0)恒成立,∴k≥(对k=,h′(x)=0仅在x=时成立),故k的取值范围是[,+∞);(Ⅲ)由题可得k=e,因为M∩P≠∅,所以f(x)<在[e,3]上有解,即∃x∈[e,3],使f(x)<成立,即∃x∈[e,3],使m>xlnx+e成立,所以m>(xlnx+e)min,令g(x)=xlnx+e,g′(x)=1+lnx>0,所以g(x)在[e,3]上单调递增,g(x)min=g(e)=2e,所以m>2e.【点评】本题考查导数的运用:求切线的斜率和单调区间,主要考查函数的单调性的运用,考查不等式存在性和恒成立问题的解决方法,考查运算能力,属于中档题.22.【答案】(1)证明见解析;(2.【解析】试题解析:(1)设BD 和AC 交于点O ,连接EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂且平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)1366V PA AB AD AB ==,由4V =,可得32AB =,作A H P B ⊥交PB 于H .由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC ,又313PA AB AH PB ==,所以A 到平面PBC 的距离为.1 考点:1、棱锥的体积公式;2、直线与平面平行的判定定理. 23.【答案】【解析】解:(Ⅰ)∵函数f (x )=lnx 的反函数为g (x ).∴g (x )=e x.,f (﹣x )=ln (﹣x ),则函数的导数g ′(x )=e x,f ′(x )=,(x <0),设直线m 与g (x )相切与点(x 1,),则切线斜率k 2==,则x 1=1,k 2=e ,设直线l 与f (x )相切与点(x 2,ln (﹣x 2)),则切线斜率k 1==,则x 2=﹣e ,k 1=﹣,故k 2k 1=﹣×e=﹣1,则l ⊥m . (Ⅱ)不妨设a >b ,∵P ﹣R=g ()﹣=﹣=﹣<0,∴P <R ,∵P ﹣Q=g ()﹣=﹣==,令φ(x )=2x ﹣e x +e ﹣x ,则φ′(x )=2﹣e x ﹣e ﹣x<0,则φ(x )在(0,+∞)上为减函数,故φ(x)<φ(0)=0,取x=,则a﹣b﹣+<0,∴P<Q,⇔==1﹣令t(x)=﹣1+,则t′(x)=﹣=≥0,则t(x)在(0,+∞)上单调递增,故t(x)>t(0)=0,取x=a﹣b,则﹣1+>0,∴R>Q,综上,P<Q<R,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大.24.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j(j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.。

城区高中2018-2019学年高二上学期第二次月考试卷数学(1)

城区高中2018-2019学年高二上学期第二次月考试卷数学(1)

城区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣22. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2xy -=3. 使得(3x 2+)n (n ∈N +)的展开式中含有常数项的最小的n=( )A .3B .5C .6D .104. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( )A . ()0,1B .⎝C .()1,3⎫⎪⎪⎝⎭D .(5. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种6. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案7. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .148. 独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是( )A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99%C .变量X 与变量Y 有关系的概率为99%D .变量X 与变量Y 没有关系的概率为99.9%9. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<bB .a <b <1C .1<a <bD .b <1<a10.若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)11.若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )A . 1±B .± C. D.12.已知函数,,若,则( )A1 B2 C3 D-1 二、填空题13.已知x 是400和1600的等差中项,则x= .14.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .15.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{ 52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.17.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x﹣)在[0,π]上是减函数其中真命题的序号是.18.定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=0,则不等式f(log8x)>0的解集是.三、解答题19.已知数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{a n}的通项公式;(2)设数列{b n}满足b n=,证明b n≤.20.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.(1)求证:BD1∥平面A1DE;(2)求证:A1D⊥平面ABD1.21.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x =相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.22.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若22211PQ F P FQ =+,求直线m 的方程.23.已知等边三角形PAB 的边长为2,四边形ABCD 为矩形,AD=4,平面PAB ⊥平面ABCD ,E ,F ,G 分别是线段AB ,CD ,PD 上的点.(1)如图1,若G 为线段PD 的中点,BE=DF=,证明:PB ∥平面EFG ;(2)如图2,若E ,F 分别是线段AB ,CD 的中点,DG=2GP ,试问:矩形ABCD 内(包括边界)能否找到点H ,使之同时满足下面两个条件,并说明理由.①点H 到点F 的距离与点H 到直线AB 的距离之差大于4; ②GH ⊥PD .24.已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点.(1)若以AB为直径的圆经过原点O,求直线l的方程;(2)若线段AB的中垂线交x轴于点Q,求△POQ面积的取值范围.城区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】【分析】由题意可得圆心C 1和圆心C 2,设直线l 方程为y=kx+b ,由对称性可得k 和b 的方程组,解方程组可得.【解答】解:由题意可得圆C 1圆心为(0,0),圆C 2的圆心为(﹣2,2),∵圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,∴点(0,0)与(﹣2,2)关于直线l 对称,设直线l 方程为y=kx+b ,∴•k=﹣1且=k •+b ,解得k=1,b=2,故直线方程为x ﹣y=﹣2, 故选:D . 2. 【答案】C 【解析】试题分析:函数3y x =为奇函数,不合题意;函数21y x =-+是偶函数,但是在区间()0,+∞上单调递减,不合题意;函数2xy -=为非奇非偶函数。

