2019届高考数学复习专题四数列第1讲等差数列与等比数列课件文

合集下载

专题4 第1讲等差数列、等比数列 课件(42张)

专题4 第1讲等差数列、等比数列 课件(42张)

个量中已知其中的三个量,求另外两个量
2.考查等差(比)数列的通项公式,前n项和公式,
考查方程的思想以及运算能力 1.以递推数列为载体,考查等差(比)数列的定义
或等差(比)中项
2.以递堆数列为命题背景考查等差(比)数列的
证明方法
• 备考策略 • 本部分内容在备考时应注意以下几个方面: • (1)加强对等差(比)数列概念的理解,掌握等差(比)数列的 判定与证明方法. • (2)掌握等差(比)数列的通项公式、前n项和公式,并会应 用. • (3)掌握等差(比)数列的简单性质并会应用. • 预测2018年命题热点为: • (1)在解答题中,涉及等差、等比数列有关量的计算、求 解. • (2)已知数列满足的关系式,判定或证明该数列为等差(比)

• an=___________________.
• 2.重要结论 am+(n-m)d • (1)通项公式的推广:等差数列中, an= n-m a · q m _________________ ; 递增数列 • 等比数列中,an=__________. 递减数列 • (2)增减性:①等差数列中,若公差大于零,则数列为 递增数列 __________;若公差小于零,则数列为__________. 递减数列 • ②等比数列中,若a1>0且q>1或S a, 且 0< q <1 ,则数列为 1<0 S - S , S - S2n,… n 2n n 3n ___________;若a1>0且0<q<1或a1<0且q>1,则数列为 ___________. • (3)等差数列{an}中,Sn为前n项 和.__________________________仍成等差数列;等比数
解得 d=-2. 6×5×-2 所以 S6=6×1+ =-24. 2 故选 A.

4-3-1等比数列的概念(第一课时)课件(人教版)

4-3-1等比数列的概念(第一课时)课件(人教版)

析 (2)a2+a5=18,a3++aa56==aa11qq+2+aa1q1q4=5=198,,
③ ④
由④÷③得 q=21,从而 a1=32.
解法二:因为 a3+a6=q(a2+a5),
又 an=1,所以 32·12n-1=1, 即 26-n=20,所以 n=6.
一个数与第四个数的和为21,中间两个数的和为18,求这四个数.
分析:三个数成等比数列,可怎么设为?
解: 设前三个数分别为a,a,aq(q≠0),则第四个数为 2aq-a, q
a+ 由题意得 q
2aq-a
=21,
a+aq=18,
解得 q=2 或 q=35.
当 q=2 时,a=6,这四个数为 3,6,12,18;
an a1q n1
当q=1时,这是一 个常数列, an ≠ 0。
注:方程中有四个量,知三求一,这是公式最简单的应用。
小试牛刀
求下列等比数列的通项公式
(1)2,4,8,16,32,64, … (2) 1 , 1 , 1 , 1 , …
2 4 8 16 (3)1,3,9,27,81,243,…
an 2 2n1 2n
(第一课时)
复习回顾
1.等差数列的定义: 如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,
这个数列就叫做等差数列. 符号表示:
2.等差中项的定义:
如果在 a与b中间插入一个数A,使a ,A,b成等差数列,
那么A叫做a与b 的等差中项,
A ab. 2
3.等差数列的通项公式:
an a1 (n 1)d , n N 不完全归纳法、累加法
a4 a3q (a1q 2 )q
a1q3
…… a n a1q n1

