[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 课时分层训练62 分类加法
2019年高考数学一轮复习学案+训练+课件(北师大版理科): 命题及其关系充分条件与必要条件理
课时分层训练(二) 命题及其关系、充分条件与必要条件A 组 基础达标一、选择题1.命题“若a >b ,则a -1>b -1”的否命题是( )A .若a >b ,则a -1≤b -1B .若a >b ,则a -1<b -1C .若a ≤b ,则a -1≤b -1D .若a <b ,则a -1<b -1C [根据否命题的定义可知:命题“若a >b ,则a -1>b -1”的否命题应为“若a ≤b ,则a -1≤b -1”.故选C.] 2.下列命题是真命题的是( )【导学号:79140009】A .若1x =1y,则x =yB .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2A [由1x =1y得x =y ,A 正确;由x 2=1得x =±1,B 错误;由x =y ,x ,y 不一定有意义,C 错误;由x <y 不一定能得到x 2<y 2,如x =-2,y =-1,D 错误,故选A.] 3.设M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 A [若N ⊆M ,则a 2=1或a 2=2, 解得a =±1或a =±2,所以“a =1”是“N ⊆M ”的充分不必要条件,故选A.]4.已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [若函数y =2x +m -1有零点,则m -1<0,得m <1;若函数y =log m x 在(0,+∞)上为减函数,则0<m <1,由于(0,1)(-∞,1),所以“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件.] 5.若x >5是x >a 的充分条件,则实数a 的取值范围为( )A.a>5 B.a≥5C.a<5 D.a≤5D[由x>5是x>a的充分条件知,{x|x>5}⊆{x|x>a}.∴a≤5,故选D.] 6.(2018·青岛质检)已知λ∈R,向量a=(3,λ),b=(λ-1,2),则“λ=3”是“a∥b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[由题意得a∥b⇔3×2-λ(λ-1)=0,解得λ=-2或λ=3,所以“λ=3”是“a∥b”的充分不必要条件,故选A.]7.(2017·浙江高考)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件C[法一:∵数列{a n}是公差为d的等差数列,∴S4=4a1+6d,S5=5a1+10d,S6=6a1+15d,∴S4+S6=10a1+21d,2S5=10a1+20d.若d>0,则21d>20d,10a1+21d>10a1+20d,即S4+S6>2S5.若S4+S6>2S5,则10a1+21d>10a1+20d,即21d>20d,∴d>0.∴“d>0”是“S4+S6>2S5”的充分必要条件.故选C.法二:∵S4+S6>2S5⇔S4+S4+a5+a6>2(S4+a5)⇔a6>a5⇔a5+d>a5⇔d>0,∴“d>0”是“S4+S6>2S5”的充分必要条件.故选C.]二、填空题8.(2017·北京高考)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.-1,-2,-3(答案不唯一) [只要取一组满足条件的整数即可.如-1,-2,-3;-3,-4,-6;-4,-7,-10等.]9.函数f(x)=x2+mx+1的图像关于直线x=1对称的充要条件是________.m =-2 [∵f (x )=x 2+mx +1图像的对称轴为直线x =-m2,∴f (x )的图像关于直线x=1对称⇔-m2=1⇔m =-2.]10.已知集合A ={x |y =lg(4-x )},集合B ={x |x <a },若“x ∈A ”是“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.【导学号:79140010】(4,+∞) [A ={x |x <4},由题意知A B ,所以a >4.]B 组 能力提升11.“a =1”是“函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件B [函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数等价于--4a 2=2a ≤2,即a ≤1,所以“a =1”是“函数f (x )=x 2-4ax +3在区间[2,+∞)上为增函数”的充分不必要条件,故选B.]12.(2018·石家庄质检(二))在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则“sin A >sin B ”是“a >b ”的( )【导学号:79140011】A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件C [由正弦定理a sin A =bsin B=2R (R 为三角形外接圆半径)得,a =2R sin A ,b =2R sinB ,故sin A >sin B ⇔2R sin A >2R sin B ⇔a >b .]13.已知命题p :x 2+2x -3>0;命题q :x >a ,且﹁q 的一个充分不必要条件是﹁p ,则a 的取值范围是( ) A .(-∞,1] B .[1,+∞) C .[-1,+∞)D .(-∞,-3]B [解x 2+2x -3>0,得x <-3或x >1,故﹁p :-3≤x ≤1,又﹁q :x ≤a ,由﹁q 的一个充分不必要条件是﹁p ,可知﹁p 是﹁q 的充分不必要条件,故a ≥1.]14.(2016·四川高考)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件A [p 表示以点(1,1)为圆心,2为半径的圆面(含边界),如图所示.q 表示的平面区域为图中阴影部分(含边界). 由图可知,p 是q 的必要不充分条件.] 15.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题; ③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.【导学号:79140012】②③ [①原命题的否命题为“若a ≤b ,则a 2≤b 2”错误. ②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”正确. ③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确.]16.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.(2,+∞) [A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.]。
2019年高考数学一轮复习学案 训练 课件(北师大版理科) 第3章 三角函数、解三角形 第3节 三角函数的图像与
第三节三角函数的图像与性质[考纲传真] (教师用书独具).能画出=,=,=的图像,了解三角函数的周期性.理解正弦函数、余弦函数在[π]上的性质(如单调性、最大值和最小值、图像与轴的交点等),理解正切函数在区间内的单调性.(对应学生用书第页)[基础知识填充].用五点法作正弦函数和余弦函数的简图正弦函数=,∈[π]图像的五个关键点是:(),,(π,),,(π,).余弦函数=,∈[π]图像的五个关键点是:(),,(π,-),,(π,)..正弦函数、余弦函数、正切函数的图像与性质[()()为偶函数的充要条件是φ=+π(∈);()()为奇函数的充要条件是φ=π(∈)..()=(ω+φ)(>,ω>).()()为奇函数的充要条件:φ=π+,∈.()()为偶函数的充要条件:φ=π,∈.[基本能力自测].(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()常数函数()=是周期函数,它没有最小正周期.( )()函数=的图像关于点(π,)(∈)中心对称.( )()正切函数=在定义域内是增函数.( )()已知=+,∈,则的最大值为+.( )()=是偶函数.( )[答案]()√()√()×()×()√.(·全国卷Ⅱ)函数()=的最小正周期为( ).π.π.π.[函数()=的最小正周期==π.故选.].函数=的定义域是( )....[由≠π+,∈,得≠+,∈,所以=的定义域为.].函数=,∈[-π,π]的单调递增区间是( )..和..[令=+,函数=的单调递增区间为(∈),由π-≤+≤π+得π-≤≤π+,而∈[-π,π],故其单调递增区间是,故选.].(教材改编)函数()=在区间上的最小值为.-[由已知∈,得-∈,所以∈,故函数()=在区间上的最小值为-.](对应学生用书第页)()(·全国卷Ⅱ)函数()=+的最大值为( )..。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 课时分层训练42 平行关系
课时分层训练(四十二) 平行关系A 组 基础达标一、选择题1.(2017·合肥模拟)在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是( ) A .平行 B .相交 C .在平面内D .不能确定A [如图,由AE EB =CFFB 得AC ∥EF .又因为EF 平面DEF ,AC ⊆/平面DEF ,所以AC ∥平面DEF .]2.(2017·湖南长沙二模)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( ) A .m ∥α,n ∥α,则m ∥n B .m ∥n ,m ∥α,则n ∥α C .m ⊥α,m ⊥β,则α∥βD .α⊥γ,β⊥γ,则α∥βC [对于A ,平行于同一平面的两条直线可能相交,可能平行,也可能异面,故A 不正确;对于B ,m ∥n ,m ∥α,则n ∥α或n α,故B 不正确; 对于C ,利用垂直于同一直线的两个平面平行,可知C 正确;对于D ,因为垂直于同一平面的两个平面的位置关系是相交或平行,故D 不正确.故选C.]3.(2017·豫西五校4月联考)已知m ,n ,l 1,l 2表示不同直线,α、β表示不同平面,若m α,n α,l 1β,l 2β,l 1∩l 2=M ,则α∥β的一个充分条件是( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2D [对于选项A ,当m ∥β且l 1∥α时,α,β可能平行也可能相交,故A 不是α∥β的充分条件;对于选项B ,当m ∥β且n ∥β时,若m ∥n ,则α,β可能平行也可能相交,故B 不是α∥β的充分条件;对于选项C ,当m ∥β且n ∥l 2时,α,β可能平行也可能相交,故C 不是α∥β的充分条件;对于选项D ,当m ∥l 1,n ∥l 2时,由线面平行的判定定理可得l 1∥α,l 2∥α,又l 1∩l 2=M ,由面面平行的判定定理可以得到α∥β,但α∥β时,m ∥l 1且n ∥l 2不一定成立,故D 是α∥β的一个充分条件.故选D.]4.(2017·山东济南模拟)如图735所示的三棱柱ABC A 1B 1C 1中,过A 1B 1的平面与平面ABC交于DE,则DE与AB的位置关系是( )【导学号:79140231】图735A.异面B.平行C.相交D.以上均有可能B[在三棱柱ABCA1B1C1中,AB∥A1B1.∵AB平面ABC,A1B1⊆/平面ABC,∴A1B1∥平面ABC.∵过A1B1的平面与平面ABC交于DE,∴DE∥A1B1,∴DE∥AB.]5.(2018·合肥二检)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )A.0条B.1条C.2条D.0条或2条C[如图设平面α截三棱锥所得的四边形EFGH是平行四边形,则EF∥GH,EF⊆/平面BCD,GH 平面BCD,所以EF∥平面BCD,又EF平面ACD,平面ACD∩平面BCD=CD,则EF∥CD,EF 平面EFGH,CD⊆/平面EFGH,则CD∥平面EFGH,同理AB∥平面EFGH,所以该三棱锥与平面α平行的棱有2条,故选C.]二、填空题6.如图736,α∥β,△PAB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB=________.图73652[∵α∥β,∴CD ∥AB , 则PC PA =CD AB ,∴AB =PA ×CD PC =5×12=52.] 7.如图737所示,正方体ABCD A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.图7372 [在正方体ABCD A 1B 1C 1D 1中,AB =2, ∴AC =2 2.又E 为AD 中点,EF ∥平面AB 1C ,EF 平面ADC , 平面ADC ∩平面AB 1C =AC , ∴EF ∥AC ,∴F 为DC 中点, ∴EF =12AC = 2.]8.如图738,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.图738平面ABC ,平面ABD [连接AM 并延长交CD 于E ,则E 为CD 的中点.由于N 为△BCD 的重心, 所以B ,N ,E 三点共线,且EM MA =EN NB =12,所以MN ∥AB . 于是MN ∥平面ABD 且MN ∥平面ABC .] 三、解答题9.一个正方体的平面展开图及该正方体的直观图的示意图如图739所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论.【导学号:79140232】图739[解] (1)点F ,G ,H 的位置如图所示.(2)平面BEG ∥平面ACH ,证明如下: 因为ABCD EFGH 为正方体, 所以BC ∥FG ,BC =FG .又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH , 于是四边形BCHE 为平行四边形,所以BE ∥CH . 又CH 平面ACH ,BE ⊆/平面ACH , 所以BE ∥平面ACH . 同理BG ∥平面ACH .又BE ∩BG =B ,所以平面BEG ∥平面ACH .10.(2017·石家庄质检(一))如图7310,四棱锥P ABCD 中,PA ⊥底面ABCD ,底面ABCD 为梯形,AD ∥BC ,CD ⊥BC ,AD =2,AB =BC =3,PA =4,M 为AD 的中点,N 为PC 上一点,且PC =3PN .图7310(1)求证:MN ∥平面PAB ; (2)求点M 到平面PAN 的距离.[解] (1)在平面PBC 内作NH ∥BC 交PB 于点H ,连接AH (图略),在△PBC 中,NH ∥BC ,且NH =13BC =1,AM =12AD =1.又AD ∥BC ,∴NH ∥AM 且NH =AM ,∴四边形AMNH 为平行四边形, ∴MN ∥AH ,又AH 平面PAB ,MN ⊆/平面PAB , ∴MN ∥平面PAB .(2)连接AC ,MC ,PM (图略),平面PAN 即为平面PAC ,设点M 到平面PAC 的距离为h .由题意可得CD =22,AC =23,∴S △PAC =12PA ·AC =43,S △AMC =12AM ·CD =2,由V M PAC =V P AMC ,得13S △PAC ·h =13S △AMC ·PA , 即43h =2×4,∴h =63, ∴点M 到平面PAN 的距离为63.] B 组 能力提升11.如图7311,在四面体ABCD中,截面PQMN是正方形,则在下列结论中,错误的是( )图7311A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°C[因为截面PQMN是正方形,所以MN∥PQ,则MN∥平面ABC,由线面平行的性质知MN∥AC,则AC∥截面PQMN,同理可得MQ∥BD,又MN⊥QM,则AC⊥BD,故A,B正确.又因为BD∥MQ,所以异面直线PM与BD所成的角等于PM与QM所成的角,即为45°,故D正确.]12.如图7312所示,棱柱ABCA1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D∶DC1的值为________.【导学号:79140233】图73121 [设BC1∩B1C=O,连接OD.∵A1B∥平面B1CD且平面A1BC1∩平面B1CD=OD,∴A1B∥OD.∵四边形BCC1B1是菱形,∴O 为BC 1的中点, ∴D 为A 1C 1的中点, 则A 1D ∶DC 1=1.]13.如图7313,四棱锥P ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点.图7313(1)求证:CE ∥平面PAD ;(2)在线段AB 上是否存在一点F ,使得平面PAD ∥平面CEF ?若存在,证明你的结论,若不存在,请说明理由.[解] (1)证明:取PA 的中点H ,连接EH ,DH ,因为E 为PB 的中点,所以EH ∥AB ,EH =12AB ,又AB ∥CD ,CD =12AB ,所以EH ∥CD ,EH =CD ,因此四边形DCEH 是平行四边形, 所以CE ∥DH , 又DH平面PAD ,CE ⊆/平面PAD ,因此CE ∥平面PAD .(2)存在点F 为AB 的中点,使平面PAD ∥平面CEF , 证明如下:取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AECD 为平行四边形,因此CF ∥AD , 又CF ⊆/平面PAD ,所以CF ∥平面PAD , 由(1)可知CE ∥平面PAD ,又CE ∩CF =C ,故平面CEF ∥平面PAD ,故存在AB 的中点F 满足要求.。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第4章 平面向量、数系的扩