城区第一中学2018-2019学年高二上学期第二次月考试卷数学(3)

城区第一中学2018-2019学年高二上学期第二次月考试卷数学(3)

城区第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.2. 在ABC ∆中,60A =,1b =3sin sin sin a b cA B C++++等于( )A .33B 239C 83D 393. 将函数f (x )=sin2x 的图象向右平移个单位,得到函数y=g (x )的图象,则它的一个对称中心是( )A .B .C .D .4. 下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°5. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm 3A.πB.2πC.3πD.4π6.把函数y=sin(2x﹣)的图象向右平移个单位得到的函数解析式为()A.y=sin(2x﹣)B.y=sin(2x+)C.y=cos2x D.y=﹣sin2x7.设函数y=x3与y=()x的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)8.若点O和点F(﹣2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为()A.B.C.D.9.已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且,则的值是()A.B.C . D.010.复数=()A.B.C.D.11.已知f(x)是R上的偶函数,且在(﹣∞,0)上是增函数,设,b=f(log43),c=f(0.4﹣1.2)则a,b,c的大小关系为()A.a<c<b B.b<a<c C.c<a<b D.c<b<a12.已知变量,x y满足约束条件20170x yxx y-+≤⎧⎪≥⎨⎪+-≤⎩,则yx的取值范围是()A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6]二、填空题13.阅读右侧程序框图,输出的结果i 的值为 .14.设抛物线24y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则M 点的横坐标为 . 15.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 16.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .17.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .18.经过A (﹣3,1),且平行于y 轴的直线方程为 .三、解答题19.如图,四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC=PD=2,E 为PC 的中点,.求证:PC ⊥BC ;(Ⅱ)求三棱锥C ﹣DEG 的体积;(Ⅲ)AD 边上是否存在一点M ,使得PA ∥平面MEG .若存在,求AM 的长;否则,说明理由.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM 的斜率与l的斜率的乘积为定值.21.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;,整理得下表:,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.22.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0;命题q:实数x满足x2﹣5x+6≤0(1)若a=1,且q∧p为真,求实数x的取值范围;(2)若p是q必要不充分条件,求实数a的取值范围.23.在中,,,.(1)求的值;(2)求的值。