专题4 第1讲 等差数列与等比数列

专题4 第1讲 等差数列与等比数列

第1讲 等差数列与等比数列「考情研析」 1.从具体内容上,主要考查等差数列、等比数列的基本计算和基本性质及等差、等比数列中项的性质、判定与证明. 2.从高考特点上,难度以中、低档题为主,一般设置一道选择题和一道解答题.核心知识回顾1.等差数列(1)01a n =a 1+(n -1)d =a m +(n -m )d . (2)022a n =a n -1+a n +1(n ∈N *,n ≥2). (3)前n 03S n =n (a 1+a n )2=na 1+n (n -1)d2.2.等比数列(1)01a n =a 1q n -1=a m q n -m .(2)02a 2n =a n -1·a n +1(n ∈N *,n ≥2).(3)等比数列的前n 项和公式:03S n =⎩⎨⎧na 1(q =1),a 1-a n q 1-q =a 1(1-q n )1-q (q ≠1).3.等差数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k ,01a m +a n =a l +a k (反之不一定成立);特别地,当m +n =2p 02a m +a n =2a p .(2)若{a n },{b n }是等差数列,则{ka n +tb n }(k ,t 是非零常数)(3)等差数列“依次m 项的和”即S m …仍是等差数列.(4)等差数列{a n },当项数为2n 时,S 偶-S 奇,S 奇S 偶=a n +12n -1时,S 奇-S 偶,S 奇S 偶=n -1其中S 偶表示所有的偶数项之和,S 奇表示所有的奇数项之和)4.等比数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k 反之不一定成立);特别地,当m +n =2p(2)当n 为偶数时,S 偶S 奇=公比为q ).(其中S 偶表示所有的偶数项之和,S奇表示所有的奇数项之和)(3)等比数列“依次m 项的和”,即S m …(S m ≠0)成等比数列.热点考向探究考向1 等差数列、等比数列的运算例1 (1)(2020·山东省青岛市模拟)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,S n 是{a n }的前n 项和,则S 9等于( )A .-8B .-6C .10D .0答案 D解析 ∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4,∴(a 1+2×2)2=a 1·(a 1+3×2),即2a 1=-16,解得a 1=-8.则S 9=-8×9+9×82×2=0,故选D.(2)(2020·山东省泰安市肥城一中模拟)公比不为1的等比数列{a n }的前n 项和为S n ,若a 1,a 3,a 2成等差数列,mS 2,S 3,S 4成等比数列,则m =( )A.78 B .85 C .1 D .95答案 D解析 设{a n }的公比为q (q ≠0且q ≠1), 根据a 1,a 3,a 2成等差数列, 得2a 3=a 1`+a 2,即2a 1q 2=a 1+a 1q ,因为a 1≠0,所以2q 2-1-q =0,即(q -1)(2q +1)=0. 因为q ≠1,所以q =-12, 则S 2=a 1(1-q 2)1-q =34·a 11-q ,S 3=a 1(1-q 3)1-q =98·a 11-q ,S 4=a 1(1-q 4)1-q =1516·a 11-q,因为mS 2,S 3,S 4成等比数列,所以S 23=mS 2·S 4, 即⎝ ⎛⎭⎪⎫98·a 11-q 2=m ·34·a 11-q ·1516·a 11-q ,因为a 1≠0,所以a 11-q ≠0,所以⎝ ⎛⎭⎪⎫982=m ×34×1516, 得m =95,故选D.利用等差数列、等比数列的通项公式、前n 项和公式,能够在已知三个元素的前提下求解另外两个元素,其中等差数列的首项和公差、等比数列的首项和公比为最基本的量,解题中首先要注意求解最基本的量.1.(多选)(2020·山东省青岛市模拟)已知等差数列{a n }的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( )A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20 答案 BCD解析 等差数列{a n }的前n 项和为S n ,公差d ≠0, 由S 6=90,可得6a 1+15d =90,即2a 1+5d =30, ①由a 7是a 3与a 9的等比中项,可得a 27=a 3a 9,即(a 1+6d )2=(a 1+2d )(a 1+8d ),化为a 1+10d =0, ② 由①②解得a 1=20,d =-2,则a n =20-2(n -1)=22-2n ,S n =12n (20+22-2n )=21n -n 2, 由S n =-⎝ ⎛⎭⎪⎫n -2122+4414,可得n =10或n =11时,S n 取得最大值110.由S n >0,可得0<n <21,即n 的最大值为20.故选BCD. 2.定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2022a 2020=( )A .4×20202-1B .4×20192-1C .4×20222-1D .4×20192答案 A解析 ∵a 1=a 2=1,a 3=3,∴a 3a 2-a 2a 1=2,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +1a n 是以1为首项,2为公差的等差数列,∴a n +1a n=2n -1,∴a 2022a 2020=a 2022a 2021·a 2021a2020=(2×2021-1)×(2×2020-1)=4×20202-1.故选A.考向2 等差数列、等比数列的判定与证明例2 (1)设数列{a n }满足a 1=1,a n +1=44-a n (n ∈N *).求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2是等差数列.证明 ∵a n +1=44-a n ,∴1a n +1-2-1a n -2=144-a n -2-1a n -2=4-a n 2a n -4-1a n -2=2-a n 2a n -4=-12为常数,又a 1=1, ∴1a 1-2=-1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2是以-1为首项,-12为公差的等差数列.(2)数列{a n }的前n 项和为S n ,且满足S n +a n =n -1n (n +1)+1,n =1,2,3,…,设b n =a n +1n (n +1),求证:数列{b n }是等比数列.证明 S n =1-a n +n -1n (n +1),∴S n +1=1-a n +1+n(n +1)(n +2),当n =1时,易知a 1=12,∴a n +1=S n +1-S n =n(n +1)(n +2)-a n +1-n -1n (n +1)+a n ,∴2a n +1=n +2-2(n +1)(n +2)-n -1n (n +1)+a n =1n +1-2(n +1)(n +2)-1n +1+1n (n +1)+a n ,∴2⎣⎢⎡⎦⎥⎤a n +1+1(n +1)(n +2)=a n +1n (n +1),b n =a n +1n (n +1),则b n +1=a n +1+1(n +1)(n +2),上式可化为2b n +1=b n ,∴数列{b n }是以b 1=1为首项,12为公比的等比数列,b n =⎝ ⎛⎭⎪⎫12n -1.(1)判断或者证明数列为等差数列、等比数列最基本的方法是用定义判断或证明,其他方法最后都会回到定义,如证明等差数列可以证明通项公式是n的一次函数,但最后还得使用定义才能说明其为等差数列.(2)证明数列{a n}为等比数列时,不能仅仅证明a n+1=qa n,还要说明a1≠0,才能递推得出数列中的各项均不为零,最后断定数列{a n}为等比数列.(3)证明等差、等比数列,还可利用等差、等比数列的中项公式.1.(多选)(2020·日照一中摸底考试)已知数列{a n}满足:a1=3,当n≥2时,a n=( a n-1+1+1)2-1,则关于数列{a n},下列说法正确的是()A.a2=8 B.数列{a n}为递增数列C.数列{a n}为周期数列D.a n=n2+2n答案ABD解析由a n=(a n-1+1+1)2-1得a n+1=(a n-1+1+1)2,∴a n+1=a n-1+1+1,即数列{a n+1}是首项为a1+1=2,公差为1的等差数列,∴a n+1=2+(n-1)×1=n+1.∴a n=n2+2n.所以易知A,B,D正确.2.已知正项数列{a n}满足a2n+1-6a2n=a n+1a n,若a1=2,则数列{a n}的前n 项和为________.答案3n-1解析∵a2n+1-6a2n=a n+1a n,∴(a n+1-3a n)(a n+1+2a n)=0,∵a n>0,∴a n+1=3a n,∴{a n}为等比数列,且首项为2,公比为3,∴S n=3n-1.考向3数列中a n与S n的关系问题例3(1)(2020·河南省高三阶段性测试)设正项数列{a n}的前n项和为S n,且4S n=(1+a n)2(n∈N*),则a5+a6+a7+a8=()A.24 B.48C.64 D.72答案 B解析 当n =1时,由S 1=a 1=(1+a 1)24,得a 1=1,当n ≥2时,⎩⎨⎧4S n =(1+a n )2,4S n -1=(1+a n -1)2,得4a n =(1+a n )2-(1+a n -1)2,∴a 2n -a 2n -1-2a n -2a n -1=0,(a n +a n -1)(a n -a n -1-2)=0.∵a n >0,∴a n -a n -1=2,∴{a n }是等差数列,∴a n =2n -1,∴a 5+a 6+a 7+a 8=2(a 6+a 7)=48.(2)(2020·山东省德州市二模)给出以下三个条件: ①数列{a n }是首项为 2,满足S n +1=4S n +2的数列; ②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列. 请从这三个条件中任选一个将下面的题目补充完整,并求解. 设数列{a n }的前n 项和为S n ,a n 与S n 满足________.记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+n b n b n +1,求数列{c n }的前n 项和T n .解 选①,由已知S n +1=4S n +2, (*) 当n ≥2时,S n =4S n -1+2, (**) (*)-(**),得a n +1=4(S n -S n -1)=4a n , 即a n +1=4a n .当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,所以a 2=8,满足a 2=4a 1, 故{a n }是以2为首项,4为公比的等比数列, 所以a n =22n -1.b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,c n =n 2+n b n b n +1=n (n +1)n 2(n +1)2=1n (n +1)=1n -1n +1.所以T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.选②,由已知3S n =22n +1+λ, (*) 当n ≥2时,3S n -1=22n -1+λ, (**) (*)-(**),得3a n =22n +1-22n -1=3·22n -1, 即a n =22n -1.当n =1时,a 1=2满足a n =22n -1,所以a n =22n -1, 下同选①.选③,由已知3S n =a n +1-2, (*) 则n ≥2时,3S n -1=a n -2, (**) (*)-(**),得3a n =a n +1-a n ,即a n +1=4a n .当n =1时,3a 1=a 2-2,而a 1=2,得a 2=8,满足a 2=4a 1, 故{a n }是以2为首项,4为公比的等比数列, 所以a n =22n -1, 下同选①.由a n 与S n 的关系求通项公式的注意点(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1成立的前提是n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一表示(“合写”). (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎨⎧S 1(n =1),S n-S n -1(n ≥2).已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n2S n -1(n ≥2,n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)证明:13S 1+15S 2+17S 3+…+12n +1S n <12.证明 (1)当n ≥2时,S n -S n -1=2S 2n2S n -1,S n -1-S n =2S n ·S n -1,1S n -1S n -1=2,所以数列⎩⎨⎧⎭⎬⎫1S n 是以1为首项,2为公差的等差数列.(2)由(1)可知,1S n =1S 1+(n -1)·2=2n -1,所以S n =12n -1.13S 1+15S 2+17S 3+…+12n +1S n =11×3+13×5+15×7+…+1(2n -1)(2n +1) =12×⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1=12×⎝ ⎛⎭⎪⎫1-12n +1<12.真题押题『真题检验』1.(2020·全国卷Ⅰ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( )A .12B .24C .30D .32答案 D解析 设等比数列{a n }的公比为q ,则a 1+a 2+a 3=a 1(1+q +q 2)=1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q (1+q +q 2)=q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 5(1+q +q 2)=q 5=32.故选D.2.(2020·全国卷Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S na n=( )A .2n -1B .2-21-nC .2-2n -1D .21-n -1答案 B解析 设等比数列{a n }的公比为q ,由a 5-a 3=12,a 6-a 4=24可得⎩⎨⎧ a 1q 4-a 1q 2=12,a 1q 5-a 1q 3=24,解得⎩⎨⎧q =2,a 1=1,所以a n =a 1q n -1=2n -1,S n =a 1(1-q n )1-q =1-2n1-2=2n -1.因此S na n =2n-12n -1=2-21-n .故选B.3.(2020·新高考卷Ⅰ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.答案 3n 2-2n解析 因为数列{2n -1}是以1为首项,以2为公差的等差数列,数列{3n -2}是以1为首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{a n }是以1为首项,以6为公差的等差数列,所以{a n }的前n 项和为n ·1+n (n -1)2·6=3n 2-2n . 4.(2020·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.答案 25解析 设等差数列{a n }的公差为d ,由a 1=-2,a 2+a 6=2,可得a 1+d +a 1+5d =2,即-2+d +(-2)+5d =2,解得d =1.所以S 10=10×(-2)+10×(10-1)2×1=-20+45=25.5.(2020·江苏高考)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________.答案 4解析 等差数列{a n }的前n 项和公式为P n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,等比数列{b n }的前n 项和公式为Q n =b 1(1-q n )1-q =-b 11-q q n +b 11-q ,依题意S n =P n+Q n ,即n 2-n +2n -1=d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n -b 11-q q n +b 11-q,通过对比系数可知⎩⎪⎨⎪⎧d2=1,a 1-d 2=-1,q =2,b11-q =-1,得⎩⎪⎨⎪⎧d =2,a 1=0,q =2,b 1=1,故d +q =4.6.(2020·新高考卷Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.解 (1)设等比数列{a n }的首项为a 1,公比为q , 依题意有⎩⎨⎧a 1q +a 1q 3=20,a 1q 2=8,解得a 1=2,q =2或a 1=32,q =12(舍去), 所以a n =2n ,所以数列{a n }的通项公式为a n =2n . (2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128, b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1; b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7], 则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15], 则b 8=b 9=…=b 15=3,即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31], 则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63], 则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100], 则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480. 7.(2020·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . 解 (1)设等比数列{a n }的公比为q ,根据题意,有 ⎩⎨⎧ a 1+a 1q =4,a 1q 2-a 1=8,解得⎩⎨⎧a 1=1,q =3, 所以a n =3n -1.(2)令b n =log 3a n =log 33n -1=n -1, 则S n =n (0+n -1)2=n (n -1)2,根据S m +S m +1=S m +3,可得 m (m -1)2+m (m +1)2=(m +2)(m +3)2, 整理得m 2-5m -6=0,因为m >0,所以m =6.『金版押题』8.已知数列{a n }满足na n -28a n +1=n -1(n ∈N *),a 1+a 2+a 3=75,记S n =a 1a 2a 3+a 2a 3a 4+a 3a 4a 5+…+a n a n +1·a n +2,则a 2=________,使得S n 取得最大值的n 的值为________.