有理数的加减法练习题及答案教案资料.
1.3 有理数的加减法 辅导资料(含答案)
1.3 有理数的加减法第3课时本节主要是1.经历探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,能熟练的进行整式加法运算,并能运用运算律简化运算。
鼓励学生借助熟悉的例子解释运算结果,用自己的语言分类、归纳、概括出有理数的加法法则。
有理数的加法交换律和结合律。
2.利用有理数的加法交换律和结合律进行有理数的运算,其中加法交换律是两个数相加,交换加数的位置,和不变,即a+b=b+a;加法结合律是三个数相加,先把前两个数相加再和第三个数相加,或先把后两个数相加再和第一个数相加,和不变,即(a+b)+c=a+(b+c).本节主要讲了有理数减法的运算法则,让学生通过实例,理解有理数减法的法则,能熟练的进行整数的减法运算。
3.对有理数的加法,减法两种运算进行了比较,让学生体会到加减混合运算可以统一成加法,以及加法运算可以省略括号及前面加号的形式(即“代数和”的问题),同时由前两节的整数加减运算很自然的过渡到小数、分数的加减运算。
一. 有理数的加减法运算,能进行小数或分数在内的有理数加减混合运算,能根据具体的问题适当的运用运算律简化运算。
利用混合运算解决实际问题.这是本节的重点【典例引路】中例1,【当堂检测】中第4题,【课时作业】中第10,题,【备选题目】中第2题。
二.灵活运用有理数加减法运算的规律。
有理数的混合运算. 尤其是在计算过程中,一定要注意符号的选择,这是本节的难点.【典例引路】中例1,【当堂检测】中第5题,【课时作业】中第21题.三.易错题目【课时作业】中第7题,【典例引路】中例2,在计算过程中,一定要注意符号的选择,这是学生最容易出现错误的地方。
点击一:有理数的加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加为0;3.一个数同0相加,仍得这个数.注意:运用有理数加法法则时,看清两数符号属于哪种情况,再应用哪种法则. 针对性练习:1.填上适当的符号,使下列式子成立:(1)(______5)+(-15)=-10;(2)(-3)+(______3)=0; (3)(______37)+(______313)=-1. 【解析】先判断和的绝对值与两个加数的绝对值的关系,再根据有理数的加法法则选择符号.【答案】+ + + - 点击二:有理数的加法运算律加法交换律:两个数相加,交换加数的位置,和不变;a+b=b+a. 加法结合律:三个数相加,先把前两个相加,或者先把后两个数相加,和不变. a+b+c=(a+b)+c=a+(b+c) 利用加法交换律、结合律,可以使运算简化. 点击三:有理数的减数法则减去一个数,等于加上这个数的相反数. 点击四:有理数的混合运算 统一成加法后,按加法运算来完成.类型之一:应用创新型例1、仓库内原存粮食4000千克,一周内存入和取出情况如下(存入为正,单位:千克):2000,-1500,-300,600,500,-1600,-200问第7天末仓库内还存有粮食多少千克?【解析】本题使用正负数来表示具有相反意义的量——存入和取出。
有理数加减法的八大经典例题及详细解析
一.有理数加减法的应用1 某检修小组乘一辆小汽车沿东西方向检修道路,约定向东走为正,某天从w 地出发到收工时行走记录(单位:km):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6,求:(1)收工时检修小组在w地的哪一边,距w地多远?(2)若小汽车耗油2升/每千米,开工时储存160升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?2若m、n互为相反数,则|m-9+n|= ________.【答案】【解析】解:∵m、n互为相反数,∴m+n=0.∴|m-9+n|=|-9|=9.3小明家冰箱冷冻室的温度为-5℃,调高2℃后的温度为多少【答案】【解析】解:-5+2=-34 甲潜水员在海平面-56米作业,乙潜水员在海平面-30米作业,哪个离海平面比较近,近多少?乙潜水员离海平面比较近,近26米.【解析】解:乙潜水员离海平面比较近,56-30=26米.4每袋白面的标准重量为50千克,10袋白面称重记录如下:.51,51,51.5,49,51.2,51.3,48.7,48.8,51.8,51.1(1)与标准重量比较,10袋白面总计超过多少千克或不足多少千克?(2)10袋白面的总重量是多少千克?【答案】(1)5.4千克(2)505.4千克【解析】【答案】(1)该图书馆上周共借出520册书,(2)上星期一比上星期三多借出38册.解:(1)(100+21)+(100+20)+(100-17)+(100+8)+(100-12)=520册.(2)(100+21)-(100-17)=121-83=38册6今天白天是28℃,夜晚下降了18℃,请问夜间气温是多少度?解:28℃—18℃=10℃7 若∣a-3∣+∣b-5=0,则a=(),b=()8计算(1)23+(-17)+6+(-22)(2)1+(--)。