第一节平面向量的概念及线性运算[考纲传真] (教师用书独具)1.了解向量的实际背景,理解平面向量的概念和两个向量相等的含义,理解向量的几何表示.2.掌握向量加法、减法的运算,理解其几何意义.3.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.4.了解向量线性运算的性质及其几何意义.(对应学生用书第69页)[基础知识填充]1.向量的有关概念(1)向量:既有大小又有方向的量叫作向量,向量的大小叫作向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算平行四边形法则a 是一个非零向量,若存在一个实数λ,使得b =λa ,则向量b 与a 共线.[知识拓展]1.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).2.OA →=λOB →+μOC →(λ,μ为实数),若点A ,B ,C 共线,则λ+μ=1.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)向量不能比较大小,但向量的模可以比较大小.( ) (2)BA →=OA →-OB →.( )(3)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (4)已知a ,b 是两个非零向量,当a ,b 共线时,一定有b =λa (λ为常数),反之也成立.( )[答案] (1)√ (2)√ (3)× (4)√2.在四边形ABCD 中,AB →=DC →,且|AB →|=|BC →|,那么四边形ABCD 为( )A .平行四边形B .菱形C .长方形D .正方形B [AB →=DC →,则四边形ABCD 为平行四边形.又|AB →|=|BC →|,则四边形ABCD 为菱形,故选B .]3.D 是△ABC 的边AB 的中点,则向量CD →等于( )A .-BC →+12BA →B .-BC →-12BA →C .BC →-12BA →D .BC →+12BA →A [如图,CD →=CB →+BD →=CB →+12BA →=-BC →+12BA →.]4.(教材改编)已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示).b -a -a -b [如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .]5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________.-13[由已知得a +λb =-k (b -3a ), 所以⎩⎪⎨⎪⎧λ=-k ,3k =1,得⎩⎪⎨⎪⎧λ=-13,k =13.](对应学生用书第70页)给出下列四个命题:【导学号:79140145】①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( )A .②③B .①②C .③④D .②④ A [①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB →∥DC →且|AB →|=|DC →|,∴AB →=DC →. ③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.故选A .] 相等向量具有传递性,非零向量的平行也具有传递性2共线向量即为平行向量,不要与线段的共线、平行混为一谈3向量可以平移,平移后的向量与原向量是相等向量动混为一谈4非零向量[跟踪训练0①若a 为平面内的某个向量,则a =|a |a 0; ②若a 与a 0平行,则a =|a |a 0; ③若a 与a 0平行且|a |=1,则a =a 0. 假命题的个数是( )A .0B .1C .2D .3D [向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.](1)(2015·全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A .AD →=-13AB →+43AC →B .AD →=13AB →-43AC →C .AD →=43AB →+13AC →D .AD →=43AB →-13AC →(2)已知D 为三角形ABC 的边BC 的中点,点P 满足PA →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.(1)A (2)-2 [(1)AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →=-13AB →+43AC →.故选A .(2)因为D 为边BC 的中点,所以PB →+PC →=2PD →,又PA →+BP →+CP →=0, 所以PA →=PB →+PC →=2PD →, 所以AP →=-2PD →,与AP →=λPD →比较,得λ=-2.] 平面向量的线性运算方法①不含图形的情况:可直接运用相应运算法则求解②含图形的情况:将它们转化到三角形或平行四边形中,2利用平面向量的线性运算求参数的一般思路①没有图形的准确作出图形,确定每一个点的位置②利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式3选取基向量,向量之间的相互表示,重视平行四边形法则4|a [跟踪训练的任意一点,则OA →+OB →+OC →+OD →等于( ) A .OM → B .2OM → C .3OM →D .4OM →(2)(2017·河南三市联考)在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →,则xy=________.【导学号:79140146】(1)D (2)3 [因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA →+OC →=2OM →,OB →+OD →=2OM →,所以OA →+OB →+OC →+OD →=4OM →.(2)由题设可得CA →+AM →=3(AB →-AM →), 即4AM →=3AB →+AC →,亦即AM →=34AB →+14AC →,则x =34,y =14.故xy =3.]设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.[解] (1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →,BD →共线,又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 和a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b ,∴(k -λ)a =(λk -1)b . ∵a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1. 1证明向量共线:对于向量2证明三点共线:若存在实数3求参数的值:利用共线向量定理及向量相等的条件列方程组求参数的值易错警示:证明三点共线时,需说明共线的两向量有公共点[跟踪训练] (1)已知向量AB =a +3b ,BC =5a +3b ,CD =-3a +3b ,则( )A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线(2)(2017·广东七校联考)已知向量i ,j 不共线,且AB →=i +m j ,AD →=n i +j ,m ≠1,若A ,B ,D 三点共线,则实数m ,n 应满足的条件是( ) A .m +n =1 B .m +n =-1 C .mn =1D .mn =-1(1)B (2)C [(1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →,∴BD →,AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B .(2)因为A ,B ,D 三点共线,所以AB →∥AD →,存在非零实数λ,使得AB →=λAD →,即i +m j =λ(n i +j ),所以(1-λn )i +(m -λ)j =0,又因为i 与j 不共线,所以⎩⎪⎨⎪⎧1-λn =0,m -λ=0,则mn =1,故选C .]。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第8章 平面解析几何 第3
第三节圆的方程[考纲传真] (教师用书独具)1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题的思想.(对应学生用书第134页)[基础知识填充]1.圆的定义及方程2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”).(1)确定圆的几何要素是圆心与半径.( )(2)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个圆.( )(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.( )[解析]由圆的定义及点与圆的位置关系,知(1)(3)(4)正确.(2)中,当t≠0时,表示圆心为(-a,-b),半径为|t|的圆,不正确.[答案](1)√(2)×(3)√(4)√2.圆心为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2D[由题意得圆的半径为2,故该圆的方程为(x-1)2+(y-1)2=2,故选D.] 3.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a =( )A .-43B .-34C . 3D .2A [圆x 2+y 2-2x -8y +13=0,得圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.]4.点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( )A .-1<a <1B .0<a <1C .-1<a <15D .-15<a <1D [由(2a )2+(a -2)2<5得-15<a <1.]5.(教材改编)圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为________.(x -2)2+y 2=10 [设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上,∴|CA |=|CB |,即(a +1)2+1=(a -1)2+9, 解得a =2,所以圆心为C (2,0), 半径|CA |=(2+1)2+1=10, ∴圆C 的方程为(x -2)2+y 2=10.](对应学生用书第135页)(1)(2017·豫北名校4月联考)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4(2)(2015·全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( ) A .2 6B .8C .4 6D .10(1)D (2)C [(1)设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),则有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.故选D.(2)设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20.∴圆的方程为x 2+y 2-2x +4y -20=0.令x =0,得y =-2+26或y =-2-26,∴M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26),∴|MN |=46,故选C .]1直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程2待定系数法:①若已知条件与圆心a ,和半径b ,r 的方程组,从而求出a ,b ,②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于圆心在直线y =-x -4上,则圆M 的标准方程为( )【导学号:79140274】A .(x +3)2+(y -1)2=1 B .(x -3)2+(y +1)2=1 C .(x +3)2+(y +1)2=1 D .(x -3)2+(y -1)2=1(2)(2016·天津高考)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.(1)C (2)(x -2)2+y 2=9 [(1)到两直线3x -4y =0和3x -4y +10=0的距离都相等的直线方程为3x -4y +5=0,联立方程组⎩⎪⎨⎪⎧3x -4x +5=0,y =-x -4,解得⎩⎪⎨⎪⎧x =-3,y =-1,所以圆M 的圆心坐标为(-3,-1),又两平行线之间的距离为1032+42=2,所以圆M的半径为1,所以圆M 的方程为(x +3)2+(y +1)2=1,故选C . (2)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3, 所以圆C 的方程为(x -2)2+y 2=9.]已知M (x ,y )为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3). (1)求|MQ |的最大值和最小值; (2)求y -3x +2的最大值和最小值. [解] (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=(2+2)2+(7-3)2=42, ∴|MQ |max =42+22=62, |MQ |min =42-22=2 2. (2)可知y -3x +2表示直线MQ 的斜率k . 设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0. 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤22, 可得2-3≤k ≤2+3, ∴y -3x +2的最大值为2+3,最小值为2- 3.1.(变化结论)在本例的条件下,求y -x 的最大值和最小值.[解] 设y -x =b ,则x -y +b =0.当直线y =x +b 与圆C 相切时,截距b 取到最值, ∴|2-7+b |12+(-1)2=22,∴b =9或b =1.因此y -x 的最大值为9,最小值为1.2.(变换条件)若本例中条件“点Q (-2,3)”改为“点Q 是直线3x +4y +1=0上的动点”,其它条件不变,试求|MQ |的最小值.[解] ∵圆心C (2,7)到直线3x +4y +1=0上动点Q 的最小值为点C 到直线3x +4y +1=0的距离,∴|QC |min =d =|2×3+7×4+1|32+42=7. 又圆C 的半径r =22, ∴|MQ |的最小值为7-2 2.1形如2形如3形如x -2+y -2形式的最值问题可转化为动点到定点的距离的平方的最值问题[跟踪训练(1)(2018·陕西质检(一))的距离的最大值是( ) A .1+ 2 B .2 C .1+22D .2+2 2(2)(2017·广东七校联考)圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b的最小值是( )A .2 3 B.203 C .4D.163(1)A (2)D [(1)由已知得圆的标准方程为(x -1)2+(y -1)2=1,则圆心坐标为(1,1),半径为1,所以圆心到直线的距离为|1-1-2|2=2,所以圆上的点到直线的距离的最大值是1+2,故选A .(2)由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0),∴1a +3b =13(a +3b )⎝ ⎛⎭⎪⎫1a +3b =13⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥13⎝⎛⎭⎪⎫10+23a b ·3b a =163,当且仅当3b a =3a b ,即a =b 时取等号,故选D.]已知A (2,0) 为圆x 2+y 2=4上一定点,B (1,1)为圆内一点,P ,Q 为圆上的动点.【导学号:79140275】(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. [解] (1)设AP 的中点为M (x ,y ), 由中点坐标公式可知,P 点坐标为(2x -2,2y ).因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ), 在Rt△PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.1直接法:直接根据题设给定的条件列出方程求解2定义法:根据圆的定义列方程求解3几何法:利用圆的几何性质得出方程求解4代入法相关点法:找出要求的点与已知点的关系,[跟踪训练] 已知点-1,0)连线段的中点M 的轨迹方程.[解] 由题意可知:动点C 的轨迹是以(-1,0)为圆心,3为半径长的圆,方程为(x +1)2+y 2=9.设M (x 0,y 0),则由中点坐标公式可求得C (2x 0-1,2y 0-4),代入点C 的轨迹方程得4x 20+4(y 0-2)2=9, 化简得x 20+(y 0-2)2=94,故点M 的轨迹方程为x 2+(y -2)2=94.。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 不等式选讲 第2节 不等式