答案 25 10解析 由na n -28a n +1=n -1(n ∈N *),可取n =1,即a 1-28=0,可得a 1=28,取n =2,可得2a 2-28a 3=1,即a 3=2a 2-28,又a 1+a 2+a 3=75,可得a 2=25,a 3=22,当n ≥2时,由na n -28a n +1=n -1可得a n +1n -a nn -1=-28n (n -1),可令c n =a n +1n ,则c n -1=a nn -1(n ≥2),c n -c n -1=28⎝ ⎛⎭⎪⎫1n -1n -1(n ≥2), 由c n =c 1+(c 2-c 1)+…+(c n -c n -1)=c 1+28⎝ ⎛⎭⎪⎫12-1+13-12+…+1n -1n -1, 可得c n =c 1+28⎝ ⎛⎭⎪⎫1n -1=a 2+28⎝ ⎛⎭⎪⎫1n -1,则a n +1=nc n =na 2+28(1-n )=28+n (a 2-28), 故a n +1=28-3n (n ≥2),所以a n =31-3n (n ≥3), 又a 1=28,a 2=25,也符合上式,所以a n =31-3n . 令b n =a n a n +1a n +2=(31-3n )(28-3n )(25-3n ), 由b n ≥0,可得(31-3n )(28-3n )(25-3n )≥0, 解得1≤n ≤8(n ∈N *)或n =10,又b 9=-8,b 10=10,所以n =10时,S n 取得最大值.9.记数列{a n }的前n 项和为S n ,已知2a n +1+n =4S n +2p ,a 3=7a 1=7. (1)求p ,S 4的值;(2)若b n =a n +1-a n ,求证:数列{b n }是等比数列. 解 (1)由a 3=7a 1=7知,a 3=7,a 1=1.当n =1时,由2a n +1+n =4S n +2p ,得a 2=32+p ,当n =2时,由2a n +1+n =4S n +2p ,得a 3=4+3p =7,所以p =1, 当n =3时,由2a n +1+n =4S n +2p ,得2a 4+3=4S 3+2,解得a 4=412.所以S 4=1+52+7+412=31.(2)证明:由(1)可得a n +1=2S n -12n +1, 则a n +2=2S n +1-12(n +1)+1. 两式作差得a n +2-a n +1=2a n +1-12, 即a n +2=3a n +1-12(n ∈N *). 由(1)得a 2=52,所以a 2=3a 1-12, 所以a n +1=3a n -12对n ∈N *恒成立, 由上式变形可得a n +1-14=3⎝ ⎛⎭⎪⎫a n -14.而a 1-14=34≠0,所以⎩⎨⎧⎭⎬⎫a n -14是首项为34,公比为3的等比数列,所以a n -14=34×3n -1=3n4,所以b n =a n +1-a n =a n +1-14-⎝ ⎛⎭⎪⎫a n -14=3n +14-3n 4=3n 2,所以b n +1=3n +12,b n +1b n=3.又b 1=32,所以数列{b n }是首项为32,公比为3的等比数列.专题作业一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2020·山东德州高三下学期联考)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( )A .4B .8C .16D .32答案 D解析 设等比数列{a n }的公比为q ,∵a 1=1,a 5+a 7a 2+a 4=8,∴a 1(q 4+q 6)a 1(q +q 3)=8,解得q =2,则a 6=25=32.故选D. 2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n答案 A解析 设等差数列{a n }的首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎨⎧ a 1+4d =5,4a 1+6d =0,解得⎩⎨⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A. 3.等差数列{a n }的公差为d ,若a 1+1,a 2+1,a 4+1成以d 为公比的等比数列,则d =( )A .2B .3C .4D .5答案 A解析 将a 1+1,a 2+1,a 4+1转化为a 1,d 的形式为a 1+1,a 1+1+d ,a 1+1+3d ,由于这三个数成以d 为公比的等比数列,故a 1+1+d a 1+1=a 1+1+3da 1+1+d =d ,化简得a 1+1=d ,代入a 1+1+d a 1+1=d ,得2dd =2=d ,故选A.4.(2020·河北省张家口市二模)已知正项等比数列{a n }的公比为q ,若a 1=q≠1,且a m=a1a2a3…a10,则m=()A.19 B.45C.55 D.100答案 C解析∵正项等比数列{a n}的公比为q,a1=q≠1,∴a n=q.q n-1=q n,∵a m=a1a2a3...a10,∴q m=q.q2.q3.....q10=q1+2+3+ (10)q55.∴m=55.故选C.5.(2020·河北省保定市一模)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有五人五钱,令上二人所得与下三人等,问各得几何?”其意思是:“现有甲、乙、丙、丁、戊,五人依次差值等额分五钱,要使甲、乙两人所得的钱数与丙、丁、戊三人所得的钱数相等,问每人各得多少钱?”请问上面的问题里,五人中所得的最少钱数为()A.76钱B.56钱C.13钱D.23钱答案 D解析依题意设甲、乙、丙、丁、戊所得钱数分别为a-2d,a-d,a,a+d,a+2d,又有a-2d+a-d=a+a+d+a+2d,得a=-6d,∵a-2d+a-d+a+a+d+a+2d=5a=5,∴a=1,则d=-16,∴a+2d=23.故选D.6.(2020·广州模拟)正项等比数列{a n}满足a2a4=1,S3=13,则其公比是()A.1 B.1 2C.13D.14答案 C解析设{a n}的公比为q,因为a2a4=1,且a2a4=a23,所以a23=1,易知q>0,所以a3=1.由S3=1+1q +1q2=13,得13q2=1+q+q2,即12q2-q-1=0,解得q=13.故选C.7.已知S n 为等比数列{a n }的前n 项和,若S 3,S 9,S 6成等差数列,则( ) A .S 6=-2S 3 B .S 6=-12S 3 C .S 6=12S 3 D .S 6=2S 3答案 C解析 设等比数列{a n }的公比为q (q ≠1),则S 6=(1+q 3)S 3,S 9=(1+q 3+q 6)S 3,因为S 3,S 9,S 6成等差数列,所以2(1+q 3+q 6)S 3=S 3+(1+q 3)S 3,易知S 3≠0,解得q 3=-12,故S 6=12S 3.8.已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项和为( )A .0B .252 C .21 D .42 答案 C解析 函数y =f (x +1)的图象关于y 轴对称,平移可得y =f (x )的图象关于直线x =1对称,且函数f (x )在(1,+∞)上单调,由数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),可得a 4+a 18=2,所以a 1+a 21=a 4+a 18=2,可得数列{a n }的前21项和S 21=21(a 1+a 21)2=21.故选C.二、选择题:在每小题给出的选项中,有多项符合题目要求.9.已知无穷数列{a n }的前n 项和S n =an 2+bn +c ,其中a ,b ,c 为实数,则( )A .{a n }可能为等差数列B .{a n }可能为等比数列C .{a n }中一定存在连续的三项构成等差数列D .{a n }中一定存在连续的三项构成等比数列 答案 ABC解析解法一:因为S n=an2+bn+c,所以S n-1=a(n-1)2+b(n-1)+c(n≥2),所以a n=S n-S n-1=2na-a+b(n≥2),若数列{a n}为等差数列,则a1=a+b+c=a+b,c=0,验证知,当c=0时,{a n}为等差数列,所以A正确;在a n=2na-a +b(n≥2)中,当a=0,b≠0时,a n=b(n≥2),若数列{a n}为等比数列,则a1=b +c=b,c=0,验证知,当a=c=0,b≠0时,{a n}为等比数列,所以B正确;由a n=2na-a+b(n≥2)可知,{a n}中一定存在连续的三项构成等差数列,所以C 正确;假设a k,a k+1,a k+2(k≥2,且k∈N*)成等比数列,则[2(k+1)a-a+b]2=(2ka -a+b)·[2(k+2)a-a+b],整理得(k+1)2=k(k+2),即1=0(不成立),所以{a n}中不存在连续的三项构成等比数列,所以D错误.故选ABC.解法二:当c=0,a≠0时,数列{a n}为等差数列,所以A正确;当a=c=0,b≠0时,数列{a n}为常数列,也是等比数列,所以B正确;当n≥2时,a n=S n -S n-1=2na-a+b,则{a n}中一定存在连续的三项构成等差数列,所以C正确;假设a k,a k+1,a k+2(k≥2,且k∈N*)成等比数列,则[2(k+1)a-a+b]2=(2ka-a +b)·[2(k+2)a-a+b],整理得(k+1)2=k(k+2),即1=0(不成立),所以{a n}中不存在连续的三项构成等比数列,所以D错误.故选ABC.10.(2020·海南省海口市模拟)已知正项等比数列{a n}满足a1=2,a4=2a2+a3,若设其公比为q,前n项和为S n,则()A.q=2 B.a n=2nC.S10=2047 D.a n+a n+1<a n+2答案ABD解析根据题意,对于A,正项等比数列{a n}满足2q3=4q+2q2,变形可得q2-q-2=0,解得q=2或q=-1,又{a n}为正项等比数列,则q=2,故A正确;对于B,a n=2×2n-1=2n,B正确;对于C,S n=2×(1-2n)1-2=2n+1-2,所以S10=2046,C错误;对于D,a n+a n+1=2n+2n+1=3×2n=3a n,而a n+2=2n+2=4×2n =4a n>3a n,D正确.故选ABD.11.等差数列{a n}的前n项和记为S n,若a1>0,S10=S20,则()A.公差d<0 B.a16<0C .S n ≤S 15D .当且仅当S n <0时n ≥32答案 ABC解析 因为等差数列中,S 10=S 20,所以a 11+a 12+…+a 19+a 20=5(a 15+a 16)=0,又a 1>0,所以a 15>0,a 16<0,所以d <0,S n ≤S 15,故A ,B ,C 正确;因为S 31=31(a 1+a 31)2=31a 16<0,故D 错误.故选ABC.12.设正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,则( ) A .a 2a 9的最大值为10 B .a 2+a 9的最大值为210 C.1a 22+1a 29的最大值为15D .a 42+a 49的最小值为200答案 ABD解析 因为正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,所以(a 2+a 9)2=2a 2a 9+20,即a 22+a 29=20,则a 2a 9≤a 22+a 292=202=10,当且仅当a 2=a 9=10时等号成立,故A 正确;由于⎝ ⎛⎭⎪⎫a 2+a 922≤a 22+a 292=10,所以a 2+a 92≤10,a 2+a 9≤210,当且仅当a 2=a 9=10时等号成立,故B 正确;1a 22+1a 29=a 22+a 29a 22·a 29=20a 22·a 29≥20⎝ ⎛⎭⎪⎫a 22+a 2922=20102=15,当且仅当a 2=a 9=10时等号成立,所以1a 22+1a 29的最小值为15,故C 错误;a 42+a 49=(a 22+a 29)2-2a 22·a 29=400-2a 22·a 29≥400-2×102=200,当且仅当a 2=a 9=10时等号成立,故D 正确.故选ABD. 三、填空题13.已知数列{a n }的前n 项和为S n ,a 1=1,2S n =a n +1,则S n =________. 答案 3n -1解析 由2S n =a n +1得2S n =a n +1=S n +1-S n ,所以3S n =S n +1,即S n +1S n =3,所以数列{S n }是以S 1=a 1=1为首项,q =3为公比的等比数列,所以S n =3n -1.14.(2020·山东省聊城市三模)已知数列{a n }中,a 1=1,a n +1=a n +n ,则a 6=________.答案 16解析 由题意,得a 2=a 1+1=2,a 3=a 2+2=4,a 4=a 3+3=7,a 5=a 4+4=11,a 6=a 5+5=16.15.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n+1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________. 答案 a n =n (n +1)2解析 由题设可得a n +1=b n b n +1,a n =b n b n -1,得2b n =a n +a n +1⇒2b n =b n b n -1+b n b n +1,即2b n =b n -1+b n +1,又a 1=1,a 2=3⇒2b 1=4⇒b 1=2,则{b n }是首项为2的等差数列.由已知得b 2=a 22b 1=92,则数列{b n }的公差d =b 2-b 1=322-2=22,所以b n =2+(n -1)·22=2(n +1)2,即b n =n +12.当n=1时,b 1=2,当n ≥2时,b n -1=n2,则a n =b n b n -1=n (n +1)2,a 1=1符合上式,所以数列{a n }的通项公式为a n =n (n +1)2.16.已知数列{a n }满足13a 1+132a 2+…+13n a n =3n +1,则a n =________,a 1+a 2+a 3+…+a n =________.答案 ⎩⎨⎧12,n =1,3n +1,n ≥2⎩⎨⎧12,n =1,3n +2-32,n ≥2解析 由题意可得,当n =1时,13a 1=4,解得a 1=12.当n ≥2时,13a 1+132a 2+…+13n -1a n -1=3n -2,所以13n a n =3,n ≥2,即a n =3n +1,n ≥2,又当n =1时,a n =3n +1不成立,所以a n =⎩⎨⎧12,n =1,3n +1,n ≥2.当n ≥2时,a 1+a 2+…+a n =12+33-3n +21-3=3n +2-32. 四、解答题17.(2020·江西省南昌市三模)已知数列{a n }中,a 1=2,a n a n +1=2pn +1(p 为常数) .(1)若-a 1,12a 2,a 4成等差数列,求p 的值;(2)是否存在p ,使得{a n }为等比数列?若存在,求{a n }的前n 项和S n ;若不存在,请说明理由.解 (1)令n =1,a 1a 2=2p +1⇒a 2=2p ,且a n +1a n +2=2pn +p +1,与已知条件相除得a n +2a n=2p ,故a 4=2p a 2=(2p )2, 而-a 1,12a 2,a 4成等差数列,则a 4-2=a 2,即(2p )2-2=2p ,解得2p =2,即p =1.(2)若{a n }是等比数列,则由a 1>0,a 2>0,知此数列首项和公比均为正数.设其公比为q ,则q =2p 2,故2p 2=a 2a 1=2p 2⇒p =2, 此时a 1=2,q =2⇒a n =2n ,故a n a n +1=22n +1, 而2pn +1=22n +1,因此p =2时,{a n }为等比数列,其前n 项和S n =2(1-2n )1-2=2n +1-2. 18.(2020·山东省威海二模)从条件①2S n =(n +1)a n ,② S n +S n -1=a n (n ≥2),③a n >0,a 2n +a n =2S n 中任选一个,补充到下面问题中,并给出解答.已知数列{a n }的前n 项和为S n ,a 1=1,________.若a 1,a k ,S k +2成等比数列,求k 的值.解 若选择①,∵2S n =(n +1)a n ,n ∈N *,∴2S n +1=(n +2)a n +1,n ∈N *.两项相减得2a n +1=(n +2)a n +1-(n +1)a n ,整理得na n +1=(n +1)a n .即a n +1n +1=a n n ,n ∈N *, ∴⎩⎨⎧⎭⎬⎫a n n 为常数列.a n n =a 11=1,∴a n =n . ⎝ ⎛⎭⎪⎫或由a n +1a n =n +1n ,利用相乘相消法,求得a n =n a k =k ,S k +2=(k +2)×1+(k +2)(k +1)2×1 =(k +2)(k +3)2. 又a 1,a k ,S k +2成等比数列,∴(k +2)(k +3)=2k 2, k 2-5k -6=0,解得k =6或k =-1(舍去). ∴k =6.若选择②, 由S n +S n -1=a n (n ≥2)变形得S n +S n -1=S n -S n -1, S n +S n -1=( S n +S n -1)( S n -S n -1), 易知S n >0,∴ S n -S n -1=1,{S n }为等差数列, 而S 1=a 1=1,∴ S n =n ,S n =n 2, ∴a n =S n -S n -1=2n -1(n ≥2),且n =1时也满足, ∴a n =2n -1.∵a 1,a k ,S k +2成等比数列,∴(k +2)2=(2k -1)2,∴k =3或k =-13,又k ∈N *,∴k =3.若选择③,∵a 2n +a n =2S n (n ∈N *),∴a 2n -1+a n -1=2S n -1(n ≥2).两式相减得a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n (n ≥2),整理得(a n -a n -1)(a n +a n -1)=a n +a n -1(n ≥2). ∵a n >0,∴a n -a n -1=1(n ≥2),∴{a n }是等差数列,∴a n =1+(n -1)×1=n ,S k +2=(k +2)×1+(k +2)(k +1)2×1=(k +2)(k +3)2. 又a 1,a k ,S k +2成等比数列,∴(k +2)(k +3)=2k 2,解得k =6或k =-1,又k ∈N *,∴k =6.19.设数列{a n }的前n 项和为S n ,且满足a n -12S n -1=0(n ∈N *).(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列{S n +(n +2n )λ}为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由a n -12S n -1=0(n ∈N *),可知当n =1时, a 1-12a 1-1=0,即a 1=2.又由a n -12S n -1=0(n ∈N *),可得a n +1-12S n +1-1=0,两式相减,得⎝ ⎛⎭⎪⎫a n +1-12S n +1-1-⎝ ⎛⎭⎪⎫a n -12S n -1=0, 即12a n +1-a n =0,即a n +1=2a n .所以数列{a n }是以2为首项,2为公比的等比数列, 故a n =2n (n ∈N *).(2)由(1)知,S n =a 1(1-q n )1-q=2(2n -1),所以S n+(n+2n)λ=2(2n-1)+(n+2n)λ.若数列{S n+(n+2n)λ}为等差数列,则S1+(1+2)λ,S2+(2+22)λ,S3+(3+23)λ成等差数列,即有2[S2+(2+22)λ]=[S1+(1+2)λ]+[S3+(3+23)λ],即2(6+6λ)=(2+3λ)+(14+11λ),解得λ=-2.经检验λ=-2时,{S n+(n+2n)λ}成等差数列,故λ的值为-2.。