有理数的加减乘除运算--教案+例题+习题+答案
有理数的加减乘除运算一、目标认知学习目标:掌握有理数的加法法则,会使用运算律简算;并能解决简单的实际问题。
掌握有理数的减法法则和运算技巧,认识减法与加法的内在联系,合理运算。
重点:有理数的加法法则、减法法则、乘法法则、除法法则。
有理数的加法结合律、交换律;乘法交换律、结合律、乘法分配律。
混合运算的顺序。
难点:有理数运算法则的理解,尤其是有理数加法和减法法则的理解;有理数运算中的符号问题;运用运算律进行简算问题;运算的准确性问题等。
二、知识要点梳理知识点一:有理数的加法:把两个有理数合成一个有理数的运算叫做有理数的加法。
要点诠释:相加的两个有理数有以下几种情况:(1)两数都是正数;(2)两数都是负数;(3)两数异号,即一个是正数,一个是负数;(4)一个是正数,一个是0;(5)一个是负数,一个是0;(6)两个都是0。
知识点二:有理数加法法则根据有理数的加法法则,两数相加,先弄清这两个加数是同号还是异号,根据法则确定和的符号,然后根据法则求出和的绝对值。
要点诠释:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
知识点三:有理数加法的运算定律要点诠释:(1)加法交换律:。
(2)加法结合律:。
知识点四:有理数减法的意义要点诠释:有理数减法的意义与小学学过的减法的意义相同。
已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。
减法是加法的逆运算。
知识点五:有理数减法法则要点诠释:减去一个数,等于加上这个数的相反数,即知识点六:有理数加减法统一成加法的意义要点诠释:对于有理数的加减混合运算中的减法,可以根据有理数减法法则将减法转化为加法。
这样一来,就将原来的混合运算统一为加法运算。
统一成加法以后的式子是几个正数或负数的和的形式,有时,我们把这样的式子叫做代数和。
有理数加减法同步练习(含答案)
有理数加减法同步练习(含答案)篇一:有理数的加法同步练习及答案大一同步辅导教材(第九讲)第二章有理数及其运算2.4有理数的加法【重点难点】重点:有理数加法规则及相关运算法则。
难点:运用有理数加法法则和运算律进行简化运算。
[知识分类]1、有理数的加法法则:将两个符号相同的数字相加,取相同的符号,然后将绝对值相加异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);当绝对值不相等时,取绝对值较大的数字的符号,并从较大的绝对值中减去较小的绝对值。
向0添加一个数字以获取此数字【典例解析】例1。
计算:(1)(?3)?(?2)1434(2)?? 1.2 1.151325? (?) (4)(3)? (2)叁仟肆佰柒拾柒元1313解:(1)(?3)?(?2)??(3?2)??6;4444(3)(2)?? 1.2 1.(?1.2)? (?1.2)? 01513315? (?)?? (?)??;三十四万四千三百一十二25254(4)3?(?2)??(3?2)??。
77777(3)严格按照法律将两个不同符号的数字相加的关键是判断两个数字的绝对值中哪一个较大,从而确定和的符号以及哪个数字的绝对值减去哪个数字的绝对值例2、数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4个单位,两次共向左移动了几个单位?解决方案:(-2)+(-4)=-6。
答:这个点共向左移动6个单位。
例3。
计算(1)(?15)?(?20)? (?8)? (?6)? (?2)251219(?)?(?)?(?)?(?2.5)?(?0.125)?(?)278(2)7解决方案:(1)(?15)?(? 20)? (?8)? (?6)? (?2)(15)(8)(2)(20)(6)(25)(26)1251219()()()(2.5)(0.125 )?(?)278(2)72125119? (?)? (?)? (?)? (?2.5)? (?)? (?) 七万七千二百八十八105203555?(?)?0?(?)?(?)?(?)??72141414注:将分母相同的分数和数字相反的分数相加更方便【过关试题】1.计算:(1)??(3)4+(―5(5)(+2(7)(―6)+8+(―4)+12;(9)0.36+(―7.4)+0.3+(―0.6)+0.64;(8)1?1??1;23?(2)(―2.2)+3.8;131);6(4)(―51)+0;61)+(―2.2);5(6)(―2)+(+0.8);154?1?3127?3?73(10)9+(―7)+10+(―3)+(―9);2、用简便方法计算下列各题:101157()? (?)? ()? (?) 4612(1)3919(?0.5)?()?(?)?9.7522(2)1231839(?)? (?)? (?)? ()? ()5255(3)2(4)(?8)?(?1.2)?(?0.6)?(?2.4)4377(?3.5)? (?)? (?)? (?)? 0.75? (?) 3423 (5) 3. 用公式表示:温度从-5℃上升到8℃后达到的温度4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?已知的5.2A??5b?4.0,计算以下各项:(1)a的相反数与b的倒数的相反数的和;(2) a和B的绝对值之和。