第二节 不等式的证明[考纲传真] (教师用书独具)通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.(对应学生用书第206页)[基础知识填充]1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.柯西不等式(1)柯西不等式的代数形式:设a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2(当且仅当ad =bc 时,等号成立).(2)柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. (3)柯西不等式的三角不等式:设x 1,y 1,x 2,y 2,x 3,y 3∈R , 则(x 1-x 2)2+(y 1-y 2)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1-x 3)2+(y 1-y 3)2.(4)柯西不等式的一般形式:设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.3.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法等. (1)比较法:①比差法的依据是:a -b >0⇔a >b 步骤是:“作差→变形→判断差的符号”.变形是手段,变形的目的是判断差的符号.②比商法:若B >0,欲证A ≥B ,只需证AB≥1. (2)综合法与分析法:①综合法:利用某些已经证明过的不等式和不等式的性质,推导出所要证明的不等式,这种方法叫综合法.即“由因导果”的方法.②分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已经具备,那么就可以判定原不等式成立,这种方法叫作分析法.即“执果索因”的方法.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( ) (4)使用反证法时,“反设”不能作为推理的条件应用.( ) [答案] (1)× (2)√ (3)× (4)×2.(教材改编)若a >b >1,x =a +1a ,y =b +1b,则x 与y 的大小关系是( )A .x >yB .x <yC .x ≥yD .x ≤yA [x -y =a +1a -⎝ ⎛⎭⎪⎫b +1b=a -b +b -a ab =(a -b )(ab -1)ab. 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0,即x -y >0,所以x >y .]3.若a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >c >aD .c >a >b A [“分子”有理化得a =13+2,b =16+5,c =17+6,所以a >b >c .]4.已知a >0,b >0且ln(a +b )=0,则1a +1b的最小值是________.【导学号:79140398】4 [由题意得,a +b =1,a >0,b >0, 所以1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab=4, 当且仅当a =b =12时等号成立.]5.已知x >0,y >0,证明:(1+x +y 2)(1+x 2+y )≥9xy . [证明] 因为x >0,y >0,所以1+x +y 2≥33xy 2>0,1+x 2+y ≥33x 2y >0,故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .(对应学生用书第207页)已知a >0,b >0,求证:a b +ba≥a +b . [证明] 法一:∵⎝⎛⎭⎪⎫a b+b a -(a +b ) =⎝⎛⎭⎪⎫a b -b +⎝ ⎛⎭⎪⎫b a -a =a -b b +b -aa=(a -b )(a -b )ab=(a +b )(a -b )2ab≥0,∴a b +ba≥a +b . 法二:由于a b +ba a +b=a a +b bab (a +b )=(a +b )(a -ab +b )ab (a +b )=a +bab-1 ≥2abab-1=1.又a >0,b >0,ab >0, ∴a b +ba≥a +b .作差比较法证明不等式的步骤:作差;变形;判断差的符号;下结论通常将差变形成因式连乘的形式或平方和的形式,合不等式的性质判断出差的正负注:作商比较法也有类似的步骤,但注意其比较的是两个正数的大小,且第步要判断. [证明] 因为a 4+6a 2b 2+b 4-4ab (a 2+b 2)=(a 2+b 2)2-4ab (a 2+b 2)+4a 2b 2=(a 2+b 2-2ab )2=(a -b )4. 又a ≠b ,所以(a -b )4>0, 所以a 4+6a 2b 2+b 4>4ab (a 2+b 2).(2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4. (2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b ) ≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.A 为已知条件或数学定义、,它的常见书面表达式是“∵,∴”或“综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥9. [证明] (1)∵a +b =1,a >0,b >0, ∴1a +1b +1ab =1a +1b +a +b ab=2⎝ ⎛⎭⎪⎫1a +1b =2⎝ ⎛⎭⎪⎫a +b a+a +b b =2⎝ ⎛⎭⎪⎫b a +a b +4≥4b a ·ab+4=8 (当且仅当a =b =12时,等号成立),∴1a +1b +1ab ≥8.(2)∵⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1a +1b +1ab+1,由(1)知1a +1b +1ab≥8.∴⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥9.(1)设a ,b ,c >0且ab +bc +ca =1,求证:a +b +c ≥3; (2)设x ≥1,y ≥1,求证x +y +1xy ≤1x +1y+xy .【导学号:79140399】[证明] (1)因为a ,b ,c >0, 所以要证a +b +c ≥3, 只需证明(a +b +c )2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca )≥3, 而ab +bc +ca =1,故需证明:a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ). 即证:a 2+b 2+c 2≥ab +bc +ca .而ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)成立. 所以原不等式成立. (2)由于x ≥1,y ≥1, 要证x +y +1xy ≤1x +1y+xy ,只需证xy (x +y )+1≤y +x +(xy )2. 因为[y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1), 因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.(c +1)2≥163;(2)若对任意实数x ,不等式|x -a |+|2x -1|≥2恒成立,求实数a 的取值范围. [证明] (1)法一:因为a +b +c =1,所以(a +1)2+(b +1)2+(c +1)2=a 2+b 2+c 2+2(a +b +c )+3=a 2+b 2+c 2+5. 所以要证(a +1)2+(b +1)2+(c +1)2≥163,只需证a 2+b 2+c 2≥13.因为a 2+b 2+c 2=(a +b +c )2-2(ab +bc +ca ) ≥(a +b +c )2-2(a 2+b 2+c 2), 所以3(a 2+b 2+c 2)≥(a +b +c )2. 因为a +b +c =1,所以a 2+b 2+c 2≥13.所以(a +1)2+(b +1)2+(c +1)2≥163.法二:因为a +b +c =1,所以(a +1)2+(b +1)2+(c +1)2=a 2+b 2+c 2+2(a +b +c )+3=a 2+b 2+c 2+5. 所以要证(a +1)2+(b +1)2+(c +1)2≥163,只需证a 2+b 2+c 2≥13.因为a 2+19≥23a ,b 2+19≥23b ,c 2+19≥23c ,所以a 2+b 2+c 2+13≥23(a +b +c ).因为a +b +c =1,所以a 2+b 2+c 2≥13.所以(a +1)2+(b +1)2+(c +1)2≥163.法三:因为(a +1)2+169≥83(a +1),(b +1)2+169≥83(b +1),(c +1)2+169≥83(c +1),所以(a +1)2+(b +1)2+(c +1)2+163≥83[(a +1)+(b +1)+(c +1)].因为a +b +c =1,所以(a +1)2+(b +1)2+(c +1)2≥163.(2)设f (x )=|x -a |+|2x -1|,则“对任意实数x ,不等式|x -a |+|2x -1|≥2恒成立”等价于“f (x )min ≥2”.当a <12时,f (x )=⎩⎪⎨⎪⎧-3x +a +1,x <a ,-x +1-a ,a ≤x ≤12,3x -a -1,x >12.此时f (x )min =f ⎝ ⎛⎭⎪⎫12=12-a ,要使|x -a |+|2x -1|≥2恒成立,必须12-a ≥2,解得a ≤-32.当a =12时,f (x )=⎪⎪⎪⎪⎪⎪x -12+|2x -1|=3⎪⎪⎪⎪⎪⎪x -12≥2,即⎪⎪⎪⎪⎪⎪x -12≥23不可能恒成立.当a >12时,f (x )=⎩⎪⎨⎪⎧-3x +a +1,x <12,x +a -1,12≤x ≤a ,3x -a -1,x >a .此时f (x )min =f ⎝ ⎛⎭⎪⎫12=a -12,要使|x -a |+|2x -1|≥2恒成立,必须a -12≥2,解得a ≥52.综上所述,实数a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-32∪⎣⎢⎡⎭⎪⎫52,+∞.已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值.[解] (1)证明:因为(3x +1+3y +2+3z +3)2≤(12+12+12)(3x +1+3y +2+3z +3)=27.所以3x +1+3y +2+3z +3≤3 3. 当且仅当x =23,y =13,z =0时取等号.(2)因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2≥187,当且仅当x =y 2=z 3,即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187. 利用柯西不等式求最值的一般结构为:a 21++=在使用柯西不等式时,要注意右边常数且应注意等号成立的条件.[跟踪训练,b ,c +d 2=16ac +bd ≤8.[证明] 由柯西不等式,得(ac +bd )2≤(a 2+b 2)(c 2+d 2).因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64, 因此ac +bd ≤8.。
2019年高考数学一轮复习学案 训练 课件(北师大版理科)专题探究课1函数与导数中的高考热点问题理北师大版_
一函数与导数中的高考热点问题(对应学生用书第页)[命题解读] 函数是中学数学的核心内容,导数是研究函数的重要工具,因此,函数与导数是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的范围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有.函数的单调性、极值是局部概念,函数的最值是整体概念,研究函数的性质必须在定义域内进行,因此,务必遵循定义域优先的原则,本热点主要有三种考查方式:()讨论函数的单调性或求单调区间;()求函数的极值或最值;()利用函数的单调性、极值、最值,求参数的范围.(·全国卷Ⅱ)已知函数()=+(-).()讨论()的单调性;()当()有最大值,且最大值大于-时,求的取值范围.[解] ()()的定义域为(,+∞),′()=-.若≤,则′()>,所以()在(,+∞)上单调递增.若>,则当∈时,′()>;当∈时,′()<.所以()在上单调递增,在上单调递减.()由()知,当≤时,()在(,+∞)上无最大值;当>时,()在=取得最大值,最大值为=+=-+-.因此>-等价于+-<.令()=+-,则()在(,+∞)上单调递增,()=.于是,当<<时,()<;当>时,()>.因此,的取值范围是().最终归结到判断的符号问题上,而>或<,最终可转化为一个一元一次不等式或一元二次不等式问题若已知的单调性,则转化为不等式或在单调区间上恒成立问题求解跟踪训练] (·福州质检=+-(∈).【导学号:】()若=是()的极值点,求()的单调区间;()求()=()-在区间[,]的最小值().[解] ()()的定义域为(,+∞),′()=+-=,因为=是()的极值点,所以′()==,解得=.所以′()==,所以当<<或>时,′()>;当<<时,′()<.所以()的单调递增区间为和(,+∞),单调递减区间为.()由题知,()=()-=+--.′()=-=.①当≤,即≤时,()在[,]上为增函数,()=()=--;②当<<,即<<时,()在上为减函数,在上为增函数,()==--;③当≥,即≥时,()在[,]上为减函数,()=()=(-)+-.综上,()=错误!研究函数零点的本质就是研究函数的极值的正负,为此,我们可以通过讨论函数的单调性来解决,求解时应注重等价转化与数形结合思想的应用,其主要考查方式有:()确定函数的零点、图像交点的个数;()由函数的零点、图像交点的情况求参数的取值范围.(·全国卷Ⅰ)已知函数()=+(-)-.()讨论()的单调性;()若()有两个零点,求的取值范围.。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 坐标系与参数方程 第2节
第二节 参数方程[考纲传真] (教师用书独具)1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆曲线的参数方程.(对应学生用书第201页)[基础知识填充]1.曲线的参数方程(1)一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 取的每一个允许值,由方程组所确定的点P (x ,y )都在这条曲线上,那么方程组就叫作这条曲线的参数方程,联系x ,y 之间关系的变数t 叫作参变数,简称参数.相对于参数方程,我们直接用坐标(x ,y )表示的曲线方程f (x ,y )=0叫作曲线的普通方程.(2)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数,从参数方程得到普通方程.2.常见曲线的参数方程和普通方程[意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( ) (3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t=π3,点O 为原点,则直线OM 的斜率为 3.( ) [答案] (1)√ (2)√ (3)√ (4)×2.(教材改编)曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A .在直线y =2x 上 B .在直线y =-2x 上 C .在直线y =x -1上D .在直线y =x +1上B [由⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2,所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆, 所以对称中心为(-1,2),在直线y =-2x 上.] 3.(教材改编)在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t (t 为参数)的普通方程为________.x -y -1=0 [由x =2+22t ,且y =1+22t , 消去t ,得x -y =1,即x -y -1=0.] 4.椭圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B ,则|AB |min =________.185 [由⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),消去参数φ得x 225+y 29=1,当AB ⊥x 轴时,|AB |有最小值. 所以|AB |min =2×95=185.]5.(2017·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.[解] 直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45. 当s =2时,d min =455.因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455.(对应学生用书第202页)(1)求直线⎩⎪⎨⎪⎧x =2+t ,y =-1-t(t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.(2)在平面直角坐标系xOy中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.【导学号:79140389】[解] (1)将⎩⎪⎨⎪⎧x =2+t ,y =-1-t消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9.又圆心(0,0)到直线x +y -1=0的距离d =22<3.因此直线与圆相交,故直线与曲线有2个交点. (2)直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,所以椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0), 则3-a =0,∴a =3.法、加减消去法、恒等式三角的或代数的消去法普通方程化为参数方程时,先分清普通方程所表示的曲线类型,图2[解] 圆的半径为12,记圆心为C ⎝ ⎛⎭⎪⎫12,0,连接CP , 则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).(2017·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (1,2),倾斜角α=π6.(1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|PA |·|PB |的值.[解] (1)由⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ,消去θ,得圆C 的普通方程为x 2+y 2=16. 又直线l 过点P (1,2)且倾斜角α=π6,所以l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =2+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =2+12t (t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =1+32t ,y =2+12t代入x 2+y 2=16,得⎝⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫2+12t 2=16,t 2+(3+2)t -11=0,所以t 1t 2=-11,由参数方程的几何意义,|PA |·|PB |=|t 1t 2|=11. 解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有关的问题,如最值、2根据直线的参数方程的标准式中过定点M ①弦长l⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t(t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . [解] (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.(2018·石家庄质检(二))在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a +a cos β,y =a sin β(a >0,β为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程ρcos ⎝⎛⎭⎪⎫θ-π3=32.(1)若曲线C 与l 只有一个公共点,求a 的值;(2)A ,B 为曲线C 上的两点,且∠AOB =π3,求△OAB 的面积最大值.[解] (1)曲线C 是以(a,0)为圆心,以a 为半径的圆, 直线l 的直角坐标方程为x +3y -3=0.由直线l 与圆C 只有一个公共点,则可得|a -3|2=a ,解得a =-3(舍),a =1. 所以a =1.(2)法一:曲线C 的极坐标方程为ρ=2a cos θ(a >0), 设A 的极角为θ,B 的极角为θ+π3,则S △OAB =12|OA |·|OB |sin π3=34|2a cos θ|·⎪⎪⎪⎪⎪⎪2a cos ⎝⎛⎭⎪⎫θ+π3=3a 2⎪⎪⎪⎪⎪⎪cos θcos ⎝⎛⎭⎪⎫θ+π3,∵cos θcos ⎝ ⎛⎭⎪⎫θ+π3=12cos 2θ-32sin θcos θ =12·cos 2θ+12-34sin 2θ =12⎝ ⎛⎭⎪⎫12cos 2θ-32sin 2θ+14 =12cos ⎝⎛⎭⎪⎫2θ+π3+14,所以当θ=-π6时,12cos ⎝ ⎛⎭⎪⎫2θ+π3+14取得最大值34.