城区高级中学2018-2019学年高二上学期第二次月考试卷数学

城区高级中学2018-2019学年高二上学期第二次月考试卷数学

城区高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( ) A .1 B .1- C .2 D .2- 2. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且c=2a ,则cosB=( )A .B .C .D .3. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧ 4. 已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x+6)=f (x )+f (3),x 1,x 2∈[0,3],x 1≠x 2时,有成立,下列结论中错误的是( )A .f (3)=0B .直线x=﹣6是函数y=f (x )的图象的一条对称轴C .函数y=f (x )在[﹣9,9]上有四个零点D .函数y=f (x )在[﹣9,﹣6]上为增函数5. 已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.6. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③ 7. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=8. 函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}9. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .15 B .16 C .314 D .1310.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )A .i ≤5?B .i ≤4?C .i ≥4?D .i ≥5?11.集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )A .2个B .3 个C .4 个D .8个12.如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有( ) ①三棱锥M ﹣DCC 1的体积为定值 ②DC 1⊥D 1M ③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④二、填空题13.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为.14.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .15.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .16.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .17.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 18.不等式()2110ax a x +++≥恒成立,则实数的值是__________.三、解答题19.(本小题满分12分)已知函数1()ln (42)()f x m x m x m x=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.20.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.21.已知函数f (x )=|x ﹣a|.(1)若不等式f (x )≤3的解集为{x|﹣1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x+5)≥m 对一切实数x 恒成立,求实数m 的取值范围.22.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.23.(本小题满分12分)如图,在四棱锥ABCD S -中,底面ABCD 为菱形,Q P E 、、分别是棱AB SC AD 、、的中点,且⊥SE 平面ABCD .(1)求证://PQ 平面SAD ; (2)求证:平面⊥SAC 平面SEQ .24.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.城区高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 2. 【答案】B【解析】解:△ABC 中,a 、b 、c 成等比数列,则b 2=ac , 由c=2a ,则b=a ,=,故选B .【点评】本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.3. 【答案】D 【解析】考点:命题的真假.4. 【答案】D【解析】解:对于A :∵y=f (x )为R 上的偶函数,且对任意x ∈R ,均有f (x+6)=f (x )+f (3), ∴令x=﹣3得:f (6﹣3)=f (﹣3)+f (3)=2f (3), ∴f (3)=0,故A 正确;对于B :∵函数y=f (x )是以6为周期的偶函数, ∴f (﹣6+x )=f (x ),f (﹣6﹣x )=f (x ), ∴f (﹣6+x )=f (﹣6﹣x ),∴y=f (x )图象关于x=﹣6对称,即B 正确;对于C :∵y=f (x )在区间[﹣3,0]上为减函数,在区间[0,3]上为增函数,且f (3)=f (﹣3)=0, ∴方程f (x )=0在[﹣3,3]上有2个实根(﹣3和3),又函数y=f (x )是以6为周期的函数,∴方程f(x)=0在区间[﹣9,﹣3)上有1个实根(为﹣9),在区间(3,9]上有一个实根(为9),∴方程f(x)=0在[﹣9,9]上有4个实根.故C正确;对于D:∵当x1,x2∈[0,3]且x1≠x2时,有,∴y=f(x)在区间[0,3]上为增函数,又函数y=f(x)是偶函数,∴y=f(x)在区间[﹣3,0]上为减函数,又函数y=f(x)是以6为周期的函数,∴y=f(x)在区间[﹣9,﹣6]上为减函数,故D错误.综上所述,命题中正确的有A、B、C.故选:D.【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题.5.【答案】A6.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.7.【答案】C【解析】解:对于A,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;对于B,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;对于C,函数y=lnx在(0,+∞)上是增函数,∴满足题意;对于D,函数y=在(0,+∞)上是减函数,∴不满足题意.故选:C.【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.8.【答案】B【解析】解:要使函数有意义,只须,即,解得1<x≤4且x≠2,∴函数f(x)的定义域为{x|1<x≤4且x≠2}.故选B9.【答案】D【解析】考点:等差数列.10.【答案】B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i≤4.故选:B.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.11.