第1讲 等差数列与等比数列(可自主编辑PPT)

第1讲 等差数列与等比数列(可自主编辑PPT)

9 2
2

- 881,
∵n∈N*,∴n=4或5时,Sn取最小值,最小值为-10.
总结提升
高考导航
等差、等比数列的性质问题的求解策略
抓关系
抓住项与项之间的关系及项的序号之间的关系,从这些特
点入手,选择恰当的性质进行求解
用性质
数列是一种特殊的函数,具有函数的一些性质,如单调性、 周期性等,可利用函数的性质解题
和为Tn,若
Sn Tn
= 2 018n-1,则
3n 4
a3 b3
=
(
D
)
A.528 B.529
高考导航
C.530 D.531
答案 D 根据 an = S2n-1 , bn T2n-1
得 a3 = S5 = 2 018 5-1=531.故选D. b3 T5 3 5 4
考点二 栏目索引
∴n+Sn=2an,即n,an,Sn成等差数列.
高考导航
考点三 栏目索引
2.设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=2-an,数列{bn}满足b1=2a1,
bn=1
bn-1 bn
-1
(n≥2,n∈N*).
(1)证明:数列{an}是等比数列,并求{an}的通项公式;
高考导航
∵a4=a1·q3,∴a1·q3=q2,
又a1= 13 ,∴q=3.
由等比数列求和公式可知S5=
1 3
(1-35 1-3
)
= 121
3
.
考点二 栏目索引
3.设等差数列{an}的前n项和为Sn.若a2=-3,S5=-10,则a5=
,Sn的最小值为
.
高考导航

高考数学:专题三 第一讲 等差数列与等比数列课件

高考数学:专题三 第一讲 等差数列与等比数列课件

题型与方法
例 1
第一讲
已知等差数列{an}中,a3a7=-16,a4+a6=0,求{an}
的前 n 项和 Sn.
本 讲 栏 目 开 关
解 设{an}的首项为 a1,公差为 d, a +2da +6d=-16, 1 1 则 a1+3d+a1+5d=0,
a2+8da +12d2=-16, 1 1 即 a1=-4d, a =-8 a =8, 1 1 解得 或 d=2 d=-2,
第一讲
本 讲 栏 目 开 关
c1 而当 n=1 时, =a2,∴c1=3. b1 3,n=1, ∴cn= - 2×3n 1,n≥2.
∴c1+c2+…+c2 011=3+2×31+2×32+…+2×32 010 6-6×32 010 =3+ =3-3+32 011=32 011. 1-3
即 2a1+d=a1+2d, 1 又 a1=2,
1 所以 d=2,
故 a2=a1+d=1.
答案 1
题型与方法
第一讲
本 讲 栏 目 开 关
题型一 题型概述
等差数列的有关问题 等差数列是一个重要的数列类型, 高考命题主要考
查等差数列的概念、 基本量的运算及由概念推导出的一些重 要性质,灵活运用这些性质解题,可达到避繁就简的目的.
则 c5=2c3-c1=2×21-7=35.
答案 35
考点与考题
第一讲
1 5.(2012· 北京)已知{an}为等差数列, n 为其前 n 项和.若 a1= , S 2 S2=a3,则 a2=________.
本 讲 栏 目 开 关
解析
设{an}的公差为 d,
由 S2=a3 知,a1+a2=a3,
故 a7=0.

等差数列与等比数列基本公式PPT课件

等差数列与等比数列基本公式PPT课件

例3.已知数列{an}中,a1≠a2,若存在常数p,
使得对任意自然数n均有Sn=pnan成立.
(1)求p
(2)证明{an}成等差数

(2)根据已求得的p=1/2 Sn=(1/2)nan,
由等差数列定义,满足an-an-1=d(常数) 的数列是等差数列
所以第一步求通项,第二步“作差”.
证明: n≥2时,an=Sn-Sn-1=(1/2)nan-(1/2)(n-1)an-
习题分析:
7.数列{an}各项均为正数,前n项和 为An,数列{bn}的前n项和为Bn,且满 足Bn=-n(n-1),bn=log2an,求An.
42
22
cos(A C) 1 A C
故 A=B=C, 公差 d=0.
例2:已知数列{an}为等差数列,公差d≠0,{an}的 部分项组成下列数列: ak1 , ak2 , ak3 ,......., akn 恰好为等比数列,其中k1=1,k2=5,k3=17,求 k1+k2+.....+kn
已知三数和为19=>
a d 2 a d a
19
a
四数为: 9,6,4,2或 25,-10,4,18.
归纳
为了便于解方程,应该充分分析条件的 特征,尽量减少未知数的个数, 用最少的未知 数表达出数列的有关项的数量关系,促使复 杂的问题转化为较简单的问题,获得最佳的 解决方法。
解(: AS)190,0S2(0-BS)1-0,9S030-S(20C,).1.1..0...(.D,)S1-110-1S0100成等差数列,公差
(S10 S20

Sa110aa211...a..1.2a.1.0.... 10a(2a0121a01(0a)1125(a22a01)

高考数学二轮复习 专题四 数列 第1讲 等差数列与等比数列课件 文

高考数学二轮复习 专题四 数列 第1讲 等差数列与等比数列课件 文
解析:数列{an}为等差数列, 设公差为 d, 所以 a1+a3+a5=3a1+6d=3, 所以 a1+2d=1,
所以 S5=5a1+ 5 4 ×d=5(a1+2d)=5. 2
3.(2014 新课标全国卷Ⅱ,文 5)等差数列{an}的公差为 2,若 a2,a4,a8 成 等比数列,则{an}的前 n 项和 Sn 等于( A ) (A)n(n+1) (B)n(n-1)
(4)前n项和公式法:Sn=An2+Bn(A,B为常数)⇒{an}是等差数列;Sn=Aqn-A(A 为非零常数,q≠0,1)⇒{an}是等比数列.
4.等差、等比数列的单调性 (1)等差数列的单调性 d>0⇔{an}为递增数列,Sn有最小值. d<0⇔{an}为递减数列,Sn有最大值. d=0⇔{an}为常数列.
则公比q=
.
解析:由题意,q≠1,
由S3+3S2=4a1+4a2+a3 =a1(4+4q+q2) =a1(q+2)2 =0,
a1≠0知q=-2. 答案:-2
6.(2013 新课标全国卷Ⅱ,文 17)已知等差数列{an}的公差不为零,a1=25, 且 a1,a11,a13 成等比数列. (1)求{an}的通项公式; (2)求 a1+a4+a7+…+a3n-2.
(C) n(n 1) 2
(D) n(n 1) 2
解析:因为 a2,a4,a8 成等比数列,
所以 a42 =a2·a8, 所以(a1+6)2=(a1+2)·(a1+14),
解得 a1=2.
所以 Sn=na1+ n(n 1) d=n(n+1). 2