△OAB 的面积最大值为33a24.法二:因为曲线C 是以(a,0)为圆心,以a 为半径的圆,且∠AOB =π3,由正弦定理得|AB |sinπ3=2a ,所以|AB |=3a .由余弦定理得|AB |2=3a 2=|OA |2+|OB |2-|OA |·|OB | ≥|OA |·|OB |,所以S △OAB =12|OA |·|OB |sin π3≤12×3a 2×32=33a 24, 所以△OAB 的面积最大值为33a 24.1涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解2数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用意义,直接求解,能达到化繁为简的解题目的[跟踪训练1⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(其中φ为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ(tan α·cos θ-sin θ)=1(α是常数,0<α<π,且α≠π2),点A ,B (A 在x 轴的下方)是曲线C 1与C 2的两个不同交点.(1)求曲线C 1的普通方程和C 2的直角坐标方程; (2)求|AB |的最大值及此时点B 的坐标.【导学号:79140390】[解] (1)∵⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,∴x 24+y 2=1,由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得曲线C 2的直角坐标方程为y =tan α·x -1.(2)由(1)得曲线C 2的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =-1+t sin α(t 是参数),设A (t 1cos α,-1+t 1sin α),B (t 2cos α,-1+t 2sin α),将C 2:⎩⎪⎨⎪⎧x =t cos α,y =-1+t sin α,代入x 24+y 2=1,整理得t 2(1+3sin 2α)-8t sin α=0, ∴t 1=0,t 2=8sin α1+3sin α, ∴|AB |=|t 1-t 2|=8|sin α|1+3sin 2α =83|sin α|+1|sin α|≤823=433(当且仅当sin α=33取等号), 当sin α=33时,∴0<α<π,且α≠π2, ∴cos α=±63, ∴B ⎝ ⎛⎭⎪⎫±423,13, ∴|AB |的最大值为433,此时点B 的坐标为⎝ ⎛⎭⎪⎫±423,13.。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第3章 三角函数、解三角形
第三节 三角函数的图像与性质[考纲传真] (教师用书独具)1.能画出y =sin x ,y =cos x ,y =tan x 的图像,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图像与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.(对应学生用书第51页)[基础知识填充]1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]图像的五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).余弦函数y =cos x ,x ∈[0,2π]图像的五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦函数、余弦函数、正切函数的图像与性质[(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ). 2.f (x )=A cos(ωx +φ)(A >0,ω>0). (1)f (x )为奇函数的充要条件:φ=k π+π2,k ∈Z .(2)f (x )为偶函数的充要条件:φ=k π,k ∈Z .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)常数函数f (x )=a 是周期函数,它没有最小正周期.( ) (2)函数y =sin x 的图像关于点(k π,0)(k ∈Z )中心对称.( ) (3)正切函数y =tan x 在定义域内是增函数.( ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (5)y =sin |x |是偶函数.( )[答案] (1)√ (2)√ (3)× (4)× (5)√2.(2017·全国卷Ⅱ)函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3的最小正周期为( ) A .4π B .2π C .πD .π2C [函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期T =2π2=π.故选C .] 3.函数y =tan 2x 的定义域是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π4,k ∈ZB .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π8,k ∈ZC .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π8,k ∈ZD .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈ZD [由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,所以y =tan 2x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z.] 4.函数y =sin ⎝ ⎛⎭⎪⎫12x +π3,x ∈[-2π,2π]的单调递增区间是( )A .⎣⎢⎡⎦⎥⎤-2π,-5π3 B .⎣⎢⎡⎦⎥⎤-2π,-5π3和⎣⎢⎡⎦⎥⎤π3,2πC .⎣⎢⎡⎦⎥⎤-5π3,π3D .⎣⎢⎡⎦⎥⎤π3,2πC [令z =12x +π3,函数y =sin z 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),由2k π-π2≤12x +π3≤2k π+π2得4k π-5π3≤x ≤4k π+π3,而x ∈[-2π,2π],故其单调递增区间是⎣⎢⎡⎦⎥⎤-5π3,π3,故选C .]5.(教材改编)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为________.-22 [由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22.](对应学生用书第52页)(1)(2016·全国卷Ⅱ)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A .4 B .5 C .6D .7(2)函数y =lg sin x +cos x -12的定义域为________.(1)B (2)⎩⎨⎧⎭⎬⎫x|2k π<x ≤π3+2k π,k ∈Z [(1)∵f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =cos 2x+6sin x=1-2sin 2x +6sin x =-2⎝⎛⎭⎪⎫sin x -322+112, 又sin x ∈[-1,1],∴当sin x =1时,f (x )取得最大值5.故选B . (2)要使函数有意义,则有 ⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),∴2k π<x ≤π3+2k π,k ∈Z .∴函数的定义域为⎩⎨⎧⎭⎬⎫x 2k π<x ≤π3+2k π,k ∈Z .]求三角函数定义域实际上是构造简单的三角不等式组,常借助三角函数线或三角函数图1直接法:直接利用2化一法:把所给三角函数化为ω+出函数的值域3换元法:把cos x 或x ±cos 解.[跟踪训练] (1)已知函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤3,π,值域为[a ,b ],则b -a 的值是( )A .2B .3C .3+2D .2- 3(2)函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________. (1)B (2)[-1,1] [(1)∵x ∈⎣⎢⎡⎦⎥⎤π3,π,∴cos x ∈⎣⎢⎡⎦⎥⎤-1,12,∴y =2cos x 的值域为[-2,1], ∴b -a =3.(2)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , 即sin x cos x =1-t22,且-1≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1; 当t =-1时,y min =-1. ∴函数的值域为[-1,1].](1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________.【导学号:79140111】(2)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.(1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)32 [(1)由已知函数为y =-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间即可.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).(2)∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减知,π2ω=π3,∴ω=32.]1代换法:求形如ω>2图像法:画出三角函数的图像,利用图像求它的单调区间2.已知三角函数的单调区间求参数[跟踪训练] (1)函数y =|tan x |在⎝ ⎭⎪⎫-2,2上的单调减区间为________.【导学号:79140112】(2)已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π6+cos 2x ,则f (x )的一个单调递减区间是( )A .⎣⎢⎡⎦⎥⎤π12,7π12B .⎣⎢⎡⎦⎥⎤-5π12,π12C .⎣⎢⎡⎦⎥⎤-π3,2π3D .⎣⎢⎡⎦⎥⎤-π6,5π6(1)⎝ ⎛⎦⎥⎤-π2,0和⎝ ⎛⎦⎥⎤π2,π (2)A [(1)如图,观察图像可知,y =|tan x |在⎝ ⎛⎭⎪⎫-π2,3π2上的单调减区间为⎝ ⎛⎦⎥⎤-π2,0和⎝ ⎛⎦⎥⎤π2,π.(2)由题意得f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+cos 2x =32sin 2x +12cos 2x +cos 2x =3sin ⎝⎛⎭⎪⎫2x +π3,由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π12+k π≤x ≤7π12+k π,k ∈Z ,令k =0,得函数y =f (x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤π12,7π12,故选A .]◎角度1 三角函数的奇偶性与周期性(1)在函数:①y =cos|2x |;②y =|cos x |;③y =cos2x +π6;④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( ) A .②④ B .①③④ C .①②③D .①③(2)函数y =1-2sin 2⎝ ⎛⎭⎪⎫x -3π4是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数(1)C (2)A [(1)①y =cos|2x |=cos 2x ,T =π. ②由图像知,函数的周期T =π. ③T =π. ④T =π2.综上可知,最小正周期为π的所有函数为①②③.(2)y =1-2sin 2⎝ ⎛⎭⎪⎫x -3π4=cos 2⎝ ⎛⎭⎪⎫x -3π4=-sin 2x ,所以f (x )是最小正周期为π的奇函数.]◎角度2 三角函数的对称性(1)(2018·东北三省四市模拟(一))已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的周期为π,则下列选项正确的是( )A .函数f (x )的图像关于点⎝ ⎛⎭⎪⎫π6,0对称B .函数f (x )的图像关于点⎝ ⎛⎭⎪⎫-π12,0对称 C .函数f (x )的图像关于直线x =π3对称D .函数f (x )的图像关于直线x =-π12对称(2)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( ) A .π4B .π3C .π2D .3π4(1)B (2)A [(1)因为ω=2πT =2,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π6.由2x +π6=k π(k ∈Z ),得x =k π2-π12(k ∈Z ),当k =0时,x =-π12,所以函数f (x )的图像关于点⎝ ⎛⎭⎪⎫-π12,0对称,故选B .(2)由题意得2πω=2⎝ ⎛⎭⎪⎫54π-π4,∴ω=1,∴f (x )=sin(x +φ),∴π4+φ=k π+π2(k ∈Z ),φ=k π+π4(k ∈Z ),又0<φ<π,∴φ=π4,故选A .]x =A ω的奇偶性与对称性1若f x =ωx +φ为偶函数,则当x 取得最大或最小值;若f x =A ωx +φ为奇函数,则当=0时,x =0.2对于函数y =A ωx φ,其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =或点x 0,是否是函数的对称轴或对称中心时,可通过检验x 0的值进行判断. 求三角函数周期的方法:1利用周期函数的定义2利用公式:ω和的最小正周期为ωx 的最小正周期为|.3借助函数的图像[跟踪训练] (1)(2017·全国卷Ⅲ)设函数f (x )=cos ⎝⎛⎭⎪⎫x +3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图像关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 (2)如果函数y =3cos(2x +φ)的图像关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为( ) A .π6B .π4C .π3D .π2(1)D (2) A [(1)A 项,因为f (x )=cos ⎝⎛⎭⎪⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3图像的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图像关于直线x =8π3对称,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-56π,当k =1时,x =π6,所以f (x +π)的一个零点为x =π6,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3(k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.故选D .(2)由题意得3cos ⎝ ⎛⎭⎪⎫2×4π3+φ=3cos ⎝⎛⎭⎪⎫2π3+φ+2π=3cos ⎝ ⎛⎭⎪⎫2π3+φ=0, 所以2π3+φ=k π+π2(k ∈Z ),φ=k π-π6(k ∈Z ),取k =0,得|φ|的最小值为π6.故选A .]。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 课时分层训练47 利用空间