有理数的加减法练习题[001]
有理数的加减法练习题引言有理数是整数和分数的统称,它包含所有可以表示为两个整数的比例的数。
有理数可以进行加法和减法运算,这是我们在学习数学过程中经常遇到的基础运算。
通过练习题的形式,我们可以提高加减法的运算能力,加深对有理数的理解。
本文档将为大家提供一系列的有理数的加减法练习题,帮助大家熟练掌握有理数的加减法运算。
练习题加法练习题1.计算:2/3 + 1/4 = ?2.计算:-5/6 + 7/8 = ?3.计算:1 3/4 + 2 2/5 = ?减法练习题1.计算:3/4 - 1/2 = ?2.计算:-2/3 - 1/5 = ?3.计算:2 3/8 - 1 1/4 = ?混合运算练习题1.计算:1/2 + 3/4 - 1/3 = ?2.计算:-2/5 - 1/4 + 2/3 = ?3.计算:3 1/2 - 2 2/3 + 1 1/4 = ? 解答加法练习题解答1.计算:2/3 + 1/4 = 11/122.计算:-5/6 + 7/8 = 1/243.计算:1 3/4 + 2 2/5 = 8 3/20 减法练习题解答1.计算:3/4 - 1/2 = 1/42.计算:-2/3 - 1/5 = -13/153.计算:2 3/8 - 1 1/4 = 1 1/8混合运算练习题解答1.计算:1/2 + 3/4 - 1/3 = 17/122.计算:-2/5 - 1/4 + 2/3 = -31/603.计算:3 1/2 - 2 2/3 + 1 1/4 = 1 1/12结论通过以上的有理数的加减法练习题,我们可以发现,在进行加法和减法运算时,关键是找到相同的分母(对于分数的运算),然后进行相应的加减运算。
混合运算的练习题则需要我们先进行分数的加减,然后再与整数进行加减运算。
通过不断练习,我们可以提高自己的运算能力,加深对有理数加减法的理解。
希望本文档对大家在学习有理数的加减法中有所帮助!。
有理数的加法与减法知识点以及专项训练(含答案解析)
有理数的加法与减法知识点以及专项训练(含有答案解析)【知识点1:有理数的加法】1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.3.运算步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).4. 运算律:【知识点1:有理数的加法练习】1.华罗庚说:“数学是中国人民擅长的学科”,中国是最早认识负数并进行运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负数”的方法.图1表示的是()34+-的过程,按照这种方法,图2表示的过程是在计算()A.()52+-B.()52-+C.()()52-+-D.52+【答案】A【解析】由左图知:白色表示正数,黑色表示负数,所以右图表示的过程应是在计算5+(−2), 故选:A .2. 计算(﹣2)+(﹣3)的结果是( ) A .﹣5 B .﹣1 C .1 D .5【答案】A【解析】原式=﹣(2+3)=﹣5, 故选:A3. 比3大-1的数是( ) A .2 B .4 C .-3 D .-2【答案】A【解析】3+(﹣1)=2,所以比3大-1的数是2. 故选:A .4. 奶奶把35000元钱存入银行2年,按年利率2.50%计算,到期时可得到本金和利息共多少元?( ) A .1750 B .36750 C .175 D .35175【答案】B【解析】本金+本金×年利率×年数=到期本息和。
根据题意得:35000+35000×2.50%×2=35000+1750=36750(元), 故选:B .5. 小红解题时,将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了( ). A .加法的交换律和结合律 B .加法的交换律 C .加法的结合律 D .无法判断【答案】A【解析】将式子(−8)+(−3)+8+(−4)先变成[(−8)+8]+[(−3)+(−4)],再计算结果,则小红运用了:加法的交换律和结合律.故选:A .6.两个数相加,如果和小于每个加数,那么这两个加数()A.同为正数B.同为负数C.一正一负且负数的绝对值较大D.不能确定【答案】B【解析】两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.例如:(−1)+(−3)=−4,−4<−1,−4<−3,故选B.7.两个数的和为正数,那么这两个数是()A.正数B.负数C.至少有一个为正数D.一正一负【答案】C【解析】根据题意,当两个数为正数时,和为正;当两数一个正数和0时,和为正;当两数一个为正一个为负,且正数的绝对值较大时,和为正.故选C.8.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10【答案】D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.9.