高考数学二轮复习专题4数列第1讲等差数列与等比数列理

高考数学二轮复习专题4数列第1讲等差数列与等比数列理

第1讲等差数列与等比数列等差、等比数列的基本运算1.(2015新课标全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10等于( B )(A)(B)(C)10 (D)12解析:设等差数列{a n}的首项为a1,公差为d.由题设知d=1,S8=4S4,所以8a1+28=4(4a1+6),解得a1=,所以a10=+9=,选B.2.(2015辽宁省锦州市质量检测(一))已知各项不为0的等差数列{a n}满足a4-2+3a8=0,数列{b n}是等比数列,且b7=a7,则b2b8b11等于( D )(A)1 (B)2 (C)4 (D)8解析:因为a4-2+3a8=0,所以a1+3d-2+3(a1+7d)=0,所以4(a1+6d)-2=0,即4a7-2=0,又a7≠0,所以a7=2,所以b7=2,所以b2b8b11=b1q·b1q7·b1q10=(b1q6)3==8.故选D.3.(2015河南郑州第二次质量预测)设等比数列{a n}的前n项和为S n,若27a3-a6=0,则= .解析:设等比数列公比为q(q≠1),因为27a3-a6=0,所以27a3-a3q3=0,所以q3=27,q=3,所以====28.答案:28等差、等比数列的性质及应用4.(2015河南省六市第二次联考)已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为( C )(A)10 (B)20 (C)100 (D)200解析:a7(a1+2a3)+a3a9=a1a7+2a3a7+a3a9=+2a4a6+=(a4+a6)2=102=100.故选C.5.设等比数列{a n}中,前n项和为S n,已知S3=8,S6=7,则a7+a8+a9等于( A )(A)(B)-(C)(D)解析:因为a7+a8+a9=S9-S6,在等比数列中S3,S6-S3,S9-S6也成等比数列,即8,-1,S9-S6成等比数列,所以有8(S9-S6)=1,即S9-S6=.故选A.6.(2015新课标全国卷Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4-1),则a2等于( C )(A)2 (B)1 (C)(D)解析:法一根据等比数列的性质,结合已知条件求出a4,q后求解.因为a3a5=,a3a5=4(a4-1),所以=4(a4-1),所以-4a4+4=0,所以a4=2.又因为q3===8,所以q=2,所以a2=a1q=×2=.故选C.法二直接利用等比数列的通项公式,结合已知条件求出q后求解.因为a3a5=4(a4-1),所以a1q2·a1q4=4(a1q3-1),将a1=代入上式并整理,得q6-16q3+64=0,解得q=2,所以a2=a1q=.故选C.7.(2015哈师大附中、东北师大附中、辽宁实验中学第一次联合模拟)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n等于( B )(A)6 (B)7 (C)8 (D)9解析:依题意得S9-S5=a6+a7+a8+a9=0,所以2(a7+a8)=0,所以a7+a8=0,又a1>0,所以该等差数列的前7项为正数,从第8项开始为负数.所以当S n最大时,n=7.故选B.8.(2015东北三校第一次联合模拟)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015= .解析:因为a4+a6+a2010+a2012=8,所以2(a4+a2012)=8,所以a4+a2012=4.所以S2015===4030.答案:4030等差、等比数列的综合问题9.(2015甘肃二诊)设等差数列{a n}的前n项和为S n,且满足S17>0,S18<0,则,,…,中最大的项为( C )(A)(B)(C)(D)解析:因为S17==17a9>0,S18==9(a10+a9)<0,所以a9>0,a10+a9<0,所以a10<0.所以等差数列为递减数列,则a1,a2,…,a9为正,a10,a11,…为负,S1,S2,…,S17为正,S18,S19,…为负,所以>0,>0,…,>0,<0,<0,…,<0,又S1<S2<…<S9,a1>a2>…>a9,所以,,…,中最大的项为.故选C.10.(2014辽宁卷)设等差数列{a n}的公差为d,若数列{}为递减数列,则( C )(A)d<0 (B)d>0(C)a1d<0 (D)a1d>0解析:因为数列{}为递减数列,a1a n=a1[a1+(n-1)d]=a1dn+a1(a1-d),等式右边为关于n的一次函数,所以a1d<0.11.(2015兰州高三诊断)在等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的前n项和S n.解:(1)因为{a n}为等比数列,所以=q3=8;所以q=2.所以a n=2·2n-1=2n.(2)b3=a3=23=8,b5=a5=25=32,又因为{b n}为等差数列,所以b5-b3=24=2d,所以d=12,b1=a3-2d=-16,所以S n=-16n+×12=6n2-22n.一、选择题1.(2015云南第二次检测)设S n是等差数列{a n}的前n项和,若a1∶a2=1∶2,则S1∶S3等于( D )(A)1∶3 (B)1∶4 (C)1∶5 (D)1∶6解析:S1∶S3=a1∶(a1+a2+a3)=a1∶3a2,又a1∶a2=1∶2,所以S1∶S3=1∶6.故选D.2.(2015银川九中月考)已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n等于( B )(A)2n-1 (B)()n-1(C)()n-1(D)解析:由S n=2a n+1得S n=2(S n+1-S n),所以S n+1=S n.所以{S n}是以S1=a1=1为首项,为公比的等比数列.所以S n=()n-1.故选B.3.(2015河北石家庄二模)等比数列{a n}的前n项和为S n,已知S3=a2+5a1,a7=2,则a5等于( A )(A)(B)-(C)2 (D)-2解析:设公比为q,因为S3=a2+5a1,所以a1+a2+a3=a2+5a1,所以a3=4a1,所以q2==4,又a7=2,所以a5===.故选A.4.已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10等于( D )(A)7 (B)5 (C)-5 (D)-7解析:法一利用等比数列的通项公式求解.由题意得所以或所以a1+a10=a1(1+q9)=-7.法二利用等比数列的性质求解.由解得或所以或所以a1+a10=a1(1+q9)=-7.故选D.5.(2015兰州高三诊断)已知等差数列{a n}的前n项和为S n,若a4=18-a5,则S8等于( D )(A)18 (B)36 (C)54 (D)72解析:因为a4=18-a5,所以a4+a5=18,所以S8====72.故选D.6.(2014郑州市第二次质量预测)在数列{a n}中,a n+1=ca n(c为非零常数),前n项和为S n=3n+k,则实数k为( A )(A)-1 (B)0 (C)1 (D)2解析:由a n+1=ca n,可知{a n}是等比数列,设公比q,由S n=,得S n=-·q n+.由S n=3n+k,知k=-1.故选A.7.设{a n}是公差不为零的等差数列,满足+=+,则该数列的前10项和等于( C )(A)-10 (B)-5 (C)0 (D)5解析:设等差数列{a n}的首项为a1,公差为d(d≠0),由+=+得,(a1+3d)2+(a1+4d)2=(a1+5d)2+(a1+6d)2,整理得2a1+9d=0,即a1+a10=0,所以S10==0.故选C.8.(2015北京卷)设{a n}是等差数列,下列结论中正确的是( C )(A)若a1+a2>0,则a2+a3>0(B)若a1+a3<0,则a1+a2<0(C)若0<a1<a2,则a2>(D)若a1<0,则(a2-a1)(a2-a3)>0解析:因为{a n}为等差数列,所以2a2=a1+a3.当a2>a1>0时,得公差d>0,所以a3>0,所以a1+a3>2,所以2a2>2,即a2>,故选C.9.(2015大连市二模)已知等差数列{a n}的前n项和为S n,a2=4,S10=110,则的最小值为( C )(A)7 (B)(C)(D)8解析:设等差数列{a n}的公差为d,则解得所以a n=2+2(n-1)=2n,S n=2n+×2=n2+n,所以==++≥2+=.当且仅当=,即n=8时取等号.故选C.10.(2015福建卷)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( D ) (A)6 (B)7 (C)8 (D)9解析:由题可知a,b是x2-px+q=0的两根,所以a+b=p>0,ab=q>0,故a,b均为正数.因为a,b,-2适当排序后成等比数列,所以-2是a,b的等比中项,得ab=4,所以q=4.又a,b,-2适当排序后成等差数列,所以-2是第一项或第三项,不妨设a<b,则-2,a,b成递增的等差数列,所以2a=b-2,联立消去b得a2+a-2=0,得a=1或a=-2,又a>0,所以a=1,此时b=4,所以p=a+b=5,所以p+q=9.故选D.二、填空题11.(2015黑龙江高三模拟)等差数列{a n}中,a4+a8+a12=6,则a9-a11= .解析:设等差数列{a n}公差为d,因为a4+a8+a12=6,所以3a8=6,即a8=a1+7d=2,所以a9-a11=a1+8d-(a1+10d)=a1+ d=(a1+7d)=×2=.答案:12.(2015宁夏石嘴山高三联考)若正项数列{a n}满足a2=,a6=,且=(n≥2,n∈N*),则log2a4= .解析:因为=(n≥2,n∈N*),所以=a n-1·a n+1,所以数列{a n}为等比数列.又a2=,a6=,所以q4==.因为数列为正项数列,所以q>0,所以q=.所以a4=a2q2=×=,所以log2a4=log2=-3.答案:-313.(2015安徽卷)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.解析:因为a1=1,a n=a n-1+(n≥2),所以数列{a n}是首项为1、公差为的等差数列,所以前9项和S9=9+×=27.答案:2714.(2015湖南卷)设S n为等比数列{a n}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:设等比数列{a n}的公比为q(q≠0),依题意得a2=a1·q=q,a3=a1q2=q2, S1=a1=1,S2=1+q,S3=1+q+q2.又3S1,2S2,S3成等差数列,所以4S2=3S1+S3,即4(1+q)=3+1+q+q2,所以q=3(q=0舍去).所以a n=a1q n-1=3n-1.答案:3n-1。

高三数学等差等比数列1(教学课件2019)

高三数学等差等比数列1(教学课件2019)
(3)理解等比决简单的实际问题.
专题知识整合
一般数列
数列
等差数列
等比数列 数列求和
概念 通项公式 概念
性质 求和 概念
性质 求和
等差、等比数 列的基本运用
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

非楚意也 厥法有品 谋欲借兵兼并两昆弥 自立为王 世之不绝也 於是正明堂之朝 凡五帅 又诸庙寝园食宫令长丞 令百姓皆知天子意 笞问昭平 八神奔而警跸兮 徙代王如意为赵王 入见 驰骛於唐 虞 辛巳 其尊恭皇太后为帝太太后 独两人及从奴十馀骑驰入吴军 食邑各有差 见其灶直突 非以兼有乌孙 康居故也 各有差 又曰 盖闻王者必存二王之后 立曲旃 二祧则时享 起 高后崩 泉流灌浸 怀能生男兴 译长二人 遣太师王匡 更始将军廉丹东 女子百户牛 酒 谓之祥 此乘胜而去国远斗 祠神人於交门宫 斩首虏数百 会义亦往 则匈奴盛 三铢 诚各去两短 凡数千万 千秋为 相十二年 迫於老眊昏乱 庄之推贤 天下以言为戒 填抚方外 秦德衰 玉加各二 网罗天下异能之士 即拜帝母卫姬为中山孝王后 〔图九卷 必为害 王即杀赖丹 即始皇二十八年过江所湛璧也 辄自治 举兵而西 重以不德 妃 龙山在西北 谏大夫 秩比六百石 席卷三秦 楼船将军杨仆坐失亡多 免为庶民 金日磾夷狄亡国 经数十年 终於氐四度 壤子王梁 代 南阳好商贾 不忍 京兆尹王嘉为保拂 孝元皇后之弟子也 而少年慕其行 夫孝子善述人之志 永当之官 而十二辰立矣 自昭帝时 宜阳雨血 河 勿租税 上登长平 二十五日而旋 伐周襄王 未闻忠言嘉谋 因问大臣 吏卒战死者二 千人 而大宛诸国发使随汉使来 斡官属少府 衣冠怀之 今单于归义 帝时体不安 因谓之安 虽高