课时分层训练(四十七) 利用空间向量求空间角A 组 基础达标一、选择题1.在正方体A 1B 1C 1D 1ABCD 中,AC 与B 1D 夹角的大小为( )A.π6 B.π4C.π3D .π2D [建立如图所示的空间直角坐标系,设正方体边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴AC →=(1,1,0),B 1D →=(-1,1,-1),∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 的夹角为π2.]2. (2017·西安调研)如图7720,在空间直角坐标系中有直三棱柱ABC A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )图7720A.55 B .-55C.255D .-255A [不妨设CB =1,则B (0,0,1),A (2,0,0),C 1=(0,2,0),B 1(0,2,1),∴BC 1→=(0,2,-1),AB 1→=(-2,2,1).cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=0+4-15×3=55.] 3.(2017·郑州调研)在正方体ABCD A 1B 1C 1D 1中,BB 1与平面ACD 1夹角的正弦值为( )【导学号:79140255】A.32B .33C.35 D .25B [设正方体的棱长为1,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示.则B (1,1,0),B 1(1,1,1),A (1,0,0),C (0,1,0),D 1(0,0,1),所以BB →1=(0,0,1),AC →=(-1,1,0),AD →1=(-1,0,1).令平面ACD 1的法向量为n =(x ,y ,z ),则n ·AC →=-x +y =0,n ·AD →1=-x +z =0,令x =1,可得n =(1,1,1),所以sin θ=|cos 〈n ,BB →1〉|=13×1=33.] 4.已知正三棱柱ABC A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1夹角的正弦值等于( ) A.64 B .104 C.22D .32A [如图所示建立空间直角坐标系,设正三棱柱的棱长为2,则O (0,0,0),B (3,0,0),A (0,-1,0),B 1(3,0,2),所以AB 1→=(3,1,2),由题知BO →=(-3,0,0)为侧面ACC 1A 1的法向量.即sin θ=|AB 1→·BO →||AB 1→||BO →|=64.故选A.]5.在正方体ABCD A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B .23 C.33D .22B [以A 为原点建立如图所示的空间直角坐标系A xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎪⎫1,0,-12.设平面A 1ED 的一个法向量为n 1=(1,y ,z ), ∴有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1). ∴cos〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.]二、填空题6.在长方体ABCD A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1夹角的正弦值为________. 13[以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设n =(x ,y ,z )为平面A 1BC 1的法向量,则n ·A 1B →=0,n ·A 1C 1→=0,即⎩⎪⎨⎪⎧2y -z =0,-x +2y =0,令z =2,则y =1,x =2,于是n =(2,1,2),D 1C 1→=(0,2,0).设所求线面角为α,则sin α=|cos 〈n ,D 1C 1→〉|=13.]7.如图7721所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为________.图772160° [∵CD →=CA →+AB →+BD →, ∴|CD →|=(CA →+AB →+BD →)2=36+16+64+2CA →·BD →=116+2CA →·BD →=217.∴CA →·BD →=|CA →|·|BD →|·cos〈CA →,BD →〉=-24. ∴cos〈CA →,BD →〉=-12.又所求二面角与〈CA →,BD →〉互补, ∴所求的二面角为60°.]8.在一直角坐标系中,已知A (-1,6),B (3,-8),现沿x 轴将坐标平面折成60°的二面角,则折叠后A ,B 两点间的距离为________.【导学号:79140256】217 [如图为折叠后的图形,其中作AC ⊥CD ,BD ⊥CD ,则AC =6,BD =8,CD =4, 两异面直线AC ,BD 夹角为60°. 故由AB →=AC →+CD →+DB →, 得|AB →|2=|AC →+CD →+DB →|2=68, 所以|AB →|=217.] 三、解答题9.(2018·合肥一检)如图7722,在四棱台ABCD A 1B 1C 1D 1中,AA 1⊥底面ABCD ,四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2.图7722(1)若M 为CD 的中点,求证:AM ⊥平面AA 1B 1B ; (2)求直线DD 1与平面A 1BD 夹角的正弦值.[解] (1)证明:∵四边形ABCD 为菱形,∠BAD =120°,连接AC ,则△ACD 为等边三角形,又∵M 为CD 的中点,∴AM ⊥CD , 由CD ∥AB 得AM ⊥AB . ∵AA 1⊥底面ABCD ,AM底面ABCD ,∴AM ⊥AA 1,又∵AB ∩AA 1=A , ∴AM ⊥平面AA 1B 1B .(2)∵四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2,得DM =1,AM =3,∴∠AMD =∠BAM =90°, 又∵AA 1⊥底面ABCD ,∴以点A 为原点,分别以AB ,AM ,AA 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A xyz ,A 1(0,0,2),B (2,0,0),D (-1,3,0),D 1⎝ ⎛⎭⎪⎫-12,32,2, ∴DD →1=⎝ ⎛⎭⎪⎫12,-32,2,BD →=(-3,3,0),A 1B →=(2,0,-2).设平面A 1BD 的法向量为n =(x ,y ,z ), 则有⎩⎪⎨⎪⎧n ·BD →=0,n ·A 1B →=0,⇒⎩⎨⎧-3x +3y =0,2x -2z =0,令x =1,则n =(1,3,1).∴直线DD 1与平面A 1BD 夹角θ的正弦值 sin θ=|cos 〈n ,DD →1〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DD →1|n ||DD →1|=15.10.(2017·江苏高考)如图7723,在平行六面体ABCD A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.图7723(1)求异面直线A 1B 与AC 1夹角的余弦值; (2)求二面角B A 1D A 的正弦值.[解] 在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E .因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD . 如图,以{AE →,AD →,AA 1→}为正交基底,建立空间直角坐标系A xyz .因为AB =AD =2,AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3).(1)A 1B →=(3,-1,-3),AC 1→=(3,1,3), 则cos 〈A 1B →,AC 1→〉=A 1B →·AC 1→|A 1B →||AC 1→|=(3,-1,-3)·(3,1,3)7=-17,因此异面直线A 1B 与AC 1夹角的余弦值为17.(2)平面A 1DA 的一个法向量为AE →=(3,0,0). 设m =(x ,y ,z )为平面BA 1D 的一个法向量, 又A 1B →=(3,-1,-3),BD →=(-3,3,0), 则⎩⎪⎨⎪⎧m ·A 1B →=0,m ·BD →=0,即⎩⎨⎧3x -y -3z =0,-3x +3y =0.不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量.从而cos 〈AE →,m 〉=AE →·m |AE →||m |=(3,0,0)·(3,3,2)3×4=34.设二面角B A 1D A 的大小为θ,则|cos θ|=34.因为θ∈[0,π],所以sin θ=1-cos 2θ=74.因此二面角B A 1D A 的正弦值为74. B 组 能力提升11.(2017·河南百校联盟联考)已知斜四棱柱ABCD A 1B 1C 1D 1的各棱长均为2,∠A 1AD =60°,∠BAD =90°,平面A 1ADD 1⊥平面ABCD ,则直线BD 1与平面ABCD 夹角的正切值为( )【导学号:79140257】A.34 B .134 C.3913D .393C [取AD 中点O ,连接OA 1,易证A 1O ⊥平面ABCD .建立如图所示的空间直角坐标系,得B (2,-1,0),D 1(0,2,3),BD 1→=(-2,3,3),平面ABCD 的一个法向量为n =(0,0,1),设BD 1与平面ABCD 的夹角为θ,∴sin θ=|BD 1→·n ||BD 1→|·|n |=34,∴tan θ=3913.] 12.已知点E ,F 分别在正方体ABCD A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值等于________.23[延长FE ,CB 相交于点G ,连接AG ,如图所示. 设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求二面角的平面角.∵BH =322,EB =1,∴tan∠EHB =EB BH =23.]13.(2017·全国卷Ⅱ)如图7724,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.图7724(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M AB D 的余弦值.【导学号:79140258】[解] (1)证明:取PA 的中点F ,连接EF ,BF . 因为E 是PD 的中点,所以EF ∥AD ,EF =12AD .由∠BAD =∠ABC =90°得BC ∥AD , 又BC =12AD ,所以EF ═∥BC , 四边形BCEF 是平行四边形,CE ∥BF .又BF 平面PAB ,CE ⊆/平面PAB ,故CE ∥平面PAB .(2)由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系A xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则 BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3).因为BM 与底面ABCD 的夹角为45°, 而n =(0,0,1)是底面ABCD 的法向量, 所以|cos 〈BM →,n 〉|=sin 45°,|z |(x -1)2+y 2+z2=22, 即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①②解得⎩⎪⎨⎪⎧x =1+22,y =1,z =-62(舍去),或⎩⎪⎨⎪⎧x =1-22,y =1,z =62,所以M ⎝ ⎛⎭⎪⎫1-22,1,62,从而AM →=⎝⎛⎭⎪⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则 ⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2). 于是cos 〈m ,n 〉=m·n |m||n|=105.因此二面角M AB D 的余弦值为105.。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第4章 平面向量、数系的扩
第二节 平面向量的基本定理及坐标表示[考纲传真] (教师用书独具)1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.(对应学生用书第71页)[基础知识填充]1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中a ≠0,b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0. [知识拓展]1.若a 与b 不共线,λa +μb =0,则λ=μ=0.2.设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内的任何两个向量都可以作为一组基底.( )(2)在△ABC 中,设AB →=a ,BC →=b ,则向量a 与b 的夹角为∠ABC .( ) (3)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( ) (4)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( )(5)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( ) (6)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( ) [答案] (1)× (2)× (3)√ (4)√ (5)× (6)√2.已知平面向量a =(2,-1),b =(1,3),那么|a +b |等于 ( )A .5B .13C .17D .13B [因为a +b =(2,-1)+(1,3)=(3,2),所以|a +b |=32+22=13.] 3.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________.0 [假设λ1≠0,由λ1e 1+λ2e 2=0,得e 1=-λ2λ1e 2,∴e 1与e 2共线,这与e 1,e 2是平面内一组基底矛盾,故λ1=0,同理,λ2=0,∴λ1+λ2=0.]4.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________.-6 [∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0,∴m =-6.]5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.(1,5) [设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.](对应学生用书第72页)(1)如图421,在三角形ABC 中,BE 是边AC 的中线,O 是BE 边的中点,若AB →=a ,AC →=b ,则AO →=( )图421A .12a +12b B .12a +13bC .14a +12b D .12a +14b (2)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.(1)D (2)43 [(1)∵在三角形ABC 中,BE 是AC 边上的中线,∴AE →=12AC →.∵O 是BE 边的中点,∴AO →=12(AB →+AE →)=12AB →+14AC →=12a +14b .(2)选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →,于是得⎩⎪⎨⎪⎧12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以λ+μ=43.]1应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算2用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决 [跟踪训练] 如图422,以向量OA =a ,OB =b 为邻边作▱OADB ,BM =3BC ,CN =3CD ,用a ,b 表示OM →,ON →,MN →.图422[解] ∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=16a +56b .∵OD →=a +b ,∴ON →=OC →+13CD →=12OD →+16OD →=23OD →=23a +23b , ∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b .综上,OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b .已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.【导学号:79140151】[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点.∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18). 1利用向量加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标2解题过程中,常利用“向量相等,则坐标相同”这一结论,由此可列方程组进行求解.[跟踪训练] (1)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( )A .⎝ ⎛⎭⎪⎫2,72 B .⎝ ⎛⎭⎪⎫2,-12 C .(3,2)D .(1,3)(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →=( ) A .(-2,7) B .(-6,21) C .(2,-7)D .(6,-21)(1)A (2)B [(1)设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,∴⎩⎪⎨⎪⎧4=2x ,3=2(y -2),∴⎩⎪⎨⎪⎧x =2,y =72,故选A .(2)∵BP →=2PC →,∴BC →=3PC →=3(PA →+AC →).∵Q 是AC 的中点,∴AC →=2AQ →,又AQ →=AP →+PQ →,∴BC →=3[PA →+2(AP →+PQ →)]=(-6,21).]已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB →=2a +3b ,BC →=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1), ∴k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0, ∴k =-12.(2)AB →=2(1,0)+3(2,1)=(8,3), BC →=(1,0)+m (2,1)=(2m +1,m ).∵A ,B ,C 三点共线, ∴AB →∥BC →,∴8m -3(2m +1)=0, ∴m =32.1a ∥b ;2a ∥2y 1=其中x 1,,b x 2,2.当涉及向量或点的坐标问题时一般利用2比较方便. 2.与向量共线有关的题型与解法1证三点共线:可先证明相关的两向量共线,再说明两向量有公共点;2已知向量共线,求参数:可利用向量共线的充要条件列方程组求解[跟踪训练b =(1,-2b ),则m 的值是( ) A .-4 B .1 C .0D .-2(2)已知向量OA →=(k,12),OB →=(4,5),OC →=(-k,10),且A ,B ,C 三点共线,则实数k 的值是________.【导学号:79140152】(1)A (2)-23 [(1)a +2b =(4,m -4),由a ∥(a +2b ),得2(m -4)=4m ,m =-4,故选A .(2)AB →=OB →-OA →=(4-k ,-7), AC →=OC →-OA →=(-2k ,-2).∵A ,B ,C 三点共线, ∴AB →,AC →共线,∴-2×(4-k )=-7×(-2k ),解得k =-23.]。
2019年高考数学一轮复习学案 训练 课件(北师大版理科) 第9章 算法初步、统计与统计案例 第3节 统计图表、