【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},∴集合S=A∩B={1,3},则集合S的子集有22=4个,故选:C.【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.12.【答案】A【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△DA1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,1故④不正确.因此只有①②正确.故选:A.二、填空题13.【答案】【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,∴z=log4(2x+y+4)最大是,故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.【解析】解:根据题意,得; ∵f (2x )=2f (x ), ∴f (34)=2f (17) =4f()=8f()=16f();又∵当2≤x ≤4时,f (x )=1﹣|x ﹣3|, ∴f()=1﹣|﹣3|=,∴f (2x )=16×=2;当2≤x ≤4时,f (x )=1﹣|x ﹣3|≤1,不存在; 当4≤x ≤8时,f (x )=2f()=2[1﹣|﹣3|]=2, 解得x=6; 故答案为:6.【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目.15.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力.由(1,4)λμ+=-a b 得124λμλμ-+=-⎧⎨+=⎩,∴21λμ=⎧⎨=⎩,①错误;a 与b 不共线,由平面向量基本定理可得,②正确;记OA =a ,由OM μ=+a b 得AM μ=b ,∴点M 在过A 点与b 平行的直线上,③正确; 由2μλ+=+a b a b 得,(1)(2)λμ-+-=0a b ,∵a 与b 不共线,∴12λμ=⎧⎨=⎩,∴2(1,5)μλ+=+=a b a b ,∴④正确;设(,)M x y ,则有2x y λμλμ=-+⎧⎨=+⎩,∴21331133x y x y λμ⎧=-+⎪⎪⎨⎪=+⎪⎩,∴200x y x y -≤⎧⎨+≥⎩且260x y -+=,∴(,)λμΩ表示的一条线段且线段的两个端点分别为(2,4)、(2,2)-,其长度为【解析】解:由a 6=a 5+2a 4得,a 4q 2=a 4q+2a 4, 即q 2﹣q ﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2, 故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.17.【答案】6π,18123+. 【解析】18.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2(1)0a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题.三、解答题请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分. 20.【答案】【解析】(1)当111,12n a a =+=时,解得11a =. (1分)当2n ≥时,2n n S n a +=,① 11(1)2n n S n a --+-=,②①-②得,1122n n n a a a -+=-即121n n a a -=+, (3分) 即112(1)(2)n n a a n -+=+≥,又112a +=. 所以{}1n a +是以2为首项,2为公比的等比数列.即12n n a +=故21n n a =-(*n N ∈).(5分)21.【答案】【解析】解:(1)由f(x)≤3得|x﹣a|≤3,解得a﹣3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|﹣1≤x≤5},所以解得a=2.(2)当a=2时,f(x)=|x﹣2|.设g(x)=f(x)+f(x+5),于是所以当x<﹣3时,g(x)>5;当﹣3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m即g(x)≥m对一切实数x恒成立,则m的取值范围为(﹣∞,5].【点评】本题考查函数恒成立问题,绝对值不等式的解法,考查转化思想,是中档题,22.【答案】【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为﹣=1(λ≠0),由题意可得c 2=4|λ|+9|λ|=13,解得λ=±1.即有双曲线的方程为﹣=1或﹣=1.23.【答案】(1)详见解析;(2)详见解析. 【解析】试题分析:(1)根据线面平行的判定定理,可先证明PQ 与平面内的直线平行,则线面平行,所以取SD 中点F ,连结PF AF ,,可证明AF PQ //,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先证明线面垂直,根据所给的条件证明⊥AC 平面SEQ ,即平面⊥SAC 平面SEQ . 试题解析:证明:(1)取SD 中点F ,连结PF AF ,. ∵F P 、分别是棱SD SC 、的中点,∴CD FP //,且CD FP 21=. ∵在菱形ABCD 中,Q 是AB 的中点,∴CD AQ //,且CD AQ 21=,即AQ FP //且AQ FP =. ∴AQPF 为平行四边形,则AF PQ //.∵⊄PQ 平面SAD ,⊂AF 平面SAD ,∴//PQ 平面SAD .考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直, 需熟练掌握判定定理以及性质定理. 24.【答案】(1) 2a = (2) a ≥2(3)两个零点. 【解析】试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:241x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数试题解析:(1) ()2af x x x=-′由已知,(1)0f =′即: 20a -=, 解得:2a = 经检验 2a = 满足题意 所以 2a = ………………………………………4分因为(]0,1x ∈,所以[)11,x ∈+∞,所以2min112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以()max 2F x =,所以a ≥2 ……………………………………10分(3)函数()()()6m x f x g x =--有两个零点.因为()22ln 6m x x x x =--+所以())()1222221x m x x x x=--+==′ ………12分当()1,0∈x 时,()'x m ,当()+∞∈,1x 时,()0>'x m所以()()min 140m x m ==-<, ……………………………………14分 3241-e)(1+e+2e )(=0e m e -<() ,8424812(21))0e e e m e e -++-=>(4442()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分 考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性 【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.。