2019高考数学复习第一部分专题二数列第1讲等差数列、等比数列及运算课件

2019高考数学复习第一部分专题二数列第1讲等差数列、等比数列及运算课件

+3
②,
①-②得, - Tn=23+24+…+ 2n+ 2-n× 2n+ 3 23 1-2n = - n×2n+3 1-2 = 2n+3-8- n× 2n+3. 所以 Tn=(n- 1)× 2n+3+ 8.
考点考查题型 考点应用方法 考点应用公式 考点如何防范
已知等差数列条件求通项求和 用求和公式求 d,求通项求等比 等差数列前 n 项和公式, 通项公式等比数列 求和公式 注意符号变化的系数变化
项和为 Sn,等比数列{bn}的前 n 项和为 Tn,a1=- 1,b1= 1, a2+ b2= 2. (1)若 a3+ b3= 5,求{bn}的通项公式; (2)若 T3= 21,求 S3.
[解析]
设 {an}的公差为 d, {bn}的公比为 q, 2分
则 an=- 1+(n-1)d,bn=qn-1. 由 a2+ b2= 2 得 d+ q= 3.① (1)由 a3+ b3= 5 得 2d+ q2=6.②
保分专题二 数列
第1讲 等差数列、等比数列及运算
经典结论
C
目 录
ONTENTS
4 5
规范解答 快速解答
专练题型
专题限时训练
1.等差、等比数列的性质 等差数列 等比数列
(1)若 m, n, p, q∈ N*,且 m (1)若 m, n, p, q∈ N*, + n= p+ q, 性 质 则 am+an=ap+aq (2)an= am+ (n- m)d; (3)Sm,S2m- Sm, S3m- S2m, … 仍成等差数列 且 m+ n= p+ q,
S偶 (3)在等差数列中, 当项数为偶数 2n 时, 有 S 偶-S 奇= nd, S奇 an+1 S偶 n- 1 = ; 当项数为奇数 2n- 1 时, 有 S 奇 -S 偶= an, = . an n S奇 S偶 (4)在等比数列中,当项数为偶数 2n 时, = q. S奇

高三数学二轮复习-第1讲等差数列、等比数列专题攻略课件-理-新人教版

高三数学二轮复习-第1讲等差数列、等比数列专题攻略课件-理-新人教版

4.(2010年高考北京卷)已知{an}为等差数列,且a3 =-6,a6=0. (1)求{an}的通项公式; (2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3, 求{bn}的前n项和公式. 解:(1)设等差数列{an}的公差为 d.
因为 a3=-6,a6=0,
所以aa11+ +25dd= =-0,6, 解得ad=1=2-. 10,
A.6
B.7
Hale Waihona Puke C.8D.9解析:选 A.∵{an}是等差数列, ∴a4+a6=2a5=-6, 即 a5=-3,d=a55- -a11=-34+11=2,得{an}是首 项为负数的递增数列,所有的非正项之和最 小.∵a6=-1,a7=1,∴当 n=6 时,Sn 取最小 值,故选 A.
3.(2010 年高考辽宁卷)设{an}是由正数组成的等
比数列,Sn 为其前 n 项和.已知 a2a4=1,S3=7,
则 S5=( )
15
31
A. 2
B. 4
33 C. 4
17 D. 2
解析:选 B.an>0,a2a4=a21q4=1①,S3=a1+a1q+ a1q2=7②. 解得 a1=4,q=12或-13(舍去), S5=a111--qq5=4×1-1-12312=341,故选 B.
(1)求通项an及Sn; (2)设{bn-an}是首项为1,公比为3的等比数 列,求数列{bn}的通项公式及前n项和Tn.
【解】 (1)∵{an}是首项为 a1=19,公差为 d =-2 的等差数列,
∴an=19-2(n-1)=21-2n, Sn=19n+12n(n-1)×(-2)=20n-n2. (2)由题意得 bn-an=3n-1,即 bn=an+3n-1,∴ bn=3n-1-2n+21,Tn=Sn+(1+3+…+3n-1)=- n2+20n+3n-2 1.

第1章 数列(单元复习课件)高二数学(湘教版2019选择性必修第一册)

第1章 数列(单元复习课件)高二数学(湘教版2019选择性必修第一册)

(2)在(1)的结论下,设bn=log4an+1,cn=an+bn,Tn是数列{cn}的前n项和, 求Tn.
由(1)可得an=4n-1,an+1=4n, 所以bn=log4an+1=n,cn=4n-1+n, 那么Tn=c1+c2+…+cn =(40+1)+(41+2)+…+(4n-1+n) =(40+41+…+4n-1)+(1+2+…+n) =4n-3 1+nn2+1.
⑧(-1)nlog3[n(n+1)]=(-1)n[log3n+log3(n+1)];
⑨(-1)n2n-14n2n+1=(-1)n2n1-1+2n1+1.
【例7】已知数列{an}的前n项和为Sn,满足S2=2,S4=16,{an+1}是等比数列.
(1)求数列{an}的通项公式;
设等比数列{an+1}的公比为q,其前n项和为Tn,
A.4
B.5
C.6
D.7
设等差数列的公差为d,则a=1+d,b=19-d,从而a+b=20,
由题意知,d>0,故a>0,b>0, 所以(a+b)1a+1b6=1+16+ba+1b6a≥17+2 ba·1b6a=25, 即1a+1b6≥2250=54,当且仅当ba=1b6a, 即b=4a时取“=”,又a=1+d,b=19-d,解得d=3,所以19=1
题型突破
题型一:等差数列的有关计算
等差数列的计算技巧 (1)当已知条件中出现与首项、公差有关的内容时,可直接设首项为a1,公差为 d,利用已知条件建立方程(组)求出a1和d,即可解决等差数列的有关问题.另外 亦可用等差中项及性质找到项与项之间的关系进行解题,此种解法计算量较小. (2)当已知数列有3项时,可设为a-d,a,a+d,此时公差为d.若有5项、7 项、…时,可同理设出. (3)当已知数列有4项时,可设为a-3d,a-d,a+d,a+3d,此时公差为2d.若 有6项、8项、…时,可同理设出.