第三节统计图表、用样本估计总体[考纲传真] (教师用书独具).了解分布的意义与作用,能根据概率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.理解样本数据标准差的意义和作用,会计算数据标准差.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.(对应学生用书第页)[基础知识填充].常用统计图表()频率分布表的画法:第一步:求极差,决定组数和组距,组距=;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;第三步:登记频数,计算频率,列出频率分布表.()频率分布直方图:反映样本频率分布的直方图.横轴表示样本数据,纵轴表示,每个小矩形的面积表示样本落在该组内的频率.()频率分布折线图和总体密度曲线①频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.②总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.()茎叶图的画法:第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将各个数据的茎按大小次序排成一列;第三步:将各个数据的叶依次写在其茎的右(左)侧..样本的数字特征()众数、中位数、平均数①标准差:样本数据到平均数的一种平均距离,一般用表示,=. ②方差:标准差的平方=[(-)+(-)+…+(-)],其中(=,…,)是样本数据,是样本容量,是样本平均数. [知识拓展] 平均数、方差的公式推广()若数据,,…,的平均数为,那么+,+,+,…,+的平均数是+. ()数据,,…,的方差为. ①数据+,+,…,+的方差也为; ②数据,,…,的方差为.[基本能力自测].(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( ) ()一组数据的方差越大,说明这组数据越集中. ( )()频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.( )()茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )[解析] ()正确.平均数、众数与中位数都在一定程度上反映了数据的集中趋势. ()错误.方差越大,这组数据越离散. ()正确.小矩形的面积=组距×=频率.()错误.茎相同的数据,叶可不用按从小到大的顺序写,相同的数据叶要重复记录,故()错误.[答案] ()√ ()× ()√ ()×.(教材改编)若某校高一年级个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )图。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第10章 计数原理、概率、
第三节 二项式定理[考纲传真] (教师用书独具)会用二项式定理解决与二项展开式有关的简单问题.(对应学生用书第173页)[基础知识填充]1.二项式定理(1)0≤r ≤n 时,C r n 与C n -r n 的关系是C r n =C n -rn . (2)二项式系数先增大后减中间项最大当n 为偶数时,第-1项的二项式系数最大,最大值为;当n 为奇数时,第项和项的二项式系数最大,最大值为和.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C nn =2n, C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.[知识拓展] 二项展开式形式上的特点(1)项数为n +1.(2)各项押次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C nn .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)C k n an -k b k是(a +b )n 的展开式中的第k 项.( )(2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n的展开式中某一项的二项式系数与a ,b 无关.( )(4)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( ) [解析] (1)错误.应为第k +1项.(2)错误.当a ,b 中包含数字时,系数最大的项不一定为中间一项或中间两项.(3)正确.二项式系数只与n 和项数有关.(4)错误.令x =1,可得a 7+a 6+…+a 1+a 0=27=128. [答案] (1)× (2)× (3)√ (4)×2.(教材改编)二项式⎝ ⎛⎭⎪⎫2x +1x 26的展开式中,常数项的值是( )A .240B .60C .192D .180A [二项式⎝ ⎛⎭⎪⎫2x +1x 26展开式的通项为T r +1=C r 6(2x )6-r ⎝ ⎛⎭⎪⎫1x2r=26-r C r 6x 6-3r,令6-3r =0,得r =2,所以常数项为26-2C 26=16×6×52×1=240.] 3.已知(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 8等于( )A .180B .-180C .45D .-45A [由题意得a 8=C 81022(-1)8=180.]4.(2017·山东高考)已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________.4 [(1+3x )n的展开式的通项为T r +1=C rn (3x )r.令r =2,得T 3=9C 2n x 2.由题意得9C 2n =54,解得n =4.]5.在⎝⎛⎭⎪⎫x +2x25的展开式中,x 2的系数是________,各项系数之和为________.(用数字作答)10 243 [x 2的系数为C 15×2=10;令x =1,得各项系数之和为(1+2)5=243.](对应学生用书第173页)◎角度1 求展开式中的某一项(2018·合肥二测)在⎝⎛⎭⎪⎫x -1x-14的展开式中,常数项为________.-5 [由题知,二项式展开式为C 04⎝ ⎛⎭⎪⎫x -1x 4·(-1)0+C 14⎝ ⎛⎭⎪⎫x -1x 3·(-1)+C 24⎝ ⎛⎭⎪⎫x -1x 2·(-1)2+C 34⎝ ⎛⎭⎪⎫x -1x ·(-1)3+C 44⎝ ⎛⎭⎪⎫x -1x 0·(-1)4,则常数项为C 04·C 24-C 24·C 12+C 44=6-12+1=-5.]◎角度2 求展开式中的项的系数或二项式系数(2017·全国卷Ⅰ)⎝⎛⎭⎪⎫1+1x2(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .35C [对于⎝⎛⎭⎪⎫1+1x 2(1+x )6,若要得到x 2项,可以在⎝⎛⎭⎪⎫1+1x2中选取1,此时(1+x )6中要选取含x 2的项,则系数为C 26;当在⎝ ⎛⎭⎪⎫1+1x2中选取1x2时,(1+x )6中要选取含x 4的项,即系数为C 46,所以,展开式中x 2项的系数为C 26+C 46=30,故选C.] ◎角度3 由已知条件求n 的值或参数的值(2018·云南二检)在(x -2-1x )n的二项展开式中,若第四项的系数为-7,则n =( ) A .9 B .8 C .7D .6B [由题意,得C 3n ⎝ ⎛⎭⎪⎫-123=-7,解得n =8,故选B.] [规律方法] 求二项展开式中的特定项的方法 求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围k =0,1,2,…,n . 1第m 项:此时k +1=m ,直接代入通项;2常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; 3有理项:令通项中“变元”的幂指数为整数建立方程. 特定项的系数问题及相关参数值的求解等都可依据上述方法求解.4求特定项或特定项的系数要多从组合的角度求解,一般用通项公式太麻烦. [跟踪训练] (1)(2017·全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( )A .-80B .-40C .40D .80(2)在⎝⎛⎭⎪⎪⎫x 2-13x n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )【导学号:79140347】A .-7B .7C .-28D .28(3)(2018·西宁检测(一))若⎝⎛⎭⎪⎫x 2+a xn的展开式中,二项式系数和为64,所有项的系数和为729,则a 的值为________.(1)C (2)B (3)-4或2 [(1)因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40,x 3y 3=y ·(x 3y 2),其系数为C 25·23=80.所以x 3y 3的系数为80-40=40. 故选C.(2)由题意知n 2+1=5,解得n =8,⎝ ⎛⎭⎪⎪⎫x 2-13x 8的展开式的通项T k +1=C k 8⎝ ⎛⎭⎪⎫x 28-k⎝⎛⎭⎪⎪⎫-13x k=(-1)k 2k -8C k8x8-43k .令8-4k 3=0得k =6,则展开式中的常数项为(-1)626-8C 68=7.(3)由二项式系数和为64得2n=64,解得n =6.令x =1,得所有项的系数和为(1+a )6=729,解得a =2或a =-4.](1)已知(1+x )n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .29(2)(2015·全国卷Ⅱ)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.(1)D (2)3 [(1)∵(1+x )n的展开式中第4项与第8项的二项式系数相等, ∴C 3n =C 7n ,解得n =10.从而C 010+C 110+C 210+…+C 1010=210,∴奇数项的二项式系数和为C 010+C 210+…+C 1010=29. (2)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5. 令x =1,得(a +1)×24=a 0+a 1+a 2+a 3+a 4+a 5. ① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.②①-②,得16(a +1)=2(a 1+a 3+a 5)=2×32,∴a =3.] [规律方法] 赋值法的应用(1)对形如(ax +b )n(a ,b ∈R )的式子求其展开式各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n(a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)一般地,对于多项式(a +bx )n =a 0+a 1x +a 2x 2+…+a n x n ,令g (x )=(a +bx )n,则 (a +bx )n展开式中各项的系数的和为g (1),(a +bx )n展开式中奇数项的系数和为12[g (1)+g (-1)],(a +bx )n展开式中偶数项的系数和为12[g (1)-g (-1)].[跟踪训练] (1)(2018·合肥一检)已知(ax +b )6的展开式中x 4项的系数与x 5项的系数分别为135与-18,则(ax +b )6展开式所有项系数之和为( ) A .-1 B .1 C .32D .64(2)(2018·杭州质检)若⎝ ⎛⎭⎪⎫2x -1x2n的展开式中所有二项式系数和为64,则n =________;展开式中的常数项是________.(1)D (2)6 240 [(1)由题意可得⎩⎪⎨⎪⎧C 26a 4b 2=135,C 16a 5b =-18,解得{ a =1,b =-3或{ a =-1,b =3,则(ax +b )6=(x -3)6,令x =1得展开式中所有项的系数和为(-2)6=64,故选D.(2)由⎝ ⎛⎭⎪⎫2x -1x2n的展开式中所有二次项系数和为64,得2n=64,n =6,则展开式第r+1项是T r +1=C r 6(2x )6-r⎝ ⎛⎭⎪⎫-1x 2r=C r 6·26-r ×(-1)r x 6-3r ,当r =2时为常数项,则常数项是C 26×24×(-1)2=15×16=240.](1)(2017·豫东名校模拟)设复数x =2i 1-i(i 是虚数单位),则C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x 2 017=( )A .iB .-iC .-1+iD .-1-i(2)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11D .12(1)C(2)D[(1)x=2i1-i=-1+i,C12 017x+C22 017x2+C32 017x3+…+C2 0172 017x2 017=(1+x)2 017-1=i2 017-1=-1+i.(2)512 012+a=(52-1)2 012+a=C02 012·522 012-C12012·522 011+…+C2 0112 012·52·(-1)2 011+C2 0122 012·(-1)2 012+a,∵C02 012·522 012-C12012·522 011+…+C2 0112 012·52·(-1)2 011能被13整除.且512 012+a能被13整除,∴C20122012·(-1)2 012+a=1+a也能被13整除.因此a可取值12.][规律方法] 1.逆用二项式定理的关键根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.2.利用二项式定理解决整除问题的思路1观察除式与被除式间的关系.2将被除式拆成二项式.3余数是非负整数.4结合二项式定理得出结论.[跟踪训练] 1.028的近似值是________.(精确到小数点后三位)【导学号:79140348】1.172 [1.028=(1+0.02)8≈C08+C18·0.02+C28·0.022+C38·0.023≈1.172.]。
2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第2章 函数、导数及其应用 第3节 函
第三节 函数的奇偶性、周期性与对称性[考纲传真] (教师用书独具)1.了解函数奇偶性的含义.2.会运用基本初等函数的图像分析函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.(对应学生用书第13页)[基础知识填充]1.奇函数、偶函数图像关于原点对称的函数叫作奇函数.在奇函数f (x )中,f (x )和f (-x )的绝对值相等,符号相反.即f (-x )=-f (x ),反之,满足f (-x )=-f (x )的函数一定是奇函数.图像关于y 轴对称的函数叫作偶函数.在偶函数f (x )中,f (x )=f (-x ),反之,满足f (-x )=f (x )的函数一定是偶函数.2.奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性相同;偶函数在关于原点的区间上的单调性相反(填“相同”“相反”). (2)在公共定义域内①两个奇函数和函数是奇函数,两个奇函数的积函数是偶函数. ②两个偶函数的和函数、积函数是偶函数. ③一个奇函数,一个偶函数的积函数是奇函数.(3)若函数f (x )是奇函数且x =0处有定义,则f (0)=0.3.函数的周期性(1)周期函数:对于函数f (x ),如果存在非零常数T ,对定义域内的任意一个x ,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫作f (x )的最小正周期.4.函数的对称性常见的结论(1)函数y =f (x )关于x =a +b2对称⇔f (a +x )=f (b -x )⇔f (x )=f (b +a -x ).特殊:函数y =f (x )关于x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x ); 函数y =f (x )关于x =0对称⇔f (x )=f (-x )(即为偶函数).(2)函数y =f (x )关于点(a ,b )对称⇔f (a +x )+f (a -x )=2b ⇔f (2a +x )+f (-x )=2b .特殊:函数y =f (x )关于点(a,0)对称⇔f (a +x )+f (a -x )=0⇔f (2a +x )+f (-x )=0; 函数y =f (x )关于(0,0)对称⇔f (x )+f (-x )=0(即为奇函数). (3)y =f (x +a )是偶函数⇔函数y =f (x )关于直线x =a 对称;y =f (x +a )是奇函数⇔函数y =f (x )关于点(a,0)对称.[知识拓展]1.函数奇偶性常用结论(1)若奇函数f (x )在x =0处有定义,则f (0)=0. (2)如果函数f (x )是偶函数,那么f (x )=f (|x |).(3)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(4)y =f (x +a )是奇函数,则f (-x +a )=-f (x +a );y =f (x +a )是偶函数,则f (-x +a )=f (x +a ).2.函数周期性常用结论对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f x,则T =2a (a >0). (3)若f (x +a )=-1f x,则T =2a (a >0). [基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y =x 2,x ∈(0,+∞)是偶函数.( )(2)偶函数图像不一定过原点,奇函数的图像一定过原点.( )(3)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( ) (4)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.( ) (5)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( )[答案] (1)× (2)× (3)√ (4)√ (5)√2.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13B.13 C.12D .-12B [依题意b =0,且2a =-(a -1), ∴b =0且a =13,则a +b =13.]3.(教材改编)下列函数为偶函数的是( )A .f (x )=x -1B .f (x )=x 2+xC .f (x )=2x -2-xD .f (x )=2x +2-xD [D 中,f (-x )=2-x+2x=f (x ), ∴f (x )为偶函数.]4.已知定义在R 上的奇函数f (x )满足f (x +4)=f (x ),则f (8)的值为( )A .-1B .0C .1D .2B [∵f (x )为定义在R 上的奇函数,∴f (0)=0,又f (x +4)=f (x ),∴f (8)=f (0)=0.]5.(2017·全国卷Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________. 12 [法一:令x >0,则-x <0. ∴f (-x )=-2x 3+x 2.∵函数f (x )是定义在R 上的奇函数, ∴f (-x )=-f (x ). ∴f (x )=2x 3-x 2(x >0). ∴f (2)=2×23-22=12. 法二:f (2)=-f (-2) =-[2×(-2)3+(-2)2]=12.](对应学生用书第14页)判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=ln(x 2+1+x ); (3)f (x )=(x +1)1-x1+x; (4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.[解] (1)由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0,∴f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数. (2)f (x )的定义域为R ,f (-x )=(ln x 2+1-x )=ln1x 2+1+x=-ln(x 2+1+x )=-f (x ), ∴f (x )为奇函数.