城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(2)

城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(2)

城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是()A.B.C.D.2.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的()A.33% B.49% C.62% D.88%3.实数x,y满足不等式组,则下列点中不能使u=2x+y取得最大值的是()A.(1,1) B.(0,3) C.(,2) D.(,0)4.设函数,则有()A.f(x)是奇函数,B.f(x)是奇函数,y=b xC.f(x)是偶函数D.f(x)是偶函数,5.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为()A.1:2:3 B.2:3:4 C.3:2:4 D.3:1:26.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A. B.C. D.7.已知四个函数f(x)=sin(sinx),g(x)=sin(cosx),h(x)=cos(sinx),φ(x)=cos(cosx)在x∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A.f(x)﹣①,g(x)﹣②,h(x)﹣③,φ(x)﹣④B.f(x)﹣①,φ(x)﹣②,g(x)﹣③,h(x)﹣④C.g(x)﹣①,h(x)﹣②,f(x)﹣③,φ(x)﹣④D.f(x)﹣①,h(x)﹣②,g(x)﹣③,φ(x)﹣④8.在等差数列{a n}中,a3=5,a4+a8=22,则{}的前20项和为()A.B.C.D.9.在△ABC中,若A=2B,则a等于()A.2bsinA B.2bcosA C.2bsinB D.2bcosB10.已知函数f(x)=2x,则f′(x)=()A.2x B.2x ln2 C.2x+ln2 D.11.直线x+y﹣1=0与2x+2y+3=0的距离是()A. B.C. D.12.不等式的解集为()A.或B.C.或D.二、填空题13.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .14.满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A的个数是.15.如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60°方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为km.16.在区间[﹣2,3]上任取一个数a,则函数f(x)=x3﹣ax2+(a+2)x有极值的概率为.17.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V 圆锥=π()2dx=x 3|=.据此类推:将曲线y=x 2与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .18.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .三、解答题19.已知数列a 1,a 2,…a 30,其中a 1,a 2,…a 10,是首项为1,公差为1的等差数列;列a 10,a 11,…a 20,是公差为d 的等差数列;a 20,a 21,…a 30,是公差为d 2的等差数列(d ≠0).(1)若a 20=40,求d ;(2)试写出a 30关于d 的关系式,并求a 30的取值范围;(3)续写已知数列,使得a 30,a 31,…a 40,是公差为d 3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?20.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知1cos )sin 3(cos 2cos 22=-+C B B A. (I )求角C 的值;(II )若2b =,且ABC ∆的面积取值范围为,求c 的取值范围.【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.21.斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长.22.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.23.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.24.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.(1)求证:BD1∥平面A1DE;(2)求证:A1D⊥平面ABD1.城区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a≤﹣1或a≥1,因为<1,所以﹣<a<,所以实数a的取值范围是,故选:A.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.2.【答案】B【解析】3.【答案】D【解析】解:由题意作出其平面区域,将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.4.【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称.又f(﹣x)===f(x),所以f(x)为偶函数.而f()===﹣=﹣f(x),故选C.【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.5.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.6.【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。

城区高中2018-2019学年高二上学期第二次月考试卷数学(3)

城区高中2018-2019学年高二上学期第二次月考试卷数学(3)