已知a,b互为相反数,则a+2a+3a+⋯+49a+50a+50b+49b+⋯+3b+2b+b= ________.【答案】0【解析】∵a,b互为相反数,∴a+b=0.∴a+2a+3a+⋯+49a+50a+50b+49b+⋯+3b+2b+b=(a+b)+2(a+b)+3(a+b)+⋯+50(a+b)=0.故答案为:0.10.已知|a|=4>a,|b|=6,则a+b的值是________.【答案】2或-10【解析】∵|a|=4>a,|b|=6,∴a=-4,b=6或-6,当a=-4,b=6时,a+b=-4+6=2;当a=-4,b=-6时,a+b=-4-6=-10.故答案为:2或-10.11.绝对值不大于2.1的所有整数是____,其和是____.【答案】﹣2,﹣1,0,1,2 0【解析】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;012.若a,b为整数,且|a-2|+| a-b|=1,则a+b=________.【答案】2,6,3或5【解析】当|a-2|=1,| a-b|=0时,得:a+b=6或2;当|a-2|=0,| a -b|=1时,得:a+b=3或5;故答案为:2,6,3或5【知识点2:有理数的减法】1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.2. (1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.3.运算法则:减去一个数,等于加这个数的相反数,即有:a−b=a+(−b).将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:【知识点2:有理数的减法练习】1.冬季某天我国三个城市的最高气温分别是 -10℃,1℃, -7℃,它们任意两城市中最大的温差是()A.11℃B.7℃C.8℃D.3℃【答案】A【解析】它们任意两城市中最大的温差是:1-(﹣10)=1+10=11℃.故选:A.2.计算-2-3=()A.1-B.1 C.5-D.5 【答案】C【解析】解:-2-3=-2+(-3)=-5.故选:C.3.计算2136⎛⎫---⎪⎝⎭的结果为( )A.12-B.12C.56-D.56【答案】A【解析】原式=−46+16=−36=−12,故选:A.4.今年10月份某市一天的最高气温为11℃,最低气温为﹣3℃,那么这一天的最高气温比最低气温高()A.﹣14℃B.14℃C.8℃D.11℃【答案】B【解析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.解:这一天的最高气温比最低气温高11﹣(﹣3)=11+3=14(℃),故选:B.5.气温由6℃下降了8℃,下降后的气温是()A.14-℃B.8-℃C.2-℃D.2℃【答案】C【解析】用原来的气温减去下降的温度,求出下降后的气温是多少即可.解:6-8=-2(℃),故选:C.6.下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.12D.12【答案】A【解析】∵-2+2=0,故选A.7.-3-(-2)的值是( )A.-1 B.1 C.5 D.-5【答案】A【解析】本题按照有理数的减法运算法则直接求解即可.−3−(−2)=−3+2=−1,故选:A.8.小怡家的冰箱冷藏室温度是5℃,冷冻室的温度是﹣2℃,则她家冰箱冷藏室温度比冷冻室温度高( )A.3℃B.﹣3℃C.7℃D.﹣7℃【答案】C【解析】用冷藏室温度减去冷冻室的温度,就是冰箱冷藏室温度与冷冻室温度的温差.依题意得:5-(-2)=5+2=7℃,所以冷藏室温度比冷冻室温度高7℃.故选C.9.下列说法中正确的是()A.一个有理数不是正数就是负数B.|a|一定是正数C.如果两个数的和是正数,那么这两个数中至少有一个正数D.两个数的差一定小于被减数【答案】C【解析】解:A. 一个有理数不是正数就是负数,错误,如0既不是正数,也不是负数;B. |a|一定是正数,错误,如|0|=0;C. 如果两个数的和是正数,那么这两个数中至少有一个正数,正确;D. 两个数的差一定小于被减数,错误,如3-0=3. 故选:C10. 若3x =,2y =,且0x y +>,那么x y -的值为( ). A .5或1 B .1或-1 C .5或-5 D .-5或-1【答案】A【解析】由题意,利用绝对值的代数意义确定出x 与y 的值,即可求出x-y 的值.解:∵|x|=3,|y|=2,x+y >0, ∴x=3,y=2;x=3,y=-2, 则x-y=1或5, 故选A .11. 在数轴上,a 所表示的点总在b 所表示的点的右边,且|a|=6,|b|=3,则a-b 的值为( ) A .-3 B .-9 C .-3或-9 D .3或9【答案】D 【解析】∵|a|=6,|b|=3,∴a=±6,b=±3,∵在数轴上,a 所表示的点总在b 所表示的点的右边,∴a=6,当a=6,b=3时,a ﹣b=6﹣3=3,当a=6,b=﹣3时,a ﹣b=6﹣(﹣3)=6+3=9,所以,a ﹣b 的值为3或9.