(3)由1-x 1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(4)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函数是偶函数. [规律方法] 判断函数奇偶性的三种常用方法 (1)定义法(2)图像法(3)性质法在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. [跟踪训练] (1)(2018·深圳二调)下列函数中,既是偶函数又在(0,1)上单调递增的是( )A .y =cos xB .y =xC .y =2|x |D .y =|lg x |(2)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A .f (x )g (x )是偶函数 B .|f (x )|g (x )是奇函数 C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数(1)C (2)C [(1)由于对应函数是偶函数,可以排除选项B ,D ;对应函数在(0,1)上单调递增,可以排除选项A ;y =2|x |是偶函数,又在(0,1)上单调递增,选项C 正确,故选C.(2)A :令h (x )=f (x )·g (x ),则h (-x )=f (-x )·g (-x )=-f (x )·g (x )=-h (x ), ∴h (x )是奇函数,A 错.B :令h (x )=|f (x )|g (x ),则h (-x )=|f (-x )|g (-x )=|-f (x )|·g (x )=|f (x )|g (x )=h (x ),∴h (x )是偶函数,B 错.C :令h (x )=f (x )|g (x )|,则h (-x )=f (-x )|g (-x )|=-f (x )·|g (x )|=-h (x ),∴h (x )是奇函数,C 正确.D :令h (x )=|f (x )·g (x )|,则h (-x )=|f (-x )·g (-x )|=|-f (x )·g (x )|=|f (x )·g (x )|=h (x ),∴h (x )是偶函数,D 错.](1)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________.【导学号:79140031】(2)已知定义在R 上的函数满足f (x +2)=-1f x,x ∈(0,2]时,f (x )=2x -1.则f (1)+f (2)+f (3)+…+f (2 019)的值为________.(1)-2 (2)1 347 [(1)∵f (x )是周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2,f (2)=f (0)=0,∴f ⎝ ⎛⎭⎪⎫-52+f (2)=-2+0=-2.(2)∵f (x +2)=-1f x,∴f (x +4)=-1f x +2=f (x ),∴函数y =f (x )的周期T =4. 又x ∈(0,2]时,f (x )=2x -1, ∴f (1)=1,f (2)=3,f (3)=-1f 1=-1, f (4)=-1f 2 =-13.∴f (1)+f (2)+f (3)+…+f (2 019)=504[f (1)+f (2)+f (3)+f (4)]+f (504×4+1)+f (504×4+2)+f (504×4+3) =504⎝ ⎛⎭⎪⎫1+3-1-13+1+3-1=1 347.]f ⎝⎛⎭⎪⎫2 0165+lg 18=________.1 [由函数f (x )是周期为2的奇函数, 得f ⎝ ⎛⎭⎪⎫2 0165=f ⎝ ⎛⎭⎪⎫65=f ⎝ ⎛⎭⎪⎫-45=-f ⎝ ⎛⎭⎪⎫45=-lg 95=lg 59,故f ⎝ ⎛⎭⎪⎫2 0165+lg 18=lg 59+lg 18=lg 10=1.]◎角度1 单调性与奇偶性结合(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]D [∵f (x )为奇函数,∴f (-x )=-f (x ).∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.故选D.]◎角度2 奇偶性与周期性结合(2017·山东高考)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.6 [∵f(x+4)=f(x-2),∴f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),∴f(x)是周期为6的周期函数,∴f(919)=f(153×6+1)=f(1).又f(x)是定义在R上的偶函数,∴f(1)=f(-1)=6,即f(919)=6.]◎角度3 单调性、奇偶性与周期性结合(1)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)(2)已知定义在实数上的偶函数f(x)满足:f(x+4)=f(x)+f(2),当x∈[0,2]时,y=f(x)递减,下列四个命题中正确命题的序号是________.①f(2)=0;②x=-4是y=f(x)图像的一条对称轴;③y=f(x)在[8,10]单增;④f(x)是周期函数;⑤若方程f(x)=m在[-6,-2]上有两根x1,x2,则x1+x2=-8.(1)D(2)①②④⑤[(1)因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).因为f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,所以f(x)在区间[-2,2]上是增函数,所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).(2)令x=-2得f(-2+4)=f(-2)+f(2),解得f(2)=0,故f(x+4)=f(x),所以f(x)的周期为4,又f(x)为偶函数,y轴是f(x)的对称轴,故x=-4是y=f(x)的一条对称轴,由函数的对称性和周期可判断y=f(x)在[8,10]上单调递增,因[-6,-2]为f(x)的一个周期,x=-4为f(x)在[-6,-2]上的对称轴,故x1+x2=-8,因此①②④⑤正确,③错误.][跟踪训练] (1)(2017·天津高考)已知奇函数f (x )在R 上是增函数.若a =-f ⎝⎛⎭⎪⎫log 2 5,b =f (log 2 4.1),c =f (20.8),则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b(2)(2018·青岛质检)定义在R 上的奇函数f (x )满足f (2+x )=f (2-x ),且f (1)=1,则f (2 017)=________.【导学号:79140032】A .0B .1C .-1D .-2(3)偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________. (1)C (2)B (3)3 [(1)∵f (x )在R 上是奇函数, ∴a =-f ⎝⎛⎭⎪⎫log 215=f ⎝ ⎛⎭⎪⎫-log 215=f (log 25).又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8, ∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c . 故选C.(2)由题意得f (x +4)=f (2-(x +2))=f (-x )=-f (x ),∴f (x +8)=-f (x +4)=f (x ),∴函数f (x )以8为周期,∴f (2 017)=f (1)=1,故选B.(3)∵函数y =f (x )的图像关于直线x =2对称,∴f (2+x )=f (2-x ),∴f (3)=f (1)=3,又∵y =f (x )是偶函数,∴f (-1)=f (1)=3.]。
2019年高考数学一轮复习学案 训练 课件(北师大版理科) 第1章 集合与常用逻辑用语 第2节 命题及其关系、充
第二节命题及其关系、充分条件与必要条件[考纲传真] (教师用书独具).理解命题的概念;了解“若,则”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.(对应学生用书第页)[基础知识填充].四种命题及其相互关系()四种命题间的相互关系图()四种命题的真假关系①两个命题互为逆否命题,它们有的真假性;相同②没有关系.两个命题互为逆命题或互为否命题,它们的真假性.充分条件与必要条件()若⇒,则是的充分条件,是的必要条件;()若⇒,且,则是的充分不必要条件;()若且⇒,则是的必要不充分条件;()若⇔,则是的充要条件;()若且,则是的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合={满足条件},={满足条件},则有:()若⊆,则是的充分条件,若,则是的充分不必要条件.()若⊆,则是的必要条件,若,则是的必要不充分条件.()若=,则是的充要条件.[基本能力自测].(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()“+-<”是命题.( )()命题“若,则”的否命题是“若,则﹁”.( )()四种形式的命题中,真命题的个数为或或.( )()当是的必要条件时,是的充分条件.( )()“若不成立,则不成立”等价于“若成立,则成立”.( )[解析]()错误.该语句不能判断真假,故该说法是错误的.()错误.否命题既否定条件,又否定结论.()正确.因为两个命题互为逆否命题,它们有相同的真假性.()正确.是的必要条件说明⇒,所以是的充分条件.()正确.原命题与逆否命题是等价命题.[答案]()×()×()√()√()√.(教材改编)命题“若α=,则α=”的逆否命题是( ).若α≠,则α≠.若α=,则α≠.若α≠,则α≠.若α≠,则α=[“若,则”的逆否命题是“若﹁,则﹁”,显然﹁:α≠,﹁:α≠,所以该命题的逆否命题是“若α≠,则α≠”.].“=”是“(-)(+)=”的( ).充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件[若=,则(-)(+)=显然成立,但反之不一定成立,即若(-)(+)=,则=或-.] .命题“若>-,则>-”以及它的逆命题、否命题、逆否命题中真命题的个数为( ) ....[原命题正确,从而其逆否命题也正确;其逆命题为“若>-,则>-”是假命题,从而其否命题也是假命题.因此个命题中有个真命题.].(·天津高考)设∈,则“-≥”是“-≤”的( ).充分而不必要条件.必要而不充分条件.充要条件.既不充分也不必要条件[∵-≥,∴≤.∵-≤,∴≤≤.∵当≤时不一定有≥,当≤≤时一定有≤,∴“-≥”是“-≤”的必要而不充分条件.。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 课时分层训练28 平面向量
课时分层训练(二十八) 平面向量的数量积与平面向量应用举例A 组 基础达标一、选择题1.在边长为1的等边△ABC 中,设BC →=a ,CA →=b ,AB →=c ,则a ·b +b ·c +c ·a =( )A .-32B .0 C.32D .3A [依题意有a ·b +b ·c +c ·a =⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12=-32.] 2.已知AB →=(2,1),点C (-1,0),D (4,5),则向量AB →在CD →方向上的投影为 ( )A .-322B .-3 5 C.322D .35C [因为点C (-1,0),D (4,5),所以CD =(5,5),又AB →=(2,1),所以向量AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322.]3.(2018·海口调研)若向量a =(2,-1),b =(3-x,2),c =(4,x )满足(6a -b )·c =8,则x 等于( )A .4B .5C .6D .7D [因为6a -b =(9+x ,-8),所以(6a -b )·c =36+4x -8x =8,解得x =7,故选D.]4.已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎪⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) 【导学号:79140158】A .-43B .-45C .45D .34A [由题意知6sin 2α+cos α·(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0,上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎪⎫3π2,2π,则tan α<0,解得tan α=-43,故选A.]5.(2016·山东高考)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4 C.94D .-94B [∵n ⊥(t m +n ),∴n ·(t m +n )=0, 即t m ·n +|n |2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0. 又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4.故选B.] 二、填空题6.(2016·全国卷Ⅰ)设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________.-2 [∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.]7.(2018·合肥一检)若非零向量a ,b 满足|a |=1,|b |=2,且(a +b )⊥(3a -b ),则a 与b 夹角的余弦值为________.14[由(a +b )⊥(3a -b )可得(a +b )·(3a -b )=0,又|a |=1,|b |=2,则可得a·b =12,设a ,b 的夹角为θ,θ∈[0,π],则cos θ=a·b |a |·|b |=14.] 8.已知向量a =⎝ ⎛⎭⎪⎫-12,32,OA →=a -b ,OB →=a +b ,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积为________.【导学号:79140159】1 [由题意得,|a |=1,又△OAB 是以O 为直角顶点的等腰直角三角形,所以OA →⊥OB →,|OA →|=|OB →|.由OA →⊥OB →得(a -b )·(a +b )=|a |2-|b |2=0,所以|a |=|b |, 由|OA →|=|OB →|得|a -b |=|a +b |,所以a·b =0. 所以|a +b |2=|a |2+|b |2=2,所以|OB →|=|OA →|=2,故S △OAB =12×2×2=1.]三、解答题9.已知|a |=4,|b |=8,a 与b 的夹角是120°.(1)计算:①|a +b |,②|4a -2b |; (2)当k 为何值时,(a +2b )⊥(k a -b ).[解] 由已知得,a ·b =4×8×⎝ ⎛⎭⎪⎫-12=-16. (1)①∵|a +b |2=a 2+2a ·b +b 2=16+2×(-16)+64=48,∴|a +b |=4 3. ②∵|4a -2b |2=16a 2-16a ·b +4b 2=16×16-16×(-16)+4×64=768, ∴|4a -2b |=16 3.(2)∵(a +2b )⊥(k a -b ),∴(a +2b )·(k a -b )=0, ∴k a 2+(2k -1)a ·b -2b 2=0,即16k -16(2k -1)-2×64=0,∴k =-7. 即k =-7时,a +2b 与k a -b 垂直.10.如图432,已知O 为坐标原点,向量OA →=(3cos x,3sin x ),OB →=(3cos x ,sin x ),OC→=(3,0),x ∈⎝⎛⎭⎪⎫0,π2.图432(1)求证:(OA →-OB →)⊥OC →;(2)若△ABC 是等腰三角形,求x 的值. [解] (1)证明:OA →-OB →=(0,2sin x ), ∴(OA →-OB →)·OC →=0×3+2sin x ×0=0, ∴(OA →-OB →)⊥OC →.(2)若△ABC 是等腰三角形,则AB =BC , ∴(2sin x )2=(3cos x -3)2+sin 2x , 整理得2cos 2x -3cos x =0, 解得cos x =0,或cos x =32.∵x ∈⎝⎛⎭⎪⎫0,π2,∴cos x =32,x =π6.B 组 能力提升11.(2018·广州综合测试(二))已知两点A (-1,1),B (3,5),点C 在曲线y =2x 2上运动,则AB →·AC →的最小值为( ) A .2 B .12 C .-2D .-12D [设C (x 0,2x 20),因为AB →=(4,4),AC →=(x 0+1,2x 20-1),所以AB →·AC →=8x 20+4x 0=8⎝⎛⎭⎪⎫x 0+142-12≥-12,即AB →·AC →的最小值为-12,故选D.] 12.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( ) A .-2 B .-32C .-43D .-1B [法一:(解析法)(1)建立坐标系如图(1)所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).设P 点的坐标为(x ,y ),则PA →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),∴PA →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2⎣⎢⎡⎦⎥⎤x 2+⎝⎛⎭⎪⎫y -322-34≥2×⎝ ⎛⎭⎪⎫-34=-32. 当且仅当x =0,y =32时,PA →·(PB →+PC →)取得最小值,最小值为-32. 故选B. 法二:(几何法)(2)如图(2)所示,PB →+PC →=2PD →(D 为BC 的中点),则PA →·(PB →+PC →)=2PA →·PD →. 要使PA →·PD →最小,则PA →与PD →方向相反,即点P 在线段AD 上,则(2PA →·PD →)min =-2|PA →||PD →|,问题转化为求|PA →||PD →|的最大值.又|PA →|+|PD →|=|AD →|=2×32=3,∴|PA →||PD →|≤⎝⎛⎭⎪⎫|PA →|+|PD →|22=⎝ ⎛⎭⎪⎫322=34, ∴[PA →·(PB →+PC →)]min =(2PA →·PD →)min =-2×34=-32.故选B.]13.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.33[由题意知|e 1|=|e 2|=1,e 1·e 2=0, |3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2. 同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33.] 14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →.(1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值.【导学号:79140160】[解] (1)由题意得(2a -c )cos B =b cos C .根据正弦定理得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin(C +B ),即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0, 所以cos B =22,又B ∈(0,π),所以B =π4. (2)因为|BA →-BC →|=6,所以|CA →|=6,即b =6,根据余弦定理及基本不等式得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号), 即ac ≤3(2+2),故△ABC 的面积S =12ac sin B ≤3(2+1)2,即△ABC 的面积的最大值为32+32.。