城区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )A .B .C .D .2. 定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或23. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 4. 某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-B .32163π-C .1683π-D .3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.5. 已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .1<e <B .e >C .e >D .1<e <6. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .67. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 8. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1C .2D .39. 设双曲线焦点在y 轴上,两条渐近线为,则该双曲线离心率e=( )A .5B .C .D .10.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .11.设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 12.直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .二、填空题13由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为 万元.14.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)15.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 . 16.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .17.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .18.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.三、解答题19.已知函数f (x )=alnx ﹣x (a >0). (Ⅰ)求函数f (x )的最大值;(Ⅱ)若x ∈(0,a ),证明:f (a+x )>f (a ﹣x );(Ⅲ)若α,β∈(0,+∞),f (α)=f (β),且α<β,证明:α+β>2α20.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),(1)当BD 的长为多少时,三棱锥A ﹣BCD 的体积最大;(2)当三棱锥A ﹣BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城区一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)2. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1B .﹣≤a ≤C .﹣1≤a ≤1D .﹣2≤a ≤23. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种4. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0C .a >0,△≥0D .a >0,△>05. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .1506. 设S n 是等比数列{a n }的前n 项和,S 4=5S 2,则的值为( )A .﹣2或﹣1B .1或2C .±2或﹣1D .±1或27. 已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列C .公比为a 的等比数列D .公比为的等比数列8. 已知实数x ,y 满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .79. 椭圆=1的离心率为( ) A .B .C .D .10.执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .3511.已知,则f{f[f (﹣2)]}的值为( ) A .0B .2C .4D .812.函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<二、填空题13.命题p:∀x∈R,函数的否定为.14.在中,角、、所对应的边分别为、、,若,则_________15.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于.16.已知函数,则__________;的最小值为__________.17.曲线y=x+e x在点A(0,1)处的切线方程是.18.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为.三、解答题19.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.(1)求S n的最小值及相应n的值;(2)求T n.20.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n=,数列{b n}的前n项和为S n.①证明:b n+1+b n+2+…+b2n<②证明:当n≥2时,S n2>2(++…+)21.设A=2{x|2x+ax+2=0},2A ∈,集合2{x |x 1}B ==(1)求a 的值,并写出集合A 的所有子集;(2)若集合{x |bx 1}C ==,且C B ⊆,求实数b 的值。