故选D .12. 设|a|=4,|b|=2,且|a+b|=-(a+b),则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2【答案】A 【解析】∵|a+b|=-(a+b ),∴a+b≤0,∵|a|=4,|b|=2,∴a=±4,b=±2,∴a=-4,b=±2,当a=-4,b=-2时,a-b=-2; 当a=-4,b=2时,a-b=-6;故a -b 所有值的和为:-2+(-6)=-8.故选A .13. 某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg 【答案】B【解析】因为最低重量为24.7kg ,最大重量为25.3kg ,故质量最多相差25.3-24.7=0.6kg .【知识点3:有理数加减混合运算】1. 将加减法统一成加法运算,适当应用加法运算律简化计算.2.举例:一、几个有理数相加,把相加得零的数先行相加: 例1 计算38−213−18−20+523−14−313. 【答案】-14【解析】原式=(38-18-20)+(-213+523-313)-14=0+0-14=-14. 例2 计算1+2-3-4+5+6-7-8+9+…+1998-1999-2000+2001+2002-2003-2004+2005+2006. 【答案】2007【解析】原式=1+(2-3-4+5)+(6-7-8+9)+…+(1998-1999-2000+2001)+(2002-2003-2004+2005)+2006=1+0+0+…+0+2006=2007. 二、几个有理数相加,把同号的数分别相加: 例3 计算-18+21-16+8-23+28. 【答案】0【解析】原式=(21+8+28)+(-18-16-23)=57-57=0. 三、几个非整数的有理数相加,先把相加得整数的数相加: 例4 计算-0.375+3.15+114-658+735. 【答案】5【解析】原式=(-0.375-658)+(3.15+114+735)=-7+12=5. 例5 计算214-123+325-113+2.35+9. 【答案】14【解析】原式=(2.35+214+325)+(-123-113)+9=8-3+9=14.四、几个分数相加,先把同分母的分数分别相加: 例6 计算413+514+634-113. 【答案】15【解析】原式=(514+634)+(413-113)=12+3=15.五、几个带分数相加,先把它们的整数部分和分数部分分别相加: 例7 计算413+514+634-113. 【答案】15【解析】原式=(4+5+6-1)+(13+14+34-13)=14+1=15. 六、先变形,后相加:例8 计算38+27-49-996+2006+28. 【答案】1234【解析】原式=(40-2)+(30-3)+(-50+1)+(-1000+4)+(2000+6)+(30-2)=(40+30-50-1000+2000+30)+(-2-3+1+4+6-2)=1230+4=1234.小结:进行有理数的加减混合运算前,根据减法法则把减法变成加法.进行有理数的加减混合运算时,一般先应考虑到符号相同的数先加;互为相反数的数先加,同分母的数先加,和为整数的几个数先加. 【知识点3:有理数加减混合运算 练习】 1. |1−2|+3的相反数是( ) A .4 B .2 C .4- D .2-【答案】C【解析】先化简求解,再根据相反数的定义即可求解. 解:|1−2|+3=2−1+3=4. ∵4的相反数为-4, ∴|1−2|+3的相反数是-4. 故选:C .2. 我市今年某一天上午9点的气温是4°C,下午1点上升了3°C,半夜(24时)又下降了5°C,半夜的气温是( ) A .3°C B .-3°C C .4°C D .2°C【答案】D【解析】根据有理数的加减运算法则计算即可. 解:由题意可得:4+3-5=2°C, 故选D .3. 1﹣2+3﹣4+5﹣6+…+2005﹣2006的结果是( ) A .0 B .100 C .﹣1003 D .1003【答案】C【解析】1﹣2+3﹣4+5﹣6+…+2005﹣2006 =1003(1)(1)(1)(1)(1)--+-+-++-个=-1003.4. 50个连续正奇数的和l+3+5+7+…+99与50个连续正偶数的和:2+4+6+8+…+100,它们的差是( ) A .0 B .50 C .﹣50 D .5050 【答案】C【解析】试题解析::(1+3+5+7+…+99)-(2+4+6+8+…+100) =-[(2-1)+(4-3)+(6-5)+(8-7)…+(100-99)] =-(1+1+1+1+…+1) =-50. 故选C .5. 绝对值大于1且小于4的所有整数的和是( ) A .6 B .–6 C .0 D .4【答案】C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0. 故选C .6. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a 和b ,有a ☆b =a-b+1,请你根据新运算,计算(2☆3)☆2的值是 .11 | 13【答案】 -1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-17. 阅读下题的计算方法.计算−556+(−923)+1734+(−312).解:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)] =0+(−54) =−54上面这种解题方法叫做拆项法,按此方法计算:(−201156)+(−201023)+402223+(−112). 【答案】−43【解析】解:原式=[(−2011)+(−56)]+[(−2010)+(−23)]+[4022+23]+[(−1)+(−12)]=[(−2011)+(−2010)+4022+(−1)]+[(−56)+(−23)+23+(−12)] =0+(−43) =−438. “九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.(1)现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得第行的三个数、每列的三个数、斜对角的三个数之和都等于15;(2)通过研究问题(1),利用你发现的规律,将3,5,﹣7,1,7,﹣3,9,﹣5,﹣1这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.【答案】【解析】解:(1)15÷3=5,∴最中间的数是5,其它空格填写如图1;(2)如图2所示.9.某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】1594千克【解析】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6 200×8+(-6)=1594(千克)法二:197+202+197+203+200+196+201+198=1594(千克)10.邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑了多少千米?【答案】(1)(2)6千米(3)18千米【解析】解:(1)以邮局为原点,以向北方向为正方向用1cm表示1km,数轴为:;12 | 13(2)依题意得:C点与A点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).11.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,求:x+y+z的值.【答案】10【解析】解:根据数轴,到原点的距离小于3的整数为0,±1,±2,即x=5,不大于3的正整数为1,2,3,即y=3,绝对值等于3的整数为3,﹣3,即z=2,所以x+y+z=10.12.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?星期一二三四五每股涨跌/元+0.4 +0.45 ﹣0.2 +0.25 ﹣0.4【答案】(1)11.85元;(2)周四,本周该只股票最高价12.1元出现在周四。
(完整版)有理数的加减法练习题及答案
有理数的加减法测试题一、填空题(每小题5分,共30分)1、+8与-12的和取___号,+4与-3的和取___号。
2、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是____℃。
3、3与-2的和的倒数是____,-1与-7差的绝对值是____。
4、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元。
5、若a >0,b <0,则a -b 一定是____(填“正数”或“负数”)6、把下列算式写成省略括号的形式:(+5)-(+8)+(-2)-(-3)+(+7)=____。
二、选择题(每小题4分,共32分)1、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为()A 、(+26000)+(+3000)B 、(-26000)+(+3000)C 、(-26000)+(-3000)D 、(+26000)+(-3000)2、下面是小华做的数学作业,其中算式中正确的是()①0-(+)=474111111;②0-(-7)=7;③(+)-0=-;④(-)+0=-7445555A 、①②B 、①③C 、①④D 、②④3、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了()A 、12.25元B 、-12.25元C 、12元D 、-12元15的和的相反数加上-1等于()461155A 、-8B 、-4C 、D 、4121212124、-2与45、一个数加上-12得-5,那么这个数为()A 、17B 、7C 、-17D 、-76、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高()A 