[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第9章 算法初步、统计与统
第一节算法与算法框图[考纲传真] (教师用书独具)1.了解算法的含义,了解算法的思想.2.理解算法框图的三种基本逻辑结构:顺序、选择、循环.3.了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(对应学生用书第156页)[基础知识填充]1.算法的含义算法是解决某类问题的一系列步骤或程序,只要按照这些步骤执行,都能使问题得到解决.2.算法框图在算法设计中,算法框图(也叫程序框图)可以准确、清晰、直观地表达解决问题的思想和步骤,算法框图的三种基本结构:顺序结构、选择结构、循环结构.3.三种基本逻辑结构(1)顺序结构:按照步骤依次执行的一个算法,称为具有“顺序结构”的算法,或者称为算法的顺序结构.其结构形式为图911(2)选择结构:需要进行判断,判断的结果决定后面的步骤,像这样的结构通常称作选择结构.其结构形式为图912(3)循环结构:指从某处开始,按照一定条件反复执行某些步骤的情况.反复执行的处理步骤称为循环体.其基本模式为图9134.基本算法语句任何一种程序设计语言中都包含五种基本的算法语句,它分别是:输入语句、输出语句、赋值语句、条件语句和循环语句.5.赋值语句(1)一般形式:变量=表达式.(2)作用:将表达式所代表的值赋给变量.6.条件语句(1)If-Then-Else语句的一般格式为:If 条件Then语句1Else语句2End If(2)If-Then语句的一般格式是:If 条件Then语句End If7.循环语句(1)For语句的一般格式:For循环变量=初始值To终值循环体Next(2)Do Loop语句的一般格式:Do循环体Loop While条件为真[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)算法框图中的图形符号可以由个人来确定.( )(2)一个算法框图一定包含顺序结构,但不一定包含条件结构和循环结构.( ) (3)“当型”循环与“直到型”循环退出循环的条件不同.( ) (4)在算法语句中,X =X +1是错误的.( ) [答案] (1)× (2)√ (3)√ (4)×2.(教材改编)根据给出的算法框图(如图914),计算f (-1)+f (2)=( )图914A .0B .1C .2D .4 A [f (-1)=4×(-1)=-4,f (2)=22=4,所以f (-1)+f (2)=-4+4=0.]3.(2017·贵阳调研)执行如图915所示的算法框图,输出S 的值为( )图915A .-32B .32C .-12D .12D [按照算法框图依次循环运算,当k =5时,停止循环,当k =5时,S =sin 5π6=12.]4.(2017·北京高考)执行如图916所示的算法框图,输出的s 值为( )图916A .2B .32 C .53 D .85C [开始:k =0,s =1; 第一次循环:k =1,s =2; 第二次循环:k =2,s =32;第三次循环:k =3,s =53,此时不满足循环条件,输出s ,故输出的s 值为53.故选C .]5.执行如图917所示的算法框图,若输入的x 的值为1,则输出的y 的值是________.图91713 [当x =1时,1<2,则x =1+1=2,当x =2时,不满足x <2,则y =3×22+1=13.](对应学生用书第157页)(1)执行如图918所示的算法框图,如果输入的t ∈[-1,3],则输出的s 属于( )图918A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]A [由算法框图得分段函数s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t 2=-(t -2)2+4,所以此时3≤s ≤4.综上函数的值域为[-3,4],即输出的s 属于[-3,4].]若本例的判断框中的条件改为“t ≥1”,则输出的s 的范围是________.[解析] 由算法框图得分段函数s =⎩⎪⎨⎪⎧3t ,t ≥1,4t -t 2,t <1.所以当1≤t ≤3时,s =3t ∈[3,9],当-1≤t <1时,s =4t -t 2=-(t -2)2+4,所以此时-5≤s <3.综上函数的值域为[-5,9],即输出的s 属于[-5,9].[答案] [-5,9]图919A .24B .25C .30D .40(2)(2018·贵州适应性考试)执行如图9110所示的算法框图,如果输入的a ,b 分别为56,140,则输出的a =( )图9110A .0B .7C .14D .28(1)D (2)D [(1)a =32-1=8,b =8-3=5,y =8×5=40.(2)第一次循环,a =56,b =140,a <b ,则b =b -a =140-56=84;第二次循环,a <b ,则b =b -a =84-56=28;第三次循环,a >b ,则a =a -b =56-28=28,a=b=28,退出循环,则输出的a=28,故选D.]◎角度1 由算法框图求输出的结果或输入的值(2017·全国卷Ⅱ)执行如图9111所示的算法框图,如果输入的a=-1,则输出的S=( )图9111A.2 B.3 C.4 D.5B[当K=1时,S=0+(-1)×1=-1,a=1,执行K=K+1后,K=2;当K=2时,S=-1+1×2=1,a=-1,执行K=K+1后,K=3;当K=3时,S=1+(-1)×3=-2,a=1,执行K=K+1后,K=4;当K=4时,S=-2+1×4=2,a=-1,执行K=K+1后,K=5;当K=5时,S=2+(-1)×5=-3,a=1,执行K=K+1后,K=6;当K=6时,S=-3+1×6=3,执行K=K+1后,K=7>6,输出S=3.结束循环.故选B.]◎角度2 辨析算法框图的功能(2018·东北三省四市模拟二)某高中体育小组共有男生24人,其50 m跑成绩记作a i(i=1,2,…,24),若成绩小于6.8 s为达标,则如图9112所示的算法框图的功能是( )【导学号:79140317】图9112A .求24名男生的达标率B .求24名男生的不达标率C .求24名男生的达标人数D .求24名男生的不达标人数B [由题意可知k 记录的是时间超过6.8 s 的人数,而i 记录是的参与测试的总人数,因此k i表示24名男生的不达标率,故选B .] ◎角度3 算法框图的补充与完善(2017·全国卷Ⅰ)如图9113所示的算法框图是为了求出满足3n-2n>1 000的最小偶数n ,那么在和两个空白框中,可以分别填入( )图9113A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +2D [因为题目要求的是“满足3n -2n >1 000的最小偶数n ”,所以n 的叠加值为2,所以内填入“n =n +2”.由算法框图知,当内的条件不满足时,输出n ,所以内填入“A ≤1 000”.故选D .]1已知算法框图,求输出的结果,可按算法框图的流程依次执行,最后得出结果2完善算法框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式3对于辨析算法框图功能问题,可将程序执行几次,即可根据结果作出判断4明确各变量的初值,循环变量的终值,循环次数5循环次数多时,直至结束6算法与数列、不等式、函数等结合,输出运算结果或补充完善框图[跟踪训练据为160,则判断框中应填入的条件为( )图9114A .k ≤3B .k ≤4C .k ≤5D .k ≤6(2)(2018·东北三省四市模拟(二))庄子说:“一尺之锤,日取其半,万世不竭”,这句话描述的是一个数列问题.现用算法框图描述.如图9115所示,若输入某个正整数n 后,输出的S ∈⎝⎛⎭⎪⎫1516,6364 ,则输入的n 的值为( )图9115A .7B .6C .5D .4(1)C (2)C [(1)执行算法框图,S =0,k =1→S =2,k =2→S =8,k =3→S =24,k =4→S =64,k =5→S =160,k =6,不满足判断框内的条件,终止循环,结合选项知,判断框中应填入的条件为“k ≤5”,故选C .(2)第一次循环得S =12,k =2;第二次循环得S =34,k =3;第三次循环得S =78,k=4;第四次循环得S =1516,k =5;第五次循环得S =3132∈⎝ ⎛⎭⎪⎫1516,6364,k =6,此时满足题意,退出循环,所以输入的n 值为5,故选C .](1)如下程序运行的结果是( )【导学号:79140318】A =5B =8X =A A =B B =X +AOutput A ,B EndA .5,8B .8,5C .8,13D .5,13生活的色彩就是学习(2)按照如下程序运行,则输出k的值是________.x=3k=0Dox=2*x+1k=k+1Loop While x>16Output kEnd(1)C(2)3[此程序先将A的值赋给X,故X=5;再将B的值赋给A,故A=8;再将X+A的值赋给B,即将原来的A与B的和赋给B,故B=5+8=13.(2)第一次循环,x=7,k=1;第二次循环,x=15,k=2;第三次循环,x=31,k=3.终止循环,输出k的值是3.]1赋值语句:赋值号仅仅表示把右边的表达式的值赋给左边的变量,且变量的值始终等于最近一次赋给它的值,原来的值将被替换2条件语句:计算机在执行“If—如果符合条件,3循环语句:分清[跟踪训练Input xIf x<0 Theny=(x+1)*(x+1)Elsey=(x-1)*(x-1)End IfOutput yEnd±5[由程序可得:当x<0时,y=(x+1)2.若y=16,则(x+1)2=16,所以x+1=±4.所以x=-5或3(舍去),所以x=-5.当x≥0时,y=(x-1)2.若y=16,则(x-1)2=16,所以x-1=±4,所以x=5或-3(舍去).所以x=5.综上所述,x=±5.]K12的学习需要努力专业专心坚持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时分层训练(六十二) 分类加法计数原理与分步乘法计数原理
A组基础达标
一、选择题
1.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为( )
A.20 B.25
C.32 D.60
C[依据题意知,后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.]
2.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )
A.40 B.16
C.13 D.10
C[分两类情况:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;
第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.]
3.在所有的两位数中,个位数字大于十位数字的两位数共有( )
A.50个B.45个
C.36个D.35个
C[由题意知,十位上的数字可以是1,2,3,4,5,6,7,8,共8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36个.]
4.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )
A.3 B.4
C.6 D.8
D[以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.
以4为首项的等比数列为4,6,9.
把这4个数列的顺序颠倒,又得到另外的4个数列,
所以所求的数列共有2(2+1+1)=8个.]
5.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则首位为2的“六合数”共有( )
【导学号:79140339】A.18个B.15个
C.12个D.9个
B[依题意,这个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数分别为400、040、004;由3、1、0组成6个数分别为310、301、130、103、013、031;
由2,2、0组成3个数分别为220、202、022;由2、1、1组成3个数分别为211、121、112.共计:3+6+3+3=15(个).]
6.如果一个三位正整数“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为( )
A.240 B.204
C.729 D.920
A[若a2=2,则凸数为120与121,共1×2=2个.若a2=3,则凸数有2×3=6个.若a2=4,则凸数有3×4=12个,…,若a2=9,则凸数有8×9=72个.所以所有凸数有2+6+12+20+30+42+56+72=240个.]
7.如图1014是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有( )
图1014
A.24种B.72种
C.84种D.120种
C[如图,设四个直角三角形顺次为A,B,C,D,按A→B→C→D顺序涂色,
下面分两种情况:
(1)A,C不同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D
可以从剩余的2种颜色中任意取一色):有4×3×2×2=48(种)不同的涂法.
(2)A,C同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可
以从剩余的3种颜色中任意取一色):有4×3×1×3=36(种)不同的涂法.故共有48+36=84(种)不同的涂色方法.故选C.]
二、填空题
8.有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.
120 [每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选
法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120种.]
9.从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是________.
18 [从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3
个数中取一个,有3种方法;排十位有3种方法.故奇数的个数为3×3×2=18.] 10.在连接正八边形的顶点而成的三角形中,与正八边形有公共边的三角形有________个.
【导学号:79140340】
40 [分两类:①有一条公共边的三角形共有8×4=32个;②有两条公共边的三角形共
有8个.故共有32+8=40个.]
B组能力提升
11.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )
A.32个B.34个
C.36个D.38个
A[将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C12=2种,共有2×2×2×2×2=32个.]
12.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( ) A.144个B.120个
C.96个D.72个
B[当万位数字为4时,个位数字从0,2中任选一个,共有2A34个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有C13A34个偶数.故符合条件的偶数共有2A34+C13A34=120(个).]
13.一个旅游景区的游览线路如图1015所示,某人从P点处进,Q点处出,沿图中线路游
览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有( )
图1015
A.6种
B.8种
C.12种
D.48种
D[从P点处进入结点O以后,游览每一个景点所走环形路线都有2个入口(或2个出
口),若先游览完A 景点,再进入另外两个景点,最后从Q 点处出有(4+4)×2=16种不同的方法;同理,若先游览B 景点,有16种不同的方法;若先游览C 景点,有16种不同的方法,因而所求的不同游览线路有3×16=48(种).]
14.(2018·重庆调研(二))从0,1,2,3,4,5,6,7,8,9这10个数中任取6个不同的数,则这
6个数的中位数恰好是112
的概率为( ) A.
11 050 B.1525 C.435 D.635
D [从10个数中任取6个不同的数的取法有C 610=210种,其中中位数是112
的取法要分两类:一类以5,6为中间两个数,取法共有C 25C 2
3=30种;另一类以4,7为中间两个数,
取法共有C 24C 22=6种,则所求概率为30+6210=635
,故选D.] 15.已知△ABC 三边a ,b ,c 的长都是整数,且a ≤b ≤c ,如果b =25,则符合条件的三角形共有________个.
325 [根据三角形的三边关系可知,c <25+a .
第一类,当a =1,b =25时,c 可取25,共1个;
第二类,当a =2,b =25时,c 可取25,26,共2个;…
当a =25,b =25时,c 可取25,26,…,49,共25个.
所以符合条件的三角形的个数为1+2+…+25=325.]
16.回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99;3位回文数有90个:101,111,121,…,191,202,…,999.则
(1)4位回文数有________个;
(2)2n +1(n ∈N +)位回文数有________个.
【导学号:79140341】
(1)90 (2)9×10n [(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法;中间两位一样,有10种填法,共计9×10=90种填法,即4位回文数有90个.
(2)根据回文数的定义,此问题也可以转化成填方格,由分步计数原理,共有9×10n 种填法.]。