22.本小题满分12分 设函数()ln x f x e a x =- Ⅰ讨论()f x 的导函数'()f x 零点个数; Ⅱ证明:当0a >时,()2ln f x a a a ≥-23.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为等腰梯形,AD ∥BC ,PA=AB=BC=CD=2,PD=2,PA ⊥PD ,Q 为PD 的中点. (Ⅰ)证明:CQ ∥平面PAB ;(Ⅱ)若平面PAD ⊥底面ABCD ,求直线PD 与平面AQC 所成角的正弦值.24.已知全集U为R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1} 求:(I)A∩B;(II)(C U A)∩(C U B);(III)C U(A∪B).城区一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】【解析】选C.f (x )的定义域为x ∈R ,由f (x )=(e -x -e x )(12x +1-12)得f (-x )=(e x -e -x )(12-x +1-12)=(e x -e -x )(-12x +1+12)=(e -x -e x )(12x +1-12)=f (x ),∴f (x )在R 上为偶函数,∴不等式f (x )<f (1+x )等价于|x |<|1+x |,即x 2<1+2x +x 2,∴x >-12,即不等式f (x )<f (1+x )的解集为{x |x >-12},故选C.2. 【答案】 B【解析】解:定义域为R 的函数f (x )是奇函数, 当x ≥0时,f (x )=|x ﹣a 2|﹣a 2=图象如图,∵f (x )为R 上的1高调函数,当x <0时,函数的最大值为a 2,要满足f (x+l )≥f (x ),1大于等于区间长度3a 2﹣(﹣a 2),∴1≥3a 2﹣(﹣a 2),∴﹣≤a ≤ 故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.3.【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C.4.【答案】A【解析】解:∵不等式ax2+bx+c<0(a≠0)的解集为R,∴a<0,且△=b2﹣4ac<0,综上,不等式ax2+bx+c<0(a≠0)的解集为的条件是:a<0且△<0.故选A.5.【答案】B【解析】解:该几何体是四棱锥,其底面面积S=5×6=30,高h=5,则其体积V=S×h=30×5=50.故选B.6.【答案】C【解析】解:由题设知a1≠0,当q=1时,S4=4a1≠10a1=5S2;q=1不成立.当q≠1时,S n=,由S4=5S2得1﹣q4=5(1﹣q2),(q2﹣4)(q2﹣1)=0,(q﹣2)(q+2)(q﹣1)(q+1)=0,解得q=﹣1或q=﹣2,或q=2.==q,∴=﹣1或=±2.故选:C.【点评】本题主要考查等比数列和等差数列的通项公式的应用,利用条件求出等比数列的通项公式,以及对数的运算法则是解决本题的关键.7.【答案】A【解析】解:∵,∴a n=S(n)﹣s(n﹣1)==∴a n﹣a n﹣1==a∴数列{a n}是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用8.【答案】A【解析】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.9.【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.10.【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24.故答案为:C11.【答案】C【解析】解:∵﹣2<0∴f (﹣2)=0∴f (f (﹣2))=f (0) ∵0=0∴f (0)=2即f (f (﹣2))=f (0)=2 ∵2>0∴f (2)=22=4即f{f[(﹣2)]}=f (f (0))=f (2)=4 故选C .12.【答案】C 【解析】考点:函数的对称性,导数与单调性.【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,则其图象关于点(,)m n 对称.二、填空题13.【答案】 ∃x 0∈R ,函数f (x 0)=2cos 2x 0+sin2x 0>3 .【解析】解:全称命题的否定是特称命题,即为∃x0∈R ,函数f (x 0)=2cos 2x 0+sin2x 0>3,故答案为:∃x0∈R ,函数f (x 0)=2cos 2x 0+sin2x 0>3,14.【答案】【解析】 因为,所以,所以,所以答案:15.【答案】25【解析】考点:分层抽样方法.16.【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为:17.【答案】2x﹣y+1=0.【解析】解:由题意得,y′=(x+e x)′=1+e x,∴点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,故答案为:2x﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.18.【答案】3π.【解析】解:将棱长均为3的三棱锥放入棱长为的正方体,如图∵球与三棱锥各条棱都相切,∴该球是正方体的内切球,切正方体的各个面切于中心,而这个切点恰好是三棱锥各条棱与球的切点由此可得该球的直径为,半径r=∴该球的表面积为S=4πr2=3π故答案为:3π【点评】本题给出棱长为3的正四面体,求它的棱切球的表面积,着重考查了正多面体的性质、多面体内切球和球的表面积公式等知识,属于基础题.三、解答题19.【答案】【解析】解:(1)S n=2n2﹣19n+1=2﹣,∴n=5时,S n取得最小值=﹣44.(2)由S n=2n2﹣19n+1,∴n=1时,a1=2﹣19+1=﹣16.n≥2时,a n=S n﹣S n﹣1=2n2﹣19n+1﹣[2(n﹣1)2﹣19(n﹣1)+1]=4n﹣21.由a n≤0,解得n≤5.n≥6时,a n>0.∴n≤5时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣2n2+19n﹣1.n≥6时,T n=﹣(a1+a2+…+a5)+a6+…+a n=﹣2S5+S n=2n2﹣19n+89.∴T n=.【点评】本题考查了等差数列的通项公式及其前n项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.20.【答案】【解析】(Ⅰ)证明:∵数列{a n}满足a1=﹣1,a n+1=(n∈N*),∴na n=3(n+1)a n+4n+6,两边同除n(n+1)得,,即,也即,又a1=﹣1,∴,∴数列{+}是等比数列是以1为首项,3为公比的等比数列.(Ⅱ)(ⅰ)证明:由(Ⅰ)得,=3n﹣1,∴,∴,原不等式即为:<,先用数学归纳法证明不等式:当n≥2时,,证明过程如下:当n=2时,左边==<,不等式成立假设n=k时,不等式成立,即<,则n=k+1时,左边=<+=<,∴当n=k+1时,不等式也成立.因此,当n≥2时,,当n≥2时,<,∴当n ≥2时, ,又当n=1时,左边=,不等式成立故b n+1+b n+2+…+b 2n <.(ⅱ)证明:由(i )得,S n =1+,当n ≥2, =(1+)2﹣(1+)2==2﹣,,…=2•,将上面式子累加得,﹣,又<=1﹣=1﹣,∴,即>2(),∴当n ≥2时,S n 2>2(++…+).【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.21.【答案】(1)5a =-,A 的子集为:φ,12⎧⎫⎨⎬⎩⎭,{}2,1,22⎧⎫⎨⎬⎩⎭;(2)0或1或1-。

相关文档
最新文档