高考数学第二轮复习专题四数列第1讲等差数列、等比数列文试题

高考数学第二轮复习专题四数列第1讲等差数列、等比数列文试题

智才艺州攀枝花市创界学校专题四数列第1讲等差数列、等比数列真题试做1.(2021·高考,文4)在等差数列{a n}中,a4+a8=16,那么a2+a10=().A.12B.16C.20D.242.(2021·高考,文5)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,那么a5=().A.1B.2C.4D.83.(2021·高考,文6){a n}为等比数列.下面结论中正确的选项是().A.a1+a3≥2a2B.a+a≥2aC.假设a1=a3,那么a1=a2D.假设a3>a1,那么a4>a24.(2021·高考,文14)等比数列{a n}为递增数列.假设a1>0,且2(a n+a n+2)=5a n+1,那么数列{a n}的公比q=__________.5.(2021·高考,文16)等比数列{a n}的公比q=-.(1)假设a3=,求数列{a n}的前n项和;(2)证明:对任意k∈N+,a k,a k+2,a k+1成等差数列.考向分析高考中对等差(等比)数列的考察主、客观题型均有所表达,一般以等差、等比数列的定义或者以通项公式、前nn项和公式建立方程组求解,属于低档题;(2)对于等差、等比数列性质的考察主要以客观题出现,具有“新、巧、活〞的特点,考察利用性质解决有关计算问题,属中低档题;(3)对于等差、等比数列的判断与证明,主要出如今解答题的第一问,是为求数列的通项公式而准备的,因此是解决问题的关键环节.热点例析热点一等差、等比数列的根本运算【例1】(2021·质检,20)设数列{a n}的前n项和为S n,a1=1,等式a n+a n+2=2a n+1对任意n∈N*均成立.(1)假设a4=10,求数列{a n}的通项公式;(2)假设a2=1+t,且存在m≥3(m∈N*),使得a m=S m成立,求t的最小值.规律方法此类问题应将重点放在通项公式与前n项和公式的直接应用上,注重五个根本量a1,a n,S n,n,d(q)之间的转化,会用方程(组)的思想解决“知三求二〞问题.我们重在认真观察条件,在选择a1,d(q)两个根本量解决问题的同时,看能否利用等差、等比数列的根本性质转化条件,否那么可能会导致列出的方程或者方程组较为复杂,无形中增大运算量.同时在运算过程中注意消元法及整体代换的应用,这样可减少计算量.特别提醒:(1)解决等差数列{a n}前n项和问题常用的有三个公式:S n=;S n=na1+d;S n=An2+Bn(A,B 为常数),灵敏地选用公式,解决问题更便捷;(2)利用等比数列前n项和公式求和时,不可无视对公比q是否为1的讨论.变式训练1(2021·质检,20)等差数列{a n}的公差大于零,且a2,a4是方程x2-18x+65=0的两个根;各项均为正数的等比数列{b n}的前n项和为S n,且满足b3=a3,S3=13.(1)求数列{a n},{b n}的通项公式;(2)假设数列{c n}满足c n=求数列{c n}的前n项和T n.热点二等差、等比数列的性质【例2】(1)在正项等比数列{a n}中,a2,a48是方程2x2-7x+6=0的两个根,那么a1·a2·a25·a48·a49的值是().A.B.93C.±9D.35(2)正项等比数列{a n}的公比q≠1,且a2,a3,a1成等差数列,那么的值是().A.或者B.C.D.规律方法(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进展求解;(2)应结实掌握等差、等比数列的性质,特别是等差数列中假设“m+n=p+q,那么a m+a n=a p+a q〞这一性质与求和公式S n=的综合应用.变式训练2(1)(2021·玉山期末,3)等差数列{a n}的前n项和为S n,且满足S15=25π,那么tan a8的值是().A.B.-C.±D.-(2)(2021·调研,7)数列{a n}是等比数列,其前n项和为S n,假设公比q=2,S4=1,那么S8=().A.17B.16 C.15D.256热点三等差、等比数列的断定与证明【例3】(2021·一模,20)在数列{a n}中,a1=5且a n=2a n-1+2n-1(n≥2,且n∈N*).(1)证明:数列为等差数列;(2)求数列{a n}的前n项和S n.规律方法证明数列{a n}为等差或者等比数列有两种根本方法:(1)定义法a n+1-a n=d(d为常数)⇔{a n}为等差数列;=q(q为常数)⇔{a n}为等比数列.(2)等差、等比中项法2a n=a n-1+a n+1(n≥2,n∈N*)⇔{a n}为等差数列;a=a n-1a n+1(a n≠0,n≥2,n∈N*)⇔{a n}为等比数列.我们要根据题目条件灵敏选择使用,一般首选定义法.利用定义法一种思路是直奔主题,例如此题方法;另一种思路是根据条件变换出要解决的目的,如此题还可这样去做:由a n=2a n-1+2n-1,得a n-1=2a n-1-2+2n,所以a n-1=2(a n-1-1)+2n,上式两边除以2n,从而可得=+1,由此证得结论.特别提醒:(1)判断一个数列是等差(等比)数列,还有通项公式法及前n项和公式法,但不作为证明方法;(2)假设要判断一个数列不是等差(等比)数列,只需判断存在连续三项不成等差(等比)即可;(3)a=a n-1a n+1(n≥2,n∈N*)是{a n}为等比数列的必要而不充分条件,也就是要注意判断一个数列是等比数列时,要注意各项不为0.变式训练3在数列{a n}中,a n+1+a n=2n-44(n∈N*),a1=-23,是否存在常数λ使数列{a n-n+λ}为等比数列,假设存在,求出λ的值及数列的通项公式;假设不存在,请说明理由.思想浸透1.函数方程思想——等差(比)数列通项与前n项和的计算问题:(1)等差(比)数列有关条件求数列的通项公式和前n项和公式,及由通项公式和前n项和公式求首项、公差(比)、项数及项,即主要指所谓的“知三求二〞问题;(2)由前n项和求通项;(3)解决与数列通项、前n项和有关的不等式最值问题.2.求解时主要思路方法为:(1)运用等差(比)数列的通项公式及前n项和公式中的5个根本量,建立方程(组),进展运算时要注意消元的方法及整体代换的运用;(2)数列的本质是定义域为正整数集或者其有限子集的函数,数列的通项公式即为相应的函数解析式,因此在解决数列问题时,应用函数的思想求解.在等比数列{a n}中,a n>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3与a5的等比中项为2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,数列{b n}的前n项和为S n,当++…+最大时,求n的值.解:(1)∵a1a5+2a3a5+a2a8=25,∴a+2a3a5+a=25.又a n>0,∴a3+a5=5.又a3与a5的等比中项为2,∴a3a5=4.而q∈(0,1),∴a3>a5.∴a3=4,a5=1,q=,a1=16.∴a n=16×n-1=25-n.(2)b n=log2a n=5-n,∴b n+1-b n=-1,∴{b n}是以4为首项,-1为公差的等差数列.∴S n=,=,∴当n≤8时,>0;当n=9时,=0;当n>9时,<0;∴n=8或者9时,++…+最大.1.(2021·一模,5)在等差数列{a n}中,a9=a12+6,那么数列{a n}前11项的和S11等于().A.24B.48 C.66D.1322.(2021·名校创新冲刺卷,4)设{a n}是等比数列,那么“a1<a2<a3”是“数列{a n}是递增数列〞的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2021·质检,2)等比数列{a n}的公比q为正数,且2a3+a4=a5,那么q的值是().A.B.2 C.D.34.(2021·调研,6)等差数列{a n}的前n项和为S n,满足S20=S40,那么以下结论中正确的选项是().A.S30是S n的最大值B.S30是S n的最小值C.S30=0D.S60=05.正项等比数列{a n}满足a7=a6+2a5,假设存在两项a m,a n,使得=4a1,那么+的最小值为________.6.(原创题)数列{a n}为等差数列,数列{b n}为等比数列,且满足a1000+a1013=π,b1b13=2,那么tan=__________.7.(2021·五校联考,20)数列{a n}的前n项和为S n,a1=,S n=n2a n-n(n-1),n=1,2,….(1)证明:数列是等差数列,并求S n;(2)设b n=,求证:b1+b2+…+b n<1.8.设{a n}是公比大于1的等比数列,S n为数列{a n}的前n项和.S3=7,且a1+3,3a2,a3+4构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=ln a3n+1,n=1,2,…,求数列{b n}的前n项和T n.参考答案·明晰考向真题试做1.B解析:由等差数列的性质知,a2+a10=a4+a8=16,应选B.2.A解析:由题意可得,a3·a11=a=16,∴a7=4.∴a5===1.3.B解析:A中当a1,a3为负数,a2为正数时,a1+a3≥2a2不成立;B中根据等比数列的性质及均值不等式得,a+a≥2=2a;C中取a1=a3=1,a2=-1,显然a1≠a2;D中取a1=1,a2=-2,a3=4,a4=-8,可知a4>a2不成立.综上可知仅有B正确.4.2解析:∵等比数列{a n}为递增数列,且a1>0,∴公比q>1.又∵2(a n+a n+2)=5a n+1,∴2a n+2a n q2=5a n q.∵a n≠0,∴2q2-5q+2=0.∴q=2或者q=(舍去).∴公比q为2.5.(1)解:由a3=a1q2=及q=-,得a1=1,所以数列{a n}的前n项和S n==.(2)证明:对任意k∈N+,2a k+2-(a k+a k+1)=2a1q k+1-(a1q k-1+a1q k)=a1q k-1(2q2-q-1),由q=-得2q2-q-1=0,故2a k+2-(a k+a k+1)=0.所以,对任意k∈N+,a k,a k+2,a k+1成等差数列.精要例析·聚焦热点热点例析【例1】解:(1)∵a n+a n+2=2a n+1对n∈N*都成立,∴数列{a n}为等差数列.设数列{a n}的公差为d,∵a1=1,a4=10,且a4=a1+3d=10.∴d=3.∴a n=a1+(n-1)d=3n-2.∴数列{a n}的通项公式为a n=3n-2.(2)∵a2=1+t,∴公差d=a2-a1=t.∴a n=a1+(n-1)d=1+(n-1)t.S n=na1+d=n+t.由a m=S m得1+(m-1)t=m+t,∴(m-1)t=(m-1)+t.∴t=1+t.∴t=.∵m≥3,∴-2≤t<0.∴t的最小值为-2.【变式训练1】解:(1)设{a n}的公差为d(d>0),{b n}的公比为q(q>0),那么由x2-18x+65=0,解得x=5或者x=13.因为d>0,所以a2<a4,那么a2=5,a4=13.那么解得a1=1,d=4,所以a n=1+4(n-1)=4n-3.因为解得b1=1,q=3.所以b n=3n-1.(2)当n≤5时,T n=a1+a2+a3+…+a n=n+×4=2n2-n;当n>5时,T n=T5+(b6+b7+b8+…+b n)=(2×52-5)+=.所以T n=【例2】(1)B解析:依题意知a2·a48=3.又a1·a49=a2·a48=a=3,a25>0,∴a1·a2·a25·a48·a49=a=9.(2)C解析:因为a2,a3,a1成等差数列,所以a3=a1+a2.∴q2=1+q.又q>0,解得q=,故===.【变式训练2】(1)B解析:∵S15=15a8=25π,∴a8=.∴tan a8=tan=tan=-tan=-.(2)A解析:S8=S4+(a5+a6+a7+a8)=S4+q4S4=17.【例3】(1)证明:设b n=,b1==2,∴b n+1-b n=-=[(a n+1-2a n)+1]=[(2n+1-1)+1]=1,∴数列是首项为2,公差为1的等差数列.(2)解:由(1)知,=+(n-1)×1,∴a n=(n+1)·2n+1.∵S n=(2·21+1)+(3·22+1)+…+(n·2n-1+1)+[(n+1)·2n+1],∴S n=2·21+3·22+…+n·2n-1+(n+1)·2n+n.设T n=2·21+3·22+…+n·2n-1+(n+1)·2n,①那么2T n=2·22+3·23+…+n·2n+(n+1)·2n+1.②由②-①,得T n=-2·21-(22+23+…+2n)+(n+1)·2n+1=n·2n+1,∴S n=n·2n+1+n=n·(2n+1+1).【变式训练3】解:假设a n+1-(n+1)+λ=-(a n-n+λ)成立,整理得a n+1+a n=2n+1-2λ,与a n+1+a n=2n-44比较得λ=.∴数列是以-为首项,-1为公比的等比数列.故a n-n+=-(-1)n-1,即a n=n--(-1)n-1.创新模拟·预测演练1.D解析:设等差数列{a n}的公差为d,那么由a9=a12+6得a1+8d=(a1+11d)+6,整理得a1+5d=12,即a6=12,∴S11=11a6=132.2.C解析:由a1<a2<a3,得有或者那么数列{a n}是递增数列,反之显然成立,应选C.3.B解析:由2a3+a4=a5得2a3+a3q=a3q2,∴q2-q-2=0,解得q=2或者q=-1(舍去).4.D解析:由S20=S40得a21+a22+a23+…+a40=0,∴a21+a40=0.∴S60=(a1+a60)×60=(a21+a40)×60=0.5.解析:由a7=a6+2a5,得q2-q-2=0,解得q=2或者q=-1(舍去),∴a m a n=a1q m-1·a1q n-1=16a.∴q m+n-2=2m+n-2=24.∴m+n-2=4.∴m+n=6.∴+=··(m+n)=≥(5+4)=(当且仅当4m2=n2时,“=〞成立).6.-解析:因为数列{a n}为等差数列,数列{b n}为等比数列,所以由它们的性质可得a1000+a1013=a1+a2012=π,b1b13=b=2,那么tan=tan=-.7.证明:(1)由S n=n2a n-n(n-1)(n≥2),得S n=n2(S n-S n-1)-n(n-1),即(n2-1)S n-n2S n-1=n(n-1),所以S n-S n-1=1,对n≥2成立.S1=1,所以是首项为1,公差为1的等差数列,S1=a1=,所以S n=,当n=1时也成立.(2)b n===-,∴b1+b2+…+b n=1-+-+…+-=1-<1.8.解:(1)设数列{a n}的公比为q(q>1).由得即即解得a1=1,q=2或者a1=4,q=(舍去).∴a n=2n-1.(2)由(1)得a3n+1=23n,∴b n=ln a3n+1=ln23n=3n ln2,∴b n+1-b n=3ln2.∴{b n}是以b1=3ln2为首项,公差为3ln2的等差数列.∴T n=b1+b2+…+b n===,即T n=.。

数列的概念、等差与等比数列(考点串讲)高二数学上学期期中考点(湘教版2019选择性必修第一册)

数列的概念、等差与等比数列(考点串讲)高二数学上学期期中考点(湘教版2019选择性必修第一册)
由题意可知{ }为等差数列,
则数列首项1 = 2,公差 = 3,
所以 = 1 + − 1 = 2 + − 1 × 3 = 3 − 1,
1 +
(3−1+2)
由求和公式有 =
=
= 222,解得 = 12,
2
2
故选:C.
题型剖析
题型七
等比数列的定义
1
3
【例8】已知数列{ }中,1 = ,+1 =
=

举一反三
【变式】已知等差数列 的前项和为 ,且28 = 56,则12 + 13 + 14 + 15 +
16 + 17 =

【答案】12
【解析】由28 =
1 +28 ×28
2
= 56,得1 + 28 = 4,
则12 + 13 + 14 + 15 + 16 + 17 = 3 1 + 28 = 12.
天飞行任务.运送“神十八”的长征二号F运载火箭,在点火第一秒钟通过的路程为2km,以
后每秒钟通过的路程都增加3km,在达到离地面222km的高度时,火箭开始进入转弯程序.则
从点火到进入转弯程序大约需要的时间是( )秒.
A.10
B.11
C.12
D.13
【答案】C
【解析】设出每一秒钟的路程为数列{ },
技巧点拨
求数列的最大项与最小项的常用方法
(1)函数法,将数列视为函数 ,即当 ∈ ∗ 时所对应的一列函数值,
根据 的类型作出相应的函数图象或利用求函数最值的方法,求出
的最值,进而求出数列的最大(小)项.