、10米B 、15米C 、35米D 、5米1所得结果正确的是()21111A 、-10B 、-9C 、8D 、-23222218、若a -1+b +3=0,则b -a -的值为()21111A 、-4B 、-2C 、-1D 、122227、计算:(-5)-(+3)+(-9)-(-7)+三、解答题(共38分)1、列式并计算:(每题6分)(1)什么数与-(2)-1减去-57的和等于-?12822与的和,所得的差是多少?352、计算下列各式:(每题5分)(1)0-(-6)+2-(-13)-(+8)(2)13(3)(+17)-(+6.25)-(-8)-(+0.75)-223、计算题(11分)某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7(1)到晚上6时,出租车在什么位置。
人教版七年级数学上册有理数的加减法练习题(已排版可直接打印)
七上数学有理数的加减法练习题(附答案苏教版)作业导航理解有理数的加减法的运算法则会进行有理数的加减运算.一、填空题 1.计算:-21+(-31)=____ -21+31=____ 21+31=____ 21-31=____ -31-41=____-41-(-51)=____ 2.两个相反数之和为_____.3.0减去一个数得这个数的_____.4.两个正数之和为_____,两个负数之和为_____,一个数同0相加得_____.5.某地傍晚气温为-2℃,到夜晚下降了5℃,则夜晚的气温为_____,第二天中午上升了10℃,则此时温度为_____.6.异号两数相加和为正数,则_____的绝对值较大,如和为负数,则_____的绝对值较大,如和为0,则这两个数的绝对值______.7.两个数相加,交换加数的位置和_____,两个数相减交换减数的位置,其得数与原得数的关系是_____.8.已知一个数是-2,另一个数比-2的相反数小3,则这两个数和的绝对值为_____.二、选择题9.下列结论不正确的是( ) A .两个正数之和必为正数B .两数之和为正,则至少有一个数为正C .两数之和不一定大于某个加数D .两数之和为负,则这两个数均为负数 10.下列计算用的加法运算律是( )-32+3.2-32+7.8 =-31+(-32)+3.2+7.8=-(31+32)+3.2+7.8=-1+11=10A .交换律B .结合律C .先用交换律,再用结合律D .先用结合律,再用交换律 11.若两个数绝对值之差为0,则这两个数( ) A .相等 B .互为相反数C .两数均为0D .相等或互为相反数12.-[0.5-31-(61+2.5-0.3)]等于( ) A .2.2B .-3.2C .-2.2D .3.2三、计算题 13.计算(1)-31+25+(-69) (2)(-21)-(-31)-(+41)14.已知两个数的和为-252,其中一个数为-143,求另一个数.15.如果两个数的和的绝对值,等于这两个数差的绝对值,这两个数是什么样的数. 16.1984年全国高考数学试题共15个选择题,规定答对一个得4分,答错一个扣1分,不答得0分,某人选对12个,错2个,未选一个,请问该生选择题得多少分?17.弘文中学定于十一月份举行运动会,组委会在整修百米跑道时,工作人员从A 处开工,约定向东为正,向西为负,从开工处A 到收工处B 所走的路线(单位:米),分别为+10、-3、+4、-2、+13、-8、-7、-5、-2,工作人员整修跑道共走了多少路程?参考答案一、1.-65 -61 65 61 -127 -201 2.03.相反数4.正数 负数 这个数 5.-7℃ +3℃6.正数 负数 相等 7.不变 互为相反数 8.3二、9.D 10.C 11.D 12.A 三、13.-75 -125 14.-2013 15.至少有一个数为0 16.46 17.54米。
(完整版)有理数的加减法练习题及答案
有理数的加减法测试题一、填空题(每小题5分,共30分)1、+8与-12的和取___号,+4与-3的和取___号。
2、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是____℃。
3、3与-2的和的倒数是____,-1与-7差的绝对值是____。
4、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元。
5、若a >0,b <0,则a -b 一定是____(填“正数”或“负数”)6、把下列算式写成省略括号的形式:(+5)-(+8)+(-2)-(-3)+(+7)=____。
二、选择题(每小题4分,共32分)1、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为()A 、(+26000)+(+3000)B 、(-26000)+(+3000)C 、(-26000)+(-3000)D 、(+26000)+(-3000)2、下面是小华做的数学作业,其中算式中正确的是()①0-(+)=474111111;②0-(-7)=7;③(+)-0=-;④(-)+0=-7445555A 、①②B 、①③C 、①④D 、②④3、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了()A 、12.25元B 、-12.25元C 、12元D 、-12元15的和的相反数加上-1等于()461155A 、-8B 、-4C 、D 、4121212124、-2与45、一个数加上-12得-5,那么这个数为()A 、17B 、7C 、-17D 、-76、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高()A 、10米B 、15米C 、35米D 、5米1所得结果正确的是()21111A 、-10B 、-9C 、8D 、-23222218、若a -1+b +3=0,则b -a -的值为()21111A 、-4B 、-2C 、-1D 、122227、计算:(-5)-(+3)+(-9)-(-7)+三、解答题(共38分)1、列式并计算:(每题6分)(1)什么数与-(2)-1减去-57的和等于-?12822与的和,所得的差是多少?352、计算下列各式:(每题5分)(1)0-(-6)+2-(-13)-(+8)(2)13(3)(+17)-(+6.25)-(-8)-(+0.75)-223、计算题(11分)某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7(1)到晚上6时,出租车在什么位置。
七年级数学有理数的加减法(含解析答案)
有理数的加减法练习题温故而知新:1.有理数的加法法则(1(2的绝对值.(3)一个数同0相加,仍得这个数.2.加法运算律加法交换律:a+b=b+a,有理数的加法中,两个数相加,交换加数的位置,和不变.加法结合律:(a+b)+c=a+(b+c),有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.3.有理数的减法法则a-b=a+(-b).4.有理数的加减混合运算有理数的加减混合运算可以统一为加法运算,即a+b-c=a+b+(-c).有理数加减法运算例1 计算:解析:对多个有理数的求和尽量用加法运算律使计算简便,下一步,题目变色....同色。
......与.-.0.25...-.2.16....同色,....与.同色,....与.-.3.84题中与是一对相反数,可结合在一起;-2.16与-3.84,与-0.25分别结合在一起,能够凑成整数。
答案:小结:利用有理数的加法运算律时,(1)互为相反数的两个数相结合;(2)正数和负数分别相结合;(3)和为整数的数结合在一起;(4)和出现较强规律的数结合在一起.有理数加减法混合运算解析:先根据有理数的减法法则把算式化为加法算式,再根据加法运算律进行计算。
答案:小结:有理数的加减混合运算有如下几个步骤:①减法转化成加法运算;②省略加号和括号;③按有理数加法法则计算.有理数的加减混合运算在实际生活中的应用例3 小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:厘米):+5,-3,+10,-8,-6,+12,-10。
(1)小虫最后是否回到出发点A?(2)小虫离开A点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?解析:(1)假设小虫的爬行过程在数轴上进行,A点即为数轴的原点,向右为正方向。
将小虫爬行各段的路程相加,如果计算结果为0 ,说明回到了出发点A点,否则则未回到了出发点A点.下一步(不保留(.....1.))..(2)分别计算出每次爬行后距离A点的距离,再比较,可得出答案。
七年级有理数的加减法教案及习题
(2)若每千米耗油0.2升,问从A地出发到收工时共耗油多少升?
解:
(1)
(2)
答:收工时在A地前面41千米,从A地出发到收工时共耗油13.4升。
【模拟试题】(答题时间:40分钟)
一. 填空:
1. 从3.5中减去 与 的和是。
2. 比+3大 的数是。
3. 的绝对值与 的相反数的和是。
(3)原式 (4)原式
[例2] 运用加法运算律,计算下列各题:
(1)
(2)
解:
(1)原式
(2)原式
[例3] 计算:
解:原式
[例4] 计算:
(1) (2) (3)
(4) (5)
解:
(1)原式=1 (2)原式= (3)原式=
(4)原式= (5)原式
[例5] 计算:
解:
原式
[例6] 已知在数轴上点A表示的数为 ,点B表示的数为15,求A、B两点间的距离。
二. 1. A 2. C 3. B 4. C 5. A
三. 1. 解:
(1)原式
(2)原式
(3)原式
(4)原式
(5)原式
2. 解:
当 , , 时,原式
3. 解:
∵ , ∴ ,
又 ∵ ∴ ∴ ,
∴ 当 , 时,原式
当 , 时,原式
∴ 的值为10或4
4. 解:根据题意,得 ,
当 , 时,原式
课后作业
课堂
解:A、B两点间的距离为90
[例7] 用有理数减法解答下列各题:
(1)某地白天最高气温是20℃,夜间最低气温是 ℃,夜间比白天最多低多少℃?
(2)物体位于地面上空2米处,下降3米后又下降5米,最后物体在地面之下多少米处?