高考数学(文科,通用)复习课件:专题4 第1讲等差数列和等比数列

高考数学(文科,通用)复习课件:专题4 第1讲等差数列和等比数列
将a3,a6的范围整体代入.
解析 S9=9a1+36d=3(a1+2d)+6(a1+5d) 又-1<a3<1,0<a6<3, ∴-3<3(a1+2d)<3,0<6(a1+5d)<18, 故-3<S9<21.
(1)等差数列问题的基本思想是求解a1和d,可利 用方程思想;
(2)等差数列的性质
思 维
①若m,n,p,q∈N*,且m+n=p+q,则am+
▪ 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/312021/7/312021/7/317/31/2021
▪ 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/312021/7/31July 31, 2021
A.1
B.2
C.4 D.8
解析 ∵a4-2a27+3a8=0,∴2a72=a4+3a8, 即 2a72=4a7,∴a7=2,∴b7=2, 又∵b2b8b11=b1qb1q7b1q10=b31q18=(b7)3=8,故选 D.
(2)在等比数列{an}中,a1+an=34,a2·an-1=64,
且前n项和Sn=62,则项数n等于( )
an=
S1,n=1, Sn-Sn-1,n≥2.
2.等差数列和等比数列
等差数列
定 an-an-1=常数

(n≥2)

等比数列
an =常数
an-1
(n≥2)
(1)定义法
(2)中项公式法:2an+(1)定义法 an2+1
1 = an + an +(2) 中 项 公 式 法 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n+1
an1 an a a = +1,即 n1 - n =1, n 1 n n 1 n
a a 所以 n 是以 1 =1 为首项,1 为公差的等差数列. 1 n
②解:由①得
an 2 =n,所以 an=n , n
n+1
因为 Tn=a1-a2+a3-a4+…+(-1) an, 所以 T2n=a1-a2+a3-a4+…+a2n-1-a2n =1-2 +3 -4 +…+(2n-1) -(2n)
(C)4n2+2n (D)4n2-1
解析:(3)把连续的奇数数列加 1 减 1 变成 1+3+5+7+…+(4n-3)+(4n-1)-1,把相邻 两项的和看成一个新的数列,为 4+12+20+…+(8n-4)-1,所以变成首项 a1=4,d=8 的 等差数列,所以 Sn=4n+
n n 1 2
1 1 答案 : 所以 a1=a7= . 2 2
7.(2018· 全国Ⅱ卷,文17)记Sn为等差数列{an}的前n项和,已知a1=-7,S3=-15. (1)求{an}的通项公式;
(2)求Sn,并求Sn的最小值. 解:(1)设{an}的公差为d,由题意得3a1+3d=-15.
由a1=-7得d=2. 所以{an}的通项公式为an=2n-9.
5 4 ×d=5(a1+2d)=5. 2
2.(2015·全国Ⅱ卷,文 9)已知等比数列{an}满足 a1= (A)2 (B)1 (C)
1 2
1 ,a3a5=4(a4-1),则 a2 等于( C 4
)
(D)
1 8
解析:设等比数列{an}的公比为 q,a1= 4(a1q -1),所以
3
1 2 4 ,a3a5=4(a4-1),由题可知 q≠1,则 a1q ×a1q = 4
热点三 等差数列、等比数列的判定
【例 3】 (1)(2018·陕西榆林一模)数列{an}满足 a1=1,nan+1=(n+1)an+n(n+1),n∈N .
*
a ①证明:数列 n 是等差数列; n
②若 Tn=a1-a2+a3-a4+…+(-1) an,求 T2n.
(1)①证明:由已知可得
所以a6+a11=a8+a9=0,
据此可得a8<0,a9>0,故其前n项和取最小值时的n的值为8.选C.
(3)(2018·河南洛阳市联考)在等比数列{an}中,a2,a16 是方程 x +6x+2=0 的根,则 的值为2 2 2
(B)- 2 (C) 2 (D)- 2 或 2
5 4 ×2=5a1+20=15, 2
)
(2)(2018·湖南省两市九月调研)已知等比数列{an}中,a5=3,a4a7=45,则 为( (A)3 (B)5 (C)9 (D)25 )
a7 a9 的值 a5 a7
解析:(2)因为{an}是等比数列, 所以 a4=
a5 2 ,a7=a5·q , q
解析:将 a8=2 代入 an+1= 再将 a7=
1 1 ,可求得 a7= ; 2 1 an
1 ,a8=2,则 a1= 1 an
.
1 1 代入 an+1= ,可求得 a6=-1; 2 1 an
再将 a6=-1 代入 an+1=
1 ,可求得 a5=2; 1 an
由此可以推出数列{an}是一个周期数列,且周期为 3,
解析:(1)a3+a4+a8=a2+a5+a8=3a5=25,即 a5=
9(a1 a9 ) 25 25 ,而 S9= =9a5=9× =75.故选 B. 2 3 3
) 时,{an}的前n项
(2)因为a7+a8+a9=3a8>0,a7+a10=a8+a9<0,
所以a8>0,a9<0,
所以n=8时,数列{an}的前n项和最大. 答案:(1)B (2)8
(2)①证明:由 S1=2a1-1 得 a1=1, 因为 Sn-Sn-1=(2an-n)-[2an-1-(n-1)](n≥2),所以 an=2an-1+1, 从而由 an+1=2(an-1+1), 因为 a1+1=2≠0, 所以 an+1≠0, 所以
an 1 =2(n≥2), an 1 1
a7等于(
(A)19 (B)20 (C)21 (D)22
)
解析:(1)等差数列{an}中,d= 则 a7=a3+4d=13+8=21.故选 C.
a13 a3 =2, 10
(2)(2018·广西桂林柳州市一模)设等比数列{an}的公比 q=2,前 n 项和为 Sn,则 值为( (A) (C)
15 4
解析:(3)因为a3+a4+a11=18,
所以3a1+15d=18⇒a1+5d=6, 所以S11=11(a1+5d)=11×6=66,故选D.
热点二 等差、等比数列的性质
【例2】 (1)(2018· 山东青岛二模)已知等差数列{an}中,若a4=15,则它的前7
项和为( (A)120 ) (B)115 (C)110 (D)105
所以 a4a7= a 52 ·q=9q=45, 所以 q=5,
a7 a9 (a5 a7 )q 2 所以 = =25.故选 D. a5 a7 a5 a7
(3)(2018· 福建百校高三临考冲刺)若干个连续奇数的和3+5+7+…+(4n-1)等于 ( ) (B)n2+2n (A)2n2+n
S4 的 a3
) (B) (D)
15 2
7 4
7 2
解析:(2)由等比数列的前 n 项和公式, 得 S4=
a1 1 q 4 1 q
2
,
又 a3=a1q ,
15 S4 1 q4 所以 = = .选 A. 2 4 a3 (1 q)q
(3)(2018· 山东潍坊青州三模)已知等差数列{an}的前n项和为Sn,若a3+a4+a11=18, 则S11等于( (A)9 (B)22 (C)36 (D)66 )
解析:(1)由题得 S7=
7 7 (a1+a7)= ×2a4=7a4=7×15=105.故选 D. 2 2
(2)(2018· 东北四市一模)等差数列{an}中,已知|a6|=|a11|,且公差d>0,则其前n 项和取最小值时的n的值为( )
(A)6 (B)7 (C)8 (D)9
解析:(2)等差数列的公差为正数, 则a11=-a6,
Sn=126,则n=
.
解析:因为在数列{an}中,a1=2,an+1=2an, 所以数列{an}是首项为 2,公比为 2 的等比数列, 因为 Sn=126,
2 2n1 所以 =126, 1 2
解得 2 =128,所以 n=6.
n+1
答案:6
6.(2014·全国Ⅱ卷,文 16)数列{an}满足 an+1=
1 1 6 3 6 3 3 2 3 ×q =4( ×q -1),所以 q -16q +64=0,所以(q -8) =0,所以 q =8, 16 4 1 ,故选 C. 2
所以 q=2,所以 a2=
3.(2015·全国Ⅰ卷,文 7)已知{an}是公差为 1 的等差数列,Sn 为{an}的前 n 项和.若 S8=4S4,则 a10 等于( B (A)
解析:(3)因为 a2,a16 是 x +6x+2=0 的两根, 所以 a2·a16=2, 又因为 a2·a16= a 92 , 所以 a 92 =2,所以 a9=± 2 , 所以
2
2 a2a16 = =± 2 .选 D. a9 2
(4)(2018·浙江温州市一模)已知数列{an}是公差不为 0 的等差数列,bn= 2 a 数列{bn}
专题四 第 1讲


等差数列与等比数列
高考导航 热点突破
备选例题 阅卷评析
高考导航
真题体验
演真题·明备考
1.(2015· 全国Ⅱ卷,文5)设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5等于 ( A ) (A)5 (B)7 (C)9 (D)11
解析:数列{an}为等差数列,设公差为 d, 所以 a1+a3+a5=3a1+6d=3,所以 a1+2d=1, 所以 S5=5a1+
* *
m+n=2p(m,n,p∈N )时,am·an= a 2 p ;②把公比不等于-1 的等比数列等距分段后,各
*
段之和还是等比数列,若公比等于 1,则各段之和既成等比数列也成等差数列.
热点训练2:(1)(2018· 辽宁沈阳育才学校一模)在等差数列{an}中,Sn为其前n项 和,若a3+a4+a8=25,则S9等于( (A)60 (B)75 (C)90 (D)105 (2)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 和最大.
热点一 等差、等比数列的基本运算
剖典例·促迁移
【例1】 (1)(2018· 山东济南二模)已知{an}是公差为2的等差数列,Sn为数列 {an}的前n项和,若S5=15,则a5等于( (A)3 (B)5 (C)7 (D)9
解析:(1)由题得 S5=5a1+ 所以 a1=-1, 所以 a5=a1+4d=-1+8=7.故选 C.
相关文档
最新文档